o A} 5} 9] = B

Ph.D. Dissertation

P WYL T HeEl2 BAE o8
7| AAHgol K5 $4 18 7] g B4)
94 9 24

Key-reusable Dynamic Group Key Exchange
from Lattice with Quantum Resistance

2020

Z| 2 & (% ¥ B Choi, Rakyong)

e RN ET

Korea Advanced Institute of Science and Technology

o A} 3} 9] =

FAF W= 71l HE L

7] AALgol Fs T 56 1%
47 2 8o

=

3k
Hl
i
1
N

2,
:
10
4

St AL 7}1] L e A BAE o] &

7] AALR O] 7}=5 % 15 7] 28

9 LEe GBS PAIERO
SHYIER AN A0 JAE S5AS

20204 06¥ 12

AEE A3 =x2 (9
AAE 42 (Q)
AAYE oFFd (9
AAAdd d2d4Ad (9
A A ¢ ¥ Jintai Ding ($])

Key-reusable Dynamic Group Key Exchange
from Lattice with Quantum Resistance

Rakyong Choi

Advisor: Kwangjo Kim

A dissertation submitted to the faculty of
Korea Advanced Institute of Science and Technology in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Daejeon, Korea
June 12, 2020

Approved by

Kwangjo Kim
Professor of School of Computing

The study was conducted in accordance with Code of Research Ethics!.

! Declaration of Ethical Conduct in Research: I, as a graduate student of Korea Advanced Institute of Science and
Technology, hereby declare that I have not committed any act that may damage the credibility of my research. This
includes, but is not limited to, falsification, thesis written by someone else, distortion of research findings, and plagiarism.

I confirm that my thesis contains honest conclusions based on my own careful research under the guidance of my advisor.

DCS 2|28, YAt UGS 7tAl= eE|A ZA|E 0|85t
7| MAEO| 7tstt 54 & 7] nd EA9
AA L BN AR | 20204, 76+v 2. A Tug: 2ATR (YR
=)
Rakyong Choi. Key-reusable Dynamic Group Key Exchange
from Lattice with Quantum Resistance. School of Computing . 2020.
76+v pages. Advisor: Kwangjo Kim. (Text in English)

P

=
2|2 7] AAHE- g2l 28] Ding Key Exchange, NewHope 3 o} 2} Peikert] 7] 27 |AYZE-E o]-87F
e A 7N 7] W g o] didt theFRt 34 ='ol AMEHAT 2 71E9] 7] A TA9 B¢

FARZY 7] W FA o gt FATS A2ste] 2F 7] nE T2EF difA= &2 7H s A85}]

2 EROIAE Z1E AEA 71 18 7] BE A e A 7 A4S 3 B9 {one, two}-
neighbour §2/of tel4| 271517 20124 Ding o] AT 1§ 71 L 4, 20198 Apon 5ol Ak
2§ 7] 28 A0 olF 7 ANE BA02 B APttt AL AN o W FARE el
Py-19) ¥19718 97 el The] Pyo3 Py-o@ 23 7Fsotcka e,

EE B RN AL QUAE 54 BN 18 29 7 B8l 5T qIE 1§ 7]
28 4 44 28 A L TGO, 7] AN FHo) I thg M2 Pastewrization 7| L
o1geto] 2 FoIAel FAANE chA AES AAX 7] AEl Fs T BA 18 7 28 B4 WAE
Dutta-Barua 22 £8-$ o} 880l 52 D14 RLWE £41 /%o 474 % WY 2212 2 4oly
F953

AAHET 7| n@ 225 F, AR 710 43, A WA €F, 7] A4S 34

Abstract

Recently, several key reuse attacks against Ding Key Exchange, NewHope and other lattice-based key
exchange schemes using Peikert’s key reconciliation mechanism were suggested. But all known key reuse
attacks are designed for two-party setting instead of group key exchange. On the other hand, all previous
known lattice-based group key exchanges are designed for static setting.

This paper is organized in three folds. We present the first key reuse attack called {one, two}-
neighbour attack against lattice-based group key exchanges, namely Ding et al.’s group key exchange
scheme in 2012 and Apon et al.’s group key exchange scheme from PQCrypto 2019. We consider that
the adversary manipulates one or two neighbour parties Py_o (and Py_3 for two-neighbour attack) of

the last party Py_; to recover the secret key of the last party Py_; among N parties.

We also suggest several constructions of dynamic group key exchange protocols that could be in-
stantiated by lattice. As a countermeasure of our attack, we design the first key-reusable group key
exchange based on lattice. where GKE protocol IIgke is key-reusable if the protocol participants of Ilgke
can re-use their public key. By adopting existing pasteurization technique for two-party key exchange
from lattice, our protocol becomes resistant to known key reuse attacks. We give a rigorous proof of
our protocol in the random oracle model. Qur underlying dynamic group key exchange protocol is the

modification of Dutta-Barua protocol in RLWE setting.

Keywords Key exchange protocol, dynamic group key exchange, lattice-based cryptography, post-

quantum cryptography, key-reuse attack

Contents

Contents o 0 i i i i it i i e e e e e e e e i
Listof Tables o 0 0 i i i it e e e e e e it e e iv
List of Figures 0 v i i i i i i i i e e it e e et e e e e v
Chapter 1. Introduction
1.1 Our Contributions00,
1.2 Outlineofthe Paper
Chapter 2. Preliminaries 5
21 Notation o i i i i it it e e e e 5
2.2 Discrete Gaussian Distribution 5
2.3 Ring Learning with Errors 5
24 RényiDivergence. i i it ittt 6
2.5 Generic Key Reconciliation Algorithm 7
2.6 Pasteurization Technique, 8
Chapter 3. Related Work 10
3.1 Constant-round Group Key Exchange 10
3.2 Security Model of Group Key Exchange 10
3.3 Lattice-based Key Exchange 11
34 KeyReuse Attacks i i 11
Chapter 4. {One, two}-neighbour Attack against known Lattice-based GKE
13
4.1 Ding et al.’s Group Key Exchange 13
4.1.1 One-neighbour Attack 13
4.2 Apon et al.’s Group Key Exchange 14
4.2.1 Two-neighbour Attack 16
Chapter 5. Novel Construction of GKE Protocols 18
5.1 Choi et al.’s Tree-based GKE 18
5.1.1 Basic Construction 18
5.1.2 Dynamic TGKE, 20
5.1.3 Security Analysis 22
5.2 Homomorphic Encryption based GKE 23

5.2.1 Homomorphic Encryption
5.2.2 Basic Operations from Graph Theory
5.2.3 Construction in Static Setting
5.2.4 Parcel-S Protocol,
5.2.5 Parcel-D Protocol
Chapter 6. Key-reusable GKE in Static Setting
6.1 Construction of Key-reusable GKE
6.2 Security Analysis i e e e e e e e e e
6.2.1 Correctness Proof
6.2.2 Security Proof 0.,
Chapter 7. Dynamic GKE from RLWE
7.1 Security Model i i i ittt
7.2 Unauthenticated Group Key Exchange
7.3 Authenticated Group Key Exchange
7.4 Dynamic Group Key Exchange
7.41 Join Algorithm
7.4.2 Leave Algorithm
7.5 Security Analysis o i i i e e e e e
7.5.1 Correctness Proof
7.5.2 Security Proof
Chapter 8. Implementation
8.1 Instantiation
8.1.1 Restrictions on the Parameters
8.1.2 Parameter Selection.,
8.2 Network Topology i i,
83 OurTests i i i it i ittt ittt ie e e
8.3.1 Test 0: Verifying the Success of Key Exchange.
8.3.2 Test 1: Performance Check on Components
8.3.3 Test 2: Performance Check on Dynamic Operations
Chapter 9. Key-resuable Dynamic GKE from RLWE
9.1 Tweaked Two-neighbour Attack
9.2 Security-enhanced Dynamic GKE from RLWE

Chapter 10.

Comparison with Other Protocols

32
32
32
32
35

43
43
45
45
45
45
49
49
49
50

60
60
60
60
61
61
62
62
64

65
65
66

68

Chapter 11.

Bibliography

Concluding Remarks

iii

70

71

List of Tables

8.1 Parameter choice 61
8.2 Average runtime and cycles of each operation 000000 L. 63
8.3 Average runtime and cycles of each function oo o Lo 63
8.4 Performance evaluation of U.Join and U.Leave 64
10.1 Comparison with other lattice-based (authenticated) GKE protocols 68

iv

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

8.1
8.2
8.3

List of Figures

TGKE protocol in static setting L 19
Joinexample e 20
Remove examples for Leave and TreeRefresh 21
HE-KE protocol e e e e e 24
Parcel-S protocol e 26
Join algorithm in Parcel-D protocolo o 29
Leave algorithm in Parcel-D protocol o oo 29
Merge algorithm in Parcel-D protocol L. 30
Group secret key of STUG (N=4) 62
U.Join procedure in DRUG (N=4 — N=5) 62
U.Leave procedure in DRUG (N=5 — N=4) 62

Chapter 1. Introduction

These days, network topology is becoming more and more complicated such as group chatting in
instant messaging applications, file sharing between multiple parties, etc. Hence, secure communication
between multiple parties is required to keep the confidentiality of their messages.

Key establishment is a pre-determined protocol where two or more parties make a shared secret
for subsequent cryptographic use [48]. This can be subdivided into key transport and key agreement
protocols. Key transport protocol enables one party to create a secret value and securely transfer it to
other parties but key agreement protocol derives the shared secret of two or more parties as a function
of information contributed by each party, so that no party can estimate the result.

A group key exchange (GKE) protocol provides a set of specific cryptographic procedures that
establishes a group secret key that is derived from group members. Compared to secret sharing scheme,
GKE protocol allows distinct keys for distinct groups while secret sharing scheme starts with a secret
and divides it into pieces called shares. Information exchanged between parties in GKE protocol is non-
secret and transferred over open channels, while shares are distributed secretly. Each party individually
computes the session key in GKE protocol but pooling shares can be reconstructed among K participants
of all N parties where K < N for secret sharing scheme [48]. In general, GKE protocol consists of three
phases: key generation phase, intermediate value broadcasting phase, and key computation phase.

Authenticated key exchange protocol authenticates the identity of parties in the protocol to prevent
any attacks like the man-in-the-middle attack even in the presence of active adversaries who controls the
underlying communication by eavesdropping and modifying transmitted messages during communication
over a network.

To construct (authenticated) GKE protocol, we need to define the computational power of a group
member. If all group members are assumed to have equal power, we need to handle some disputes that
happen by the malicious actions of group members. To overcome this issue, a trusted authority (TA)
must be provided as a communication infrastructure, but it is quite costly.

As the membership status of a party changes or remains the same, we say GKE protocol is in either a
static or a dynamic setting. The static setting keeps membership status for a long time while the dynamic
setting provides frequent membership status changes in a short time, i.e., any member can join or leave
the protocol at any time in a dynamic setting. It is suitable to deploy a TA in a protocol in a static
setting, but hard to deploy a TA in a dynamic setting such as resource-constrained environments like IoT.

There have been numerous publications on GKE protocols [4,9,13-17,28,38,40,41,45,49,51,52,58-60,64].

It is well-known that quantum algorithms like Shor’s algorithm [57] can solve number-theoretic
problems like integer factorization and discrete logarithm problems including their elliptic curve versions
in polynomial time so that quantum adversaries can break the cryptographic protocol like RSA, Diffie-
Hellman key exchange, or ECDSA. As quantum computer becomes realistic in the near future in a
best scenario, the National Institute of Standards and Technology (NIST) has been selecting standard
post-quantum cryptographic algorithms like key exchange, encryption, and signature schemes which
are the most critical functions that require public key cryptosystem. It would be ideal to have drop-in
replacements for quantum-vulnerable algorithms like RSA, ElGamal, and Diffie-Helman key exchange [6].
There were a lot of submissions about lattice-based key exchanges / key encapsulation mechanisms
including Ding Key Exchange, NewHope, Frodo, Kyber and Round5 [3,5,10,11,26]. Among them,
lattice-based key exchanges face an issue on key reuse.

The history of key reuse attack against lattice-based key exchange protocol started along with
the development of lattice-based key exchanges. Since Fluhrer [30] presented an attack to leak the
information of the secret key of one participant from the key reconciliation function, there have been
several key reuse attacks against Ding Key Exchange, NewHope, and other lattice-based key exchange
protocols using Peikert’s key reconciliation mechanism [7,23,25,46,53]. But to the best of our knowledge,
all the previous results are limited on two-party key exchange protocols.

There are a few publications on post-quantum GKE protocols. Ding et al. [26] constructed the first
lattice-based GKE protocol and Yang et al. [64] and Apon et al. [4] independently suggested constant-
round lattice-based GKE protocols, where constant-round means that the number of phases for each
party does not change regardless of the number of group members.

While Ding et al. and Apon et al.’s protocols do not rely on a TA to agree on a group secret key
among the group members, Yang et al.’s protocol requires the role of a TA that calculates the group
secret key by getting the ephemeral key of each party and sends it to each party.

However, to the best of our knowledge, there exists no post-quantum dynamic GKE in the open
literature regardless of the existence of TA and there is no lattice-based GKE protocol resistant to key
reuse attack, either. Our goal is to design a novel post-quantum constant-round dynamic GKE protocol

from Ring Learning with Errors (RLWE) resistant to key reuse attacks, without a TA.

1.1 Ouwur Contributions

In this paper, we give three main contributions.
First, we give a modified key reuse attack called as {one, two}-neighbour attack to check the vul-

nerability of Ding et al.’s GKE protocol and Apon et al.’s protocol (ADGK19) [4] when a specific key

reconciliation mechanism is embedded. We describe briefly how to recover the secret key of the last party
Pxn_1 among N parties in polynomial time.

We assume that the adversary is impersonating as one or two previous neighbouring parties Py_3
and Py_o of the last party Py_; while the secret keys of other parties in the group are fixed. This
can be interpreted as a kind of insider’s attack. Then, with similar approach of Ding et al.’s key reuse
attack [23], we can obtain the secret key of the last party Py_; by checking the number of signal changes
of the output of key reconciliation function.

Secondly, as a counter-example of our attack, we design the first key-reusable group key exchange
based on lattice where GKE protocol Ilgkg is key-reusable if the protocol participants of Ilgke can re-use
their public key (as well as their secret key). We adopt the existing pasteurization technique from Ding
et al. [24] into ADGK19 so that our new scheme becomes resistant to our two-neighbour attack. We focus
on constructing an unauthenticated scheme like ADGK19 since known techniques such as Katz-Yung
compiler [38] can be applied to obtain an authenticated one.

Finally, we give a constant-round key-reusable dynamic GKE protocol based on the hardness of
RLWE assumption [47] where a party can join or leave the group. We extend two-round Dutta-Barua
protocol [28] into RLWE setting.

Given a group G of prime order g and a generator g € G, we briefly describe Burmester-Desmedt

and Dutta-Barua protocols as below:

1. (Round 1) Each party P; chooses “uniform” value r; € Z, and broadcasts z; = g"* to all other

parties.
2. (Round 2) Each party P; broadcasts X; = (z;4+1/2zi_1)" to all other parties.

3. (Key Computation)

o Burmester-Desmedt protocol: b; = zi_lN“ . XiN_l . Xi+1N_2

o XiyN_2.
e Dutta-Barua protocol: Each party P; calculate Y;1; = X;112;41™ and Yiy; = X5 ;Y0 ;o)

for j =2 to N — 1, then b; = [[}_' Yiy;.

Since Dutta-Barua protocol is a modification from Burmester-Desmedt protocol [16,17,38] used in
Apon et al.’s recent work [4], our unauthenticated GKE protocol in static setting is somewhat similar to
Apon et al.’s protocol.

We apply this relationship into Apon et al.’s protocol. Given a ring R, and a ring element a < R,

we sketch our unauthenticated GKE protocol compared to Apon et al.’s as below:

1. (Round 1) Each party P; chooses ‘small’ secret value s; € R, and ‘small’ noise e¢; € R, and

broadcasts z; = as; + e; to all other parties.

2. (Round 2) Each party P; chooses another ‘small’ noise e, € R, and broadcasts X; = (zi+1 — zi—1) si+

e} to all other parties.
3. (Key Computation)

e Apon et al.’s protocol: b; = Nz;_18; + (N —1)X; + (N —2)Xi1 + - + Xisn—o2.

e Our protocol: Each party P; calculate Y; = X; +2;_15; and Y ; = X j+ Yiy(j—y forj=1

to N = 1, then b; = Y"1 Vi .

Hence, we follow security analysis of Apon et al.’s protocol with slight modification in the presence
of the passive adversary. We adopt “unpredictability-based” security analysis (i.e., given the transcript,
it is infeasible to determine the real session key) instead of “indistinguishability-based” one (i.e., given
the transcript, the real session key should be indistinguishable from random) to apply the characteristic
of bounded Rényi divergence.

But instead of applying Katz-Yung compiler [38] for authenticated GKE with active adversary, we
adopt the security model of Bresson et al. [13] to give a full security analysis of the dynamic case.
Hence, our authenticated GKE protocol also achieves forward secrecy, almost fully symmetric and being
constant-round but we do not require one more round to achieve AKE security, compared to Apon et

al.’s protocol.

1.2 OQutline of the Paper

The rest of this paper is organized as follows. We define the notation and preliminaries in Chapter
2. We review the related work on lattice-based (group) key exchanges and key reuse attacks in Chapter
3. In Chapter 4, our novel {one, two}-neighbour attack on previous lattice-based group key exchanges is
described. Then, we introduce a novel construction of GKE protocols with trusted authority in Chapter
5. We give key-reusable group key exchange from lattice in Chapter 6 with a security analysis. In Chapter
7, dynamic group key exchange protocol is suggested and the implementation is given in Chapter 8. In
Chapter 9, we further claim that our dynamic GKE is not secure against the type of key reuse attacks
and give a key-reusable dynamic GKE protocol from RLWE with constant-round property. Finally, we

give a comparison table and concluding remarks in Chapters 10 and 11, respectively.

Chapter 2. Preliminaries

2.1 Notation

Let Z be the set of integers and [N] = {0,1,2,--- N — 1}. [z] is a ceiling function that maps z to
the least integer greater than or equal to x. For a set A, z - A denotes a uniformly random sampling
of z € A.

Let x(E) stand for a probability of a set E of events occurs under a distribution y. We set Supp(x) =
{€: x(€) # 0} and let E be the complement of an event set E. x, denotes the distribution with standard
deviation a.

A function g is negligible if and only if for all ¢ € N, there exists n. € N such that u(n) < n=¢ for
all n > n.. Given a ring element p, p[i] denotes the i-th coefficient of p. We use log(z) and exp(z) to
denote log,(z) and e®, respectively. We denote P; and P[0,1,--- k] = {Py, P1,--- , P} for i-th party

and an array of parties of a protocol, respectively.

2.2 Discrete Gaussian Distribution

For o € R, denote p,(x) = exp (— lﬁlﬁ) as the Gaussian function scaled by o where x € R™ and let
Po(Z™) = 3 czm Po(x). Define the m-dimensional discrete Gaussian distribution Dgzm ,(x) = ;;M(Z%%
for x € Z™. To sample a polynomial of degree n, (1) take m = 1 and sample each coefficient n times
from Dz ,(x) or (2) take m = n and sample coefficient vectors from Dz (x). We write DF’, to denote
sampling m times from Dz ,.s We can restrict the sample domain to Zg, in other words, i-th coordinate
z; of the input x is in the range —2 < z; < 1. Figure 77 shows a 2-dimensional discrete Gaussian
distribution with standard deviation o = 2v/8

Remark that the ring-Learning with Errors (ring-LWE) problem is still hard if the secret s € R, is

sampled from an error distribution instead of sampled from a uniform distribution of R,. [?,7,47]

But the discrete Gaussian distribution has some issues on its implementation and efficiency.

2.3 Ring Learning with Errors

RLWE problem [47] states that it is hard to find a secret value s € R, from [independent samples
(ai,ais + e;) in Ry x Ry where R, is a ring.
But, decisional version of RLWE problem is commonly used in cryptographic primitives as a building

block. Decisional version of RLWE states that it is hard to distinguish whether a sample (a,b) € R4 X Ry

is from the RLWE distribution of the form (a, as + ¢) € R, x R, for uniform a « Ry, secret key s < X,
and error € < X, or it is sampled from uniform distribution of R, x R,.

We let Advf‘ngxe’l(l?) denote the advantage of algorithm B in distinguishing RLWE distribution

RLWE
g, X 55X el

RLWE
n,q,x;l

and uniform distribution of R, X R,. In addition, let Adv (t) be the maximum advantage of any

algorithm running in time t. If x = xs = Xe, we write Adv for simplicity. For the remaining paper,

we set R,q,x and [as follows:

1. R =Z[z]/(f(z)) is a polynomial ring with an irreducible polynomial f(z) = z™ + 1 where z is the

indeterminate and n is a power of 2.

2. ¢ is a positive integer modulus defining a quotient ring Ry = R/qR = Zy[z]/(f(z)). We consider

the case where ¢ is prime with ¢ =1 mod 2n.

3. X = (XssXe) is a pair of noise distributions over R, where x, is a secret-key distribution and x.
is an error distribution that are concentrated on small elements. We choose Gaussian distribution

Dgz,, , for both x, and xe.

4. [is the number of samples given to the adversary.

2.4 Rényi Divergence

For two discrete probability distributions P and @ with Supp(P) C Supp(Q), their Rényi divergence

is defined as

RD,(PIQ) = Y 2

z€Supp(P) Q(ZL‘)

Rényi divergence measures closeness of two probability distributions and it is widely used in cryptographic
designs [8,43,47,62]. We introduce some important results related to Rényi divergence that can be used

in our protocol.

Proposition 1. For discrete distributions P and @ with Supp(P) C Supp(Q), let E C Supp(Q) be an
arbitrary event. We have
Q(E) > P(E)*/RDy(P|Q)
Roughly, the proposition says that if RDy(P||Q) is bounded by some polynomial, then any event
set E that occurs with negligible probability Q(E) under @ also occurs with negligible probability P(E)
under P. With this proposition, Theorem 1 claims that Rényi divergence between the 1-dimensional
discrete Gaussian distribution Dz, . (which centered at the origin) and other distribution e + Dy 00

(which centered at a point near the origin, i.e., e is a small value) is bounded.

Theorem 1 ([5]). Let m, g, A € Z and fix a bound SBrenyi and o with Srenyi < 0 < ¢. Let e € Z satisfying
|e| S ,BRényi. Then
RDy((e + Dz, 0)™||DF. ») < exp(2mm(Brenyi/7)?)

where x™ means that we sample m times independently from the distribution x. Moreover, if we take
o = QBrenyin/m/ log A) with security parameter A, we deduce that RD»((e+ Dz, »)™||Dz. ,) < poly(A).

2.5 Generic Key Reconciliation Algorithm

The concept of key reconciliation was first introduced by Ding et al. [26] to treat errors between
two approximately agreed ring elements in R,. Then, it has been used in several works on lattice-based
two-party key exchange protocols [3,10,12,50,65]. From [4], we describe a generic key reconciliation
algorithm which is performed between two-party in one-round.

A key reconciliation KeyRec = (recMsg, recKey) allows two parties to derive the same key from close
ring elements. One of two participants runs the first algorithm recMsg taking the security parameter A
and a ring element b € R, and outputs rec and a key k € {0, 1}’\. The other participant runs recKey
taking rec and a ring element b’ € R, and outputs a key value &’ € {0, 1})‘.

We claim that a key exchange protocol works correctly when two participants have the same key
(i.e. k =k'). To hold this equality, b and b" have to be sufficiently close. Especially, if b —b" are bounded
by some value Bgrec and two participants run KeyRec algorithm, then they share the same key except
with negligible probability.

Security is defined by the indistinguishability between a key k, result of key exchange and uni-
formly random value. Formally, an adversary A should be computationally infeasible to distinguish two

distribution,
{(rec, k) : b < Ry; (rec, k) < recMsg(1*,b)}, _ and
{(rec, k') : b < Ry; (rec, k) < recMsg(1*,b); k" « {0, 1}A}/\eN

For a fixed value of A\, we denote the advantage of adversary A in distinguishing these two distributions

by Advkeyrec(A), and the maximum advantage of any such adversary running in time ¢ by Advkeyrec(t)-

Ding’s Reconciliation Mechanism

Ding et al. [26] proposed the first two-party key exchange protocol based on lattice as Protocol 1.

To make their protocol to get the correctness, they consider three types of functions for reconciliation
mechanism.

For a ring element k, they define hint functions sgn,(z) and sgn, (z) from Z to {0,1}" as sgn, (k) =

(sgn, (K[0]), sgny (k[1]),- - - ,sgn,(k[n — 1])) for b € {0,1} where

Protocol 1: Ding Key Exchange
Alice Bob

S4,€4 (—Rq

pA=a3A+ZeA Pa sB,eB<—Rq

kp =pasp +2e}

PB =a-8p+2ep

(PB, rec) rec < S(kg)
—
ey « R,
ka = sapp + 2€/;
skq «— E(ka,rec) skp + E(kg,rec)

O’k[i] € _l.%J’ L%J
sgn (kli]) = []

1, otherwise

and

0,kli] € [~4] +1,14) +1
sgn (k[i]) = []

1, otherwise.

A signal function S(k) outputs rec = sgn,(k) where b is randomly chosen. For a ring element k
and a signal value rec, a reconciliation function E(z,0) is a deterministic function with error tolerance

0 where E(k,rec) = (k+ gg—lrec mod q).

2.6 Pasteurization Technique

Key reuse attack leaks the information of the secret key of party P; by the misbehaviour of the
other party P;. More precisely, party P; sends the public value z;, which is not a RLWE instance, for key
reuse attack. If P;’s value z; is a RLWE instance, then the value b; computed by P; is indistinguishable
from a uniformly chosen value and thus, the key reconciliation value of b; is also indistinguishable from
a uniformly chosen value.

In [24], Ding et al. suggested an idea called pasteurization technique to force the parties involved
in key exchange protocol to behave honestly. The idea of this technique is as follows: After receiving
z; from P;, the party P; pasteurizes z;, i.e., P; computes 2, = z; + aH(2;) + 2f;, where H is a random
oracle whose output is sampled from x, and f; is sampled from x,. If 2; is indeed a RLWE instance,
then the pasteurization 2} is also a RLWE instance, for which P; knows the secret. However, when z; is

not a RLWE instance, then z] looks random to P;. Thus, the signal of k; is also random and P; cannot

extract information about P;’s secret key from it. We conclude that party P; gains nothing if he/she
does not follow the protocol.

The pasteurization technique can be seen as the analogue of checking if the exchanged messages are
in a group G, in the Diffie-Hellman key exchange, since the technique also enforces honest behaviour of

the involved parties.

Chapter 3. Related Work

3.1 Constant-round Group Key Exchange

Burmester and Desmedt [16] proposed the first constant-round GKE protocol (hereinafter, BD94).
In BD94, all participants in a protocol are assumed to form a ring topology to generate a group secret
key and every group member participates in key generation with equal privilege during the protocol
execution. This property is called contributory. Just and Vaudenay [36] proposed an authenticated GKE
protocol by combining the idea from BD94 and a public key signature scheme. This protocol is more
efficient than BD94 from the view of communication bandwidth but requires four-round to generate the
group secret key.

A compiler proposed by Katz and Yung (hereinafter, Katz-Yung compiler) [38] can convert any
unauthenticated GKE protocol into an authenticated one. They also suggested an authenticated GKE
protocol by applying Katz-Yung compiler to BD94.

For dynamic GKE, Kim et al. [39] suggested a two-round authenticated GKE protocol for an ad-hoc
network, in which no TA is involved. In their protocol, XOR operation is introduced into the generation of
the group secret key to reduce the computational cost of each group member. For a dynamic setting, the
computation and communication overheads of each group member rely on the number of joining/leaving
members rather than relying on the number of previous group members.

Dutta and Barua [28, 29] proposed a two-round authenticated GKE protocol (hereinafter, DB05),
which is constructed by combining a variant of BD94 and a signature scheme modified from [38]. For a
dynamic setting, the membership addition procedure generates a new group secret key by making a new
ring topology with the joining members with the support of the previously agreed group members. For
the membership deletion procedure, a new ring topology with the remaining members is formed to run

the protocol.

3.2 Security Model of Group Key Exchange

Bresson et al. [15] suggested the first formal security model called BCPQ model for authenticated
GKE protocols in a static setting. In their paper, they defined AKE security and mutual authentication
(MA) security. AKE security guarantees that an active adversary who does not participate in the session
cannot distinguish a group secret key from a random number. MA security ensures that only legitimate

participants can compute an identical session group secret key.

10

After that, Katz and Yung [38] revised this model to compile unauthenticated GKE protocol into
authenticated GKE protocol. They proved the security of BD94 [16] in the presence of a passive adversary
who can only eavesdrop on messages and make a compiler from unauthenticated GKE to authenticated
GKE with an active adversary. After that, Katz and Shin [37] proposed another compiler that can
transform an implicitly secure authenticated GKE into a secure authenticated GKE resistant to insider
attacks, with the universally-composable (UC) model.

For a dynamic setting, Bresson et al. [13,14] suggested two formal security models for authenticated
GKE protocols depending on the power of corruption and the presence of MA security.

A strong corruption model enables an adversary A to reveal the long-term secret key as well as
the ephemeral keys or internal states of the protocol but a weak corruption model only leaks the long-
term secret key of the party while the ephemeral keys or internal states of protocol participants are not

corrupted.

3.3 Lattice-based Key Exchange

Ding et al. [26] suggested the first lattice-based key exchange protocol in 2012 by modifying Diffie-
Hellman key exchange protocol [21] into RLWE setting. Following this research, numerous publications
[2-5,10-12,18,19,22,31,33,44,50,55,56,61,64,65] have looked at the construction and implementation of
key exchange protocols based on lattices, but most of them are only designed for two-party key exchange.

For lattice-based GKE protocol, Ding et al. [21] suggested the natural extension to GKE protocol
(hereinafter, DXL12.G) based on their key exchange protocol using the GKE compiler by Bresson et
al. [13]. After that, Yang et al. [64] proposed the first provably-secure (authenticated) GKE protocol
(hereinafter, YMZ15) based on the hardness of LWE/RLWE assumption and security property of secure
sketch in the random oracle model. For the secure sketch, TA is necessary and YMZ15 is said to be not
contributory.

Recently, Apon et al. [4] proposed the first constant-round authenticated GKE protocol (hereinafter,
ADGK19) based on the hardness of RLWE assumption, without TA. ADGK19 uses Katz-Yung compiler

for authentication and is contributory since they adopt the protocol in [16].

3.4 Key Reuse Attacks

Recent results (7,23, 25, 30,46, 53] have noticed that partial/total information of a secret key of
the participants can be leaked by the output of the key reconciliation mechanism, in RLWE-based key
exchange protocols. The first attack on RLWE-based key exchange with reused keys was described by
Fluhrer [30].

11

Ding et al. [23] presented a detailed description on how such an attack is given by analyzing the
number of signal changes of each coefficient on Ding Key Exchange as shown in Algorithm 1. In [23],
when the public value z; sent by party P; is not computed honestly, then party P; can recover information
about party P;’s secret key from the behaviour of the signal sent by P;. Hence, party P; cannot reuse
the same key in several executions of the protocol, which leads to the exposure of its secret key to the
other communicating party P;.

Liu et al. [46] proposed a new key reuse attack against NewHope protocol whose key reconciliation
function is much more complex and the signal function doesn’t change regularly as Ding Key Exchange.

Since then, there are few discussion [24,32,63] on how to make a key-reusable RLWE-based key
exchange protocol but none of previous researches consider the vulnerability of lattice-based GKE against

key reuse attacks.

Algorithm 1: Key-reuse attack [23,30]
1. For k=0,1,--- ,qg — 1, A does followings:

(i) take s; =0,e; =1 and sets pkax =k
(ii) invoke the oracle S with pk 4 i and obtains output from S;
(iii) analyze the number of changing signal values
(iv) guess an absolute value of i-th coefficient of Bob’s secret s';[i]
2. For k=0,1,--- ,q— 1, A does followings:
(i) set pkar = (1+z) -k,
(ii) invoke the oracle S with pk 4 i and obtains output from S;
(iii) analyze relations between two adjacent coefficients sp[i] and sp[i + 1]
(iv) guess a sign of s%;[i] and analyzes a distribution of pg — a - s

If pp — a - s’y follows the discrete Gaussian distribution, then s%; = sp, and if pp — a - s5 looks

random, then s%; = —sp.

12

Chapter 4. {One, two}-neighbour Attack against known
Lattice-based GKE

4.1 Ding et al.’s Group Key Exchange

Ding et al. [26] also extended their two-party key exchange protocol into group setting described in

Protocol 2. But Ding et al. did not describe the exact security proof of their GKE protocol.

Protocol 2: Ding Group Key Exchange (P[0,1,--- ,N —1],q,n, x, a)

1. For a party F;,

(i) i €i, ¢ X;
(ii) Compute p;, = as; + 2e;, € Ry;
(iii) Send p;, to Piiq;
2. For Py j, (1<j<N-2),
(i) Computes p;; = p;,_,8i+; + 2e;; mod q where e;; «— X;
(ii) Sends p;; to a party Piyji1;
3. For the party Pn_1,
(i) €y_; «— x and computes Ky_1 = po,_,Sn—1+ 2€N_1;
(ii) Computes and broadcast a signal rec < S(Kn_1);
(iii) sky—1 < E(Kn-_1,rec);
4. For a party P; except Pn_1,
(i) €; «— x and computes K; = p(it1),_,8i + 2€];

(ii) sk; «— E(K;,rec);

4.1.1 One-neighbour Attack

Suppose that party Py_; reuses its public key py_; and A is an active adversary who behaves
like Py_o with the knowledge of Py_; and with the ability to initiate multiple key exchange sessions to
query party Py_;. We present an attack in the one pass case of key exchange protocol, in which the
adversary can initiate multiple key exchange sessions with party Py_; and use key mismatch in each
session to retrieve the secret sy_;.

An oracle S performs the action of party Py_; and the adversary A has access to this oracle to

13

make multiple queries. The adversary behaves like party Px_» and sends p , , = ke 4 instead of py,, _,,
where e 4 is the identity element in the ring. We first consider the simpler case when party Py_; does

not add the error term to its key computation Ky_; in Algorithm 2, to explain the attack strategy.

Algorithm 2: Simplified one-neighbour attack
1. For k=0,1,--- ,g— 1, A does the following:

(i) Set po, , = kea;
(if) Invoke the oracle S and obtains the signal value rec from Ky_; = ksy_1;
(iii) Analyze the number of changes in each coefficient of rec;
(iv) Guess an absolute value of i-th coefficient of sy _1;
2. For k=0,1,---,q— 1, A does the following:
(i) Set po,, = (1+z)ken;
(i) Invoke the oracle S and obtains the signal value rec from Ky_; = k(1 + z)sy_; from S;
(iii) Analyze relations between two adjacent coefficients sy _1[¢] and sy_;[i + 1];

(iv) Let s’y_, be the guess of A about sy_;. Then, from the relationship between two adjacent

coefficients and their absolute values, A gets either 8y_; = sy_1 or 8iy_; = —8n_1;
(v) Analyze a distribution of py_1 — as/y_q;

If py—1 — asy_, follows the discrete Gaussian distribution, then sy _; = sy_1;

If pv_1 — asy_; looks random, then s}, _; = —sy_1;

For the original case with the noise, the number of queries required to recover sy_; increases
compared to the steps above, due to the complexity involved in eliminating the effect of the noise 2e/y_;.
By repeating the procedures in Algorithm 1, we check the pattern of the noise 2e/y_; which is from
Gaussian distribution and get the secret key Py_;. Likewise, we can get all secret keys for each party

but this becomes unapplicable when all parties check whether they get the same common secret key.

4.2 Apon et al.’s Group Key Exchange

Given a ring R, a ring element a, two standard deviations of Gaussian distributions o, and o3 and
a hash function #(-) that samples from x,,, we describe ADGK19 and show how to apply our modified
key reuse attack. Apon et al. proposed the first constant-round GKE protocol from lattice desribed in
Protocol 3 [4]. We consider two security parameters A and p for computational and statistical security
parameters, respectively. The parameters N,n,o0;1,02,A and p of the protocol are required to satisfy

some constraints described as follows:

14

; N?
(N2+2N)-ﬁ-p3/2-af+(7+1)-al+(N—2)-az < BRec
2NVXY 26?2 + (N = 1)01 < Brényi
02 = Q(,BRényi V n/IOQ(A)

Apon et al. did not specify the key reconciliation mechanism, executed as subroutine in Key Compu-

tation step and seems not to consider attacks on reconciliation mechanisms like key reuse attacks.

Protocol 3:
ADGK19(P[0,1,--- ,N —1],a,H,01,02)
(Round 1) For each party P; for i =0 to N — 1, do the following in parallel.

1. Computes z; = as; + e; where 8;,€; + Xo,;
2. Broadcasts z;;
(Round 2) For i =0 to N — 1, do the following in parallel.
1. If i = 0, party P, samples ej < X, and otherwise, party P; samples e’ < x,,;
2. Each party P; broadcasts X; = (z;+1 — 2:—1) 8; + €};
(Round 3) For a party Py_1, do the following.

1. Samples e},_; < Xo, and calculates by_; = 2y_aNsy_1 + (N — 1) Xn_1+
(N-2)Xo+ -+ Xn_s+ef_;;

2. Runs recMsg(-) to output (rec, ky_1) = recMsg(by_1);
3. Broadcasts rec and gets session key as sky_; = H(kn-1);
(Key Computation) For each party P; (i # N — 1), do the following:
1. Computes b; = z;_1Ns;+ (N - 1)X; + (N = 2)X; 41 + -+ XitN—2;

2. Runs recKey() to output k; = recKey (b;,rec) and
gets session key as sk; = H(k;);

As we discussed earlier, lattice-based two-party key exchange protocols such as Ding Key Exchange
and NewHope protocols have been broken by the weakness of their key reconciliation mechanisms and
to the best of our knowledge, all previously known key reconciliation mechanisms are vulnerable to key
reuse attack.

We will check the vulnerability of ADGK19 by applying two well-known key reconciliation mecha-

nisms; Ding’s reconciliation mechanism and NewHope reconciliation mechanism.

15

4.2.1 Two-neighbour Attack

If we apply Ding’s reconciliation mechanism to ADGK19, recMsg(by_1) outputs rec < S(by_1) and
kn_1 E(by_1,rec) and recKey(b;, rec) outputs k; < E(b;, rec).

We assume that a public value @ € R, and public keys z; for each party P; are fixed except Py_3. A
can initiate many sessions with all parties in the group and can access to the oracle S. In performing the
attack, an adversary A plays the role of two previous neighbouring parties Py_o and Py_j3 of the last
party Py_;. A creates key pairs (8y_2,2n-2) of Py_» by deviating from the protocol. We denote the
public key zy_» deviated by A as z4 and the corresponding secret key sy_o and error ey_, deviated
by A as s4 and e 4, respectively.

We describe an attack on simplified ADGK19 where the error term ej;_; is not added to the key
computation of by_;. We set an oracle S that simulates party Py_;’s action from a given input public
key. On receiving z4 from A, S computes by_; and outputs (rec,ky_1) from by_; according to the
protocol.

For the term by_1, we only consider the term zy_sNsy_1 + (N — 1)Xy_; since all X;’s except
Xn_1 and X_3 are fixed and Xy _3 is controlled by A since Py_3 is corrupted. Then, z4Nsy_1 +
(N=1)Xn_1=248v-1+ (N —1)zpsn_1 and by the assumption, (N — 1)zo8x_1 is also fixed. Hence,
zZNn_2N8n_1 is the only non-constant term of by _;.

Hence, a coefficient of rec sent by the party Py_; represents the key reconciliation output of a

matching coefficient of z48x_; by shifting a constant term and we describe the attack on rec as follows:

Step 1. A invokes the oracle S with input z4 = ke4 (k =0,1,--- ,g— 1) where s 4 is 0 and e4 is the
identity element 1 in R, so that by_; becomes kNsy_1+ (N —1)Xy_1+ (N -2)Xo+- -+ Xn_3.
A can make a correct guess of the value of sy_1[i] based on the number of times the signal of rec

for {0,8n_1,"--,(q — 1)sn—_1} changes for each coefficient sy _][i].

Step 2. A invokes § with input (1 + z)z4 = (1 +z)kes (k=0,1,---,¢g—1). Ais able to see the key
reconciliation value of (1 + z)ksy_; that is the output by S. Thus, again by checking the number
of signal changes, A finds values of the coefficients of (1 + z)sy_1, which are sy_1[0] — sy_1[n —

1], sn—1[1] + sn—1[0],...,8ny—1[n — 1] + 8sn—1[n — 2] up to sign.

Step 3. From Steps 1 and 2, we can determine if each pair of coefficients sy _1[i], 8 y—1[i+1] have equal
or opposite signs, hence narrowing down to only two possibilities such that the guess s%y_; = sy_1

or —8yN_1.

Step 4. Since a and zy_; are public, A computes zy_; — as’y_; and verifies the distribution of the

result. If A correctly guesses the sign of sy_1[0] and so does all the coefficients of sy_j, the

16

resulting distribution of zy_; — as’y_, is same as the distribution of zy_; — asy_1 = en_1,
which is the Gaussian distribution. Otherwise, the output becomes random and A obtain the

correct sy_1 value by flipping the sign.

Thus, A is able to determine the exact value of sy_; without any ambiguity at the end of the
execution when Py_; reuses the same key for several executions. The success of the attack also shows
the significance of the role of the key reconciliation function in the group key exchange protocol.

When the error term is added to by_;, there are some frequent changes in the signal value at the
boundary values. But, similar to one-neighbour attack in Ding’s GKE protocol, we check the pattern of
the noise e’,_,, by repeating all steps in two-neighbour attack, which is from Gaussian distribution and

get the secret key Py_;.

17

Chapter 5. Novel Construction of GKE Protocols

5.1 Choi et al.’s Tree-based GKE

5.1.1 Basic Construction

In the following construction based on RLWE, we assume that all parties are trustful so the protocol
doesn’t get influenced by which party is chosen as the root node of the tree. Also, no party reveals the
other’s ephemeral key.

Network topology can be interpreted as a graph where the connection becomes an edge and each
party becomes a node of the graph. From network topology of a given group G, we can find a tree
structure efficiently if the graph is the connected graph. For the sake of simplicity, we assume that the
balanced binary tree is chosen from the network topology and call it as a keygen tree T of our protocol.

Finding the keygen tree T is almost the same as finding the spanning tree Té of the given graph G.
This can be done efficiently by using path-finding algorithms in graph theory, like well-known Dijkstra’s
algorithm.

If there are N parties who participate in the communication, we set a keygen tree T with a depth
d = [log N| and define a level of a party P; as lz = d — Lioot,a Where lroor,z is the length of a path from
the node 4 to the root node.

We assume that the number of parties are at least three so that the root node always has two nodes

as a child. Then, we construct Tree-based Group Key Exchange (TGKE) in static version as follows:

Step S1. Setup.

Find a keygen tree T = (V, Er) with the depth d = [log N from the network topology.
Step S2. Key Construction.
1. Set the leaf nodes as level 0 party, their parent nodes as level 1 party, till the root node as
level d party.

2. Between a parent node 7, and its child node @, we run a two-party KE TKE to find the

two-party common secret key epk, . between two parties P, and P, as an ephemeral key.

3. We run TKE between level 0 parry and level 1 node. Then, each level 1 party does XOR
operation to get an initial value for the next level. e.g., in Figure 5.1(a), since party P; is
the parent node of Py and Ps, P, has two ephemeral keys epks 4 and epks 5 and compute the

XORed values epks = epks 4 ® epks 5.

18

4. Similarly, from level 1 party to level d party, we run TKE.

5. Once root node gets the ephemeral keys with his/her child node, it computes the common

group secret key sk.oot by XOR operation of two-party common secret key.
Step S3. Key Sharing.

1. The root node sends the encrypted common secret key k. to its child nodes ¥, by computing

kc — Skroot @ ePk' N

2. All parties get the same value sk, after d rounds of sending encrypted common secret key.

XOR

KE(PLP2) ~ . KE(PLP3)
XOR XOR

KE(P2,P4) KE(PZ,P5) KE(P3,P6)

(a) common key construction example

SKyoor XOR epklg“__ ™~ \’”"-»_\Skrool XOR epkys
Skrool XOR C’Pk24/s')

N\ SKroot XOR epk,s)
/Skroor XOR epksq

/ \

(b) common key distribution example

Figure 5.1: TGKE protocol in static setting

19

5.1.2 Dynamic TGKE

To extend TGKE into dynamic setting by describing the procedure when a new party is joining or
some party is leaving the group communication.

Join describes the process when a party is joining the group communication. Figure 5.2 shows how

O,

Skroot XOR epks;

ONCHONO

Figure 5.2: Join example

a new party is joined to the network.

Step D1. Join.

1. Add a node 9y to the original keygen tree T = {V,ET} Then, add an edge between vy
and some node #; € V with level 0 or 1, which becomes the balanced binary tree after edge

addition. We get a new keygen tree T’ = {V U{on}, Er U{(:, on)}}-

2. Between parent node ¥; and child node vy, we run two-party key exchange protocol TKE to

find the ephemeral key epk; y between two parties ¥; and vy.

3. ¥; sends the encrypted common secret key k. = skyoot @ epk; N to Uy and Ux gets the common

secret key sk,oor by XOR operation.

Leave and TreeRefresh describe the member revocation mechanism since there are two examples
when the revoked member is the leaf node (deleting the node P; in Figure 5.3(a)) or non-leaf node

(deleting the node P, in Figure 5.3(b)).
Step D2-1. Leave (leaf case).
1. Delete a node #; from the original keygen tree T = {17, ET} Then, we get a new keygen tree

T = {V\{%:},Er \ {1 <j < g|(#:,9)}}.

20

2. From this new tree, run key construction phase and key sharing phase to get a new common

secret key sk’.

Step D2-2. TreeRefresh (non-leaf case).
1. Delete a node 9; from the original keygen tree T = {f/, ET} Then, run the setup phase to
construct a new keygen tree.

2. From this new tree, run key construction phase and key sharing phase to get a new common

secret key sk’.

(a) membership revocation (leaf case)

(b) membership revocation (non-leaf case)

Figure 5.3: Remove examples for Leave and TreeRefresh

21

Note that if we have the connected network topology, we can easily generate the tree by contracting
an edge between v; and its child node. In this case, both leave and tree contraction algorithms make the

tree 7" which is a minor of the tree 7.

5.1.3 Security Analysis

In this section, we give a security analysis of static TGKE. Any probabilistic polynomial-time (PPT)
adversary should not distinguish a real common group secret key to a random one even if he/she gets the
transcripts of the protocol. We assume that every party is trustful and no party does insider attacks.

We derive the correctness proof and the security proof in Theorems 4 and 3, respectively.
Theorem 2. Our protocol has the same common secret key between all parties in the group.

Proof. Since we focus on designing conceptually-simpler model for fast and efficient implementation
result, we send the common secret key by XORing two-party common secret key. By repeating the same
process between parent node and his/her child node from level 0 to level d, we always get the correct

common secret key for the group.

O

Before proving Theorem 3, we remark that the root node has the level d and a leaf node has the

level 0 where d = log N is a depth of a keygen tree from the network of the group.

Theorem 3. If underlying two-party key exchange protocol TKE is secure against the passive adversary,

TGKE protocol is also secure.

Proof. We prove a security by a hybrid game between the real shared secret key and the random one for
each level of the tree.

Then, Game, is the real game which the adversary gets the real common group secret key sk and
Gamey is the game which the adversary gets the random value 5. We show that the views of Game,

and Game, are computationally indistinguishable for any PPT adversaries.

Gamey. This game is the real game between protocol challenger and the passive adversary A, adversary

obtains the common secret key sk from our protocol described in Section 6.

Game;. This game is identical to Game; except level 1 nodes changes his initial key as a random

value instead of two-party common secret key with level 0 nodes.

Since the underlying two-party key exchange protocol is secure against passive adversary .A. Ran-
dom values are indistinguishable from the key generated by two-party KE for any PPT adversaries.

Thus, the adversary cannot distinguish Game, and Game;.

Game; (2 < i < d—1). This game is identical to Game;_; except level ¢ nodes changes his initial
key as a random value r; instead of two-party common secret key with level 7 — 1 nodes. Since the
underlying two-party key exchange protocol is secure against passive adversary .A. Random values
are indistinguishable from keys generated by two-party KE for any PPT adversaries. Thus, the

adversary cannot distinguish Game;_; and Game;.

22

Game,. This game is identical to Game,;_; except that encrypted values from parties with level d — 1
to the root node are replaced by random value t; during the protocol. Then, similar to the game
between Game;_; and Game;, the views between Game,;_; and Game, are computationally

indistinguishable for any PPT adversaries.

Now, the claim follows since the real game Game, and the random game Game, are computation-

ally indistinguishable assuming the security of underlying two-party key exchange protocol.
O

5.2 Homomorphic Encryption based GKE
5.2.1 Homomorphic Encryption

In 1978, Rivest et al. [54] suggested the concept of homomorphic encryption that supports some
computation on encrypted data without the knowledge of the secret key. A homomorphic encryption

scheme is defined as follows:

Definition 1. (homomorphic encryption) A homomorphic encryption scheme HE is a tuple of PPT
algorithms HE = (HE.Gen, HE.Enc, HE.Eval, HE.Dec) with the following functionality:

HE.Gen(n, a) :
Given the security parameter n and an auxiliary input «, this algorithm outputs a key triple
(pk, sk, evk), where pk is the key used for encryption, sk is the key used for decryption and evk is

the key used for evaluation.

HE.Enc(pk,m) :

Given a public key pk and a message m, this algorithm outputs a ciphertext ¢ of the message m.

HE.Eval(evk,C, ¢y, -+ ,cp) :
Given an evaluation key evk, a Boolean circuit C, and pairs {c;}._, where ¢; is either a ciphertext

or previous evaluation results, this algorithm produces an evaluation output.

HE.Dec(sk,c) :
Given a secret key sk and a ciphertext or an evaluation output ¢, this algorithm outputs a message

m.

Depending on what kind of Boolean circuit the scheme supports, we call an encryption scheme as
multiplicative (resp. additive) HE if it only supports multiplication (resp. addition).
Early work on HE was not practical but there are many cryptographic algorithm tools that support

HE efficiently such as HElib, FHEW [27, 34].

23

5.2.2 Basic Operations from Graph Theory

We define a graph G as a pair of the set of vertices V = {01,092, ,Un} and the set of edges
E between two vertices. Among many terminologies in graph theory, we use vertex/edge addition,
vertex/edge deletion, and edge contraction. Since the process of vertex/edge addition and vertex/edge
deletion operations is clear, we give a definition of edge contraction and graph minor.
Definition 2. (edge contraction) Let G= (V, E‘) be a graph containing an edge é = (@,) with 4 # ?.
Let f be a function which maps every vertex in f/\ {t, 7} to itself, and maps % and ? to a new vertex w.
The edge contraction of e makes a new graph G’ = (V’, E"), where V' = (V \ {%, f)}) U, ' = EUE,
and for every v € V,& = f (z) € V2 is incident to an edge & € E2 if and only if, the corresponding
edge, € € E is incident to Z in G.
Definition 3. (graph minor) Let G = (VG,Eg) and H = (VH, EH) be a graph. If H can be formed
from G by deleting vertices/edges and contracting edges, we say that H is called a minor of G.

We use these terms for membership addition and revocation in dynamic setting.

5.2.3 Construction in Static Setting

In Figure 5.4, we state a methodology to build a (non-interactive) multi-party key exchange protocol
fro HE by Choi and Kim [20] (HE-KE protocol). All parties pre-share the master secret key sk from
HE.Gen algorithm of HE scheme HE. A circuit C can be public in this protocol.

Assuming that the server is honest but curious, HE-KE protocol runs as follows.

xorjano [-) [-) xor/AND
HE(k, I1ECky) (k) @
1 o o ' HE.Eval
Ll/ vy I Uy
- "I Hidden
(3) | |HE.Eval
' Server

Figure 5.4: HE-KE protocol

Step 1. Each party pre-shares the master group key sk <— HE.Gen(n, a) with each other.

Step 2. Make the Boolean circuit C' with g leaf nodes.

24

Step 3. Each party makes ephemeral session key k; and encrypts it with its public key pk;, ¢; = HE.Enc
(pki, ;). (O from Figure 5.4.)

Step 4. The server computes ¢ = HE.Eval(evk, C,c1, - -+ , ¢4) with the Boolean circuit C' and broadcasts
c. (@ and @ from Figure 5.4, respectively.)

Step 5. Each party decrypts the evaluated value ¢ and get the session group key k = HE.Dec(sk, c).

Lemma 1. [20] If underlying homomorphic encryption HE is secure, HE-KE protocol is also secure,

i.e., it satisfies session key security, known key security, and key privacy.

System Model and Security Requirement

HE-KE protocol [20] suggests non-interactive property by pre-sharing the master group key between
each party. But, in this protocol, the way each party pre-shares the master secret key is unclear. Even
more, since there is no key refresh algorithm, we should assume that the former group member is trustful
so that the adversary A doesn’t get the master secret key.

To resolve this, we assume that the server is fully trustful so that the server distributes the ephemeral
key as well as the evaluated value of session group key to each party for each membership event (e.g.,
join, leave, merge, or partition). Compared to HE-KE protocol [20], the former group member cannot
compute the session group key in our protocol.

We assume that the adversary A can (i) send messages to some party, (ii) run the protocol to get
the appropriate session group key, and (iii) get some information from a previous group member like the
former session group keys.

To check the security of our dynamic key exchange protocol, one of the most important security
requirements is key freshness. A key is called fresh if the generated key is guaranteed to be new to
prevent an old key being reused by an adversary. To guarantee key freshness, we have to prove the

following security requirements:

1. Group Key Secrecy
If all group members in the protocol are not corrupted, it is computationally infeasible for a passive

adversary to discover any session group key.

2. Forward Secrecy
Even after a passive adversary A has acquired some session group keys, new session group keys

must remain out of reach of the adversary and former group members.

3. Backward Secrecy
Even after a passive adversary A has acquired some session group key, previously used session

group keys must not be discovered by the adversary and new group members.

25

4. Key Independence
A passive adversary who knows a proper subset of session group keys cannot discover any other

session group keys.

5.2.4 Parcel-S Protocol

In Figure 5.5, we give a methodology to build a GKE protocol from HE called Parcel-S for static
setting and Parcel-D for dynamic setting, which supports the membership events. As discussed earlier,
the server delivers the ephemeral key to all group members to provide forward and backward secrecy.
Then, the server broadcasts the evaluated value of ciphertexts from group members and the Boolean
circuit C'. Assume that we have either XOR or AND operation in C.

All group members pre-share the master secret key sk from HE.Gen algorithm of HE scheme HE. A
circuit C' can be public in this protocol.

Under this condition, Parcel-S protocol runs as follows.

c

,/"‘.'—\. / - \
XORJAND | -) | - | XOR/AND
__/v\;/ .._\:
AN . (3)
HE(} HE(ky) \ECE) 5'
~ TN N HE.Eval
@3’ vy L vy Y)
Hidden

AN o)
) ik Evol
S Trom . »
e (1) Two — party KE

' \u
1 Server
~ 7

\

Figure 5.5: Parcel-S protocol

Step 1. Each party pre-shares the master group key sk < HE.Gen(n, o) with each other and the server
runs two-party key exchange protocol 7XE with each party to make the long-term secret key msk;.

(@ from Figure 5.6.)
Step 2. Make the Boolean circuit C' with g leaf nodes.

Step 3. Each party makes ephemeral session key k; and encrypts it with its public key pk;, ¢; = HE.Enc

(pki, ki). (@ from Figure 5.6.)

26

Step 4. The server computes ¢ = HE.Eval(evk, C,c1, - -+ , ¢4) with the Boolean circuit C' and broadcasts

c. (@ and @ from Figure 5.6, respectively.)

Step 5. The server sends the ephemeral key epk to each party encrypted by encryption scheme SK&E

with secret key msk;.

Step 6. Each group member decrypts the evaluated value ¢ and the ephemeral key epk. Then, each

group member gets the proper session group key k = HE.Dec(sk, c) @ epk.

Then, we show the correctness and security requirements as below.

Theorem 4. If underlying homomorphic encryption scheme HE is valid, Parcel-S protocol is correct,

i.e., it outputs the valid session group key for each session.

Proof. In Step 4, the server can compute the evaluated value ¢ if HE is valid and HE.Eval(evk, C, ¢y,
-, ¢g) is well-defined. Then, each party can get the same value from XOR operation between decryption

of ¢ and ephemeral key epk. O

Theorem 5. If underlying homomorphic encryption scheme HE and two-party key exchange protocol
TKE are secure, Parcel-S protocol is also secure, i.e., it satisfies group key secrecy, forward/backward

secrecy, and key independence.

Proof. Since HE is secure, each ciphertext and evaluated value are indistinguishable from random. Thus,
all ciphertext ¢; of the ephemeral session key k; from party v; are indistinguishable from random and so
does the ciphertext ¢ of the session group key k, evaluated value of all the ciphertext c/s. Hence, our
construction guarantees group key secrecy.

Since the server doesn’t have the information of the pre-shared secret key sk, the server cannot
know the session group key k because the server doesn’t know the decryption value of ¢. Likewise, the
former(resp. new) group members cannot know the new(resp. previous) session group keys since they
don’t know the ephemeral key since TKE is secure. Thus, our protocol provides forward secrecy and
backward secrecy.

Thanks to the presence of ephemeral keys, we can show the key independence as well.

5.2.5 Parcel-D Protocol

Membership Events

As discussed in Chapter 5.2.3, a dynamic setting needs to provide key adjustment protocols to
cope with any membership changes. Parcel-D protocol includes algorithms to support the following

operations:

Join(?/,C)
When a new group member ¥’ is added to the group to participate in the group communication,

reconstruct the Boolean circuit C'j,;i,.

27

Leave(?;,C) :
When a group member ¥; is removed from the group communication, reconstruct the Boolean
circuit Creqve-
Merge(V',C,C") :
When some group V' is merged with the current group, reconstruct the Boolean circuit Charerge-
Partition(V;,C) :
When a subset of group members f/] are removed from the group communication, reconstruct the

Boolean circuit Cpgartition-

After these membership events, we run Parcel-S protocol again to get a new session group key. Note
that for each membership event, the only change is the Boolean circuit. A new member can get the same
master group key sk since only the existence of ephemeral keys provides forward/backward secrecy. For

the remaining of this chapter, we give the detail explanation on each membership event algorithm.

Join Protocol

We assume the group has g members. The new member ¥, initiates the protocol by sending a
‘join’ request message to the server. If the server receives this message, the server makes the long-term
secret key with ©g,;. Then, it determines the splitting point in the circuit. The splitting point is the
shallowest rightmost node, where the joining of a new member does not increase the depth of the circuit.
If the circuit is a fully balanced tree, it chooses a point with more XOR operations in the path to the
root node, to minimize the complexity. In the splitting point, we put some Boolean operation like XOR

or AND. A new Boolean circuit C,;, is constructed as follows:
1. Find the splitting point that does not increase the depth of the circuit or minimize the complexity.
2. Add two vertices to the splitting point and connect these vertices to the splitting point.
3. Put some Boolean operation to the splitting point.
4. Set the leaf nodes as the group members ¥y, Ug, -+ , Vg41.
Figure 5.6 shows an example of Boolean circuit when a new group member is joined to the group.
Leave Protocol

Again, we start with ¢ members and assume that member ¢; leaves the group. When v; leaves, the
server first deletes the long-term secret key between the server and v;.
From the original Boolean circuit C, the server finds the leaf node marked as v; and its parent node.

Then, we construct a new Boolean circuit Ceqqe as follows:

28

XOR/AND (Root)

C

¢ } .\'-. .'/ -."-
XORJAND | -) vee -) XORJAND
./ \/
v’v/"' .l.\'\ ' .\\
HE(k,) / \HE(k;) \, XOR/AND

"/__'__\‘ ',"'-.&"\.' .

(v) [v,)

\ v _1_ -" _1 y,

HE(ky)/ \HE(kgs)

"v-""‘\‘ {/"‘""-.‘I
(v) \Vge1)
N\ / N

Figure 5.6: Join algorithm in Parcel-D protocol

1. Find the leaf node marked as ?; and its parent node .

2. Remove 7; node and contract an edge between w node and v;4; node, where 9;1; node has the
same parent node @ with ¥; node. (Without loss of generality, we may rename the group members

to satisfy this condition.)
3. Rename the leaf nodes as the group members o, %, - , 7!

g—1*

Figure 5.7 shows an example of Boolean circuit when a group member leaves the group.

XOR/AND

HE (k,) 0 XOR/AND

E(kg-1)

Figure 5.7: Leave algorithm in Parcel-D protocol

Merge Protocol

Network faults may partition a group into several subgroups. In the meantime, they communicate
inside the subgroups only. After the network recovers, subgroups need to be merged into a single group.
In this case, since all group members already exist in the group communication, we don’t need to make

a new long-term secret key between the server and each group member.

29

To build a new Boolean circuit, the server checks the connecting point in the circuit C. The
connecting point is chosen similarly to the splitting node in Join algorithm. We assume that the original
group V consists of g; members and the merged group V' consists of go members, where g; > go. Then,

a new Boolean circuit Chzerge is processed as follows:

1. Find the connecting point from a Boolean circuit C' that does not increase the depth of the circuit

or minimize the complexity.

2. Connect the edge €perge between connecting point from C' and the root node of a circuit C’, which

is the Boolean circuit of group V"
3. Contract the edge €pserge and put some Boolean operation to the node after this edge contraction.
4. Set the leaf nodes as the group members @1, 2, - , Ug,4g,-

Figure 5.8 shows an example of Boolean circuit when two groups merge.

XOR/AND

C

XOR/AND XOR/AND

HE (k) XOR/AND

Figure 5.8: Merge algorithm in Parcel-D protocol

Partition Protocol

Assume that a network fault causes a partition of the group with ¢ members. From the remaining
member, this event seems to be a concurrent ‘leave’ of multiple members.
Starting from the leftmost leaf node of the Boolean circuit C, we run Leave(%;, C) if © € VJ But,

instead of removing all long-term secret keys of the vertices in Vj, the server keeps those long-term secret

keys in separate box.

30

Relation on Boolean Circuit

For all membership events, one Boolean circuit is the minor of the other Boolean circuit. For addition
event like Join and Merge algorithms, an original circuit C is the minor of the new circuits Cj,;, and
Cherge- Similarly, for revocation event like Leave and Partition algorithms, new circuits Creqve and
Cpartition are the minor of the original circuit C. With this property, we can check the validity of the

circuit after each membership event.

31

Chapter 6. Key-reusable GKE in Static Setting

6.1 Construction of Key-reusable GKE

Given R, = Z, [z] /(2™ +1) with a prime g and a < Ry, all parties calculate X; and agree on “close”
values by = by = --- =~ by_; in Round 3 and Key Computation. Then, the party Py_; runs a key
reconciliation mechanism to allow all parties to get a common value k = kg = k; = -+ = kny_1.

Similar to [24], a party P; applies pasteurization techniques to z;1; and z;_; by two parties P;i;
and P;_; in Round 2. We have two pasteurized values z;1; = z;4+1 + ah;41 + fiz1 and 2,1 = 2,1 +
ahi—1 +gi—1 for each party P; where h; = H(zi) is precomputed and fi,gi < Xo,. Then, X; becomes
(Zi41 — Zi—1) (8; + hi) + €. for the correctness of the protocol.

Since we only show that k is difficult to compute for a passive adversary in the security proof, we
hash k using random oracle ‘H to get the session group secret key sk, which is indistinguishable from
random. The detailed description of our unauthenticated GKE is given in Protocol 4, named as Krug
(Key reusable group key exchange).

Krug shows a counter-example that resists our two-neighbour attack since the dishonest behaviour of
two parties doesn’t guarantee to get any information of the secret key of the party Py_; from the output
of the key reconciliation function. The authenticated one which is secure against an active adversary can

be derived by applying known techniques like Katz-Yung compiler [38].

6.2 Security Analysis

6.2.1 Correctness Proof

Note that group key exchange is correct when all parties agree on the same secret key. Lemmas 2

and 3 are from Apon et al.’s paper.

Lemma 2 ([2]). Given s; for all ¢ defined in the group key exchange protocol, fix ¢ = W—I:% and let
bound, be the event that for all ¢ € [N] and all coefficients j € [n], |s;[4]|, |es[5]], |€i[7]], |€X—_1[7]] < cor
except |ej[7]| < coa. Then

Pr[bound,] > 1 — 27.

32

Protocol 4: Krug(P[0,1,--- ,N —1],a,H,01,02)

1 (Round 1) For each party P; for i = 0 to N — 1, do the following in parallel.

1. Computes z; = as; + e; where s;,€; < Xo,;
2. Broadcasts z;;
(Round 2) For i =0 to N — 1, do the following in parallel.
1. If i = 0, party Py samples e; < X, and otherwise, party P; samples €, < Xo,;

2. Each party P; computes Z;+1 = 2;4+1 + ahiy1 + fiy1 and 2,1 = 2,1 + ah;—1 +g;—1 where
hi = H(z:) and f;, gi < Xoy;

3. Each party P; broadcasts X; = (Z;41 — 2i—1) (si + h;) + ¢€};
(Round 3) For a party Py_1, do the following.

1. Samples e,_; + X,, and calculates
b1 =ZEv_2N(sn—1+hy-1) + (N -1D)Xy_1+ (N -2)Xo+ -+ Xn_s+€y_1;

2. Runs recMsg(+) to output (rec,kn_1) = recMsg(bn_1);
3. Broadcasts rec and gets session key as sky_1 = H(kn—1);
(Key Computation) For each party P; (i # N — 1).
1. Computes b; = Z;_1N(s; + hi) + (N = 1) X; + (N = 2)Xi11 + - + Xitn—2;

2. Runs recKey() to output k; = recKey (b;, rec) and gets session key as sk; = H(k;);

33

Proof. Since the complementary error function erfe(z) = 2 [exp(—t?)dt < exp(—2?), we get

Prlv ¢ Dz, o5lo| 2 co +1]<2 Y Dz, ()
1;=|_ca'+1]

2 [—mx?
;/C exp(p=)dz

{ed

IA

2 o0
= —t%)dt < exp(—c?m).
2 [z, Pt < vl

Then we have 3nN samplings from Dz, ,, and n samplings from Dz ., in our protocol. Under the
assumption that 3nN + n < exp(c?n/2), we have
Prlbound,] = (1 — Pr[v < Dz, ,; [v| > co1 + 1])*"N (1 — Prle, < Dz, 0,3 |v| > cop + 1])"
>1— (3nN 4+ n) - exp(—c®m) > 1 — exp(c*n/2)
>1-27%
O

Lemma 3 ([2]). Given bound, defined in Lemma 2, let product,
coefficient, |(s; - €;)[v]| < y/np*/20?. Then

; be the event that for all v-th

€,

Pr[product,, .., | bound,| > 1—n-2- 272

Proof. Note that for [€ [n], (s;); denotes the I-th coefficient of s; and we can express s; = l':ol(si)lX L
Since we take X™ + 1 as modulus of R, (s;e;); = Ez;é(si)k(ej)l‘_le where (e;);_ is (e;)i—x if I —k >
0 and — (e;);—x otherwise. Thus, under bound,, specifically |(s;):|, |(e;):| < co1 where ¢ = #{;(e),
by Hoeffding’s inequality [35], we can get

n—1

> (si)k(es)ik

k=0
_272
<2. —_—).
<2e0 (T)
(Note that (s;)x(e;j)i—k is an independent random variable with mean 0 in interval [—c%0?, c?0?].) If we

take v = \/np*/?0?, then we get

Pr[|(s:e;)i| > ~v | bound,] = Pr [

> boundp]

_3
Pr[|(sse;)i| =~ | bound,] < 2- exp(2—p4) < 272+
c
Thus, after union all bound, we have

Prlproduct,, , | bound,] = Pr[¥l, |(si¢;)i| < vnp*?a}]
>1-n-2-272,

O

In Theorem 6, we give a condition that Krug is correct. Most part of our correctness is similar to
that of Apon et al.’s except some modification on error bound.

Theorem 6. For a fixed p, and assume that
: 2N —1)?
(4N? + 4N — 4)\/np* 07 + {% +1}o1 + (N = 2)02 < BRec.

Then all participants in a group have the same key except with probability at most 277.

34

Proof. As mentioned in Section 2.5, we will show that all parties have the same secret key except with
negligible probability. To hold this, we claim that if for all ¢ € [N] and j € [n], the j-th coefficient of

[bn—1 — bi| < BRec, then k; = ky_1. After some careful computation, we have

bv_1—bi=ey_ + (en—2+gn-2)(sSnN-1 + hn_1) — (eim1 + fi—1)(si + hs)
N—2
+) (N—1-j)(eN_14j — €is;)
=0
N—2
+ D (N = 1= 3){(e; + £i)(sN-145 + hn-145) = (€it145 + fir145)(Sits + hisj)}
=0
N-3
+) (N = 2=){(en-14; + gN-145)(8 + b5) = (ins + Gits)(Sivsa1 + higss1)}-
=0

Now observe how many terms are in by_; — b;. Like [4], there are at most N 2 + 2N terms in form of
s; - ej, at mostgm—s_lﬁ terms in form of e} sampled from x,,, at most N — 2 terms of ¢, sampled from

Xo», and one term of €Y, _,. Also, from pasteurization, there are at most N?+2N terms in form of h; -¢;,

N%_4
2

Let product,; be the event that for all terms in forms of s; - ej, hi - e, fi-ej, fi-hj, gi-e;

at most NTZ terms in form of f; - e; and f; - h; and at most terms in form of g; - e; and g; - h;.

and g; - hj, each coefficient of one of these forms is bounded by vnp*/?0?. Under an assumption that
2n{2(N? +2N) + N2 + (N? — 4)} < 2, by Lemma 3 we can get

Prproduct,,, |bound,] < 2n{2(N? + 2N) + N? 4+ (N2 —4)}.27% <27*

Let fail be the event that at least one of parties does not agree on the same key. Given a condition that
{2(N? 4 2N) + N2 4 (N2 — 4)}y/np* 202 + (2212 4 1)g; + (N — 2)03 < frec, by Lemma 2 and the

above inequality we have

Pr([fail] = Prlfail | bound,] - Pr[bound,] + Prlfail | bound,] - Pr[bound,]
< Pr(producty, | bound,] - 1+ 1 - Pr[bound,)
<2.27°

Therefore, all parties agree on the same key except with probability 2 - 27°. O

Note that e, is not considered in the form of e} sampled from x,, since e is sampled from x,,. We
have different number of coefficient for e} since ADGK19 included the term ej but we calculate the exact

number of coefficient for e} by removing ej,.

6.2.2 Security Proof

Let Expt; refer to the i-th experiment where Krug is executed to obtain output a pair (T, sk) of the
transcript T = (z;, X;, rec) and the session key sk. We provide (T, sk) to the adversary A and allow A to

interact with the random oracle used when executing Krug.

KE

Our goal is to show that the advantage Advi,,(A) of A in distinguishing a pair (T,sk) distributed

according to Expt, with samples (T,skg), in which T is distributed the same way but sk is a uniformly

KE

Krug (t,qg) to be the maximum advantage of any adversary

chosen key, is negligible. Also, we define Ady,

running in time ¢ with at most gg queries to the random oracle.

35

Theorem 7. For our key-reusable group key exchange Krug, 8Ny/nA*20? + (N — 1)o1 < Breényi and

oy =) (,BRényi\/ n/log /\). Then,

Advirg(t,qp) < 2714

exp (2mn i/02)?
(7 AGELEE () + At +) - 2 Erm o))

N
where N/ = [E] + N, ty =t+ O(N - tring),t2 =t + O(N - tying) such that t,ing is the maximum time

required to make operations in R,.

Proof. Let Query be the event that A queries ky_; to the random oracle. Since this is the only way that
A can distinguish sk = H(ky_1) from an independent uniform value, we need to show that Pr;[Query] is

small where Pr;[-] denotes the probability of an event in Expt;.

Experiment 0. This is the original experiment that is equal to the procedure of Krug.

r) \
a < Rq;5i76i7 fiigi ~ Xoy for i € [N],

zi = as; + e;, h; = H(z;) for i € [N];

Z; = 2zi + ah; + fi, 2; = z; + ah; + g; for i € [N];

€l Xop; € Xoy for 1L <t < N —1;

Xi = (Zix1 — Zi—1)(si + hi) + €] for i € [N];

€N—1 ¢ Xoi}

by-1=2n—aN(sy_1+hn_1) + (N —)X n_1+
(N-2)Xo+--+Xn_3+e€y_1;

(rec,kn_1) = recMsg(bn—1);sk = H(kn-1);

L T = (20,21, ,2n-1, X0, X1, -+ , XN—_1,reC)

Expt, := < : (T, sk)

Y

! 1
Since Pr [A wins] = 5 -+ Adv&ﬁjg(t,qbﬂ) = Prq [Query] + Pr [ﬁQuery 5
Adv&ll'sug(ta qE) S Pl‘o [Query] .

Experiment 1. We replace X, into X = — EN_I Xi + €j. The rest is the same as the previous

i=1

experiment.

a < Rgy;si, e, fi, gi < Xo, for i € [N];

z; = as; + e;, h; = H(z;) for i € [N];

Zi =2z +ahi + fi, % = 2 + ahi + g for i € [N];

€l Xou; €, ¢ Xo, for 1 <i < N —1;

X =—-2" X + e

Expty = { Xi = (Zir1 — Zi1)(si +h) +ejfor LSi SN —1; & (T, sk) o

€N_1 ¢ Xoij

by_1=2n_aN(sy_1+hn_1)+ (N = 1)Xn_1+
(N=2)X,+-+Xn_s+€l_y;

(rec,kn_1) = recMsg(byn_1);sk = H(kn_1);

!
\ T= (ZO,ZI)"' 7ZN—1aX07X17"' 7XN—1arec)

/

Lemma 4. Given two distributions of X, and X}, if we have 8N \/7_7.)\3/ 26+ (N —1)o;, < BRényi, then

exp (27n(Brenyi/02)?)
EpE

Pro [Query] < 27! 4 \/ Pr; [Query] -

36

using the property of Rényi divergence.

Proof. Note that we define the random variables X, X, in both experiments Expt, and Expt,. We define

Error and main as

N-1 N-1
Error = Z (e,-+1 —ei_1+ f‘H—l - gi_l)(si + hl) + Z eg and
i=0 1=1

main = (21 — 2x—-1)(so + ho) — Error.

Then,

Xo = main + Error + ¢{, and X, = main + ¢,

where ¢f, < 02. We check whether Rényi divergence between two distributions of X, and X{, is small

using Theorem 1. Let boundgor be the event that for all participants j, |Error[j]| < Brenyi. Then,

N-1
(Z(el+1—el 1+ fir1 — gi—1)(si +) +Z)m'

1=0

[Error[j]] =

Set ¢ = ‘/ﬂoge and let bound be the event that |ef[j]| < coo, |si[f]],le:ls]|, |ex_1[i]] < co1, and
lei[7]| < eoy for all ¢ > 0 and j.

From Lemmas 2 and 3 described in Appendix A, we have Pr [bound] > 1—27* and Pr[|(s;e;)[v]| <
V13262 | bound] > 1 — 2-2**+!, With a union bound, we have

Pr [Vj : |Error[j]] < 8Nv/nA¥202 + (N — 1)oy | bound] >1-16Nn2"2\,

If we assume 16Nn < 2*, we derive that Pr [boundgye] > 1 —272F1,
We have RD; (Error + Xo, || Xo,) < exp(27n(Brenyi/o)?) from the property of Rényi divergence. Thus,

Pry [Query] < Prg [Query | boundgor] + Pro[boundgror]
< Pry [Query | boundgor] + 271

< \/Prl [Query | boundgyror] - €xp (27712(BRrenyi/02)2) + 9—Af1

exp (271"!1(,3Rényi/0'2)2) —A
< ' B
< \/Pl‘l [QuerY] Pr; [boundErrOr] 2

< \/Prl [Query] - exp (ZWn(ﬁRényi/a2)2) 4 9AFL

1 —2-A+1
O

Lemma 5. The probability that A queries kx_; to the random oracle in Expt; is negligible when key

reconciliation mechanism is secure and our RLWE problem is hard. i.e.
n,4,Xo

N
Pry [Queny] < (| 3| + M) AdvTER" 5 (02) + Advicomec(ta) + S5

where t; =t + O(N - tring), ta =t + O(N - tying) such that ¢,;,, is the maximum time required to make

operations in R,.

Proof. We prove this lemma by considering a sequence of experiments.

37

Experiment 2. We replace all 2;’s into uniform elements in R,. The rest is the same as the pre-

vious experiment.

a Ry, z; < R, for all i € [N];

fisGi & Xoys hi = H(z;) for i € [N];

Z; = zi + ah; + fi, 2; = zi + ah; + g; for i € [N];

€h Xoa; € Xoy for 1 <i < N —1;

Xp= -0 Xi+ ey

Expty := < X; = (Zix1 — Zic1)(si + hi) +eifor 1<i<N-—-1; : (T,sk) »
eN_1 ¢ Xouj
by_1=2y_oN(sy_1+hny_1)+ (N -1)Xn_1+

(N =2) X+ -+ X s + s

(rec,kn—1) = recMsg(bn_1);sk = H(kn—1);

L T = (20,21, ,2nv-1,X(, X1, -+ , X N1, rec)

7

Between Experiment 1 and Experiment 2, we replace N RLWE instances into random. In our proof,

we assume that 3 RLWE instances are changed into random at once. Then,

N 5
|Pry [Query] — Pry [Query]| < [?-I -Advfng,a(tl),

where t; =t + O(N - tying) and t,ing is the time required to perform operations in R,.

The rest of the proof follows the procedure of ADGK19. We design distribution of (T, sk) in Exper-
iment 3,35 + 1,35 + 2 and 35 + 3 as below:

Experiment 3. We replace 2,2y and Zy_; into uniform elements in R,. The rest is the same as

the previous experiment.

(

a < Ry, z; < R, for all i € [N];

Zo, 20,281 ¢+ Ry;

hi = H(z;) for i € [N];

fi & Xoy, % = zi+ah; + f; fori > 1;

Gi < Xoyy 2i = zi +ah; +g; for 1 <i < N —2;
€l Xop € Xo, for 1L <t < N —1;

Expty :=1{ X)=—-07"Xi+e; Xi,---,X; ¢ Ry; : (T, sk) »
Vi>j, X;= (51‘_;.1 - ZAi_l)(Si + h,‘) + e;;
eII<1—1 « Xois

by_1=2n_oN(sy—1+hy_1) + (N - 1)Xn_1+
(N=2)X0+-+Xn_3+ey_q;

(rec,kn—1) = recMsg(bn_1);sk = H(kn—-1);

\ T =1(20,21,"",2n-1,X0, X1, "+ , XN—1,rec))

Between Experiment 2 and Experiment 3, we replace three RLWE instances into random. Hence,
|Pr3 [Query] — Pr; [Query]| < AdviaV P (1),

n,q,Xay

where t; =t + O(N - tying) and t,ing is the time required to perform operations in R,.

38

Remark. We change Zy_; into uniform in Experiment 3 to control the maximum number of RLWE

instances that becomes uniform in each experiment to be three.

Experiment 3j + 1. We replace 2;_; and X into 2, —r; and r;s; + e;, respectively, where r; < R,.
The rest is the same as the previous experiment.

4

a < Ry, z; « Ry for all i € [N];

Zi,«— Ry for i <j—1; Zy_1 < Ry;

Zi«— Ryfori<j—2; 2j_1=Zjy1— 1}

hi = H(z;) for i € [N];

fi & Xoy,Zi = zi +ah; + fi fori > j + 15

9i & Xoy, 2i = zi +ahi+gi for j+1<i <N —2;

€0 ¢ Xoos €570 €1 ¢ Xo

Xy = -0 Xi+eg; Xu,oo, Xjo1 ¢ Ry

Vi > j, Xi = (Zig1 — Zic1)(si + hi) + €

€N—1 ¢ Xois

byv_1=2nv_2N(sn—1+hy_1)+ (N - 1) Xn_1+
(N = D)X+ -+ Xy + s

(rec,kn—1) = recMsg(by_1);sk = H(kn—_1);

T = (20,21, y2N-1,X0, X1, , XN—1, rec)

~~

Expty; ;== < 2 (T, sk)

\ /
Since r; is uniform, then z;, —r; is also uniform. Thus, Experiment 3j+1 is identical to Experiment

3j, i.e., Pryjyq [Query] = Prs; [Query].

Experiment 3j + 2. We replace Z;,%; and X; into uniform element in R,;. The rest is the same

as the previous experiment.

4

a < Ry, z; « Ry for all i € [N];

Zi,e Ry for i < j; Znv_1 + Ry;

Zi< Ryfori<j—2; 2,_1 = Zjy1 —rj; 2 & Ry;

hi = H(z;) for i € [N];

fi & Xoyy Zi = 2zi +ahi + fi fori > j + 1;

i < Xoy2i=zi+ah;+giforj+1<i< N -2

€0 ¢ Xoa €7 1 €N_1 ¢ Xou

X,=-N "X+ e X, ,X; < Ry;

Vi>j+1, X;=(Ziy1 — Zi—1)(si + ki) + €l

eN_1 ¢ Xou3

byv_1=2N_2N(sn—1+hy_1)+ (N - 1) Xn_1+
(N=-2)Xg+---+Xn_g+ei_;

(rec,kn—1) = recMsg(bn_1);sk = H(kn—1);

| T=(20,21,---,2nv-1,X0, X1,--- , XN_1,reC)

~~

Expt3j+2 = Y : (T, Sk)

)
Between Experiment 3j + 1 and Experiment 3j + 2, we replace three RLWE instances Zz;, Z;, X; into
random. Hence,

|Pra; 42 [Query] — Pry; i1 [Query]| < Advyi o' 5(t1)
where t; is the time to solve RLWE problem which is the sum of ¢ and some minor overhead O(t,ing)

for simulation.

39

Experiment 3j + 3. We replace 2;_; into uniform elements in R,. The rest is the same as the previous

experiment.

Expty;y3 = §

(@« Ry 2 + R, for all i € [N];

Zi,2i + Ry for i < j; Zny_1 < Ry;

hi = H(z;) for i € [N];

fi & X0y, Zi = zi +ahi + fi fori > j + 1;

9i < Xo2i=zitahi+giforj+1<i<N-2

€0 ¢ Xoz3 €570 €1 ¢ Xou

X, =-SN Xi+ ey X1y, X Ry;

Vi>g+1, Xi=(Ziy1 — 2im1)(si + b)) + €

€N—1 ¢ Xois

byv_1=2nv_2N(sn_1+hy_1)+ (N - 1) Xn_1+
(N=-2)X{+ -+ Xn_3+el_1;

(rec,kn—1) = recMsg(by_1);sk = H(kn—-1);

\ T= (Z(),Z],"' 72N—1)X0,X1a"' ;XN—larec)

: (T, sk)

~~

Since both Z; ;1 —r; and 2;_; are uniform, Experiment 3j + 3 is identical to Experiment 3j + 2, i.e.,

Pr3;j13 [Query] = Prj; o [Query].

Experiment 3N — 2. We set Zny_o = 19, Xn_1 = 71(sn—1 + hn-1) + €y_1,Z0 = 71 + r2 where

r1,72 < Ry. The rest is the same as the previous experiment.

Exptyy 2 == 9

4

a,71,7T2 ¢ Rg;2; < Ry for all ¢ € [N];

Zo=r1+712,Z < Ryfor 1 <i <N -2

ino1 ¢ Ry

Zi+ Ryfori < N —3; Zn_2 = 12;

hi = H(z;) for i € [N];

N1 XoyyZN-1 = 2N-1 +ahy_1 + fN_1;

€0 Xoa} EN—1 € Xoi}

X,=-N "X+ ey X1, , Xn_a « Ry;

Xn-1=7r1(sn—1+hNo1) ey g

eN—1 ¢ Xoi

bv_1=m2N(sy_1+hyv_1)+ (N -1)Xn_1+
(N-2)X§+ -+ Xn_s+ef_q;

(rec,kn—1) = recMsg(by_1);sk = H(kn—-1);

T = (20,21, y2N-1, X0, X1, , XN—1,reC)

\

: (T, sk)

7/

Since 71,7y are uniform, so does Zyp = r; + r2. For both Experiment 3N — 3 and Experiment 3N — 2,

ZN—_2 and Z, are uniform. Then, we have Prsy_s [Query] = Pryny_3 [Query].

Experiment 3N — 1. We replace zZy_1, Xny_1 and by_; into uniform element in R;. The rest is

the same as the previous experiment.

40

(a < Ry; z; + Ry for all i € [N];
Z;, 2; + Ry for all i € [N];
hi = H(z;) for i € [N]; ey < Xo;
Exptyy_1 =3 Xp=—-N1"Xi+epy; X1, ,Xn_1 4 Ry; : (T, sk)
bn_1 < R,
(rec,kn—1) = recMsg(by_1);sk = H(kn_1);

\ T= (ZO,ZI,"' 72N—1,X0,X1"" ;XN—I)reC)

g

/

Between Experiment 3N —2 and Experiment 3N —1, we replace three RLWE instances Zy _1, Xn_1,bn_1

into random. Hence,

[Pran_ [Query] — Pran_s [Query]| < Advit'” i(t1).

Experiment 3N. We replace ky_; into uniform element k,_, in {0,1}*. The rest is the same as the

previous experiment.

'a(—Rq;zi(—quora.lliE[N];)
Z;,2; < Ry for all i € [N];
h; = H(z;) for i € [N]; € ¢ Xos;
Xy=-"N""Xi+ep; X1, , Xn_1 ¢ Ry;

Exptsy := ¢ =1 : (T, sk)

bN_1 — Rq

(rec,kn—1) = recMsg(bn_1);

ky_y < {0,115k’ = H(k}y_,);

\ T= (ZOVZI;"' aZN—lyXO,Xl,"' ,XN_l,rec)

/
Between Experiment 3N — 1 and Experiment 3N, we replace ky_; from recMsg(by_1) into
random. Hence,

|Prsn [Query] — Pran_1 [Query]| < AdvkeyRrec(t2)

where 5 is the time to break KeyRec algorithm which is the sum of ¢ and some minor overhead O(t,ing)
for simulation.

Since adversary attacking Krug makes at most g queries to the random oracle, we have Pry [Query] =
1%, which is negligible in A.

From Experiment 2 to Experiment 3N, we can conclude that

N ;
Pry [Query] < ([;] +N) - Adv e E (1) + AdviceyRrec(t2) + g_f
as expected. O

From Lemmas 4 and 5, we have the result of the theorem.

41

Conditions for parameter setting

To guarantee correctness and security of our instantiation, parameters N, n, 01,02, A, p, Brec and Brenyi
are also satisfied the following conditions:
) N?
Reconciliation Condition: (N2 4 2N) - y/np*/20? + (7 +1)o1 + (N —2)02 < BRrec
Rényi Condition: 2N+/nA%/ 262 + (N —1)o; < BRényi
oy Condition 1: 03 = Q(Brenyi - \/rm
o Condition 1: Brenyi < 02 < ¢
2n(N? 4+ 2N) < 2°
p=2A
|Error;| < Breényi
We compute some parameters under an assumption that N = 10 participants comprise a group and
want to share the group key. Under n = 512, N = 10, A = 128, p = 128, and 0, = 2v/8, we have

Brec = 293,602,943.6875, Brenyi = 20,971,572, oy = 20,971,573, and ¢ = 1,565,882,369. These

parameters are really big number compare to ¢ = 12289 used in NewHope, and are not optimized yet.

42

Chapter 7. Dynamic GKE from RLWE

7.1 Security Model

We describe the adversary model by Bresson et al. [13], which is suitable for our dynamic authen-
ticated GKE protocol since their model covers authenticated GKE with a dynamic setting with a weak
corruption model.

Let P = P[0,1,--- , N — 1] be a set of N parties. Any subset of P wishes to establish a group secret
key. We identify the execution of protocols for (authenticated) GKE or addition/deletion of a party or
a set of parties as different sessions. We assume that the adversary never participates as a party in the
protocol.

This adversary model allows concurrent execution of the protocol. The interaction between adversary
A and the protocol participants only happens via oracle queries.

We denote a set of session identity and partner identity of the party P as sid’é and pidip, respectively.
For an instance (U;,i;) € S where U; is the j-th party and i; is the counter value that counts the
number of queries that U; is requested by the given protocol or the adversary, we define sidgj =5 =
{(Uo,40),- -+, (Ui=1,41—1)} and pidi’j =U[0,1,---,1 = 1] when U [0,1,--- ,1 — 1] wish to agree on a group
secret key.

Let S, S;, and S be three sets of instances defined as:

S = {(UOaiO)a Tt (Ul—lail—l)},
Sl = {(Ulail)7 Tty (Ul+k—lail+k—l)}7 and
Sy = {(Ulmilo)’ R (Ulj_n'ilj_l)}

where U [0,1,--- ,l + k — 1] is any non-empty subset of P.

We assume that the adversary has full control over all communications in the network. All in-
formation that the adversary can get is written in a transcript since a transcript consists of all public
information flowing across the network. The following oracles describe adversary’s interaction with the

protocol participants:

e Send(U,%,m): This oracle models an active attack where the adversary has full control of commu-
nication. The output is the reply by (U, 7) upon the receipt of message m. The adversary can initiate

the protocol with partners U [0,1,--- ,l — 1] where ! < N, by invoking Send(U,%,U [0,1,--- ,l — 1]).

43

o Execute(S): This oracle models passive attacks where the attacker eavesdrops on an honest ex-
ecution of the protocol and outputs the transcript of the execution. A transcript consists of all

messages exchanged.

e Join(S,S1): This oracle models the addition of S; to S, where all parties in S and S; are in P. For
S, Execute oracle has already been queried. The output is a transcript generated by the honest
execution of the membership addition procedure. If Execute(S) is not preprocessed, the adversary

gets no output.

o Leave(S, S3): This oracle models the removal of S; C S from S where all parties are in P. Similar
to Join(S,S1), if Execute(S) is not preprocessed, the adversary gets no output. Otherwise, the
membership deletion procedure is invoked. The adversary obtains the transcript from the honest

execution of the membership deletion procedure.

e Reveal(U,): This oracle models the misuse of the group secret key. This query outputs the group

secret key ski, for a session with an instance (U,).

e Corrupt(U): This oracle models (perfect) forward secrecy. This query outputs the long-term secret

key of party U.

e Test(U, i): We can query this oracle only once during the adversary’s execution. A bit b € {0,1}
is chosen uniformly at random. The adversary gets sk if b = 1 and a random group secret key
sk’ if b = 0. This oracle checks the adversary’s ability to distinguish a real group secret key from

random.

An adversary who can access for Execute, Join, Leave, Reveal, Corrupt and Test oracles is considered
“passive” while an “active” adversary has full access to the above-mentioned oracles including Send
oracle. (For a static case, Join or Leave queries do not need to be considered.)

The adversary can ask Send, Execute, Join, Leave, Reveal and Corrupt queries several times, but Test
query is asked for only once for a fresh instance. An instance (U,?) is fresh if none of the following

occurs:
(1) the adversary queried Reveal(U, i) or Reveal(U’, j) with U’ € pid};,

(2) the adversary queried Corrupt(U’) (with U’ € pidj;) before a query of the form Send(U,i,%) or
Send(U’, j,) where U’ € pid};.

The adversary outputs a guess b’. Then, the adversary wins the game if b = b’ where b is the bit chosen

from Test oracle.

44

Let Succ denote the event that the adversary A wins the game for a protocol XP. We define
Adv 4 xp := |2 - Pr[Succ] — 1| to be the advantage that adversary A has in attacking the protocol XP.

The protocol XP provides secure unauthenticated/authenticated GKE (KE/AKE) security if there
is no polynomial time passive adversary A, and active adversary A, with a non-negligible advantage,
respectively.

Let ¢ be the running time for A and ¢g, ¢, qr,qs be the number of queries to Execute, Join, Leave,
Send oracles respectively. Adv)'zg (t,qg) is the maximum advantage of any passive adversary A, attacking
protocol XP and AvaﬁE(t, qE,gs) and AdvﬁgE(t, qE,47J,9L,qs) are the maximum advantage of any active

adversary A, attacking protocol XP.

7.2 Unauthenticated Group Key Exchange

In the static setting, given Ry = Z, [z] /(z"+1) and a < Ry, all parties calculate the partial numbers
X; and Y; ; and agree on “close” values by = by = - -- = by_; after the second round. Then, party Py_;
runs recMsg algorithm from KeyRec to allow all parties to get a common value k = kg = ky = --- = kn_1.
Since we only show that k is difficult to compute for a passive adversary in the security proof, we
hash k using random oracle ‘H to get the session group secret key sk, which is indistinguishable from

random. More detail description of unauthenticated GKE is given in Protocol 5.

7.3 Authenticated Group Key Exchange

To authenticate the unauthenticated one in Section 7.2, we use a digital signature scheme DSig =
(K,8,V) where K is the key generation algorithm with output (sk;,pk;) for each party, S outputs a
signature ¢; for a message m;, and V outputs whether the input signature is valid or not.

Following Dutta-Barua protocol [28], at the start of the session, P; doesn’t need to know the entire
session identity set sid‘,i;i. As protocol proceeds, we build this set from partial session identity set psid}'l;'i.
Initially, psidd‘_ = {(P;,d;)} and after completing the procedure, it becomes the full session identity set

sid‘},‘i. We assume that all parties know its partner identity pid'f;"_. We give a detail description as below.

7.4 Dynamic Group Key Exchange
7.4.1 Join Algorithm

If we assume that there are M parties in the set P[N, N+1,--- , N+ M —1] who wish to join the group
P[0,1,--- , N—1] who already shared the common secret key sk, we make a new ring that consists of three

parties Py, P;, Py_; from P[0,1,--- , N —1] and all parties from the set P[IN,N+1,--- N+ M —1]. P,

45

Protocol 5: STUG(P[0,1,--- ,N —1],a,H,01,02)
1 (Round 1) For each party P; for i = 0 to N — 1, do the following in parallel.

1. Computes z; = as; + e; where s;,€; < Xo,;
2. Broadcasts z;;
(Round 2) For ¢ =0 to N — 1, do the following in parallel.
1. If ¢ = 0, party P, samples e{, < X, and otherwise, party P; samples € < Xo, ;
2. Each party P; broadcasts X; = (zi41 — 2i—1) 8i + €3
(Round 3) For party Py_; only.
1. Samples e}, _; < Xo, and computes Yy_1 v—1 = Xn_1 + 2v_25n_1 + €} _1;
2. For j=1to N —1, computes Yy_; (yv—1)+; = X(N=1)+j + YN—1,(N—1)+(j—1)§
3. Calculates by_; = 31 ' Yiy_1, (v-1)+s;
4. Runs recMsg() to output (rec, ky_1) = recMsg(bn_1);
5. Broadcasts rec and gets session key as sky_1 = H(kn—1);
(Key Computation) For party P; (i # N — 1).
1. Computes Y;; = X; + zi—15;;
2. For j =1to N —1, computes Y; iy ; = Xirj + Y i1 (j—1);
8. b= Y000 Viisss

4. Runs recKey() to output k; = recKey (b;, rec) and gets session key as sk; = H(k;);

chooses the original session key sk as his ephemeral key 5;. We give a full description of U.Join protocol
for unauthenticated GKE as below.

For authenticated version A.Join procedure, we consider partial session-identity as STAG protocol
but we assume that psid§, = psidy U{{(P;,d;) | j=1to N -2} if P(i=0,1, o N<i<N+M—1)
verifies 3'1 of m}. We assume this since the ephemeral keys 5; and Z; are from the session key sk among
the group P[0,1,--- ,N —1].

Signature generation and verification happen by switching STUG protocol into STAG protocol, also
these operations happen in Round 2 of A.Join procedure when Z;, Z3, and X; are delivered to group
P[2,--- ,N-2].

By modifying the concept of psid‘;,‘; slightly, we can achieve a common session identity sichlg"‘, =
{(Pj,d;) | j € [N + M]} for parties in P[0,1,--- , N + M — 1] while Dutta-Barua protocol only provides

a common session identity sidg,"‘ ={(Uj;,d;) | j € [N]} for parties in U[0,1,--- , N — 1] where N = M +3.

46

Protocol 6: STAG(P[0,1,--- ,N —1],a,H,S,01,02)

1 (Round 1) For each party P; for i = 0 to N — 1, do the following in parallel.

1. Sets partial session-identity psid}i,‘i ={P, d;};
2. Computes z; = as; + e; where $;,€; < Xo,;
3. Sets m; = P;| 1| 2; and &; = S(m;);
4. Broadcasts m; | d;;
(Round 2) For each party P; for i =0 to N — 1, do the following in parallel.

1. Verifies §;_1 of m;_; and ;11 of m;;1 and proceeds only if both signatures are valid (Otherwise,
aborts);

2. If i = 0, party P, samples e{, < X, and otherwise, party P; samples €} < Xo,;
3. Computes X; = (2i+1 — zi—1) S; + €;
4. Sets m; = P; | 2 | X; | d; and 4, = S(m}) and broadcasts m/, | 4;;

(Round 3) For party Py_; only.

L. Verifies all 67 of m} where j # N — 1 and proceeds only if both signatures are valid (Otherwise,
aborts);

2. Extracts d; from m/ and sets psid‘;;:{"_l1 = psid}i-,;"”,;f_’l (P, dj)}
3. Samples €/;_; < X, and computes Yy_1 n—1 = Xn_1 +2nv—_25nv—1 + €X_y;
4. For j =1to N — 1, computes Yy_1 (v—1)+; = X(n-1)+; T YN-1,(N=1)+(-1)}
5. Calculates by_; = Z;V;Ol Yn_1,(v-1)+j3
6. Runs recMsg(-) to output (rec,kn_1) = recMsg(bn—_1);
7. Broadcasts rec and gets session key as sky_1 = H(kn—1);
(Key Computation) For party P; (i # N — 1).
1. Verifies all 07 of m; where j # i and proceeds only if both signatures are valid (Otherwise, aborts);
2. Extracts d; from m/ and sets psid‘},‘i . psid‘;;; U{(Pj,d;)};
3. Computes Y; ; = X; + zi—18;;
4. For j =1to N — 1, computes Y; ;1 ; = Xi1j + Y i1 (j—1);
5. b= Y0 Yiisss

6. Runs recKey() to output k; = recKey (b;, rec) and gets session key as sk; = H(k;);

47

Protocol 7: U.Join(P[0,1,--- ,N —1],P[N,N+1,--- N+ M —1])

1 (Round 1) Rearrange the order with a new array of N = M + 3 parties

1. Uy = Py,Uy = P;,Uy = Pny_1,50 = 80,51 =5k, 83 = sny_1 and for 1 <7 < N -3, Uiss = Py_144;
2. Let U[0,1,--- ,N — 1] be a new ring that we run in (Round 2);
(Round 2) Run STUG algorithm.
1. Group U[0,1,--- ,N — 1] runs STUG;
2. Uj; calculates z; during the 1st round of STUG and broadcasts it;

3. Uy and U; during 1st round of STUG additionally sends Z; and Z3 to all parties in
P[2, ’N_z];

4. U; calculates X; during the 2nd round of STUG sends X to all parties in P[0,--- ,N + M — 1];
5. After the 3rd round of STUG, Uy;_, sends 7ec to all parties in P[0,--- ,N + M — 1J;
(Key Computation) For party P; (2<¢< N —2).
1. Computes ?132 = X9+ 2951 = X0 + Z - sk;
2. For j =1 to N — 2, computes 7,-:24_]4 = 72+j + 71-,2_,_0_1);
3.8 = X0 Vi

4. Runs recKey(-,-) to output k; = recKey (Bi,ﬁ) and gets session key as sk; = H(k;);

48

7.4.2 Leave Algorithm

Let the set of parties P, P,,--- P, want to leave the group P[0,1,---,N — 1]. Then, the new
group becomes P’ = P[0,--- ,ly = LJUP[ly + R, -+ ,lo —L]U---UP[lps + R,--- , N — 1]. Instead of
l; —1and l; + 1, we use [; — L and [; + R since there might be consecutive parties who want to leave the
group P[0,1,--- ,N —1]. e.g., if P;,Pi_1,P_s,--- ,Pi_(j_1) are consecutive parties who want to leave,
then P_p = P_;.

After making a new group P’, we simply relabel orders to make a new array U [0,1,--- ,N — M — 1]
of the parties in the protocol and run U.Leave procedure for U [0,1,--- ,N — M — 1] based on the re-
maining parties and run STUG protocol. For authenticated version A.Leave procedure, we simply apply

STAG protocol instead of STUG algorithm.

Our dynamic (un-)authenticated GKE protocol DRAG consists of three procedures, either (STUG,

U.Join, U.Leave) or (STAG, A.Join, A.Leave), as a subroutine.

7.5 Security Analysis

In this section, we check the correctness of our protocol and give a full security proof using the
security model by Bresson et al. [13]. Our proof techniques is based on Apon et al.’s protocol [4] and

Dutta-Barua protocol [28].

7.5.1 Correctness Proof

In Theorem 8, we give a condition that our GKE is correct. Most part of our correctness proof
follow Apon et al.’s correctness proof but there are some modification on error bound.
Theorem 8. For a fixed p, and assume that
(N —1)N/2-vnp* 20} + (N(N 4+1)/2 + N) o1 + (N = 2)02 < Brec-
Then all participants in a group have the same key except with probability at most 27#*1.

Proof. As mentioned in Section 2.5, we will show that all parties have the same secret key except with
negligible probability. To hold this, we claim that if for all € [N] and j € [n] j-th coefficient of

[bn—1 — bi| < BRrec, then k; = ky_;. After some tedious computation, we have

N-1
by_1—bi=Nef_1+ > (N = j)(en-14; — ;)
—

N-2

+ D (N =1 = 5){(entiSN-14j — eN-1475N+j) — (€itj+18i4 — €isjSitit1)}-
=0

Now observe how many terms are in by_; —b;. There are at most (N —1)N/2 terms in form of s; - ¢;, at
most N(N + 1)/2 terms in form of e}, sampled from x,,, at most N — 2 terms of e, sampled from x,,,

and N terms of €_;. Sum of these at most terms is less than Apon et al.’s terms.

49

Let producty , be the event that for all terms in form of s; - ;, each coefficient of this form is
bounded by y/np*20%. Under an assumptiont that 2n(N — 1)N/2 < 2#, by Lemma 3 we can get

(N-1)N

s -2 <o

Pr[producty,, | bound,] <

Denote fail by the event that at least one of parties does not agree on the same key. Given a condition
that (N — 1)N/2 - /np®/20? + (N(N +1)/2 + N)oy + (N — 2)o2 < BRec, by Lemma 2 and the above

inequality we have

Pr[fail] = Prffail | bound,] - Pr[bound,] + Pr[fail | bound,] - Pr[bound,]
< Prproducty, | bound,] -1+ 1 - Pr[bound,)

<2-27°

Therefore, all parties agree on the same secret key except with probability 2-27°. O

From the result of Theorem 8, the number of error terms in our protocol is smaller than Apon
et al.’s protocol. Then, the probability Prstyc [AbortKey] of the event AbortKey that error between b;’s
exceeds fRrec in our protocol is smaller than the probability Prapen [AbortKey] in Apon et al.’s protocol.

Thus, our protocol has higher probability to have the common secret key between protocol participants.

7.5.2 Security Proof

We write Theorems 9, 10 and 11 to show that our dynamic key exchange protocol DRAG =
(STUG, U.Join,U.Leave) (or (STAG, A.Join, A.Leave)) is secure in the random oracle model based on

hardness of RLWE assumption.

Theorem 9. For unauthenticated GKE protocol STUG, 2N/nA*20? 4+ (N — 1)o; < BRrényi and op =
Q (BRényi\/'n/ log /\). Then, we have the following:

AdviTy(t, ae) < 272+

exp (2mn(Brenyi/02)?
\/(N : Ad"fﬁfﬁf,:ﬁ(tl) + AdVKeyRec(t2) + g_f)) xp(1 _(giiil/ 2))

where t; =t + O(N - tring),ta =t + O(N - ting) such that .4 is the maximum time required to make

operations in R,.

Proof. Let A be an adversary that breaks the protocol STUG. From this, we construct an adversary B
that solves RLWE problem with non-negligible advantage. Since we do not have any long-term secret
key in our protocol STUG, Corrupt can be ignored and the protocol achieves the forward secrecy.

Let Query be the event that kx_; is among the adversary A’s random oracle queries and Pr; [Query]
be the probability of Query in Experiment i.

Then, by a sequence of experiments, we show that an efficient adversary who queries the random
oracle in Ideal experiment with at most negligible probability can query the random oracle in Real
experiment. For Ideal experiment, the input kx_; is chosen uniformly random while ky_; is chosen by
the honest execution of STUG in Real experiment. We continue the proof in Appendix C.

O

50

Proof. We present Experiment 0 and Experiment 1 as an example. Experiment 0. This is the original

experiment that is equal to the procedure of STUG.

(a < Ry; si,e; + Xo, fori € [N];

z; = as; + e; for i € [N];

€) < Xo, and € < x,, for 1 <i < N —1;
Xi = (zi+1 — zi—1)si + €. for i € [N];

eN_1 Xoy;
Expg:={ N-17 Xo , : (T, sk) ¢
Yn_1,v-1=XN_1+2v_25N_1+€eN_1;
YN, (V=145 = X(WV-1)+5 + YN-1,0v-1)+G-D);
by_1 = E;-V:_ol Yno1,(N-1)+j3
(rec,kn—1) = recMsg(bn_1);sk = H(kn—_1);
L T=(ZOaz1a"' 7ZN—17X0aX17"' aXN—I)reC))
1 1
Since Pr[A wins] = 5 + AdvéTyc(t, az) = Pro [Query] + Pro [Query] - 5
AdvStyc(t gi) < Pro [Query].
Experiment 1. We replace X, into X = — ZlN;ll X; + €. The rest are same as the previous ex-
periment.
(@« Ry;siei + Xo, fori € [N]; ‘
z; = as; + e; for i € [N];
€l ¢ Xo, and € < x,, for 1 <i < N —1;
Xj == 305" X+ efy
Xi = (zig1 —zi—1)si+ e for 1 <i < N —1;
Exp, :=1< eX_1 ¢ Xou3 2 (T, sk) ¢

Yn_1,v—1=XNno1+2N—2SN—1+€eX_q;
Yn_1,v-1)45 = X(v-1)+j + YN-1,(N—1)+(-1);
bno1 = 2;\1:—01 YN_1,(N=1)4j3

(rec,kn—1) = recMsg(bn_1);sk = H(kn—1);

\ T = (20,21, ,2nv-1,X0, X1, -+, Xn_1,reC)

7

Lemma 6. Given two distributions of X and X{, if we have 2N/n)*20% + (N — 1)o; < BRényi, then

exp (27n(Brenyi/02)?)
EpE

Pro [Query] < 27! 4 \/ Pr; [Query] -
using the property of Rényi divergence.

Proof. Note that we may define the random variables X, X{, in both experiments Real and Dist;. We
define Error and main as Error = E?]:BI(S,,;Ei_{_l — siei—1) + Ef\:le’i and main = 2189 — 2981 — Error,
respectively. Then,

Xo = main + Error + e, and X, = main + ¢,

51

where ¢f, < 02. We check whether Rényi divergence between two distributions of X, and X{ is small

using Theorem 1. Let boundgpor be the event that for all participants j, Error; < Breényi. Then,

N-1 N-1
|Error;| = (Z(Siei—i-l - siei—1) + z ei) :
i=0 =1 j

Set ¢ = and let bound be the event that |(e});| < coa, |(s:);],(ei);], [(€X_1);| < co1, and
|(e})j] < coy for all i >0 and j.
From Lemmas 2 and 3, we have Pr|bound] > 1 — 27* and Prf|(sie;),| < vnA*?0% | bound] >

1— 272! With a union bound, we have

1rl ge

Pr [Vj : |Error;| < 2Nv/nA¥20% 4 (N — 1) | bound] >1-4N-n-2-2

. If we assume 4Nn < 2*, we derive that Pr [boundgo] > 1 — 271
We have RD; (Error + X, ||Xc,) < exp(2mn(Brényi/o)?) from Theorem 1. Thus,

Pry [Query] < Prg [Query | boundgor] + Pro |boundgm,,
< Pry [Query | boundgyror] + PR

< \/Prl [Query | boundgror] - €xp (21(BRényi/02)2) + 2721

exp (an(ﬂRényi/U2)2) —A+1
< .
< \/PI‘1 [Query] Pr; [boundgrror] 2

e .

1 —2—A+1
From second to third inequality, we use the property that Rényi divergence is bounded. O

For the rest of the proof, we will show that

Pry [Query] < N - AdviL" ” (1) + Advieyrec(t2) + ‘;_f

Experiment 2. We replace 2y into uniform element in R,. The rest are same as the previous ex-

periment.

a,2p < Ry;Vi > 1, 84, € Xoy5 2i = a8; + €;;
e{)(—xa2 a.nde’(—xt,l for1<i<N-1;

Zz 1 X + eo;
X,- = (z,-+1 —zi—1)siteifor 1 <i<N-—-1;
EN_1 ¢ Xoi;

Expy := ¢ (T, sk) ¢

Yn_1,v—1=XNno1+2n—2SN—1+€eX_q;
Yyo1,(v—1)+5 = X(v-1)+5 T YN-1,(v-1)+(-1)}
by_1 = E;V:_ol YN 1,(N=1)4j5

(rec,kn—1) = recMsg(bn_1);sk = H(kn—1);

T = (20,21, ,2N-1, X0, X1, , XN—1,rec)

\ /

Between Experiment 1 and Experiment 2, we replace one RLWE instance into random. Hence,
|Pr; [Query] — Pry [Query]| < Advye!® | (t1)

52

where t; = t 4+ O(N - tring) and tring is the time required to perform operations in R,. Since

RLWE RLWE RLWE RLWE
Advn,q,x,] a(t) < Adv”,q,Xol 2(t1) < Advn,q’xﬂ1 a(t1), we have [Pry [Query] — Pr; [Query]| < Advn,q,x,l a(t1).
Experiment 3. We replace 2y into zo — r; and X; into r1s; + €] where 71 « R,. The rest are

same as the previous experiment.

¢ .
a,r1 ¢ Rg;Vi > 1, si,ei < Xoy; 2i = asi + €4

20 = 22 —T1;

€y ¢ Xo, and € < x,, for 1 <i < N —1;
Xp=-"N X4 ey Xy =718+ ¢,

Xi = (2zig1 —zi—1)si +ei for 2<i < N —1;
Expz := ¢ eN_1 ¢ Xou3 ¢ (T, sk) ¢
Yn_1n-1=XN-1+2N_25N_1+€N_1;
Yn_1,v-1)+5 = Xv—1)+j + YN-1,(N—1)+(-1);
by_1 = E;V:_ol YN _1,(N=1)+j5

(rec,kn—1) = recMsg(bn_1);sk = H(kn—_1);

\ T = (20,21, ,2nv-1,X0, X1, -+, Xn_1,reC)

Since both zy and 25 — r; are uniform, Prz [Query] = Prs [Query].

Experiment 4. We replace 27, X; into uniform element in R,. The rest are same as the previous

experiment.

a,71 Ry; Vi > 2, s5,e; = Xoy5 2i = a8 + €3
20 =29 — 115 21 — Ry

€y ¢ Xo, and € « x,, for 2<i < N —1;
Xo=—-Yi7 Xi+ep; X1+ Ry
Xi=(ziz1—zi—1)si+e. for2<i<N-1;
Expyi={ €X_1 ¢ Xous o (T, sk) o
Yn_inv-1=XNn-1+ 2v—2SN—1+€eX_1;
Yo, v—1)45 = X(v=1)+5 + YN, (v—1)+ (1)
by_1 = 2;\1:—01 YN_1,(N=1)4j3

(rec,kn—1) = recMsg(bn_1);sk = H(kn—1);

\ T = (20,21, ,2nv-1,X0, X1, -+, Xn_1,reC)

7
Between Experiment 3 and Experiment 4, we replace two RLWE instances into random. Hence,
|Pry [Query] — Pr3 [Query]| < AdvRLWE,Q(tl) and thus,

g, Xoy

|Prs [Query] — Prs [Query]| < Advi"V" (1)

t, is the time to solve RLWE problem which is the sum of ¢t and some minor overhead O(t;ing) for

simulation.

Experiment 5. We replace zp into uniform element in R,. The rest are same as the previous ex-

periment.

53

Exps := <

\

¢ .
a Rg;Vi> 2, si,e ¢ Xoy3 2i = a8 + €3

20,21 ¢+ Ry;

€l ¢ Xo, and € < x,, for 2<i < N —1;
Xy ==YV Xi+ ey X1 Ry
Xi=(ziz1—zic1)si+e. for2<i<N-1;

EN_1 ¢ Xoi; : (T, sk) ¢

Yn_1n—1=XN-1+2N—25N-1+€N_1;
YN-1,(N-1)+5 = X(N-1)+5 + YN-1,(N-1)+(j-1);
by_1= E;-V:_ol Yn_1,(v—1)+55

(rec,kn—1) = recMsg(bn_1);sk = H(kn—-1);

T = (20,21, ,2N-1, X0, X1, , XN—1, rec)

Since both zy and 23 — r; are uniform, Pr; [Query] = Pry [Query].

Similarly, we can design distribution of (T, sk) in Experiment 3i,3: + 1,37 + 2 as below:

Experiment 3i. We replace z;_; into 2,41 — r; and X; into r;s; + € where r; < R,;. The rest are

same as the previous experiment.

Exps; := 4

\

¢ . .
a,T; (_Rqa VJ Zzy sj’ej (_Xdl; zj =G,Sj+€j;

20, ,2i—2 < Ry, zi_1 = zip1 — 133

€0, Xoo, and €}, ey_1 Xoy;
Xp=-"N " Xi+ e X1y, Xioy ¢ Ry;
X; =ris; + el

ViZi+1, X; = (zj41 — 2j-1)s; + €3

eN—1 ¢ Xous
Yn_1N-1=XN-1+2N-—25N-1+€N_1;
Y-+ = X(v—1)45 + YN_1,(N21)4(G=1)5
by_1 = Z;«V:_Ol Yn-1,(N-1)+43

(rec,kn—_1) = recMsg(by_1);sk = H(kn_1);
T = (20,21, ,2N-1, X0, X1, , XN_1,rec)

¢ (T, sk) ¢

7

Experiment 3i + 1. We replace z;, X; into uniform element in R,;. The rest are same as the previous

experiment.

Expgiy1 == 9

\

a,ri Ry; Vj > i+ 1, 55,6 < Xoy; 25 = as; + €;;

20,7, Zim2 — Ry zio1 = zip1 — 14, zi + Ry,
! ! / .
€y, < Xoo and €}, -+ €y _; Xoy;

o N-1 . .
XO__zi=1 X-;+€0, Xl;"'aXi(_Rq?

ViZi+1l, Xj=(zj41 — 2j-1)s; + €

eN_1 ¢ Xoij
Yn_1,n—1=XN-1+2N_28N-1+ €N_1;
Yn-1,(N-1)+5 = X(v-1)+5 + YN-1,(N-1)+(5-1)3
-1 =Yg YN-1,(N=1)455

(rec,kn—1) = recMsg(bn_1);sk = H(kn_1);

T = (20,21, ,2N-1, X0, X1, , XN_1,rec)

54

: (T, sk)

'

Experiment 3i + 2. We replace z;_; into uniform element in R,;. The rest are same as the previous

experiment.

(. . . . _ .)
a Ry Vi >i+1, sj,e5 « Xoy5 2j = asj + ;3

20, ,2i + Ry;
€0, Xo, and €}, -+ ey Xoy;
Xp=—-N X+ ey X1, , X ¢ Ry
Vi>i+1, X;=(2j+1—zj-1)8; + e;;
Expziyo == €1 ¢ Xous : (T, sk) o
Yn_inv-1=XNn-1+2v—2SN—1 +€xN_1;
YN-1,(v-1)45 = X(N-1)+j + YN-1,(N-1)+(-1);
by_1 = Z;V;ol Yn_1,(N=1)+j
(rec,kn—1) = recMsg(by_1);sk = H(kn—_1);
L T = (20,21, ,2nv-1,%X0,X1, -+, Xn_1,rec)

With similar argument of Experiment 3, 4 and 5, we have

Pry; [Query] = Pr3; 1 [Query]

|Pl‘3,‘+1 [Query] - P1'31; [Query]| S Advfg,v;/f,:‘ (tl)

Pr3; 1o [Query] = Pr3; iy [Query]

Experiment 3N — 3. We set zy_o = r2,Xn_1 = r1Sny—1 + €y_1,20 = 71 + 72 where 71,72 « R,.

The rest are same as the previous experiment.

()
a,71,T2 < Rg;SN_1,6N_1 ¢ Xoy320 = T1 +T2;

zi+ Ry for 1 <i <N —3;2v_2 =79
ZN_1=aSN_1+ EN_1;€) ¢ Xou}EN_1 ¢ Xoy
Xp=-YN " Xi+ep; X« Ry for 1 <i <N —2;

! ./ .
XN_1=T18N_1+€ey_j5eN 1 < Xous

Expay_3 = § : (T, sk)

Yv_1,v—1=Xno1+ 2v—2SN—1+€X_q;
Yn_1,ov—1)45 = X(v-1)+5 + YN-1,(N—1)+(-1);
by_1 = E;V;ol Yn_1,(N—1)+j5

(rec,kn—1) = recMsg(bn_1);sk = H(kn—-1);

T = (20,21, ,2N-1, X0, X1, , XN—1,rec)

\ /

Since 71,7y are uniform, so does zy = r; + r3. For both Experiment 3N — 4 and 3N — 3, zy_o and

zo are uniform. Then, we have Prsy_3 [Query] = Pryny_4 [Query].

Experiment 3N — 2. We replace zy_1, Xn_1,2N—_28N—-1 + €x_; into uniform element in R,. The

rest are same as the previous experiment.

55

(a,ry Ry;sN_1,eN—1 < Xo,; 2 < Ry for i € [N];
€y ¢ Xoa}
Xp=-YN " Xi+ep; Xi ¢« Ry for 1 <i <N — 1
Yy_1v-1=XN_1+73;

Expay 2 = § : (T, sk) o

Yno1,v-1)+5 = X(N-1)+5 T YN-1,(N-1)+(-1);

N—
by_1 = Ej:()l YN_1,(N-1)4j3
(rec,kn—1) = recMsg(bn—1); sk = H(kn-1);

\ T = (20,21, ,2nv-1,X0, X1, -+ , Xn_1,reC) J

Between Experiment 3N — 3 and Experiment 3N — 2, we replace three RLWE instances into random.

Hence,
|P1‘3N_2 [Query] - PI‘3N_3 [Query]| S Advf,{;g‘(/f,:;(tl)

Experiment 3N — 1. We replace Yy_1 nv-1,Yy_1 (N-1)4j,bN-1 into uniform element in R;. The

rest are same as the previous experiment.

(a,m1,73 « Ry;SnN_1,eN—1 < Xo,; 2 < Ry for i € [N];

€y + Xos}

X)=-YN " Xi+eh; X Ryfor 1<i <N —1;
Expsn_1:=§ Yn_1(nv-1)4; ¢ Ry for j € [N]; : (T, sk)
bN—l «— Rq;

(rec, kn—1) = recMsg(bn—1); sk = H(kn-1);

T= (ZOazla"' ’ZN—17X07X1)'“ ,XN_l,I'eC)

-~

\ 7

For both Experiment 3N — 2 and Experiment 3N — 1, Yx_1 n-1,YN_1,(v—1)+j, and by_; are all

uniform since r3 is uniform in Experiment 3N — 2. Then, we have Prsn_; [Query] = Pryy_2 [Query].

Experiment 3N. We replace ky_; into uniform element k_, in {0,1}*. The rest are same as the

previous experiment.

a,71,72 < Ry SN—1,6N—1 ¢ Xoy;2i < Ry for i € [N];
€0 Xoa}

Xo=-N"Xi+ ey X Ryfor 1<i <N -1
YN_1,(v-1)+; ¢ Ry for j € [N];

Exp;n = ¢ : (T, sk) o
N bN_1 — Rq; ()
(rec,kn—1) = recMsg(bn_1);
N1 {0,115k = H(kly_y);
\ T=(20,21,--- yZN—1, X0, X1, ,XN_l,I'EC)),

Between Experiment 3N — 1 and Experiment 3N, we replace kx_; from recMsg(by_1) into random.

Hence,

|Pran [Query] — Pran—1 [Query]| < AdvkeyRec(t2)

to is the time to break KeyRec algorithm which is the sum of ¢ and some minor overhead O(t,ing) for

simulation.

56

Since adversary attacking STUG makes at most gg queries to the random oracle, we have Pry [Query] =
4%, which is negligible in A.
From Experiment 1 to Experiment 3N, we have

Prl [Query] S N- AdvRLWE 3(t1) + AdVKeyRec(tZ) + g_li

9, Xoy s

as expected. With the Lemma 6 and Adv&E (¢, gr) < Pro [Query], we derive the result of the theorem.
O

Theorem 10. The authenticated GKE protocol STAG described in Section 7.3 is secure against active

adversary under RLWE assumption, achieves forward secrecy and satisfies the following:
as
AdvsTaG(t: i, g5) < Advstyg (', 5 + o)t [P|Advpsig(t')

where t' <t + (|P|ge + gs)tstac when tstac is the time required for execution of STAG by any one of

the protocol participants.

Proof. From an adversary A’ that attacks STAG, we construct an adversary A that attacks STUG. We
divide the event Succ that A’ wins the security game defined in Chapter 7.1 into the one that A’ can
forge a signature and the one that A’ cannot forge a signature.

For the former case, we claim that the probability of event Forge that the adversary can forge a
signature is bounded by |P|Advpsig(t') where |P| is the number of participants.

Suppose event Forge occurs. Then, A’ makes a query of the type Send(V, 7, m) where m is either of
the form m = P; | 1 | z; or of the form m = P; | 2 | X; | d; with V(pkp,,m,d,,) = 1 where 4,, is not
output by any instance of P; on the message m.

We construct an algorithm F that forges a signature for a signature scheme DSig using A’. Given
a public key pk, F chooses a random party P € P and sets pkp = pk. The other public/secret keys are
honestly generated. Then, F simulates all queries of A’ and obtains the proper signatures with respect

to pkp from its signing oracle. If A’ outputs a valid message/signature pair with respect to pkp = pk
Pr[Forge]

for any party P € P, F outputs this pair as a forgery. The success probability of F is equal to 7]

and hence, Pr[Forge] < |P|Advpsig(t').

For the latter case, we claim that A can simulate oracle queries of A by its own oracles. Suppose
A’ makes an Execute query with an instance {(Py, o), - ,(Pk, i)} Then, A defines a set of instances
S = {(Po,%)," -, (Pr,ix)} and sends S to Execute oracle to obtain a transcript T of STUG. Then, (S,T)
are added to the set tlist which stores session identity/transcript pairs. A outputs a transcript 7" of
STAG by expanding T and returns 7" to A’.

For Send query in A’, we have two types of Send queries since for each instance (Pp, %), there is a
first send query Send to start a new session and the other send queries with a message/signature pair.
With an instance {(Po,%0)," - , (Pk,ik)}, Sendo(P},;{Po, -+, (Pr)} \ P;) for each 0 < j < k. A defines
S = {(Po,%), -, (Pr,ix)} and sends S to Execute oracle to obtain a transcript T" of STUG. Then, (S,T)
is added to tlist. For other send queries, A verifies the query according to Protocol 6. If the verifications
fail, A aborts an instance (Pj,4;). Otherwise, A finds (S,T") from tlist such that (P;,i;) € S and from
T, it finds the appropriate message with respect to (P;,;) in A’ and returns the public information to
A

For Reveal and Test queries in A’, if a session is terminated properly with an instance (P;,i;), T” is
well defined. Then, A finds (S,T) where (P;,i;) € S and runs Reveal and Test queries for a transcript
T. Then, the result is sent to A’.

57

1
If Forge occurs, the success probability becomes 3 since A aborts the instance and outputs a random

value.

Advétyc = 2|Pr4[Succ] — %|
= 2 |Pr 4 [Succ A Forge]
+ Pr_4/[Succ A Forge] — %[
= 2 |(Pr 4/[Succ] — Pr 4/[Succ A Forge])
+ (Pr.4/[Succ | Forge] Pr 4/[Forge]) — %|
= 2 |Pr 4 [Succ] — Pr 4 [Succ A Forge]
+ % Pr 4 [Forge] — %|
> 2 |Pr 4/ [Succ] — 1|
— |Pr 4/ [Forge] — 2 Pr_4[Succ A Forge]|

> Adva'AG — Pr 4/ [Forge].

Then, A makes Execute queries for each Execute and Send, queries in A’. Since a session has at least

tI?S. Thus,

two instances, the number of Execute queries in A is at most qp +

gs
Advetac(t, a5, 4s) < Advityc(t, ae + ?) + [P|Advopsig(t).

O

Theorem 11. The dynamic authenticated GKE protocol DRAG described in Section 7.4 is secure against
active adversary under RLWE assumption, achieves forward secrecy and satisfies the following:

47 +4qL +4gs

2) + |P|AdVDSig(tl)

AKE KE
Advprac(t: 4E, 47, 9L, 9s) < Advprac(t, gz +

where t' <t + (|Plge + ¢7 + qL + ¢s)tprac When tprac is the time required for execution of DRAG by

any one of the protocol participants.

Proof. Similar to Theorem 10, we separate the event Succ that adversary A’ wins into two cases: one
with forging a signature and the other without forging. Then, we design how to answer Execute, Join,
Leave and Send queries from DRAG using Execute queries from STUG.

From an adversary A’ which attacks DRAG, we construct an adversary A who attacks STUG.

For the former case, the proof is the same as Theorem 3 and we obtain that Pr[Forge] < |P|Advpsig(t).

For the latter case, we claim that A can simulate all oracle queries of A’ by its own oracles. Execute
query in A’ can be returned as the same procedure of the proof of Theorem 3.

For Send query in A’, we have two special types of Send queries as the join send query Send; and
the leave send query Sendy, to initiate Join and Leave queries in A’.

We define three lists Tlist, Jlist and Llist to store the result from Execute, Join and Leave queries as
a set.

If aset Sy = {(Prt1,%k+1)s- 5 (Prtt,tk+1)} of unused instances wants to join the group S =
{(Po,i0),- -+, (Pr,ix)}, A sends Send;(Pj,i;,{Po, -+, (Px)}) for each k +1 < j < k + [to initiate
Join(S, S;) query. A finds whether S is in Tlist with (5,7, Jlist with (S’,S”,T) where S = S’ U S” or

58

Llist with (S, 8”,T) where S = §’\ S”. If nothing is found, A runs Execute oracle to get a transcript T’
and store (S, T) into Tlist. When transcript T is found, A runs Reveal oracle to obtain sk and simulates
a membership addition procedure A.Join to obtain a transcript 7”. Then, (S, S;,T") is added to Jlist.
Similarly, when a set Sy, of unused instances wants to leave the group S = {(Po,%0),- - ,(Pk, %)},
A’ sends Sendy, for each party in Sy, to initiate Leave(S, S;) query. Then, (S, SL,T”) is added to Llist.
For Join(S, Ss) and Leave(S, S1) queries in A’, A finds (S,S;,T) in Jlist and (S,Ss,T) in Llist for
a transcript 7', respectively. Then, the result is sent to A’.

Both Reveal and Test queries in A’ can be returned with the same procedure in the proof of Theorem

1
If Forge occurs, the success probability becomes 3 since A aborts the instance and outputs a random

value. Then,

AdVg‘TUG Z AdVB‘I’?AG - PI'AI [Forge].

Then, A makes Execute queries for each Execute, Send;, Sendy, and Send; query in A’. A session
has at least two instances, and the number of Execute queries for non-special Send queries is at most

w. Hence, the number of Execute queries in A is at most ¢ + tm%—q# Thus,

AKE
Advprac(t,9E,4,91,9s) <
q5 +qL +gs

9) + IPIAdVDSig (tl) .

AdvsTuc(t', ge +

59

Chapter 8. Implementation

We instantiate and implement DRUG for two purposes: to provide the proof of concept and check
the performance of our protocol. Since DRUG is a 3-round GKE protocol from RLWE assumption
with a generic key reconciliation mechanism, we instantiate DRUG with one of the previous key rec-
onciliation mechanisms whose implementation is open in public domain. We implement STUG consid-
ering the network topology and membership addition/deletion procedures based on the source code
of STUG. Then, we analyze the test results from our implementation. Pseudocode of our imple-

mentation is given in Appendix D. The full reference source code is available in our GitHub address

(https://github.com/hansh17/DRAGKE).

8.1 Instantiation
8.1.1 Restrictions on the Parameters

To instantiate DRUG, we should consider the restrictions for choosing parameters. There are three
restrictions from security analysis and performance requirements.

Considering Theorems 1 and 2, we set a statistical security parameter p = 256 that is related to the
correctness and a computational security parameter A = 128 that ensures level 1 NIST security that is
as hard as breaking AES128.)\ = 128 is selected for a practical reason since A = 256, which ensures level
5 NIST security that is as hard as breaking AES256, requires more than a day to make a precomputed

table for sampling.

8.1.2 Parameter Selection

Some ring parameters, such as the dimension n and the modulus g, are highly dependent on the
implementation of the basic ring operations. Generally, n can be a power of two as cyclotomic rings are
used for RLWE. g can be any integers since decisional RLWE is hard over a prime cyclotomic ring with
any modulus.

We chose the key reconciliation mechanism of Bos et al.’s protocol [12] where n = 1024, ¢ = 232 — 1,
and o = 8/ V27 that provides both reasonable security level and practical implementation result. To
maximize the number of group members N in DRUG with those parameters, we select other parameters
as 0y = 14, 198,340/\/2_#, Brec = 229 — 1, and Brenyi = 5,664, 317 where Srec = q/8 as shown in TABLE
8.1, for N = 6. If we increase the number of group members in DRUG like real-world applications, both

o2 and PBrenyi Will increase to around 2% while other parameters are fixed, for N is around 2°. As we

60

increase the number into hundreds, we have to increase parameters os, Breényi, ¢, and Brec into around

240 which might become not very practical.

Table 8.1: Parameter choice

p A N n q 01 02
256 128 6 1024 232 -1 8/v2r 14,198,340/v2x

8.2 Network Topology

In our parameter settings, up to six peers can participate in DRUG. Each peer broadcasts the
computed intermediate values to all other peers in DRUG.

To make broadcasting easy, we deployed an arbiter-based network for communication. Different
from TA who has a dedicated role in a protocol, an arbiter is a designated party who all group members
have agreed on in the initialization phase that does broadcasting, being independent of the protocol.
The role of an arbiter is similar to a public bulletin board, except that the arbiter actively broadcasts
the received message to the other peers while the public bulletin board is queried by the peers. Since
any peer can behave as an arbiter in a fully connected network, we pick Py_; as the arbiter for simple
implementation.

In summary, the roles of an arbiter are as follows: i) participates in a protocol ii) receives public
information such as z; or X; from a peer in DRUG, and broadcasts the information to the other peers
iii) runs the key reconciliation mechanism and broadcasts rec to other peers (since we selected Py_; as
the arbiter).

The roles of peers (Py, Py,--- and Py_») are as follows: i) participates in a protocol ii) calculates
and sends public information to the arbiter iii) calculates the group secret key from the data received

from the arbiter.

8.3 Our Tests

We conducted three tests to verify correctness (Test 0) and performance (Tests 1 and 2). The test
environment is as follows: Intel(R) CPU i5-8250, RAM 8GB, and OS Ubuntu v16.04.5 LTS. Since we
use a virtual machine, only a partial power of the computer is used for performance evaluation. We use
two processors with a 100% execution cap for CPU and 4GB for RAM. gce v5.4.0 is used as a compiler

with —O3 optimizations.

61

sh@sh-VirtualBox:~/DRACKE /dynamics
Arbilte ree 1) hashed key as5ce

Figure 8.1: Group secret key of STUG (N=4)

sh@sh-VirtualBox: ~/DRAGKE [dynamic bite p 1234 -n joi
bit peer 4) hashed key Jcf3an1

2a862481739894226e1d345
Virtualsox: - /DRAGKE [dynan
hs key bG6bS

6ed8f719694226m 14
shgsh-Virtualsox
Peer 3 hashed key

6e481730804 134540106206

154b fhaaGs
~JORACKE /dy
6b6sbSed

Figure 8.2: U.Join procedure in DRUG (N=4 — N=5)

sh@sh-VirtualBox:~/DRAGKE /dynamics arbiter -p 1234 -m leave -2 4 ‘D 5
Arbiter (Peer 3) hashed key : eed206 ateh alcde 3

~VirtualBox:~/DRAGKE /dynamics
1 hashed ke

eeB20564a0aaaTchl

gcoisb7asac04ndog

- ACKE Jdynantcs - pee
Peer 2 hashed key : eeB2B64ae
bhlbcosasscot Sbad4acsifbTaRaed

Figure 8.3: U.Leave procedure in DRUG (N=5 — N=4)

8.3.1 Test 0: Verifying the Success of Key Exchange

In Test 0, we verified that peers can successfully exchange the group secret key using our imple-
mentation. We built two executable programs; one for the arbiter and the other for peers who are not
an arbiter. These executable programs support all three modes (static, join and leave) with the —m
option. An index of the peer and the number of members before and after the dynamic operations can
be provided.

Our programs are configured to run on a local environment to exclude network latencies while
measuring time on the subsequent tests. Each peer is deployed in one independent process, and com-
munication between peers and the arbiter is done by sockets toward the localhost. Small modifications
would allow programs to communicate through an actual network; in the actual network, the values such
as the peer indices should be determined before a protocol is given as the argument. In Fig. 8.1, we
can observe that a group of four outputs the same value as the agreed group secret key. Figs. 8.2 and

8.3 demonstrate that the U.Join and U.Leave procedures were done without errors.

8.3.2 Test 1: Performance Check on Components

In Test 1, we checked the runtime and cycles of each operation and function of our implementation.

TABLE 8.2 shows the performance of each operation on average after running 200 times.

62

As we can see in TABLE 8.2, random sampling from x,, takes a longer time than random sampling
from x,,. This is a result of the difference in size of o7 = 8/ V27 and oy = 14,198,340/ V2r. The
ring polynomial addition running time is almost 0, but the ring polynomial multiplication running time
is 185 psec. Therefore ring polynomial multiplication and random sampling is an important factor in

performance as we stated in Chapter 10.

Table 8.2: Average runtime and cycles of each operation

Operation runtime(usec) cycles
Random sampling from x,, 195 352,369
Random sampling from x,, 1,043 1,879,027
Ring polynomial addition ~0 1,398
Ring polynomial multiplication 185 334,047

TABLE 8.3 shows the performance of each function. We measure the computational time for z;,
X, reconcile, and the group secret key. As we can see in TABLE 8.3, computing X, takes longer than
computing X; due to the sampling from x,,. Even though only one peer, P, samples values from x,,,
its runtime is much longer than random samplings from x,, or ring polynomial multiplications. Hence,

random sampling from x,, is another important factor in measuring the performance of DRUG.

Table 8.3: Average runtime and cycles of each function

Function runtime(psec) cycles
Compute z; (Phase c1) 493 889,014
Compute X, (Phase c2) 1,353 2,435,457
Compute X; (Phase c2) 344 619,686
Compute reconcile (Phase ¢3.1) 500 901,395
Compute the group secret
key 209 376,906

(Phase c3.2)

To claim that the performance of DRUG is reasonable compared to other previous key exchange
protocols, we compare our protocol with the previously standardized two-party key exchange protocols
like Diffie-Hellman key exchange (DH), MQV [42], and their elliptic curve variants (ECDH, ECMQV).
For the sake of simplicty, we limit the comparison with the Crypto++ library [1]. Given the 128-bit
security level, key size should be 3072 bit for DH and MQV and 283 bit for elliptic curve variants. The
runtime of our protocol takes around 3 msec which is comparable to the runtime of Diffie-Hellman-
like key exchange protocols, which takes around 2 to 3 msec. Our protocol is faster than elliptic curve

variants whose runtime requires around 6 to 8 msec. We increase the security without losing efficiency by

63

adopting RLWE setting since most of current key exchange protocols can be totally broken by quantum

adversaries.

8.3.3 Test 2: Performance Check on Dynamic Operations

In Test 2, we checked the total runtime of U.Join and U.Leave procedures. The measurement was
performed when the number of group members changes from four to five and five to four. The whole
procedure of GKE is measured, i.e., the protocol ends when all peers calculate a group secret key. Since
the calculation in each phase is performed in parallel, we add the longest time for calculation in each
phase.

In TABLE 8.4, U.Join procedure takes 3,168 psec and U.Leave procedure takes 2,956 usec, which is

reasonable for practical use.

Table 8.4: Performance evaluation of U.Join and U.Leave

U.Join U.Leave
Total runtime (usec) 3,168 2,956

64

Chapter 9. Key-resuable Dynamic GKE from RLWE

9.1 Tweaked Two-neighbour Attack

If we apply Ding’s reconciliation mechanism to DRAG, recMsg(by_1) outputs rec < S(by_1) and
kn_1 < E(by_1,rec) and recKey(b;, rec) outputs k; < E(b;,rec).

We assume that a public value a € R, and public keys z; for each party P; are fixed except Pn_s.
A can initiate many sessions with all parties in the group and can access to the oracle S. In performing
the attack, an adversary A plays the role of two parties Py and P; instead of Py_o and Py_3 in the
original two-neighbour attack. A creates key pairs (8o, 20) of Py by deviating from the protocol. We
denote the public key z(deviated by A as z4 and the corresponding secret key sy and error e, deviated
by A as s4 and e 4, respectively.

We describe an attack on simplified DRAG where the error term e’,_; is not added to the key
computation of ¥y_; y_1. We set an oracle S that simulates party Py_;’s action from a given input
public key. On receiving z4 from A, S computes by_; and outputs (rec, kx_1) from by_; according to
the protocol.

Then, Yn_1n—1 = Xn-1 + 2nv—25nN—1 = ZoSn—1 and all Yy_1 N_14; = ZoSn—1 + (constant)
except for Yy_11 = X1 + Yy_1,0 since X; contains the term z;. Hence, if A can control party P;
to output X; to be some constant value, we obtain that Yy_1 ny_14; = 20Sn—1 + (constant) for all j
and by_1 = E;V;Ol Yn_1,N-14; = N2zpsn—_1 + (constant). From the assumption, we set zy = ke4 and

describe the attack on DRAG as follows:

Step 1. A invokes the oracle S with input z4 = key (k = 0,1,--- ,¢g — 1) where s4 is 0 and e4 is
the identity element 1 in R, so that by_; becomes kNsy_; + (constant). Since kN represents all
elements in Z,, A can make a correct guess of the value of sy_;[i] based on the number of times

the signal of rec for {0,sn_1, -+, (¢ —1)sn_1} changes for each coefficient sy_1[i].

Step 2. A invokes § with input (1 + z)z4 = (1 + z)kes (k =0,1,---,¢g—1). Ais able to see the key
reconciliation value of (1+ z)ksy_; that is the output by S. Thus, again by checking the number
of signal changes, A finds values of the coefficients of (1 + z)sy_1, which are sy_1[0] — sy_1[n —

1], sn—1[1] + sn—1[0],...,8ny—1[n — 1] + 8n—1[n — 2] up to sign.

Step 3. From Steps 1 and 2, we can determine if each pair of coefficients sy _1[i], 8 y—1[i+1] have equal
or opposite signs, hence narrowing down to only two possibilities such that the guess sy_; = sy_1

or —8yN_1.

65

Step 4. Since a and zy_; are public, A computes zy_; — as’y_; and verifies the distribution of the
result. If A correctly guesses the sign of sy_1[0] and so does all the coefficients of sy_1, the
resulting distribution of zy_; — asy_; is same as the distribution of zy_; — asy_; = en_1,
which is the Gaussian distribution. Otherwise, the output becomes random and A obtain the

correct sy_1 value by flipping the sign.

Thus, A is able to determine the exact value of sy_; without any ambiguity at the end of the
execution when Py_; reuses the same key for several executions. The success of the attack also shows
the significance of the role of the key reconciliation function in the group key exchange protocol. The
above step is exactly the same as two-neighbour attack except that 4 manipulates Py and P; instead of
Pxn_o and Py_3.

When the error term is added to Yy_1,5_1, there are some frequent changes in the signal value at
the boundary values. But, similar to one-neighbour attack in Ding’s GKE protocol, we check the pattern
of the noise ef,_;, by repeating all steps in two-neighbour attack, which is from Gaussian distribution

and get the secret key Py—_1.

9.2 Security-enhanced Dynamic GKE from RLWE

Similar to Krug, a party P; applies pasteurization techniques to z;+; and z;_; by two parties P;;
and P;_; in Round 2. We have two pasteurized values z;1; = z;4+1 + ah;41 + fiz1 and 2,1 = 2,1 +
ah;_1 +gi—1 for each party P; where h; = H(z;) is precomputed and f;,g; < X»,. Then, X; becomes
(Zit+1 — Zi—1) (8i + hyi) + €. for the correctness of the protocol. The detailed description of key-reusable
dynamic GKE is given in Protocol 8, named as KR-DRAG (Key Reusable Dynamic constant-Round
Authenticated Group key exchange).

KR-DRAG shows a counter-example that resists our tweaked two-neighbour attack since the dishonest
behaviour of two parties doesn’t guarantee to get any information of the secret key of the party Py_1
from the output of the key reconciliation function. The authenticated one which is secure against an

active adversary can be derived by applying known techniques like Katz-Yung compiler [38].

66

Protocol 8: KR-DRAG(P [0,1,--- ,N —1],a,H,01,02)

1 (Round 1) For each party P; for i = 0 to N — 1, do the following in parallel.

1. Computes z; = as; + e; where s;,€; < Xo,;
2. Broadcasts z;;
(Round 2) For i =0 to N — 1, do the following in parallel.
1. If i = 0, party P, samples e{, < X, and otherwise, party P; samples € < Xo, ;

2. Each party P; computes Z; 11 = 2;4+1 + ahiy1 + fiy1 and 2,1 = 2,1 + ah;—1 +g;—1 where
hi = H(z:) and f;, gi ¢ Xoy;

3. Each party P; broadcasts X; = (Z;11 — 2i—1) (s; + hs) + €l
(Round 3) For party Py_1, do the following.
1. Samples e}, _; < Xo, and computes Yy_1 v—1 = Xny_1 + Znv_2(Sn-1+ hn_1) + €} _1;
2. For j =1to N — 1, computes Yy_; (v_1)+j = X(N-1)+j + YN-1,(N=1)+(j—1)}
3. Calculates by_; = Z;V;Ol Yn_1,(N-1)+j3
4. Runs recMsg() to output (rec, ky_1) = recMsg(bn_1);
5. Broadcasts rec and gets session key as sky_1 = H(kn—1);
(Key Computation) For party P; (i # N — 1).
1. Computes Y;; = X; + Z;_1(s; + h;);
2. For j =1to N —1, computes Y ;1 = Xi1j + Y i1 (j-1);
8. b= Y0 Viisss

4. Runs recKey() to output k; = recKey (b;, rec) and gets session key as sk; = H(k;);

67

Chapter 10. Comparison with Other Protocols

A comparison between KR-DRAG and other previously known lattice-based GKE protocols [4,26,64]
is given in TABLE 10.1. For computational complexity, we ignore ring addition/deletion, or scalar

multiplication due to its relatively smaller computing power, and only consider the following:

Samp total number of Gaussian samplings
R.Mult total number of ring multiplication computed
Sign total number of signatures generated

Verify total number of verification

Table 10.1: Comparison with other lattice-based (authenticated) GKE protocols

Method DXL12.G [26] YMZ15 [64] ADGK19 [4] KR-DRAG
TA X v X X
Scalability X v v v
Communication Round N 5 3(4 3(3
for GKE (AGKE)" “) 3)
Computational
Complexity” (N2,N2 - N, (2N,2N +2, (BN +1,2N +1, (6N +1, 4N +1,
(Samp, R.Mult, Sign, o)) 2N,2N) 2N, N +2)
Verify)
Dynamic Setting X X X v
Resistance to Key X N/A X v

Reuse Attacks

* N is the number of protocol participants in GKE protocol

From TABLE 10.1, we define a round as the number of interactions where one party sends their
message to another.

DXL12.G requires N — 1 rounds to have N approximately agreed ring elements and one round to
obtain the group secret key by key reconciliation. For each party, there are N Gaussian samplings (one
secret sampling and N —1 error samplings) and N —1 ring multiplications. YMZ15 provides the minimum
communication rounds but Yang et al.’s protocol has TA which causes more security issues such as a

single point of failure. Moreover, this protocol does one more computation for the secure sketch, which

68

requires huge computing power. Neither DXL12.G and YMZ15 specify a digital signature scheme in the
paper.

For ADGK19 and KR-DRAG, both provide scalability without TA. KR-DRAG remains three rounds
to make the group secret key of authenticated GKE while ADGK19 requires four rounds to apply
Katz-Yung compiler. The number of Gaussian sampling and ring multiplications are 3N +1 and 2N + 1,
respectively, for ADGK19. However, KR-DRAG requires more Gaussian sampling and ring multiplications
for pasteurization technique. KR-DRAG expects a smaller number of signature verification since we only

verify the signatures from the neighbourhood.

69

Chapter 11. Concluding Remarks

In this paper, we suggest a new type of key reuse attacks called {one, two}-neighbour attack against
previously known lattice-based GKE protocols with the key reconciliation mechanism. Instead of a trivial
countermeasure to refresh the public key in each session, we suggest a counter-example for our attack
in both static and dynamic setting using pasteurization technique. Then, we compare our protocol with
other lattice-based GKE protocols in the open literature. Assuming the hardness of RLWE assumption
and key reconciliation mechanism, we provide a concrete security analysis of Krug, DRAG, and KR-DRAG
in the random oracle model.

As future work, we will optimize our group key exchange protocol as key sharing can be done
within a second even if the number of group members are more than hundreds. Then, we plan to check
the security in the quantum-accessible random oracle model where the adversary has an access to the

quantum oracle provided by an external challenger, instead of a direct access to the quantum oracle.

70

1]
2]

[3]

[5]

8]

[9]

(10]

Bibliography

Crypto++ Library 8.2. https://www.cryptopp.com/.

S. Akleylek and K. Seyhan. “A Probably Secure Bi-GISIS Based Modified AKE Scheme With
Reusable Keys”. IEEE Access, 8:26210-26222, 2020.

E. Alkim, L. Ducas, T. Péppelmann, and P. Schwabe. “Post-quantum Key Exchange — A New
Hope”. In USENIX Security Symposium, pages 327-343, 2016.

D. Apon, D. Dachman-Soled, H. Gong, and J. Katz. “Constant-Round Group Key Exchange from
the Ring-LWE Assumption.” In International Conference on Post-Quantum Cryptography, pages
189-205. Springer, 2019.

H. Baan, S. Bhattacharya, S. R. Fluhrer, O. Garcia-Morchon, T. Laarhoven, R. Rietman, M.-J. O.
Saarinen, L. Tolhuizen, and Z. Zhang. “Round5: Compact and Fast Post-Quantum Public-Key
Encryption.” In International Conference on Post-Quantum Cryptography, pages 83-102. Springer,
2019.

W. Barker, W. Polk, and M. Souppaya. Getting Ready for Post-Quantum Cryptography: Ezplore
Challenges Associated with Adoption and Use of Post-Quantum Cryptographic Algorithms. NIST cy-
bersecurity white paper (draft), https://nvlpubs.nist.gov/nistpubs/CSWP /NIST.CSWP.05262020-
draft.pdf.

A. Bauer, H. Gilbert, G. Renault, and M. Rossi. “Assessment of the key-reuse resilience of newhope”.

In Cryptographers’ Track at the RSA Conference, pages 272-292. Springer, 2019.

A. Bogdanov, S. Guo, D. Masny, S. Richelson, and A. Rosen. “On the hardness of learning with
rounding over small modulus”. In Theory of Cryptography Conference, pages 209-224. Springer,
2016.

D. Boneh, D. Glass, D. Krashen, K. Lauter, S. Sharif, A. Silverberg, M. Tibouchi, and M. Zhandry.
“Multiparty Non-Interactive Key Exchange and More From Isogenies on Elliptic Curves”. arXiv

preprint arXiv:1807.03038, 2018.

J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan, and D. Ste-
bila. “Frodo: Take off the ring! practical, quantum-secure key exchange from LWE”. In ACM

SIGSAC Conference on Computer and Communications Security, pages 1006-1018. ACM, 2016.

71

(1]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

20]

21]

J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler,
and D. Stehlé. “CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM”. In 2018 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 353-367. IEEE, 2018.

J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. “Post-quantum key exchange for the TLS
protocol from the ring learning with errors problem”. In IEEE Symposium on Security and Privacy,

pages 553-570. IEEE, 2015.

E. Bresson, O. Chevassut, and D. Pointcheval. “Provably authenticated group Diffie-Hellman key
exchange — the dynamic case”. In International Conference on the Theory and Application of

Cryptology and Information Security — ASIACRYPT 2001, pages 290-309. Springer, 2001.

E. Bresson, O. Chevassut, and D. Pointcheval. “Dynamic group Diffie-Hellman key exchange under
standard assumptions”. In International Conference on the Theory and Applications of Crypto-

graphic Techniques — EUROCRYPT 2002, pages 321-336. Springer, 2002.

E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. “Provably authenticated group
Diffie-Hellman key exchange”. In Proceedings of the 8th ACM conference on Computer and Com-

munications Security, pages 255-264. ACM, 2001.

M. Burmester and Y. Desmedt. “A secure and efficient conference key distribution system”. In
Workshop on the Theory and Application of of Cryptographic Techniques — EUROCRYPT 1994,
pages 275-286. Springer, 1994.

M. Burmester and Y. Desmedt. “A secure and scalable group key exchange system”. Information

Processing Letters, 94(3):137-143, 2005.

J. H. Cheon, D. Kim, J. Lee, and Y. Song. “Lizard: Cut Off the Tail! A Practical Post-quantum
Public-Key Encryption from LWE and LWR”. In International Conference on Security and Cryp-

tography for Networks, pages 160-177. Springer, 2018.

P. Choi, J.-H. Kim, and D. K. Kim. “Fast and Power-Analysis Resistant Ring Lizard Crypto-

Processor Based on the Sparse Ternary Property”. IEEE Access, 7:98684-98693, 2019.

R. Choi and K. Kim. “A Novel Non-Interactive Multi-party Key Exchange from Homomorphic
Encryption”. In ProvSec Workshop 2018, 2018.

W. Diffie and M. Hellman. “New directions in cryptography”. IEEE Transactions on Information
Theory, 22(6):644-654, 1976.

72

22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

31]

(32]

(33]

J. Ding, S. Alsayigh, J. Lancrenon, R. Saraswathy, and M. Snook. “Provably secure password
authenticated key exchange based on RLWE for the post-quantum world”. In Cryptographers’
Track at the RSA Conference, pages 183-204. Springer, 2017.

J. Ding, S. Alsayigh, R. Saraswathy, S. Fluhrer, and X. Lin. “Leakage of signal function with reused
keys in RLWE key exchange”. In 2017 IEEE International Conference on Communications (ICC),
pages 1-6. IEEE, 2017.

J. Ding, P. Branco, and K. Schmitt. “Key Exchange and Authenticated Key Exchange with Reusable
Keys Based on RLWE Assumption”. JACR Cryptology ePrint Archive 2019/665, 2019.

J. Ding, S. Fluhrer, and R. Saraswathy. “Complete attack on RLWE key exchange with reused keys,
without signal leakage”. In Australasian Conference on Information Security and Privacy, pages

467-486. Springer, 2018.

J. Ding, X. Xie, and X. Lin. “A Simple Provably Secure Key Exchange Scheme Based on the
Learning with Errors Problem”. JACR Cryptology ePrint Archive 2012/688, 2012.

L. Ducas and D. Micciancio. “FHEW: bootstrapping homomorphic encryption in less than a second”.
In Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 617-640. Springer, 2015.

R. Dutta and R. Barua. “Constant round dynamic group key agreement”. In International Confer-

ence on Information Security, pages 74-88. Springer, 2005.

R. Dutta and R. Barua. “Provably secure constant round contributory group key agreement in

dynamic setting”. IEEE Transactions on Information Theory, 54(5):2007-2025, 2008.

S. R. Fluhrer. “Cryptanalysis of ring-LWE based key exchange with key share reuse.” IACR
Cryptology ePrint Archive 2016/085, 2016.

X. Gao, J. Ding, L. Li, and J. Liu. “Practical randomized RLWE-based key exchange against signal
leakage attack”. IEEE Transactions on Computers, 67(11):1584-1593, 2018.

X. Gao, J. Ding, L. Li, and J. Liu. “Practical randomized RLWE-based key exchange against signal
leakage attack”. IEEE Transactions on Computers, 67(11):1584-1593, 2018.

X. Gao, J. Ding, J. Liu, and L. Li. “Post-Quantum Secure Remote Password Protocol from RLWE
Problem”. In International Conference on Information Security and Cryptology, pages 99-116.

Springer, 2017.

73

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

(44]

[45]

S. Halevi and V. Shoup. “Algorithms in HElb”. In International Cryptology Conference, pages
554-571. Springer, 2014.

W. Hoeffding. Probability inequalities for sums of bounded random variables. In The Collected
Works of Wassily Hoeffding, pages 409-426. Springer, 1994.

M. Just and S. Vaudenay. “Authenticated multi-party key agreement”. In International Conference
on the Theory and Application of Cryptology and Information Security — ASIACRYPT 1996, pages
36-49. Springer, 1996.

J. Katz and J. S. Shin. “Modeling insider attacks on group key-exchange protocols”. In Proceedings
of the 12th ACM conference on Computer and Communications Security, pages 180-189. ACM,
2005.

J. Katz and M. Yung. “Scalable protocols for authenticated group key exchange”. In Annual
International Cryptology Conference — CRYPTO 2003, pages 110-125. Springer, 2003.

H.-J. Kim, S.-M. Lee, and D. H. Lee. “Constant-round authenticated group key exchange for
dynamic groups”. In International Conference on the Theory and Application of Cryptology and
Information Security — ASIACRYPT 2004, pages 245-259. Springer, 2004.

Y. Kim, A. Perrig, and G. Tsudik. “Simple and fault-tolerant key agreement for dynamic collabora-
tive groups”. In Proceedings of the 7th ACM conference on Computer and Communications Security,

pages 235-244. ACM, 2000.

Y. Kim, A. Perrig, and G. Tsudik. “Tree-based group key agreement”. ACM Transactions on
Information and System Security (TISSEC), 7(1):60-96, 2004.

H. Krawczyk. “HMQV: A High-Performance Secure Diffie-Hellman Protocol (Extended Abstract)”.
In Annual International Cryptology Conference~-CRYPTO 2005, pages 546—-566. Springer, 2005.

A. Langlois, D. Stehlé, and R. Steinfeld. “GGHLite: More efficient multilinear maps from ideal
lattices”. In Annual International Conference on the Theory and Applications of Cryptographic

Techniques — EUROCRYPT 2014, pages 239-256. Springer, 2014.

E. Lee, Y.-S. Kim, J.-S. No, M. Song, and D.-J. Shin. “Modification of Frodokem Using Gray and
Error-Correcting Codes”. IEEE Access, 7:179564-179574, 2019.

C.-H. Li and J. Pieprzyk. “Conference key agreement from secret sharing”. In Australasian Con-

ference on Information Security and Privacy, pages 64-76. Springer, 1999.

74

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

(54]

[55]

[56]

[57]

C. Liu, Z. Zheng, and G. Zou. “Key reuse attack on newhope key exchange protocol”. In Interna-

tional Conference on Information Security and Cryptology, pages 163-176. Springer, 2018.

V. Lyubashevsky, C. Peikert, and O. Regev. “On ideal lattices and learning with errors over rings”.
In Annual International Conference on the Theory and Applications of Cryptographic Techniques —
EUROCRYPT 2010, pages 1-23. Springer, 2010.

A. J. Menezes, J. Katz, P. C. Van Qorschot, and S. A. Vanstone. Handbook of applied cryptography.
CRC press, 1996.

R. F. Olimid. “Provable Secure Constant-Round Group Key Agreement Protocol Based on Se-
cret Sharing”. In International Joint Conference SOCQO’13-CISIS’13-ICEUTE’13, pages 489-498.

Springer, 2014.

C. Peikert. “Lattice cryptography for the internet”. In International Workshop on Post-Quantum

Cryptography, pages 197-219. Springer, 2014.

Z. Qikun, G. Yong, Z. Quanxin, W. Ruifang, and T. Yu-An. “A dynamic and cross-domain authenti-
cation asymmetric group key agreement in telemedicine application”. IEEE Access, 6:24064-24074,
2018.

Z. Qikun, L. Yongjiao, G. Yong, Z. Chuanyang, L. Xiangyang, and Z. Jun. “Group key agreement
protocol based on privacy protection and attribute authentication”. IEEE Access, 7:87085-87096,
2019.

Y. Qin, C. Cheng, and J. Ding. “A Complete and Optimized Key Mismatch Attack on NIST
Candidate NewHope.” IACR Cryptology ePrint Archive 2019/435, 2019.

R. L. Rivest, L. Adleman, and M. L. Dertouzos. “On data banks and privacy homomorphisms”. In

Foundations of secure computation 4.11, pages 169180, 1978.

M.-J. O. Saarinen. “HILAS5: On reliability, reconciliation, and error correction for Ring-LWE en-
cryption”. In International Conference on Selected Areas in Cryptography, pages 192-212. Springer,
2017.

M. Seo, S. Kim, D. H. Lee, and J. H. Park. “EMBLEM:(R) LWE-based key encapsulation with a

new multi-bit encoding method”. International Journal of Information Security, pages 1-17, 2019.

P. W. Shor. “Algorithms for quantum computation: discrete logarithms and factoring”. In Proceed-

ings 35th annual symposium on Foundations of Computer Science, pages 124-134. IEEE, 1994.

75

(58]

[59]

[60]

[61]

(62]

(63]

[64]

[65]

M. Steiner, G. Tsudik, and M. Waidner. “Diffie-Hellman key distribution extended to group commu-
nication”. In Proceedings of the 3rd ACM conference on Computer and Communications Security,

pages 31-37. ACM, 1996.

M. Steiner, G. Tsudik, and M. Waidner. “CLIQUES: A new approach to group key agreement”. In
Distributed Computing Systems, 1998. Proceedings. 18th International Conference on, pages 380—
387. IEEE; 1998.

M. Steiner, G. Tsudik, and M. Waidner. “Key agreement in dynamic peer groups”. IEEE Transac-
tions on Parallel and Distributed Systems, 11(8):769-780, 2000.

S. Streit and F. De Santis. “Post-quantum key exchange on ARMv8-A: A new hope for NEON

made simple”. IEEE Transactions on Computers, 67(11):1651-1662, 2017.

T. Van Erven and P. Harremos. “Rényi divergence and Kullback-Leibler divergence”. IEEE Trans-

actions on Information Theory, 60(7):3797-3820, 2014.

K. Wang and H. Jiang. “Analysis of Two Countermeasures Against the Signal Leakage Attack”. In

International Conference on Cryptology in Africa, pages 370-388. Springer, 2019.

X. Yang, W. Ma, and C. Zhang. “Group authenticated key exchange schemes via learning with
errors”. Security and Communication Networks, 8(17):3142-3156, 2015.

J. Zhang, Z. Zhang, J. Ding, M. Snook, and O. Dagdelen. “Authenticated key exchange from ideal
lattices”. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques — EUROCRYPT 2015, pages 719-751. Springer, 2015.

76

