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Abstract

Since quantum computing was proposed in the early 1980s, quantum computers and their novel algorithms

have been developed. There are known advantages that quantum computers have over classical computers

due to their quantum-mechanical properties using qubits. The fact that there may be more powerful

adversaries capable of quantum computation has had a huge impact on the field of cryptography; The

security of the existing cryptosystems is no longer guaranteed against quantum adversaries. The research

on quantum security of cryptosystems, therefore, should be thoroughly investigated.

In this research, as one of the most widely used cryptographic primitives, confidentiality modes of

operation in block ciphers are examined: CBC, IGE, CFB, OFB, and CTR. First, quantum adversaries

are classified as Q0, Q1, and Q2 depending on their ability to perform quantum computation. The

corresponding new quantum proof techniques are also presented. Then the underlying block ciphers are

assumed as pseudorandom functions which are Q0, Q1, and Q2 secure. Also, modes of operation to be

investigated are represented in the quantum circuit. Next, our desired security notions are considered in

terms of quantum version of indistinguishability (IND) and chosen-plaintext attack (CPA): IND under

quantum CPA (IND-qCPA), weak-quantum IND under quantum CPA (wqIND-qCPA), and quantum IND

under quantum CPA (qIND-qCPA). In conclusion, the security of each mode in Q0-, Q1-, or Q2-secure

block ciphers is analysed and compared in these various quantum security game scenarios.

Keywords quantum adversaries; quantum security; quantum circuits; block ciphers; modes of operation
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Chapter 1. Introduction

1.1 Related Work

As more and more refined classical, i.e. non-quantum, computers are developed, several problems have

been encountered. Since the number of transistors in a dense integrated circuit has doubled approximately

every 18 months [Moo65], the gaps between transistor terminals would shrink to the classical limits at

some point. Then the electrons are able to move between terminals by quantum tunnelling phenomenon,

that is, a transistor in an o↵ state could be unexpectedly switched on even if it is not supposed to be.

Also, classical computers use logically irreversible manipulation of information where the output of a

device does not uniquely define the inputs, for example, by erasing a bit or merging two computation

paths. This necessarily implies physical irreversibility and corresponding heat increase by =:) ln 2 for

erasure of =-bit known information, where : is the Boltzmann constant and ) is the temperature of the

heat sink in kelvins [Lan61].

Quantum computers have been proposed as a natural solution to circumventing the aforementioned

problems since 1980s [Man80,Fey82,Ben80]. Quantum computers are based on quantum mechanics, which

applies to all systems ranging from micro to macro scales, and use quantum bits, i.e. qubits, to create

quantum logic gates for quantum computing. A pure qubit can be represented as a linear superposition

of the basis states, |ki = U |0i + V |1i, where the complex numbers U and V satisfy |U |2 + |V |2 = 1. We may

then use = qubits to represent either 2= di↵erent superposed states, or entangled states. Besides, quantum

computers use logically reversible manipulation where the output of a device always uniquely determines

its input, by using an injective function for mapping old states to new ones. Such manipulation requires

no release of heat in principle [Lan61]. For these reasons, quantum computing has attracted research

interest both academically and commercially since its initial proposal.

The corresponding quantum algorithms were also proposed: After the publication of Deutsch’s

groundbreaking paper [Deu85], many quantum algorithms have been introduced, the most famous of

which are Simon’s algorithm [Sim94,Sim97], Shor’s algorithm [Sho94,Sho97], and Grover’s algorithm

[Gro96, Gro97]. Using these algorithms, there are known advantages that quantum computers have

over classical computers. Shor’s algorithm could break classical asymmetric encryption and digital

signature schemes based on integer factorization and discrete logarithm problems in polynomial time.
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Also, classical symmetric encryption schemes would not be safe due to Grover’s and Simon’s algorithms.

It has been believed until recently that doubling the key size would provide security against Grover’s

algorithm [CJL+16,ABB+15], however, widely used modes of operation for authenticity and authenticated

encryption have proved to be completely broken using Simon’s algorithm [KLLNP16,SS17]. The fact that

there may be more powerful adversaries capable of quantum computation has had a huge impact on the

field of cryptography; The security of the existing cryptosystems is no longer guaranteed against quantum

adversaries when large-scale quantum computers are available. Accordingly, quantum security of the

current cryptosystems should be thoroughly investigated. The cryptographic community has started to

develop new security notions and proof models [BDF+11,BJ15,GHS16,Gag17,SLL16].

1.2 Our Contribution

In this work, we investigated many known quantum concepts that were extended from the classical ones.

For a systematic study, we first classified quantum adversaries as Q0, Q1, and Q2 depending on their

ability to perform quantum computation. The corresponding useful quantum proof techniques were

introduced, which are used in our security proof later. The security games are extended to quantum

case, then, their security notions are defined in terms of quantum version of indistinguishability (IND)

and chosen-plaintext attack (CPA): IND under quantum CPA (IND-qCPA), weak-quantum IND under

quantum CPA (wqIND-qCPA), and quantum IND under quantum CPA (qIND-qCPA). Since we chose

our target as confidentiality modes of operation in block ciphers, we described some of known modes

such as cipher block chaining (CBC), infinite garble extension (IGE), simplified cipher feedback (CFB),

output feedback (OFB), and counter (CTR) modes. They were represented in quantum circuit diagrams

for their quantum security analysis. Finally, quantum security analysis of given modes of operation was

done under the assumption that the underlying block cipher is Q0-, Q1-, or Q2-secure pseudorandom

functions (PRFs): Their quantum attacks using quantum circuits or provable security was given. All

results were discussed and compared at the very end.
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Chapter 2. Quantum Adversaries

2.1 Modelling Quantum Adversaries

As shown in Figure 2.1, the quantum adversaries can be classified as Q0, Q1, and Q2 depending on their

ability to perform quantum computation. The Q0 adversary, i.e. classical adversary, has no access to an

oracle quantumly nor power to do quantum computation. The Q1 adversary makes classical queries to an

oracle and processes classical data with quantum computation locally. The powerful Q2 adversary can

make quantum queries, i.e. superposition-based queries, and receives quantum states to perform quantum

computation. This work is concentrated on Q1 and Q2 adversaries.

Figure 2.1: Modelling quantum adversaries as Q0, Q1, and Q2

2.2 Quantum Query Algorithms

As we considered quantum queries in Q2 adversary, quantum query algorithms should be investigated. In

security analysis, the query model is useful because the number of queries an adversary needs to break a

scheme corresponds to the time the attack succeeds. Consider a classical query algorithm that computes

a Boolean function by using oracle queries, which is called a decision tree. It can be represented as a

binary tree where each node represents a query, and its two children represent the two possible outcomes

of the query. A leaf node represents the final answer 0 or 1. The depth of the tree, i.e. the number of

queries needed to compute the function, is the cost of an algorithm.

3



According to [BBC+98], a quantum query algorithm with @ queries is a quantum analogue of a

classical query algorithm with @ queries, where we use the power of quantum parallelism by making queries

and operations in superposition. This can be represented in quantum circuits as a sequence of unitary

transformations: *@O 5 . . .*1O 5 *0. Here, *8’s are fixed unitary transformations that do not depend

on inputs, and the (possibly) identical O 5 ’s are unitary transformations that correspond to an oracle.

For a general function 5 : {0, 1}= ! {0, 1}<, the oracle standard transformation O 5 , called quantum-

accessible oracle, maps basis state |G, ~i to |G, ~ � 5 (G)i. Besides the standard transformation, there can be

di↵erent transformations to implement an oracle such as Fourier phase oracle |G, ~i ! 42c8 5 (G)~/2
< |G, ~i

and minimal oracle |Gi ! | 5 (G)i [KKVB02]. For constructing quantum security notions, the following

quantum encryption oracles are defined respectively using standard and minimal oracles: one oracle

mapping basis state |m, ci to |m, c � Enck (m)i and the other mapping basis state |mi to |Enck (m)i. Then,

the quantum adversary is defined to have an access to the quantum encryption oracle, i.e. be able to

make queries and operations in superposition.

2.3 Quantum Proof Techniques

As classical random oracle (CRO) model has been regarded as an e�cient security proof tool, [BDF+11]

introduced quantum-accessible random oracle (QaRO) model to prove quantum security of classical

cryptosystems. The QaRO model allows quantum adversaries’ access to quantum computation such as

superposition of inputs to random oracle, which gives quantum advantages, however, there are some

weaknesses that cannot be extended naturally from CRO model. We investigated the di�culties of

security reduction in the QaRO model, which caused by quantum mechanical properties such as no-cloning

theorem and collapse during measurement: adaptive programmability, rewinding, extractability, challenge

injection, and e�cient simulation of QaRO.

2.3.1 Adaptive Programmability

Following [Nie02,FLR+10,BM15], as an important feature of the CRO model, programmability allows

security reductions to dynamically select the outputs of an ideal hash function. For a standard security

reduction technique, where the reduction tries to break the underlying hardness assumption, the reduction

having oracle access to the adversary simulates the random oracle by answering queries made by the

adversary. A random oracle can be simulated by adaptively setting or programming the outputs to a

value of reduction’s choice. As long as the distribution of the programmed output is uniform on the

4



specified range, any method for selecting these values is permitted.

If a reduction in the CRO model is history-free, then it can also be carried out in the QaRO model

as in Theorem 2.3.1. History-free reductions basically answer random oracle queries independently

of the history of previous queries. Since many signature schemes have security reductions involving

reprogramming in the CRO model, i.e. not history-free, security reductions in the QaRO model is not

known to hold. For reductions that are not history-free, adaptive reprogramming of the QaRO is required.

Theorem 2.3.1 ([BDF+11, Theorem 1]). Let S = (⌧, (,+) be a signature scheme. Suppose that there

is a history-free reduction that uses a classical PPT adversary � for S to construct a PPT algorithm

⌫ for a problem %. Further, assume that % is hard for polynomial-time quantum computers, and that

quantum-accessible pseudorandom functions exist. Then S is secure in the QaRO model.

The CRO model allows adaptive programming, i.e. the reduction can program the random oracle

adaptively in the online phase of the security game depending on the query received from the adversary.

In the QaRO model, however, it was considered to be di�cult to program the random oracle adaptively

since the quantum adversary can query the random oracle with a superposed state and get information

about all exponentially many values right at the beginning.

Using One-way to Hiding Lemma

In order to program adaptively in the QaRO model, new techniques were developed by [Unr14] for the

first time. It allows us to reduce the probability that the adversary notices that a random oracle has

been reprogrammed to the probability of said adversary querying the oracle at the programmed location.

It might be relatively trivial in the CRO model, but becomes non-trivial when the adversary can query

superposed states:

Theorem 2.3.2 (Adaptive Programming of QaRO [Unr14, Theorem 10]). Let � : " ! # be a random

oracle for finite " , #. (Infinite " ✓ {0, 1}⇤ is also permissible.) Consider the following algorithms:

• The oracle algorithm �0 that makes at most @0 queries to �.

• The classical algorithm �⇠ that may access the classical part of the final state of �0. Assume that

for every initial state, the output of �⇠ has collision entropy at least :.

• The oracle algorithm �1 that may access the final states of �0 and �⇠ .

• The oracle algorithm �2 that may access the final state of �1; and �1 and �2 together perform at

most @12 queries to �.

5



• Let ⇠1 be an oracle algorithm that on input ( 9 , ⌫, G) does the following: run ��
1 (G, ⌫) until (just

before) the 9-th query, measure the argument of the query in the computational basis, output the

measurement outcome. (When �1 makes less than 9 queries, ⇠1 outputs ? 8 {0, 1};.)

Let

%1
� B Pr


10 = 1 : �

$ � (" ! #), ��
0 (), G  �⇠ (),

��
1 (G,� (G)), 10  ��

2 (G,� (G))
�

%2
� B Pr


10 = 1 : �

$ � (" ! #), ��
0 (), G  �⇠ (),

⌫
$ � #, ��

1 (G, ⌫), � (G) B ⌫, 10  ��
2 (G, ⌫)

�

%⇠ B Pr


G = G 0 : �

$ � (" ! #), ��
0 (), G  �⇠ (),

⌫
$ � #, 9

$ � {1, . . . , @12}, G 0  ⇠�
1 ( 9 , ⌫, G)

�

Then |%1
� � %2

� |  (4 +
p
2)p@02�:/4 + 2@12

p
%⇠ .

Using Hardness of Witness-Search Game

In Theorem 2.3.2, the oracle is queried at an adversarially chosen G which is information-theoretically

undetermined, possessing a high min-entropy, minG (� log Pr[- = G]). By extending it to a computational

setting, [ES15] came up with a new technique when the input is computationally di�cult to decide by the

adversary. They formalized a probabilistic game called witness-search and showed the computational

hardness of witness-search allows for adaptively programming a QaRO.

Let Samp be an instance-sampling algorithm. On input 1=, Samp generates public information ?:,

description of a predicate %, and a witness | satisfying %(?: , |) = 1. The witness-search game WS is

defined as below:

Definition 2.3.1 (Witness-Search Game [ES15]). • Challenger C generates (?: , |, %)  Samp(1=).

Ignore |. Let ,?: B {| : %(?: , |) = 1} be the collection of valid witnesses.

• A receives ?: and produces a string |̂ as output.

• We say A wins the game if |̂ 2 ,?: .

Lemma 2.3.3 (Hardness of WS to Programming QaRO [ES15, Lemma 5]). Let two experiments ⇢ and

⇢ 0 be as below. If WS is hard, then Adv B |Pr⇢ [1 = 1] � Pr⇢0 [1 = 1] |  negl(=).

6



• Experiment ⇢:

– Generate (?: , |, %)  Samp(1=).

– O  F is drawn uniformly at random from the collection of all functions F .

– A1 receives ?: as input and makes at most @1 queries to O. A1 produces a classical string G.

– Set I B O(Gk|).

– A2 gets (G,|, I) and may access the final state of A1. A2 makes at most @2 queries to O. It

outputs 1 2 {0, 1} at the end.

• Experiment ⇢ 0:

– Generate (?: , |, %)  Samp(1=).

– O  F is drawn uniformly at random from the collection of all functions F .

– A1 makes at most @1 queries to O. A1 produces a classical string G.

– Pick a random I 2' Range(O). Reprogram O to O 0: O 0(~) = O(~) except that O 0(Gk|) = I.

– A2 gets (G,|, I) and may access the final state of A1. A2 makes at most @2 queries to O 0. It

outputs 1 2 {0, 1} at the end.

Lemma 2.3.3 shows the computational assumption implies indistinguishability of two functions which

a distinguisher has quantum access to: one is the zero function and the other marks a set of strings that

could be used to break the computational assumption. Since the two functions are indistinguishable, any

e�cient quantum algorithm querying the random oracle cannot notice whether they have reprogrammed

the QaRO.

Adaptive Reprogramming in TESLA

[ABB+17] gave a concrete tight security reduction for a signature scheme called TESLA, a lattice-

based digital signature scheme, in the QaRO model. Their security reduction from learning with errors

assumption adaptively reprograms QaRO using a technique from [BBBV97].

2.3.2 Rewinding

The CRO model uses rewinding [PS96] as a powerful tool to construct an extractor which extracts the

witness | from the prover. Rewinding is a proof technique where the state of the adversary is stored and

reproduced later, that is, it should be possible to make snapshots of the state and then later to go back

to that snapshot.

7



In the QaRO model, however, it is di�cult to rewind by reversing the unitary transformation or

taking snapshots in a quantum setting due to no-cloning theorem and collapse during measurement:

snapshots cannot be copied and interacting with a simulated machine may destroy information that

would be needed later [vdG97, Proposition 4.5].

Watrous’ Rewinding

In order to resolve this issue, [Wat09] introduced a specific type of quantum rewinding: whenever

some machine rewinds another machine to an earlier point, the rewinding machine forgets everything it

learned after that point. [Wat09, Lemma 9] was reformulated as below:

Lemma 2.3.4 (Quantum Rewinding with Small Perturbations [Unr10, Corollary 17]). Let ⇠, / , ⇢ ,. be

quantum registers, where ⇠ is one qubit register. Let (1 be a unitary transformation operating on ⇠, / ,.

and let M be a measurement in the computational basis on register ⇠.

For a quantum state | i, let ?( | i) B Pr[Succ = 1 : (1 (⇠/. ), Succ M(⇠)] where / , ⇢ are jointly

initialized with | i and . ,⇠ are initialized with |0i. In the same situation, let the density operator d1 

denote the state of /⇢ in the case of Succ = 1.

Let Y 2 (0, 1/2). Let @ 2 (Y, 1/2]. Assume that for all | i, |?( | i) � @ |  Y.

Then there exists a quantum circuit ( operating on / of size $
⇣
log (1/Y)size((1)
(@�Y) (1�@+Y) C :

⌘
. ( is a general

quantum circuit, which may create auxiliary qubits, destroy them, and perform measurements. ( can be

computed in time $ (:) given the description of (1. And for any | i,

TD(d1 , d
2
 )  4

p
Y

:

size((1)
,

where the density operator d2 denotes the state of /⇢ after execution of ( when /⇢ is initialized with | i.

Unruh’s Rewinding

A rewinding technique in the context of a specific two-prover commitment scheme was developed

in [CSST11, Lemma 1], which was reformulated as below:

Lemma 2.3.5 (Rewinding of mBQKW Commitment [Unr10, Lemma 10]). Consider two projectors %0

and %1 of the form %8 = *†
8 ( ||̂8ih|̂8 | ⌦ �)*8 . (Here *0,*1 are unitaries and |̂0, |̂1 2 {0, 1}= for some =.)

Consider a state |ki. Let ?8 B k%8 |kik2. (That is, ?8 is the probability of measuring |̂8 in the first register

after applying *8 to |ki.) Let ?� B k%1%0 |kik2. (That is, ?� is the probability of measuring |̂0 after

applying *0 to |ki and subsequently measuring |̂1 after applying *1*
†
0.)
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Assume that ?0 + ?1 � 1 + Y for some Y � 0. Then ?� � Y2/4.

[Unr10] pointed out that Lemma 2.3.4 technique only can be used to backtrack if the rewinding

machine made a mistake that should be corrected, but cannot be used to collect and combine information

from di↵erent branches of an execution. Also, Lemma 2.3.5 is specific to the case where there are only

two possible measurements, i.e. #⇠ = 2. [Unr10] developed a new rewinding technique, by showing that

the output that is measured contains little information about the state and thus does not disturb the

state too much, of which core lemma is as below:

Lemma 2.3.6 (Extraction via Quantum Rewinding [Unr10, Lemma 8]). Let ⇠ be a set with #⇠ = 2.

Let (%8)82⇠ be orthogonal projectors on a Hilbert space H . Let |�i 2 H be a unit vector. Let + B
Õ

82⇠
1
2 k%8 |�ik2 and ⇢ B

Õ
8, 92⇠ ,8< 9

1
22 k%8% 9 |�ik2. Then, if + � 1p

2
, ⇢ � + (+2 � 1

2 ).

It should be noted that strict soundness is additionally required while only special soundness is

needed in a classical setting.

Definition 2.3.2 (Special Soundness [Unr10, Definition 5]). We say a ⌃-protocol (%,+) for a relation

' has special soundness if there is a deterministic polynomial-time algorithm K0 (the special extractor)

such that the following holds: for any two accepting conversations (com, ch, resp) and (com, ch0, resp0) for

G such that ch < ch0 and ch, ch0 2 ⇠G, we have that | B K0 (G, com, ch, resp, ch0, resp0) satisfies (G,|) 2 '.

Definition 2.3.3 (Strict Soundness [Unr10, Definition 6]). We say a ⌃-protocol (%,+) has strict soundness

if for any two accepting conversations (com, ch, resp) and (com, ch, resp0) for G, we have that resp = resp0.

2.3.3 Extractability

The extractability or pre-image awareness, i.e. the simulator learns the pre-images the adversary is

interested in, is crucial to simulate decryption queries in the security proof for OAEP in the CRO

model [Fis05]. In the QaRO model, it is unclear how to extract the right query since the actual query

may be hidden in a superposition of exponentially many states. The di↵erent definition is needed in a

quantum setting; we do not give the extractor the power to see the oracle queries.

Unruh’s extractability

The online extractability was defined for an extractor, an algorithm ⇢ (�, G, c) where � is assumed

to be a description of the random oracle, G a statement and c a proof of G as below. ⇢ is supposed to

output a witness. Inputs and outputs of ⇢ are classical.

9



Definition 2.3.4 (Online Extractability [Unr14, Definition 3]). A non-int-eractive proof system (%,+)

is online extractable with respect to (init i↵ there is a polynomial-time extractor ⇢ such that for any

quantum-polynomial-time oracle algorithm �, we have that

Pr[ok = 1 ^ (G,|) 8 ' : �  (init (), (G, c)  �� (),

ok +� (G, c), | ⇢ (�, G, c)]

is negligible. We assume that both (init and ⇢ have access to and may depend on a polynomial upper

bound on the runtime of �.

The definition implies that it is impossible for an adversary to produce a proof for a statement for

which he does not know a witness. The case, when the adversary can take one proof c1 for one statement

G1 and transform c1 into a valid proof for another statement G2, however, is not excluded as long as a

witness for G2 could e�ciently be computed from a witness for G1. It is usually referred to as malleability.

Therefore, simulation soundness, i.e. extraction of a witness from the adversary-generated proof should

be successful even if the adversary has access to simulated proofs, is adapted to online extractability to

avoid malleability:

Definition 2.3.5 (Simulation-sound Online Extrac-tability [Unr14, Definition 4]). A non-interactive proof

system (%,+) is simulation-sound online extractable with respect to ((init, (%) i↵ there is a polynomial-time

extractor ⇢ such that for any quantum-polynomial-time oracle algorithm �, we have that

Pr [ ok = 1 ^ (G, c) 8 simproofs ^ (G,|) 8 ' :

�  (init (), (G, c)  �� ,(% (),

ok +� (G, c), | ⇢ (�, G, c)]

is negligible. Here simproofs is the set of all proofs returned by (% (together with the corresponding

statements).

We assume that both (init, (% and ⇢ have access to and may depend on a polynomial upper bound on

the runtime of �.

The simulation-sound online extractability allows us to extract a witness from a successful adversary

without measuring or rewinding, and avoids the problem of determining the query inputs by including its

outputs in the proof and inverting them in the security proof. We do not need to operate in any way on
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the quantum state of the adversary and get the witness purely by inspecting the classical proof/signature.

It avoids the usual problem of disturbing the quantum state while trying to extract a witness.

2.3.4 Challenge injection

In the CRO model, many reductions succeed by injecting a challenge into one of the responses to the

random oracle; a random query was selected, and rather than responding in the usual way, the reduction

algorithm responded with the element A that was provided by the challenger [Eat17]. In the QaRO model,

a random query cannot be simply responded to by returning the classical element A.

Zhandry’s Technique

One possible solution is to choose a random subset ⇡ of the domain D and define the oracle � so

that for any 3 2 ⇡, � (3) = ~, the challenge point. The question then is if it is possible to choose ⇡ in

such a way that it is large enough so that we can reasonably hope for the forgery to be associated with ~,

but not so large that the adversary notices that our oracle isn’t a true random oracle. This was possible

by defining a construction called semi-constant distribution as below:

Definition 2.3.6 (Semi-constant Distribution [Zha12, Definition 4.1]). The semi-constant distribution

SC_,~ is a distribution on mappings from a domain D to a range R. It is parameterized by a value

_ 2 [0, 1] and an element ~ 2 R. The distribution is defined by how it is sampled. For each 3 2 D, with

probability _ set � (3) = ~. Otherwise set it to a uniformly random element of R.

Then the following theorem was proved:

Theorem 2.3.7 ([Zha12, Corollary 4.3]). If ~ is a uniformly random element of R, then the distribution

of any quantum algorithm that makes @ queries to a random oracle has distance at most 8
3@

4_2 from the

distribution generated when SC_,~ is used instead.

Using the above technique regarding indistinguishability of oracles against quantum adversaries,

[Zha12] provided the security of [GPV08]’s identity-based encryption (GPV-IBE) scheme in the QaRO

model. Though Zhandry’s technique is general and useful, a huge reduction loss and a wide gap between

the concrete e�ciency and security level in the CRO and QaRO model are unavoidable because the

reduction algorithm has to abort with high probability.
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KYY’s Technique

Recently, [KYY18] provided a much tighter security proof for single-challenge GPV-IBE scheme

in the QaRO model as in Theorem 2.3.8. Also, multi-challenge GPV-IBE scheme has an almost tight

reduction in the QaRO model as in Theorem 2.3.9. KYY’s technique uses completely di↵erent approach

from Zhandry’s by simulating in a way so that exactly one valid secret key for every identity can be

created.

Theorem 2.3.8 ([KYY18, Theorem 2]). The GPV-IBE scheme is adaptively-anonymous single-challenge

secure assuming the hardness of LWE=,<,@,j in the QaRO model, where j = ⇡Z,U@. Namely, for any

quantum adversary A making at most &H queries to |Hi and &ID secret key queries, there exists a quantum

algorithm B making &H +&ID QaRO queries such that

AdvIBEA,GPV (_)  Adv
LWE=,<,@,j

B,QaRO;ID ,;A
(_) + (&2

H +&ID) · 2�⌦(=)

and

Time(B) = Time(A) + (&H +&ID) · poly(_),

where ;A denotes the length of the randomness for SampleZ.

Theorem 2.3.9 ([KYY18, Theorem 4]). The GPV-IBE scheme is adaptively-anonymous multi-challenge

secure assuming the hardness of LWE;,<,@,j in the QaRO model, where j = ⇡Z,U@. Namely, for any

quantum adversary A making at most &H queries to |Hi, &ch challenge queries, and &ID secret key

queries, there exists a quantum algorithm B making at most 3&H + 6&ch + 2&ID QaRO queries such that

AdvIBEA,GPVmult
(_)  3= · AdvLWE;,<,@,j

B,QaRO;ID+2,max{;A , (blog@c+2_)⇥=}
(_)

+(&H +&ch +&ID) · 2�⌦(=)

and

Time(B) = Time(A) + (&H +&ch +&ID) · poly(_),

where ;A denotes the length of the randomness for SampleZ.
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2.3.5 E�cient Simulation

In the CRO model, simulating an exponential-size random oracle is e�cient via lazy sampling. As queries

to the random oracle are received, a table is built up of queries and responses. When a query is submitted

that isn’t in the table, a random output is generated as a response, and the query and the output are

recorded in the table. By doing this, the simulation is entirely indistinguishable from a truly random

oracle, and the reduction algorithm only needs to maintain a table with size at most @ [Eat17]. However,

in the CRO model, managing such a table is infeasible because the adversary can submit a superposition

of all inputs as his first query, which requires the oracle to be defined for all possible inputs when the first

query is made.

The quantum-accessible pseudorandom functions are proposed as a solution in [BDF+11], where the

distinguisher is given quantum access to $ or 5 by way of the unitary mapping *$ or * 5 . Although they

are an e�cient and flexible replacement for a QaRO, an additional computational assumption should be

introduced whereas the CRO model does not need such assumption as queries can be answered as they

are made in a uniform and independent way.

As another solution, [Zha12] proposed :-wise independent functions to simulate the QaRO.

Definition 2.3.7 ([Zha12]). A family of :-wise independent functions is a set F of functions 5 : D ! R

such that if 31, . . . , 3: are any : di↵erent elements of D and A1, . . . , A: are any : elements of R (possible

with repeats), then

Pr
5

$ �F [ 5 (31) = A1 ^ 5 (32) = A2 ^ · · · ^ 5 (3: ) = A: ] =
1

|R |:
.

Intuitively, a :-wise independent function is a function that appears perfectly uniform and independent

if you look at no more than : input/output pairs. The following theorem establishes how these functions

may be used to replace the QaRO.

Theorem 2.3.10 ([Zha12]). Let A be a quantum algorithm outputting some classical state I, that makes

@ quantum queries to a random oracle O : D ! R, drawn uniformly from the set of all such functions. If

F is a family of 2@-wise independent functions 5 : D ! R, then

Pr[AO ! I] = Pr
5

$ �F [A
5 ! I].
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2.4 Quantum Security Notions

Here, security notions for symmetric encryption scheme is organised below:

Definition 2.4.1 (Symmetric Encryption). A symmetric encryption scheme ⇧sym is a tuple of classical

probabilistic polynomial-time algorithms (Gen,Enc,Dec) and sets called key space K, message space M,

and ciphertext space C such that

· k $ � Gen(1_): the key generation algorithm Gen receives a security parameter _ and outputs key

k 2 K.

· c
$ � Enck (m): the encryption algorithm Enc uses the key k to encrypt a message m 2M and outputs

a ciphertext c 2 C.

· m Deck (c): the decryption algorithm Dec uses the key k to decrypt a ciphertext c 2 C and outputs

a message m or ? denoting c is invalid.

For any k and any m, the scheme should satisfy Pr [Deck (Enck (m)) < m] = negl(_).

Let us consider classical security games first: In formal definitions of classical security [GM84,

BDPR98], a game between an adversary and a challenger formalises the security notions by pairing of a

particular goal and a particular attack model. Indistinguishability (IND) is one of possible security goals,

with regard to an adversary’s advantage to distinguish the encryptions of two plaintexts of the same

length. As possible attack models, three di↵erent attacks are considered depending on an adversary’s

attack capabilities: chosen-plaintext attack (CPA), non-adaptive chosen-ciphertext attack (CCA1), and

adaptive chosen-ciphertext attack (CCA2). Under CPA, the adversary has an encryption oracle access and

obtains ciphertexts for plaintexts of its choice. Under CCA1, the adversary has an additional decryption

oracle access before the challenge phase, whereas under CCA2, the adversary has an additional decryption

oracle access before and after the challenge phase. The CCA2 adversary, however, is not allowed to query

the challenge ciphertext itself to the decryption oracle. Hence, the decryption oracle after the challenge

phase is modified as follows:

Deccbk (c) =

8>>>><
>>>>:
? if c = cb,

Deck (c) otherwise.

Then, for example, a symmetric encryption scheme is said to be indistinguishability under chosen-

plaintext attack (IND-CPA) secure if the advantage of any classical probabilistic polynomial-time adversary
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winning the game is negligible. Quantum security notions are newly suggested by extending this classical

case.

Definition 2.4.2 (IND-CPA for ⇧sym). A symmetric encryption scheme ⇧sym is said to be IND-CPA

secure if the advantage of any classical probabilistic polynomial-time adversary A = (AG,AD), where AG

and AD are a message generator and a distinguisher, respectively, winning the game is negligible.

AdvIND�CPAA,⇧sym
(_) := 2

����SuccIND�CPAA,⇧sym
� 1

2

���� = negl(_), where SuccIND�CPAA,⇧sym
is as follows:

Pr


k

$ � KeyGen(1_); (m⇤0,m⇤1, state)
$ � AOEnck

G ; b
$ � {0, 1}; c⇤b

$ � OEnck (m⇤b); b0  AOEnck

D (state) : b0 = b

�
.

The most naturally emerging concept for a quantum security game is that replacing all classical

communication with quantum communication by allowing an adversary to have both quantum encryption

oracle access and quantum challenge queries. In this case, the adversary and the challenger are modelled

as quantum circuits sharing a certain number of qubits. For this model, one of the first attempts to extend

at defining a quantum security notion was to extend IND-CPA to fully-quantum IND under quantum CPA

(fqIND-qCPA), which renames [BZ13, Definition 4.1] for consistency. However, no symmetric encryption

scheme satisfies fqIND-qCPA security as shown in Theorem 2.4.1, which brings the need to limit quantum

adversaries’ power to find weaker but achievable security notions.

Theorem 2.4.1 (BZ Attack [BZ13, Theorem 4.2]). No symmetric encryption scheme achieves fqIND-

qCPA security.

Proof. The proof [GHS16, Proof 2.7] can be interpreted as follows: as shown in Figure 2.2, the generic

adversary A prepares three quantum registers, two message registers and an ancilla register for storing

ciphertext.

|q0i /

ÔEnck
|q1i / H

⌦n
H

⌦n
!!

!
!
!
!
!
! """"""""

#
#
#
#
##
#

" " " " " " " "

#
##
#
#
#
#

|q2i /

!!

!
!
!
!
!
! """"""""

#
#
#
#
##
#

" " " " " " " "

#
##
#
#
#
#

Figure 2.2: Quantum circuit diagram for BZ attack

· They are initialized as |0=i and the initial quantum state is |i0i = |0=i |0=i |0=i.
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· To put superposition of all possible messages in the second register, the Hadamard gate acts on

|@1i and the state becomes |i1i = |0=iÕG2{0,1}= 2
�=/2 |Gi |0=i.

· When A challenges fqIND game and gets a quantum encryption oracle access mapping basis state

|@0, @1, @2i to |@0, @1, @2 � Enck (@1)i, then we have two cases as below:

|i2i =

8>>>><
>>>>:
|0=iÕG2{0,1}= 2

�=/2 |Gi |Enck (0=)i if 1 = 0

|0=iÕG2{0,1}= 2
�=/2 |Gi |Enck (G)i if 1 = 1.

· Measurement on |@2i gives

|i3i =

8>>>><
>>>>:
|0=iÕG2{0,1}= 2

�=/2 |Gi |Enck (0=)i if 1 = 0

|0=i |Gi |Enck (G)i with prob. 2�= if 1 = 1.

· Acting the Hadamard on |@1i again gives

|i4i =

8>>>><
>>>>:
|0=i |0=i |Enck (0=)i if 1 = 0

|0=i( |+i=0 |�i=�=0 ) |Enck (G)i if 1 = 1.

· Finally, the measurement on |@1i gives

|i5i =

8>>>>>>>>><
>>>>>>>>>:

|0=i |0=i |Enck (0=)i if 1 = 0

|0=i |8i |Enck (G)i for 8 2 {0, 1}=

with prob. 2�= if 1 = 1.

For 1 = 0, the measurement on |@1i yields |0=i with probability 1. For 1 = 1, the measurement

on |@1i yields |0=i with probability 2�=. The A outputs 10 = 0 i↵ the last outcome is |0=i, otherwise

10 = 1. ⇤

The possible quantum security notions weaker than fqIND-qCPA were found by spanning the security

tree in four criteria: relaying of challenge message states (no # vs yes .); type of unitary transformation

in challenge phase (standard B vs minimal <); game model (challenger C vs oracle O); and challenge

messages (classical description 2 vs quantum states @) [GHS16], which resets orders and symbols here for

systematic visibility. In Figure 2.3, out of all 16 possible notions, 9 unreasonable notions (written in grey)
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and 3 unachievable notions (crossed out) are excluded, and the following notions are left: #BC2, #BC@,

#<C2, and #<C@. These are correspond to the definition of

• IND under quantum CPA (IND-qCPA),

• weak-quantum IND under quantum CPA (wqIND-qCPA), and

• quantum IND under quantum CPA (qIND-qCPA).

Figure 2.3: Security tree for checking all possible notions. Excluding 9 unreasonable notions (written in
grey) and 3 unachievable notions (crossed out) leaves 4 notions.

2.4.1 IND-qCPA

The definition of IND-qCPA was discussed in [BZ13, Definition 4.5].

Definition 2.4.3 (IND-qCPA for ⇧sym). A symmetric encryption scheme ⇧sym is said to be IND-qCPA

secure if the advantage of any quantum probabilistic polynomial-time adversary A = (AG,AD), where AG

and AD are a message generator and a distinguisher, respectively, winning the game is negligible.

AdvIND�qCPAA,⇧sym
(_) := 2

����SuccIND�qCPAA,⇧sym
� 1

2

���� = negl(_), where SuccIND�qCPAA,⇧sym
is as follows:

Pr


k

$ � KeyGen(1_); (m⇤0,m⇤1, |statei)
$ � AOEnck

G ; b
$ � {0, 1}; c⇤b

$ � OEnck (m⇤b); b0  AOEnck

D ( |statei) : b0 = b

�
.
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2.4.2 wqIND-qCPA

The definition of wqIND-qCPA was discussed in [GHS16, Definition 3.1] and [Gag17, Definition 5.26].

Definition 2.4.4 (wqIND-qCPA for ⇧sym). A symmetric encryption scheme ⇧sym is said to be wqIND-

qATK secure if the advantage of any quantum probabilistic polynomial-time adversary A = (AG,AD),

where AG and AD are a message generator and a distinguisher, respectively, winning the game is negligible.

AdvwqIND�qCPAA,⇧sym
(_) := 2

����SuccwqIND�qCPAA,⇧sym
� 1

2

���� = negl(_), where SuccwqIND�qATKA,⇧sym
is as follows:

Pr


k

$ � KeyGen(1_); (Dsc(dm⇤0 ),Dsc(dm⇤1 ), dstate)
$ � A

OEnc0
k

G ; b
$ � {0, 1};

dm⇤b
$ � Qbd(Dsc(dm⇤b )); dc⇤b

$ � O 0Enck (d
⇤
mb
); b0  A

OEnc0
k

D (dstate) : b0 = b

�
.

2.4.3 qIND-qCPA

The definition of qIND-qCPA was discussed in [BJ15, Definition B.1], [GHS16, Definition 3.2],

and [Gag17, Definition 5.15].

Definition 2.4.5 (qIND-qCPA for ⇧sym). A symmetric encryption scheme ⇧sym is said to be qIND-qCPA

secure if the advantage of any quantum probabilistic polynomial-time adversary A = (AG,AD), where AG

and AD are a message generator and a distinguisher, respectively, winning the game is negligible.

AdvqIND�qCPAA,⇧sym
(_) := 2

����SuccqIND�qCPAA,⇧sym
� 1

2

���� = negl(_), where SuccqIND�qCPAA,⇧sym
is as follows:

Pr


k

$ � KeyGen(1_); (dm⇤0 , dm⇤1 , dstate)
$ � A

O0Enck
G ; b

$ � {0, 1};

dc⇤b
$ � O 0Enck (dm⇤b ); trace out dm⇤1�b ; b

0  A
O0Enck
D (dstate) : b0 = b

�
.
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Chapter 3. Modes of Operation in Block Ciphers

One of the symmetric encryption schemes, block ciphers are widely used as cryptographic primitives in

the build of many cryptographic protocols. Since their operations only work on a fixed-length group of

bits called a block, modes of operation have been suggested to combine repeated operations for multiple

blocks and provide confidentiality or authenticity. There are three types of modes of operation in block

ciphers: confidentiality modes, authenticity modes, and combined (or authenticated encryption) modes.

The confidentiality modes are introduced here. Also, Figure 3.1 and 3.2 give their representation in

quantum circuits for quantum security analysis.

3.1 Electronic Codebook (ECB)

ECB mode is the simplest mode where the message is divided into blocks and each block is encrypted

independently, hence the same ciphertext blocks are generated from the same plaintext blocks. This

property makes the system highly vulnerable and insecure.

• Key generation: k
$ � Gen(1_). For a given security parameter _, generate key k 2 K.

• Encryption: c
$ � Enck (m). For a given message m := m1 . . .m! , where ! is a polynomial in =, encrypt

m using k, and output a ciphertext c := c1 . . . c! , where c8  BCk (m8) for 1  8  !.

• Decryption: m  Deck (c). For a given ciphertext c, decrypt c using k, and output a message m,

where m8  BC�1k (c8) for 1  8  !.

3.2 Cipher Block Chaining (CBC)

• Key generation: k
$ � Gen(1_). For a given security parameter _, generate key k 2 K.

• Encryption: c
$ � Enck (m). c0

$ � {0, 1}= as an IV. For a given message m := m1 . . .m! , where ! is a

polynomial in =, encrypt m using k, and output a ciphertext c := c1 . . . c! , where c8  BCk (c8�1 �m8)

for 1  8  !.

• Decryption: m Deck (c). For given IV and ciphertext c, decrypt c using k, and output a message

m, where m8  BC�1k (c8) � c8�1 for 1  8  !.
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3.3 Infinite Garble Extension (IGE)

IGE mode was initially introduced by Campbell in 1978 to prevent spoofing attacks [Cam78]. It has the

property that errors are propagated forward indefinitely, and any di↵erence in ciphertext changes (or

garbles) the decryption of all subsequent ciphertext. It is similar to CBC mode and known for being used

in Telegram’s MTProto.

• Key generation: k
$ � Gen(1_). For a given security parameter _, generate key k 2 K.

• Encryption: c
$ � Enck (m). c0

$ � {0, 1}= and m0
$ � {0, 1}= as IVs. For a given messagem := m1 . . .m! ,

where ! is a polynomial in =, encrypt m using k, and output a ciphertext c := c1 . . . c!, where

c8  BCk (c8�1 � m8) � m8�1 for 1  8  !.

• Decryption: m Deck (c). For given IVs and ciphertext c, decrypt c using k, and output a message

m, where m8  BC�1k (m8�1 � c8) � c8�1 for 1  8  !.

3.4 Simplified Cipher Feedback (CFB)

• Key generation: k
$ � Gen(1_). For a given security parameter _, generate key k 2 K.

• Encryption: c
$ � Enck (m). c0

$ � {0, 1}= as an IV. For a given message m := m1 . . .m! , where ! is a

polynomial in =, encrypt m using k, and output a ciphertext c := c1 . . . c! , where c8  BCk (c8�1) �m8

for 1  8  !.

• Decryption: m Deck (c). For given IV and ciphertext c, decrypt c using k, and output a message

m, where m8  BCk (c8�1) � c8 for 1  8  !.

3.5 Output Feedback (OFB)

• Key generation: k
$ � Gen(1_). For a given security parameter _, generate key k 2 K.

• Encryption: c
$ � Enck (m). r0

$ � {0, 1}= as an IV. For a given message m := m1 . . .m!, where ! is a

polynomial in =, encrypt m using k, and output a ciphertext c := c1 . . . c! , where r8  BCk (r8�1) and

c8  r8 � m8 for 1  8  !.

• Decryption: m Deck (c). For given IV and ciphertext c, decrypt c using k, and output a message

m, where r8  BCk (r8�1) and m8  r8 � c8 for 1  8  !.
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3.6 Counter (CTR)

• Key generation: k
$ � Gen(1_). For a given security parameter _, generate key k 2 K.

• Encryption: c
$ � Enck (m). r0

$ � {0, 1}= as an IV. For a given message m := m1 . . .m!, where ! is a

polynomial in =, encrypt m using k, and output a ciphertext c := c1 . . . c!, where r8  BCk (r0 + 8)

and c8  r8 � m8 for 1  8  !.

• Decryption: m Deck (c). For given IV and ciphertext c, decrypt c using k, and output a message

m, where r8  BCk (r0 + 8) and m8  r8 � c8 for 1  8  !.

3.7 Modelling Block Ciphers

A keyed block cipher is modelled as a pseudorandom permutation (PRP) operating on fixed-size

blocks of bits, M = C = {0, 1}=. By PRP/PRF switching lemma, a PRP is indistinguishable from a PRF

in both classical and quantum settings [BR04,Zha13]. It usually turns out to be easier to analyse the

security of a block-cipher-based construction assuming the block cipher is secure as a PRF.

In order to prove quantum security of modes of operation, therefore, we need certain assumptions

regarding the existence of PRFs, analogous to the classical case–namely, existence of Q1- and Q2-secure

PRFs, which rename standard- and quantum–secure PRFs in [Zha12] for systematic consistency. The

former allows quantum adversaries but limits the queries to be classical, whereas the latter allows both

quantum adversaries and quantum queries, i.e. quantum superposition of inputs. The formal definitions

are as follows:

Definition 3.7.1 (Q1- and Q2-secure PRF). A pseudorandom function PRF : K ⇥ X ! Y, where K, X,

and Y are key space, domain, and range, respectively, is said to be Q1-secure PRF (or Q2-secure PRF) if

no e�cient quantum adversary A making classical (or quantum) queries can distinguish between a truly

random function 5 and the function PRFk for a random k,

���� Pr
5 2YX

⇥
A 5 () = 1

⇤
� Pr

k2K

⇥
APRFk () = 1

⇤ ���� = negl(_).
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(a) CBC mode

(b) IGE mode

(c) CFB mode

Figure 3.1: CBC/IGE/CFB mode encryption in quantum circuits
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(a) OFB mode

(b) CTR mode

Figure 3.2: OFB/CTR mode encryption in quantum circuits
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Chapter 4. Quantum Security of Modes of Operation

4.1 IND-qCPA

4.1.1 Insecurity of CBC/IGE/CFB Mode under Q1-secure PRF

Let us give security analysis for IGE mode first: In order to show that a Q1-secure PRF is not

su�cient for IND-qCPA security of IGE mode, a specific block cipher BCk () is constructed as follows:

BCk (G) B EH(k)1 (DropLastBit(G � (kk1) · LastBit(G))) kCH(k)2 (G � (kk1) · LastBit(G)) � LastBit(G),

where E : {0, 1}=�1 ⇥ {0, 1}=�1 ! {0, 1}=�1 and C : {0, 1}= ⇥ {0, 1}= ! {0, 1} are Q1-secure PRFs,

H : {0, 1}= ! {0, 1}= ⇥ {0, 1}= is a random oracle, and k
$ � {0, 1}=�1 is the key. Here, for a string

G B G1G2 · · · G=, where G8 is the 8-th bit of G, LastBit(G) = G= and DropLastBit(G) = G1G2 · · · G=�1. For an

;-bit string 0 and a binary variable 1, 0 · 1 = 0 if 1 = 1, 0; otherwise.

Here, if E is e�ciently invertible, so is BC. Also, BC has a special property of being (kk1)-periodic, i.e.

BCk (G) = BCk (G � (kk1)). It is already proved that BCk () is a Q1-secure PRF but not a Q2-secure PRF

in [ATTU16], for any quantum adversary with a classical access to BCk () and a quantum access to the

random oracle H. We use this block cipher BCk for the construction of ⇧IGE.

Theorem 4.1.1. There exists a Q1-secure PRF such that ⇧IGE is IND-qCPA insecure in the QaRO

model.

Proof. As in previous attacks [ATTU16], we use Simon’s algorithm [Sim94] to attack IGE mode. The

Figure 4.1: Quantum circuits for an attack on each mode using Simon’s algorithm
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quantum adversary prepares six quantum registers, three of which store messages and the rest three store

ciphertexts, as shown in Fig. 4.1. The adversary then stores the superposition of all possible messages,

i.e.
Õ

m2
2�=/2 |0=i |m2i, in the message registers using a Hadamard gate. After an encryption query is

made, the corresponding reply is stored in the ciphertext registers as follows:

|k2i =
Õ

m2
2�=/2 |m0i |c0i |0=i |BCk (c0) � m0i |m2i |DropLastBit(BCk (BCk (c0) � m0 � m2))k+i,

where |+i B 2�1/2 (|0i + |1i). Now c1 is XOR’ed to m2 using a CNOT gate. More formally,

|k3i =
Õ

U 2
�=/2 |m0i |c0i |0=i |U � m2i |Ui |DropLastBit(BCk (U))k+i,

where U B BCk (c0) � m0 � m2. In order to use BCk’s special property of being (kk1)-periodic, we

consider another message input
Õ

m2
2�=/2 |0=i |m2 � (kk1)i. By a similar calculation as before, and using

BCk (G) = BCk (G � (kk1)),

|q3i =
Õ

U 2
�=/2 |m0i |c0i |0=i |U � m2i |U � (kk1)i |DropLastBit(BCk (U))k+i.

Since |k3i = |q3i = ( |k3i + |q3i)/2, |k3i is rewritten as

|k3i =
Õ

U 2
�(=/2+1) |m0i |c0i |0=i |U � m2i (|Ui + |U � (kk1)i) |DropLastBit(BCk (U))k+i.

The state after applying Hadamard gate on |m2i is

|k4i =
Õ

U
Õ

I 2
�(=+1) (�1) hU,I i |m0i |c0i |0=i |U � m2i

� �
1 + (�1) hkk1,I i

�
|Ii

�
|DropLastBit(BCk (U))k+i,

where h⇤, ⇤i denotes bitwise inner product. Finally, if we measure the m2 register, we either get a vector

I such that hkk1, Ii = 0, or an empty string. We repeat the same attack until we get = � 1 independent

vectors, thereby recovering = � 1 bits of k and breaking ⇧IGE.

This similar attack can be applied to CBC and CFB modes, which means they are IND-qCPA

insecure under the assumption that the underlying block cipher is Q1-secure PRF.
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4.1.2 Security of OFB/CTR Mode under Q1-secure PRF

If we look at the definitions and quantum circuit representation of OFB and CTR modes, we know that

they have Enck (m) = 5: (=; A) � m form for randomness A. For this case, if it is IND-CPA secure then

IND-qCPA secure. Therefore, OFB and CTR modes are IND-qCPA secure under the assumption that

the underlying block cipher is Q1-secure PRF.

4.1.3 Security of CBC/IGE/CFB/OFB/CTR Mode under Q2-secure PRF

Figure 4.2: Quantum adversary’s advantage to distinguish the challenge ciphertext and truly random
string.

Let us give security analysis for IGE mode first: In order to show that IND-qCPA security of IGE

mode is conditional on the existence of a Q2-secure PRF, we prove the advantage of e�cient quantum

adversary distinguishing the challenge ciphertext and truly random string is negligible by using O2H

lemma.

We define Enc8,H (m) B c1 · · · c!, where c 9
$ � {0, 1}= for 9 2 [1, 8] and c 9  H(c 9�1 � m 9 ) � m 9�1 for

9 2 (8, !]. In Lemma 4.1.2, we prove that the probability of distinguishing the output of Enc8,H (m) from

that of Enc8+1,H (m) is negligible in security parameter =.
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Lemma 4.1.2. For any 8 2 [0, !) and every quantum adversary A that makes at most @A queries in the

QaRO model,

����Pr

H ({0, 1}= ! {0, 1}=); (m⇤0,m⇤1)  AEnc0,H ; b

$ � {0, 1}; b0  AEnc0,H (Enc8,H (mb
⇤)) : b0 = b

�
�

Pr


H ({0, 1}= ! {0, 1}=); (m⇤0,m⇤1)  AEnc0,H ; b

$ � {0, 1}; b0  AEnc0,H (Enc8+1,H (mb
⇤)) : b0 = b

� ����
C X(=)  $

⇣
2�=/2!2@A

2
⌘
,

where ! is the maximum number of blocks in the message m and = is the length of each message block.

Proof. Using the proof technique as [ATTU16], we prove IGE mode case as follows: For a given

message m B m1 · · ·m!, let gEnc8H (m, c1, . . . , c8) B ĉ1ĉ2 · · · ĉ!, where ĉ 9 = c 9 for 9 2 [1, 8] and ĉ 9 =

H(ĉ 9�1�m 9 )�m 9�1 for 9 2 (8, !]. Then we put c8 B G�mb
8+1 and c8+1 B ~�mb

8, where mb
8 is the 8-th block

of the message mb and G, ~
$ � {0, 1}=. By definition of gEnc8H, gEnc8H (mb, c1, . . . , c8) = gEnc8+1H (mb, c1, . . . , c8+1)

with c8+1 B H(G) � mb
8. We define an adversary AO2H that makes oracle queries to the random function

H is defined to be the output of the procedure described below for given inputs G and ~:

AH
O2H(G, ~) B (m0,m1)  AEnc8,H ; b

$ � {0, 1}; c1, · · · , c8�1
$ � {0, 1}=; c8 B G � mb

8+1; c8+1 B ~ � mb
8;

compute c B gEnc8+1H (mb, c1, . . . , c8+1); b0  AEnc8,H (c); return b0 = b.

Now we have the equation, by O2H lemma,

X(=) =
����Pr


H ({0, 1}= ! {0, 1}=); G $ � {0, 1}=; b̃ AH

O2H(G,H(G)) : b̃ = 1

�
�

Pr


H ({0, 1}= ! {0, 1}=); G $ � {0, 1}=; ~ $ � {0, 1}=; b̃ AH

O2H(G, ~) : b̃ = 1

� ����
=

���%1
AO2H
� %2

AO2H

���  2@O2H

p
%B.

Note that AO2H can answer A’s queries as it has oracle access to H. Let @O2H be the number of H-queries

made by AO2H, then it is clear that @O2H  3!@A. Let @1, @2, and @3 denote the number of queries that

AO2H makes to H before, during, and after the challenge query, respectively. Let B be an oracle algorithm

described in O2H lemma and %B be % 9
B/@O2H. In all three cases depending upon whether the 9-th H-query

was made before, during, or after the challenge query, we may show that %B  $ (2�=@O2H
2). Therefore,
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we have

X(=)  2@O2H

p
%B

= $ (2�=/2@O2H
2) = $ (2�=/2!2@A

2).

Theorem 4.1.3. If the function E is a Q2-secure PRF, then ⇧IGE is IND-qCPA secure in the QaRO

model.

Proof. Using the proof technique as [ATTU16], we prove IGE mode case as follows: Let A be a

quantum adversary making @A queries. Note that Enc!,H (mb) is independent of its argument mb. Then

by Lemma 4.1.2 and triangle inequality,

����Pr

H ({0, 1}= ! {0, 1}=); (m0,m1)  AEnc0,H ; b

$ � {0, 1}; b0  AEnc0,H (Enc0,H (mb)) : b0 = b

�
�

Pr


H ({0, 1}= ! {0, 1}=); (m0,m1)  AEnc!,H

; b
$ � {0, 1}; b0  AEnc!,H (Enc!,H (mb)) : b0 = b

� ����
 !$

⇣
2�=/2!2@A

2
⌘
.

One can see that Enc!,H (mb) outputs ciphertext as a completely random string. Hence, the output b0 is

independent of b. Therefore,

����Pr

H ({0, 1}= ! {0, 1}=); (m0,m1)  AEnc0,H ; b

$ � {0, 1}; b0  AEnc0,H (Enc0,H (mb)) : b0 = b

�
� 1

2

����
 $

⇣
2�=/2!3@A

2
⌘
.

Since Enc0,H is indistinguishable from Enc of ⇧IGE by definition of Q2-secure PRF, and as @A is polynomial

in C, we deduce

AdvIND�qCPAA,⇧IGE
(=)  $

⇣
2�=/2!3@A

2
⌘
+ negl(=) = negl(=).

That is, ⇧IGE is IND-qCPA secure.

This similar proof can be applied to other modes as well, which means CBC, IGE, CFB, OFB, and

CTR modes are IND-qCPA secure under the assumption that the underlying block cipher is Q2-secure

PRF.
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4.2 (w)qIND-qCPA

4.2.1 Insecurity of CBC/IGE/CFB/OFB/CTR Mode under Q2-secure PRF

Let us give security analysis for IGE mode first: In this security game, the adversary chooses two =-bit

challenge messages as |m⇤0i := �⌦= |0=iand |m⇤1i := �⌦= |1=ifor the challenge phase [GHS16].

Then for 1 = 0,

|k1i =
Õ

m1
2�=/2 |m0i |c0i |m1i

|k2i =
Õ

m1
2�=/2 |m0i |c0i |BCk (c0 � m1) � m0i

|k3i =
Õ

m1

Õ
I (�1) hBCk (c0�m1)�m0 ,I i 2�= |m0i |c0i |Ii

The measurement gives 0= with probability 1.

In the case of 1 = 1,

|k1i =
Õ

m1
(�1) h1= ,<1 i 2�=/2 |m0i |c0i |m1i

|k2i =
Õ

m1
(�1) h1= ,<1 i 2�=/2 |m0i |c0i |BCk (c0 � m1) � m0i

|k3i =
Õ

m1

Õ
I (�1) h1

= ,<1 i+hBCk (c0�m1)�m0 ,zi 2�= |m0i |c0i |Ii

Here, the amplitude of the basis state |0= becomes
Õ

m1
(�1) h1= ,<1 i+hBCk (c0�m1)�m0 ,0n i =

Õ
m1

(�1) h1= ,<1 i = 0.

It makes the adversary to distinguish the challenge messages, whose output is 0 when the measurement

gives 0= and 1 otherwise. Therefore, IGE mode encryption scheme is (w)qIND-qCPA insecure. The same

attack can be applied to CBC, CFB, OFB, and CTR, which makes them (w)qIND-qCPA insecure, too.

Figure 4.3: Quantum circuits for an attack on each mode
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Chapter 5. Concluding Remarks

In this work, we analysed quantum security of some confidentiality modes of operation in block ciphers

such as CBC, IGE, CFB, OFB, and CTR. Since the advent of quantum computers and powerful quantum

adversaries does not guarantee the security of current modes of operation any more, the systematic

approach to analyse quantum security was necessary. For our analysis, we first considered quantum

adversaries capable of quantum computation, by classifying them as Q0, Q1, and Q2 depending on their

ability. The useful quantum proof techniques were introduced for our quantum security proof. Then,

quantum security notions are defined by extending classical case, in terms of quantum IND and CPA:

IND-qCPA, wqIND-qCPA, and qIND-qCPA. Our results are summarised in Figure 5.1.

Figure 5.1: Summary

As future work, we will study more possible confidentiality modes such as propagating cipher block

chaining (PCBC) and accumulated block chaining (ABC) or other kinds of block ciphers such as tweakable

block ciphers. Their encryption can be also represented in quantum circuits, which can give us some

intuition in quantum security analysis. By analysing their quantum security, we may classify all kinds of

modes in certain criteria and can suggest which of them has secure structure in quantum settings. There

may be some structural features which weaken their security. Classifying will be able to suggest new

or improved modes of operation in block ciphers, which are secure even if there are powerful quantum

adversaries. We leave it as a follow-up study and suggest this work has potential for further development.
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