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Abstract

This dissertation presents a security-enhanced cloud Virtual Private Network (VPN) with Software Guard
Extensions (SGX) and enclave migration. Cloud VPN is an essential cloud-based network infrastructure
that connects on-premise networks with Virtual Private Cloud (VPC) networks securely. However,

in the semi-trusted cloud environment cloud VPN suffers from privacy concerns due to the information



disclosure caused by hypervisor vulnerabilities, malicious cloud management operations, etc. The existing
literature has limitations in providing each tenant with the privacy-protected cloud VPN because the
weak isolation of executing the VPN service in the shared environment does not defense attacks under
the semi-trusted cloud environment. We present SGX-VPN, a security-enhanced cloud VPN with SGX.
With the hardware-assisted isolated execution environment and the isolated memory region that SGX
supports, SGX-VPN provides each tenant with the privacy-protected key exchange and packet processing.
SGX-VPN also provides each tenant with an on-demand functionality to verify the integrity of the
running security policies in cloud VPN. We implement a prototype on an actual machine to measure the
performance penalties of SGX-VPN. We also evaluate SGX-VPN using a formal analysis tool to prove
the security of SGX-VPN.

However, there is still a challenging problem with imposing SGX into cloud VPN because existing
SGX-enabled Virtual Machine Managers (VMMs) do not provide live migration of SGX-enabled VMs.
This management operation is impossible because the VMM cannot directly access the Enclave Page
Cache (EPC) pages where the VM’s enclaves reside. We propose an SGX extension for migrating enclaves
called eMotion that adds additional instructions and migration support to the SGX architecture for
enabling the secure managed migration of running enclaves. eMotion allows that the participating hosts
establish a key used in enclave migration and the VMMs in the hosts migrate running enclaves using
the established key. We implement a prototype on top of OpenSGX, an open source SGX emulator, to

demonstrate the operations of eMotion and to estimate the impact on enclave migration.

Keywords Cloud Computing, Virtual Private Network, Software Guard Extensions, Migration, IKE,
IPsec
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Chapter 1. Introduction

Virtual Private Cloud (VPC) is one of cloud deployment models that tenants control the network
topologies and security configurations of the VPC networks. Unlike other cloud deployment models (e.g.,
private, hybrid, and public), VPC not only virtualizes servers and applications, but also the underlying
networks as well [12]. Thus, VPC is attractive to the tenants because VPC can provide a seamless
transition from a proprietary service infrastructure to a cloud-based infrastructure. The tenants can
connect to their resources in the VPC networks as if the resources reside in a single VPC network
regardless of the actual regions of the resources. Accordingly, single connection points between the on-
premise networks and the VPC networks can reduce the cost and complexity in managing the tenants’
resources.

Cloud Virtual Private Network (VPN) is an essential cloud-based network infrastructure that con-
nects the on-premise networks with the VPC networks using Internet Protocol security (IPsec) [13].
Major Cloud Service Providers (CSPs) provide tenants with cloud VPNs [4-6] that protect the traffic on
the single connection points between the on-premise networks and the VPC networks while isolating the
private IP address space where multiple Virtual Machines (VMs) of the different tenants coexist [14].

Though cloud VPN has been increasingly deployed and indispensable in the VPC networks, security
administrators are still reluctant to introduce cloud VPN into their own organizations due to various
security concerns raised in the semi-trusted cloud environment, such as information disclosure. First,
in a multi-tenant environment, attackers could coincidently access sensitive information (e.g., session
keys) that resides in other guest’s cloud VPNs due to hypervisor vulnerabilities like CVE-2015-3340[15].
Second, a malicious insider can intentionally access sensitive information owned by a victim’s cloud
VPN with cloud management operations. For example, if the cloud administrators attempt to obtain
sensitive data used in the guest’s cloud VPNs, they can achieve it with operations for cloud management.
(e.g., taking a snapshot of cloud VPN containing session keys) Third, the attackers can falsify the leaked
information in order to control the guest’s cloud VPNs. The attackers manipulate Security Policies (SPs),
which defines actions on packets, in the snapshot of cloud VPN (e.g., add a rule to forward decrypted
packets to the attackers), and activate the malformed snapshot of cloud VPN. Fourth, the key exchange
protocol (e.g., Internet Key Exchange (IKE) [16]) that cloud VPN uses has inherent security concerns:
the protocol is vulnerable if ephemeral keys used in the protocol are compromised [17]. When accessing
the ephemeral keys via the compromised cloud VPN, adversaries can leak valuable information (e.g.,
session keys, authentication data, etc.) from the following key exchange messages.

Using the information leaked by the aforementioned security problems, adversaries can conduct other
attacks like eavesdropping attack, impersonation attack, etc. These attacks inevitably introduce privacy
concerns in cloud VPN. In legacy VPN gateways, the privacy concerns pay less attention because the
gateways locate and run inside on-premise networks and thus owners can control the gateways completely.
However, in cloud VPN, it is essential to address the privacy concerns because tenants delegate the
installation and operation of the virtualized VPN gateways to the CSPs.

However, previous work [2, 3] has limitations in providing each tenant with the privacy-protected
cloud VPN in the semi-trusted cloud environment. Protego [2] resolves the inefficiency in resource usages
by using a shared VM for the key exchange protocol. If cloud VPN adopts sVPN [3], the tenants utilize a

shared VPN service that a hypervisor provides. This weak isolation, which executes the VPN service in



the shared environment [18], does not defense attacks under the semi-trusted cloud environment. Thus,
adversaries can extort sensitive information by leveraging the hypervisor vulnerabilities or conducting
cloud management operations maliciously.

Software Guard Extensions (SGX) is a good candidate that addresses the privacy concerns in cloud
VPN. SGX creates enclaves for applications that protect security sensitive code and data from malicious
access. The enclaves reside in a part of DRAM invisible to other software, the Enclave Page Cache
(EPC). Because CPU fetches the contents of the enclaves from the EPC in an encrypted form, the
enclaves can be protected from external access as well as from probing attacks on the DRAM bus by an
insider attacker. This strong isolation [19] prevents higher privileged software (e.g., operating systems,
hypervisors, etc.) from accessing sensitive information in the enclaves. Therefore, the hypervisors cannot
notice the contents of the enclaves even if it has information leak vulnerabilities.

In this dissertation, we propose SGX-VPN that supports the security-enhanced cloud VPN using
SGX in the semi-trusted cloud environment. SGX-VPN leverage enclaves to provide each tenant with the
strong isolation of VPN services; key exchange and packet processing. Using attestation, each component
in SGX-VPN exchanges sensitive information securely without exposing it to untrusted parties. Besides,
SGX-VPN provides each tenant with an on-demand functionality to verify the integrity of the running
SPs in cloud VPN.

SGX-VPN consists of the algorithms that interchange sensitive information with participating en-
tities securely and verify the integrity of the running SPs remotely. We analyze the algorithms used
in SGX-VPN using Scyther [20], one of the formal analysis tools, to prove the security. Scyther is an
automated protocol verification tool that supports the verification, the falsification, and the analysis of
security protocols. Scyther checks if the security protocols hold the intended security properties (e.g.,
secrecy). Thus, we leverage this tool for the analysis of SGX-VPN because this tool can prove the secrecy
of the transmitted information and the key for integrity protection on SPs.

The followings are the contributions of SGX-VPN.

e Privacy-Protected cloud VPN. SGX-VPN supports the privacy-protected cloud VPN by exe-
cuting VPN services in enclaves that guarantee the strong isolation [19]. SGX-VPN performs the
key exchange protocol using the enclave to prevent adversaries from notifying the sensitive infor-
mation of cloud VPN. SGX-VPN processes packets inside the enclave in order that the adversaries

cannot eavesdrop packets transmitted in the VPC network.

e Architecture based on SGX-VPN. SGX-VPN presents an architecture to show the practical
deployment of SGX-VPN. The architecture protects packets not only between the on-premise
network and the VPC network but also within the VPC network.

e Prototype implementation. We implement a prototype of SGX-VPN to measure the per-
formance overhead in packet processing. The prototype leverages Data Plane Development Kit

(DPDK) [21] to use the enclave for processing packets in the user privilege.

There is still a challenging problem with imposing SGX into cloud VPN: the ezisting SGX-enabled
VMMSs[22] do not provide live migration for SGX-enabled VMs. Generally, in the managed migration
of the VM, the source VMM transfers the entire VM’s memory pages to the destination VMM until
the VMs in the different physical machines, the source and destination hosts, are consistent. Then, the
destination VMM starts the migrated VM, and the source VMM stops its VM. To this end, for managed
live migration of an SGX-enabled VM, the VMM should transfer the enclave pages to the destination
host.



However, the VMM cannot transfer the enclave pages as usual because SGX prevents the VMM,
one of higher privileged software, from accessing directly the PRM as mentioned above. SGX Developer
Guide [23] provides the guideline for migrating enclave data across the platforms, but this guideline
cannot be applied to migration of other enclave pages excluding the enclave data. Intel’s patents [7, §]
presented the instructions and the platform for enclave migration, but the practical implementation is
not realized yet and the key establishment for enclave migration is still conceptual.

As a realized mechanism, Gu et al. [24] presented a secure enclave migration in a self-migration
manner. Alder et al. [25] proposed an enclave migration mechanism that guarantees the consistency of
persistent state including sealed data and monotonic counters in a self-migration manner. However, the
source host cannot migrate enclaves, which do not use a specific library for enclave migration, to the
destination host. Thus, this constraint can cause a decline in usability because enclave developers should
re-implement the existing enclaves.

The EPC page swapping mechanism can also be considered to enable the OS/VMM to evict EPC
pages into the untrusted memory and load them into EPC later using dedicated instructions. However,
it is infeasible to apply this mechanism to managed enclave migration. First, the destination host cannot
decrypt the evicted enclave pages because a key used in this mechanism is unique and cannot leave the
processor. Second, this mechanism cannot evict some EPC pages for data structures such as Thread
Control Structure (T'CS). Third, this mechanism cannot migrate the running enclave because the eviction
is only applicable to the stopped enclave.

In this dissertation, we propose an SGX extension for migrating enclaves called eMotion that adds
additional instructions and migration support for enabling the secure managed migration of running
enclaves. eMotion allows that the different physical hosts establish a key used in enclave migration
securely and the VMMs in the hosts migrate running enclaves using the established key. eMotion
guarantees that only to the designated enclave and the SGX-enabled processor can access this key.

The followings are the contributions of eMotion.

¢ SGX extension for migrating enclaves. We supplement the current SGX implementation
with eMotion, additional instructions and migration support in order that the VMM migrates the

running enclaves securely between the different physical hosts.

e Architecture for migrating enclaves. We present an architecture to show the practical deploy-

ment of eMotion.

¢ Prototype implementation. We implement a prototype on top of OpenSGX[9], an open source
SGX emulator, to demonstrate the operations of eMotion and to estimate the impact on enclave

migration.



Chapter 2. Preliminaries

2.1 IPsec

IPsec is a secure network protocol suite that supports network-level peer authentication, data-
origin authentication; data integrity, data confidentiality (encryption), and replay protection [13]. IPsec
mainly consists of security protocols (Encapsulating Security Payload (ESP) [26] and Authentication
Header (AH) [27]), key management (Internet Key Exchange (IKE) [16]), and cryptographic algorithms
for authentication and encryption. In this section, we explain essential features defined in IPsec for
SGX-VPN, and the details can be found in [13,16, 26, 28].

2.1.1 Overview

IPsec provides two security services in the network layer for processing IP packets: AH [27] and
ESP [26]. AH supports integrity and data origin authentication along with optional anti-replay fea-
tures. Whereas, ESP provides confidentiality to the packets in a company with integrity, data origin
authentication, and optional anti-replay features.

IPsec operates in transport mode and tunnel mode that define methods to transform original IP
packets. In transport mode, IPsec encrypts and/or authenticates only the payload of the IP packet so
that this mode does neither modify nor encrypt the IP header. In tunnel mode, IPsec encrypts and/or
authenticates the entire IP packet, and then encapsulates into a new IP packet by adding a new IP
header to the ESP or AH header.

The existing cloud VPNs [4-6] support IKE version 2 [16], choose pre-shared key as the authenti-

cation method, and encrypt the transmitted packets using ESP tunnel mode.

2.1.2 IKE

IKE [16] is an authenticated key exchange protocol that provides automatic key management for
IPsec. IKE establishes and maintains Security Associations (SAs). IKE supports various authentication
method such as X.509 certificates, pre-shared key, Extensible Authentication Protocol (EAP), etc. IKE
leverages a Diffie-Hellman (DH) key exchange to generate a shared session secret from which crypto-
graphic keys are derived.

An SA is a secure communication session established between two IKE peers and consists of two
SAs: IKE SA and IPsec SA. The SA usually defines cryptographic algorithms and contains keys that
the cryptographic algorithms use to protect data (IKE messages and inbound/outbound packets).

IKE SA is an SA that stores the master key for creating IPsec SA and protects IKE messages such
as IKE_AUTH, CREATE_CHILD_SA, INFORMATIONAL, etc. IKE SA negotiates four algorithms: an
encryption algorithm, an integrity protection algorithm, a DH group, and a pseudo-random function
(PRF). IKE SA generates SKEYSEED using Equation 2.1.

SKEYSEED =PRF(N;|N,,g"") (2.1)

where N; and N, are the nonces exchanged during the IKE_SA INIT exchange, and ¢'" is the shared



secret from the ephemeral DH exchange.

Using SKEYSEED, IKE SA calculates other secrets using Equation 2.2. Other secrets include
SK, that is the master key for IPsec SA, SK,; and SK,, that are keys for the integrity protection on
subsequent IKE messages, SK,; and SK,, that are keys for encrypting all subsequent IKE messages,

and SK,; and SK), that are materials to generate the authentication data.
{SK4|SKi|SKar|SKei| SKer|SKpi|SKpr } = PRE(SKEY SEED, N;|N,|SPI;|SPI,.) (2.2)

where N; and N, are the nonces exchanged during the IKE_SA_INIT exchange, and SPI; and SPI, are
security parameter indexes (SPIs) for IKE SA.

IPsec SA is an SA that contains the negotiated session protocol, encryption and authentication
algorithms, session keys and other session parameters. The session keys for [Psec SA are generated using
Equation 2.3.

KEY MAT =PRF(SKg4, Ni|N,) (2.3)

where N; and N, are the nonces exchanged during the IKE_SA_INIT exchange or the fresh nonces
exchanged during CREATE_CHILD_SA exchange.

To enable VPN connections, it is necessary to use a pair of IPsec SAs (outbound and inbound) for
bi-directional communication between two IPsec-enabled peers. IPsec uses a 32-bit SPI along with the
destination address in an IP packet header to uniquely identify each IPsec SA for each direction.

The security that IKEv2 guarantees starts from SKEYSEED and the security of SKEYSEED de-
pends on the shared secret (¢°") from the ephemeral key. Because N; and N, are exchanged as plaintext
forms, if adversaries can access this shared secret from the ephemeral key, the adversaries can collapse

the entire security of IKEv2.

2.1.3 Security Policy (SP)

An SP is a rule that specifies behaviors to process specific IP packets. Each SP usually contains
source and destination addresses, transport protocol (TCP, UDP), source and destination ports, and
actions (BYPASS, DISCARD, PROTECT). If a received IP packet is the target of BYPASS, IPsec
forwards the packet to its intended destination. If a received IP packet is the target of DISCARD, IPsec
simply drops the packet. If a received IP packet is the target of PROTECT, IPsec processes the packet
by using the information defined in the SP: a suitable IPsec SA, etc.

Because SPs define the actual actions performed on all inbound and outbound packets, it is essential
to guarantee the integrity of the running SPs. If adversaries can falsify the running SPs, the adversaries
can control the actions performed on each packet maliciously. For example, if an adversary inserts
the rule to forward the decrypted packets to the adversary’s machine, the adversary can sniff sensitive

information without extorting session keys.

2.1.4 1IPsec Databases

IPsec supports three databases : SP database (SPD), SA database (SAD), and peer authorization
database (PAD). SPD specifies the policies that apply to all inbound and outbound IP packets. SAD
contains parameters that are associated with each SA. PAD provides information such as authentication
protocol and data to authorize IKE peers, and thus links between the SPD and IKE.



The SPD is an ordered linked list of entries that contains rules for outbound and inbound packets
subject to IPsec protection (PROTECT), be discarded (DISCARD), and be bypassed (BYPASS). For
packets subject to IPsec protection, the SPD specifies the IPsec SA that is used to process the packets.

The SAD is a linked list of entries that contains parameters for each SA, and entries in the SPD point
to each entry in the SAD. Regarding inbound packets, IPsec uses either SPIs alone or in conjunction with
the IPsec protocol type in the packets to look up an SA. Each entry in the SAD has the following data:
SPI, cryptographic algorithm and its related parameters (session key, mode, initialization vector (IV),
etc.), lifetime of this SA, IPsec protocol mode(AH or ESP), tunnel header IP source and destination
address (applicable only to tunnel mode), etc.

The PAD provides functions to links between the SPD and IKE. To this end, the PAD identifies peers
authorized to communicate via IPsec, specifies the authentication protocol, manages the authentication
data for each peer, restrains the types and values of IDs for the assertion in a peer, and so forth. Thus,
the PAD maintains entries that contain the IDs and the authentication data for each peer.

These major databases manage critical data in conjunction with supporting essential functions for
IPsec. If adversaries extort the information managed by one of the databases, the security that IPsec

guarantees can diminish.

2.1.5 Packet Processing in IPsec

Using SPD and SAD, IPsec processes inbound and outbound packets as configured by the security
administrator and negotiated with other IKE peer.
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Figure 2.1: Outbound packet processing in IPsec

IPsec processes outbound packets (protected-to-unprotected) as depicted in Figure 2.1. When a
packet arrives from the protected interface, IPsec checks if a matching SP exists in SPD using the packet
headers. If finding a match, IPsec processes the packet as specified in the matching SP (i.e., BYPASS,
DISCARD or PROTECT using AH or ESP). If IPsec should perform AH or ESP on the packet, [Psec
uses the SA linked to the matching SP to encrypt and/or authenticate the packet. Finally, IPsec forwards
the processed packet to the unprotected interface if the packet is the target of BYPASS or PROTECT.
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Figure 2.2: Inbound packet processing in IPsec



Inbound processing is quite different from outbound processing because IPsec can utilize SPI to
lookup the SA used in incoming packets. IPsec processes these inbound packets (unprotected-to-
protected) as depicted in Figure 2.2. When a packet arrives from the unprotected interface, IPsec
examines if the packet needs an SAD lookup (AH or ESP) or is the target of BYPASS/DISCARD. If the
packet is the target of BYPASS/DISCARD, IPsec processes the packet as defined action (BYPASS/DIS-
CARD). If the packet is the target of the SAD lookup and IPsec finds the matched SA using the SPI
in the packet, IPsec authenticates and/or decrypts the packet. Then, IPsec verifies if the processed
packet is appropriate for the matched SA by matching the packet against the inbound selectors. If this

verification fails, IPsec discards the processed packet.

2.2 Software Guard Extensions (SGX)

SGX is an extended set of instructions that supports enclaves where security sensitive code and data
are protected by an SGX-enabled processor. The SGX-enabled processor guarantees the confidentiality
and the integrity of an enclave by using an isolated memory area, the EPC, that cannot be accessed from
outside the enclave. When the enclave is loaded and initialized, the SGX platform detects if the enclave
is not altered by comparing the enclave’s calculated measurement with the pre-produced one. Remote
attestation allows a remote entity to verify that the enclave is running inside the SGX-enabled processor
and thus can be trustworthy. In this section, we explain SGX features used in SGX-VPN and eMotion
and the SGX details can be found in [1,23,29,30].

Figure 2.3 depicts the overview of SGX with respects to isolated execution environment (2.2.1),
SGX data structures (2.2.2), and EPC page swapping (2.2.3).
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2.2.1 Isolated Execution Environment

SGX supports a secure container called an enclave that executes code in an isolated environment.
When an application process executes an enclave by calling EENTER, the context switching happens and
the enclave can access the memory area including the memory of the process. Meanwhile, when the
enclave finishes its execution by calling EEXIT, the context switching also happens and the memory of
the enclave cannot be visible to the process and also other software components. Thus, the enclave is
isolated from all the other software including its application process on the computer. SGX realize this
isolation by leveraging the isolated memory area, the EPC, and adding the Memory Encryption Engine
(MEE) to the processor’s uncore for protecting the EPC against physical attacks.

The MEE[31] is a hardware unit that protects the confidentiality, integrity, and freshness of the
traffic communicated between CPU and EPC, the part of DRAM via the memory bus. To this end, the
MEE leverages an integrity tree, the cryptographic primitives for encryption, the message authentication
code (MAC), and the anti-replay mechanism. Cryptographic keys that the MEE uses to encrypt and
compute authentication tags over EPC are generated uniformly at random at boot time and never leave
the CPU.

Using the MEE and the mechanisms implemented in the SGX-enabled processor, SGX can achieve

the security properties of the isolated execution environment.

2.2.2 SGX Data Structures

SGX data structures are a collection of data structures used to manage enclave operations. The
EPC, a subset of the PRM, stores these data structures along with the contents of the enclaves. The
SGX-enabled processor records the metadata of each EPC page in the Enclave Page Cache Map (EPCM).
In this section, we briefly explain the structures used in eMotion.

SGX Enclave Control Structure (SECS) is metadata associated with each enclave. A dedicated
EPC page, PT_SECS, stores SECS. SECS is allocated when an enclave is created and deallocated when
the enclave is destroyed. This structure contains information of enclave identification (ID), enclave
measurement, and enclave control. SECS identifies an enclave inside and outside the processor.

TCS is metadata used to support the multi-thread execution of an enclave code. A dedicated EPC
page, PT_TCS, stores TCS. Each logical processor uses TCS to execute the enclave code.

PAGEINFO (Page Information) is an architectural data structure used as a parameter in EPC
management instructions. This data structure contains the addresses of the enclave page, SECINFO
(Security Information)/PCMD (Page Crypto Metadata), and SECS. SECINFO consists of flags that
describe the state of the enclave page. PCMD is crypto metadata associated with a paged-out EPC
page that includes enclave ID, MAC (Message Authentication Code) for the evicted EPC page, page

metadata, etc.

2.2.3 EPC Page Swapping

The BIOS sets the size of the PRM, and thus SGX supports EPC page swapping for the OS/VMM
to evict EPC pages into untrusted memory in order to overcome the limited size of the PRM. EPA
allocates a version array where random numbers used to encrypt each EPC page for the anti-replay are
stored. EWB evicts EPC pages with encryption and integrity protection, and ELDU/B loads them with
integrity check and decryption. Thus, EPC paging instructions can maintain the same security properties

(confidentiality, anti-replay, and integrity) with the PRM. The key used in this mechanism is unique for



the specific processor and the outside of the processor cannot access this key. Prior to the eviction, EWB

assures that the EPC pages have been blocked and the running enclave is stopped.

2.2.4 Local Attestation.

Local attestation is a cryptographic way for internal enclaves to attest other enclaves that reside
inside the processor for providing higher-level functions like remote attestation. An enclave can prove its
identity to other enclaves by producing REPORT because the signature block in the REPORT is produced
by the same platform and thus is verifiable inside the processor.

Figure 2.4 depicts the flow of local attestation in SGX. When two enclaves establish communication
paths, enclave A obtains enclave B’s MRENCLAVE, which is an identifier for each enclave. Then, enclave
A sends a signed REPORT destined for enclave B. After enclave B succeeds to verify the received REPORT,
enclave B sends back a signed REPORT destined for enclave A using enclave A’s MRENCLAVE, which is from
the received REPORT. Finally, enclave A verifies the signed REPORT from enclave B. Using this mechanism,

two enclaves can convince that the other enclave exists on the same SGX platform.
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Figure 2.4: Local attestation in SGX based on [1]

2.2.5 Remote Attestation.

Remote attestation is a cryptographic way for remote entities to attest to the trustworthiness of the
underlying hardware platform and the running enclaves. Intel provides the enclave for remote attestation,
Quoting Enclave (QE), as an Architectural Enclave (AE), the privileged enclave in the SGX framework.
QE produces QUOTE and the remote entities verify the signature block in the QUOTE by using the public
key from the Intel Enhanced Privacy ID (EPID) group key.

Figure 2.5 depicts the flow of remote attestation in SGX. When an enclave and a challenger establish
communication paths, the challenger issues a challenge (Nonce) to a process running the enclave. Then,
the process passes QE’s MRENCLAVE and Nonce to the enclave for local attestation. The enclave sends
back a signed REPORT destined for QE to the process, and the process forwards REPORT to QE for signing,.
QE returns QUOTE for REPORT to the process, and the process sends QUOTE to the challenger. Using an
attestation verification, the challenger verifies QUOTE and convinces of the trustworthiness of the enclave

and the SGX platform where the enclave is running.
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Figure 2.5: Remote attestation in SGX based on [1]

2.3 Data Plane Development Kit (DPDK)

DPDK is a framework that supports fast packet processing in dataplane applications running in
user-mode [21,32]. DPDK provides application developers with a set of software libraries and drivers
such as environment abstraction layer (EAL), Hash, longest prefix match (LPM), rings, and cryptodev

libraries as shown in Figure 2.6.
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Figure 2.6: DPDK architecture

DPDK supports a run-to-completion model for packet processing, and thus a DPDK application
must allocate all necessary resources prior to its main execution, running as execution units on logical
processing cores. DPDK does not support a scheduler, and the DPDK application should access all
devices via polling in order to reduce the performance overhead imposed by interrupt processing. Besides
the run-to-completion model, DPDK provides a pipeline model by passing packets or messages between

cores via the rings.
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In this section, we explain essential features defined in DPDK for SGX-VPN, and the details can
be found in [21,32].

2.3.1 Environment Abstraction Layer (EAL)

The EAL is a core library of DPDK that provides access to low-level resources such as hardware
and memory space. The EAL provides the application developers with a generic interface that hides the
environment specific resources such as memory space, devices, timers, consoles, etc. Using the EAL, the
application developers can utilize the loading and launching of DPDK and their own applications, core

affinity /assignment procedures, system memory reservation, etc.

2.3.2 Poll Mode Driver

DPDK provides poll mode drivers (PMDs) for all supported network cards and virtual devices.
Using the PMDs, DPDK applications can communicate with the network cards directly without the

involvement of network drivers.

2.3.3 Memory Management

DPDK leverages hugepages to allocate the large memory pool for packet buffers. Using the hugepage
allocation, DPDK can increase the performance of packet processing because DPDK needs fewer pages
and thus less translation lookaside buffers (TLBs), which reduces the time for translating a virtual page

address to a physical page address.

2.3.4 Packet Forwarding Algorithms

DPDK includes Hash and LPM libraries to support the corresponding packet forwarding algorithms.
Hash library creates a hash table for fast lookup and uses a modified Cuckoo hashing. The hash table
is a data structure that contains a set of entries which is identified by a unique key. To increase the
performance, the DPDK hash leverages the keys whose sizes are identical throughout the hash table and
the size of the keys is determined at the hash creation time. LPM library provides a table search method
for 32-bit keys, which is applicable to find the best route match in forwarding IP packets. LPM library
uses a variation of the DIR-24-8 algorithm to improve the LPM lookup speed.

2.3.5 Cryptodev

A cryptodev is an asynchronous crypto API that supports both hardware and software implementa-
tions of crypto poll mode drivers. The cryptodev library in DPDK provides a crypto device framework
for managing and provisioning of cryptodev. The cryptodev provides cipher, authentication, chained
cipher/authentication, and asymmetric operations.

The cryptodev offers a burst oriented asynchronous API set to schedule crypto operations for DPDK
applications. The cryptodev supports enqueue and dequeue burst APIs for the DPDK applications to

place and process the crypto operations.
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Chapter 3. Related Work

3.1 Privacy in Cloud Computing

Privacy concerns raised by information disclosure has been considered to be of paramount importance
in cloud computing. . Numerous approaches have been presented to protect the data privacy because
tenants entrust the CSPs to store and process their sensitive data. (e.g., health records [33]) However,
previous work pays less attention to the privacy concerns in cloud VPN. Instead, the existing literature of
cloud VPN [2,14] mainly focuses on the efficiency of resource usages and the scalability for multitenancy.
Regarding the security issues in the network of cloud computing, various approaches using Network-based

Intrusion Detection System (NIDS) have been proposed [34].

3.1.1 Cryptographic Primitives for Data Privacy

To protect the data privacy in cloud computing, the existing schemes provide the confidentiality
of the sensitive data by leveraing Attribute-Based Encryption (ABE) [35-37], Searchable Encryption
(SE) [38,39], Predicate Encryption (PE) and Hierachical Predicate Encryption (HPE) [40,41], Identity-
Based Encryption (IBE) [42,43], Proxy Re-Encryption (PRE) [44], and (Fully) Homomorphic Encryption
(FHE) [45].

ABE [35] encrypts and decrypts the messages on the basis of user attributes. ABE allows users
to selectively share the encrypted data and also supports fine-grained access on the data. Key policy
ABE (KP-ABE) [36] and Ciphertext policy ABE (CP-ABE) [37] are the main extensions of the ABE. In
KP-ABE, the users can decrypt the encrypted data only if the data attributes satisfy the defined access
structure. CP-ABE uses the access policy that defines the access structure to encrypt the data, whereas
the users’ private keys are generated over a set of attributes.

SE based on symmetric key cryptography and public key cryptography have been presented [38,39].
These cryptographic algorithms perform search operations over the encrypted data without revealing
the information about the contents. PE [40] features the fine-grained access control over the encrypted
data by associating a ciphertext with descriptive attributes and also associating a secret key with a
predicate. The security of the predicate guarantees that an adversary cannot learn anything about the
attributes from the ciphertext. HPE [41] delegates the search capabilities only to the users whose secret
keys satisfy the predicate. This allows only authorized users to decrypt the encrypted data. IBE [42,43]
utilizes any string (e.g., a name, an e-mail address, etc.) as the public key and a trusted party issues
the corresponding decryption key. PRE [44] allows a semi-trusted proxy to transform the ciphertext
encrypted by one user into a ciphertext that can be decrypted by the other user without any decryption.
FHE [45] allows a computation (addition or multiplication) on ciphertexts that produces an encrypted
result without any decryption, and the decryption on the encrypted result matches to the result of the

computation on the plaintexts.

3.1.2 Data Privacy

Numerous approaches have been proposed to address the privacy concerns in cloud computing with

the respect to data privacy [46-53].
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Bahrami et al. [46] proposed a lightweight privacy-preserving method to store data on clouds us-
ing pseudo-random permutation instead of leveraging cloud computing resources for encryption. Yi
et al. [47] presented a solution that allows a user to outsource a mining task to semi-honest servers
that perform association rule mining on the encrypted data in the cloud and return encrypted associ-
ation rules to the user in a vertically distributed environment. Zhou et al. [48] introduced a secure
and efficient privacy-preserving dynamic medical text mining and image feature extraction scheme in
cloud-assisted e-healthcare systems based on an efficient privacy-preserving fully homomorphic data
aggregation, an efficient privacy-preserving function correlation matching from dynamic medical text
mining, and a privacy-preserving medical image feature extraction. Pasupuleti et al. [49] proposed an
efficient and secure privacy-preserving approach for outsourced data of resource-constrained devices in
the cloud computing based on a probabilistic public key encryption algorithm for the encryption and
ranked keyword search over the encrypted data for the file retrieval. Rong et al. [50] presented a set of
secure building blocks and outsourced collaborative k-Nearest Neighbor (kNN) protocol for the privacy-
preserving distributed databases and kNN query along with the concealment of access patterns in the
semi-honest model. Consolidated IDentity Management (CIDM)[51] has been proposed to address the
security problems of the compromised IDM server, the compromised devices, the network traffic inter-
ception. MobiShare [52] provides flexible privacy-preserving location sharing between both trusted social
relations and untrusted strangers, and features range query and user-defined access control. Niu et al.
[53] presented a caching-based solution to protect location privacy based on an entropy-based privacy
metric and new caching-aware dummy selection algorithms.

The aforementioned encryption primitives encrypt the sensitive data before the data is published
to cloud computing. This encryption can prevent adversaries from accessing the published data easily.
Depending on the used primitives, only authorized users can access the published data or it is feasible

to process (search or compute) over the encrypted data.

3.1.3 Network based Intrusion Detection System

Several approaches based on NIDS [54-56] have been proposed to secure both external and internal
networks of the cloud.

Leu et al. [54] presented Grid Intrusion Detection System (GIDS) that uses grid computing resources
to detect strong DDoS attacks. To balance detection loads, GIDS leverages Score Subtraction Approach
(SSA) and Score Addition Approach (SAA). For the effective intrusion detection, GIDS adopts two-phase
packet detection process; the first phase detects logical and momentary attacks and the second phase
detects chronic attacks.

Lo et al. [55] proposed a framework of cooperative IDS to reduce the impact of DDoS attacks in
cloud computing. The proposed framework allows IDSs in the cloud computing regions to exchange alert
messages, and each of IDSs launches a cooperative agent for computing and determining the acceptance
of each of the alert messages sent from other IDSs. Using the proposed framework, the IDSs in the cloud
computing regions can prevent the same type of DDoS attack from happening proactively.

Mazzariello et al. [56] presented a miuse detection in open source Eucalyptus cloud environment
[67] using Snort [58]. Instead of deploying multiple instances of an IDS within cloud computing, this
approach places a single Snort at the frontend cloud controller, which manages cloud instances, for

detecting intrusions from the external networks.
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3.1.4 Cloud VPN

Protego[2] presents a new architecture of distributed IPsec gateway for multitenancy that achieves
high availability and elasticity. Protego separates control plane (IKE) and data plane (ESP) and consists
of Gateway Management Node (GMN) for handling IKE messages, a set of Gateway Processing Node
(GPN) for processing ESP packets, and software load balancers for forwarding the traffic and limiting the
bandwidth of each tunnel. This architecture can resolve the inefficiency of resource usages in IPsec gate-
way VMs while providing elasticity, scalability, high availability, tunnel migration without throughput
degradation, and tunnel performance isolation. However, the tenants should entrust the CSPs because
a shared VM (GMN) stores all session keys for GPNs as shown in Figure 3.1. Thus, in the semi-trusted
cloud environment, if compromising the shared VM, adversaries can not only leak the session keys but

also sniff all packets of all tenants.
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Figure 3.1: Architecture of Protego[2]

Arashloo et al. [14] presents a hybrid data plane that enables scalable implementation of network
functions including the VPN gateway functionalities at the edge of the cloud. The proposed hybrid
architecture leverages a commodity server and a commodity switch to realize high port density with high
switching capacity and tunnel lookup tables with around a few million entries. The commodity switch
provides the high port density and forwards packets at high speed. The VPN gateway functionalities
are realized in the commodity switch and the commodity server. When the switch sends packets from
on-premise networks of tenants to the server, the server utilizes DPDK libraries to maintain the internal
tunnel lookup table, process packets and return the packets to the switch for forwarding to its destination.

The approaches to enhance the security of VPN has been proposed in [3,59,60]. These existing
approaches leverage hypervisor or Trusted Platform Module (TPM) [61] as a trust anchor to provide
secure IPsec services.

In [3], a VPN architecture for trusted platforms called sVPN has been presented. Based on a
microkernel-based operating system, sVPN uses a hypervisor as a trusted and isolated execution envi-
ronment to execute IKE and IPsec. Using the shared VPN services that the hypervisor provides along
with the security configurations, sVPN provides multiple isolated userspace environments with dedicated
logical IPsec services with different policy enforcement. If cloud VPN adopts sVPN as shown in Figure
3.2, this weak isolation used in sVPN cannot defend against adversaries in the semi-trusted cloud envi-
ronment. Thus, if the adversaries compromise the hypervisor that provides tenants with IKE and IPsec,
sVPN suffers from the leakage of the session keys and all packets of all tenants.

In [59], an extension of IKEv2 to exchange attestation data has been proposed. Using the proposed
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Figure 3.2: Possible architecture of sVPN(3] for cloud VPN

extension, IKE peers can evaluate the internal states of remote peers automatically. The proposed
extension introduces a new IKE payload, Attestation Data Payload (ADP), and a new key, Attestation
Key (AK). ADP is an IKE payload to transport attestation data for remote attestation, and AK is a
shared key to calculate the attestation data for remote attestation. After completing the initial exchange
of IKEv2, two IKE peers exchange the ADP payloads in the following IKE exchanges if the peers select
the remote attestation algorithm as a part of the IKE SA negotiation. The proposed extension leverages
one of the standard IKE exchanges, the INFORMATIONAL exchange, to exchange the ADP payloads.
Using TPMQuote () that TPM supports and the shared AK, the IKE peers calculate the attestation data
of the ADP payloads. Thus, the proposed extension allows the IKE peers to convince that the running
status of other IKE peer is trustworthy or not. However, the proposed extension in [59] necessitates
additional IKE messages for remote attestation, and the number of the ADP payloads can increase
depending on the TCB size.

In [60], an approach to execute remote attestation in VPN environments has been presented. An
access requestor (VPN client, AR) and a Policy Decision Point (PDP) perform the Trusted Network
Connect (TNC) [62] handshake with remote attestation via the VPN connection established between
the access requestor and a Policy Enforcement Point (VPN gateway, PEP). Depending on the result of
remote attestation, PDP makes an access decision and sends access instructions to PEP. Then, PEP
configures its packet filter to either allow or forbid the AR’s access to the TNC-protected network. This
approach can enhance the security of the VPN environments by verifying the internal state of the remote
endpoints, ARs. However, guaranteeing the integrity of the running configurations in PEP, which this
approach does not cover, is also essential in cloud VPN.

The existing cloud VPNs [4-6] supports the pre-shared key for authentication method of IKE. To
configure cloud VPN, tenants should input the pre-shared keys, which are used in not only their cloud
VPNs of the VPC networks but also the legacy VPN gateways located in their on-premise networks, to
the CSPs. The tenants also input their intended SPs, which include the policies for their cloud VPNs
as well as their legacy VPN gateways, to the CSPs. As shown in Figure 3.3, the tenants should submit
the pre-shared keys and the SPs as plaintext forms, and thus the tenants should entrust the CSPs to use
cloud VPNs.
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Figure 3.3: Configurations of the existing cloud VPNs[4—6]

3.2 Migration in Cloud Computing

3.2.1 VM Migration

In the cloud environment, VMMs migrate their VMs to different physical machines because of load
balancing, fault tolerance, and maintenance. Generally, the source VMM transfers the entire VM'’s
memory pages to the destination VMM via the network until the VMs in the different physical machines
are consistent. Accordingly, attackers attempt to capture the transmitted memory pages for extorting
the contents of the migrated VM. In the semi-trusted cloud environment, the attackers can compromise
software components including VMMs and migration modules to relocate the VM to the compromised
environments. Thus, VM migration necessitates high security considerations [63].

Danev et al. [64] identified the security requirements for enabling secure migration of virtual TPM
(vITPM) based VMs in private clouds. The authors presented a vIPM key structure suitable for VM-
vTPM migration that is compliant with the TPM key usage recommendations, minimizes key regenera-
tion after vI'PM migration and prevents vIPM transaction linking. Using the proposed key structure,
the author presented a secure VM-vTPM migration protocol.

Wan et al. [65] proposed a secure vITPM migration that utilizes a trusted channel and property-
based attestation of the destination platform. With property-based remote attestation, the source and

remote hosts mutually verify the integrity and security conditions of the other hosts before migration.
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Then the source and destination hosts establish a trusted channel and the source host transfers the VM
and vITPM using the established channel securely.

Aslam et al. [66] presented a Trust Token based VM migration protocol that allows a VM migration
only if the destination platform is trustworthy. The proposed protocol does not rely on an active (online)
trusted third party, rather assumes Platform Trust Assurance Authority (PTAA) as a third party for
trust certification. The protocol leverages a Trust Assurance Level (TAL) that specifies the trust level
of the cloud platform. The TAL is computed using the TPM credentials, which measures the trust
level of hardware, and the Trust Token credential, which specifies the trust level of the software stack.
The protocol allows the VM migration and the execution of the migrated VM only if the TAL of the
destination platform is in the range of user-specified requirement.

Anala et al. [67] presented a framework for secure live migration of VMs. Using trusted computing,
the framework processes attestation and integrity verification of the source and destination hosts. The
framework leverages role-based access control policies to avoid VM hopping and useless migrations. The
framework also utilizes the encryption and digital signature for the confidentiality and the integrity of the
VM transmission. With a per-VM firewall, the framework controls the communication of VM with other
components. The framework introduces the host-based firewall and IDS to support network security for

the host platform.

3.2.2 Enclave Migration

Enclave migration is one of the technically challenging issues for introducing SGX into cloud com-
puting and thus few peer-reviewed papers on enclave migration can be found [24,25,68]. Instead, we
refer to Intel’s patents [7,8] as supplementary references.

Our previous work [68] identified problems in live migration of SGX-enabled VMs and presented a
conceptual scheme to address the problems without the actual implementation.

Gu et al. [24] presented a secure enclave migration in a self migration manner. They first introduced
an attack that causes data inconsistency and control inconsistency when the self migration manner of the
enclave occurs and proposed two-phase checkpointing to deal with the attack. Only the control thread
running in the migrated enclave can access the encryption key and the integrity key for protecting the
migrated enclave pages. Because this work is on the basis of the self migration manner, the authors
presented only conceptual design suggestions for new SGX instructions. Alder et al. [25] proposed an
enclave migration mechanism to guarantee the consistency of persistent state including sealed data and
monotonic counters. They introduced the possibilities of fork attack and roll-back attack if migrating the
persistent state of the enclave has been failed. Then, they presented an improved migration mechanism
to use Migration Sealing Key (MSK) for migrating the sealed data and send the monotonic counter
values in the migration data.

The mechanisms in [24, 25] necessitates enclaves to use additional libraries that support enclave
migration, and thus it is impossible to migrate the enclaves without the specific libraries. This additional
effort to use the specific libraries for the enclaves increases the implementation complexity. Moreover,
it is impossible for VMMs to suspend the VMs that utilize the enclaves and undergo the VM migration
in the self migration manner. Accordingly, it is also a challenging problem to sustain the consistency of
the SGX-enabled VMs. Because of these difficulties in cloud management, the self migration manner is
not widely used in cloud computing.

Intel presented two patents [7, 8] to enable live migration of SGX-enabled VMs in the managed

migration manner. Figure 3.4 depicts the conceptual diagram of Intel’s two patents [7,8]. Intel defines
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SGX domain control structure (SDCS) that stores the migration capable keys the controlling enclave
generate to be used as a replacement of platform keys. The modified EGETKEY uses the migration
capable keys stored in the SDCS in order that a source host can evict enclave pages for migration and
a destination host can load the evicted enclave pages for migration. To enable enclave migration, SDCS
also contains Version Arrays (VAs) that stores the version numbers (nonces) of the evicted EPC pages
and consists of 512 slots of 8 bytes. The source host transmits the SDCS to the destination host via a
trusted server or a peer-to-peer connection, and this SDCS protects the enclave pages for secure enclave
migration. For this transmission, the controlling enclave in the source host uses a pre-shared key or a
secure connection established with the controlling enclave in the destination host. Intel also presents
the instructions for migrating the enclave using SDCS. Currently, the practical implementation of these
patents is not realized yet. Moreover, the transportation of the migration capable keys is still conceptual
and needs the additional trusted server. These patents utilize VAs that consume the additional EPC

pages and the number of the EPC pages for VAs increases in proportion to the number of the evicted

EPC pages
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Figure 3.4: Conceptual diagram of Intel’s patents [7,8]

3.3 SGX in Cloud Computing

Recently, Microsoft announces its public review of Microsoft Azure Confidential Computing (ACC)
that introduces SGX into the cloud platform [69]. IBM also launches the offerings of the SGX-based
bare metal servers across all regions on IBM Cloud [70]. With the hardware-assisted isolated execution
of applications that SGX guarantee, the CSPs have been undertaking the adoption of SGX into their

cloud services for the protection of the tenants’ code and data.

3.3.1 Running Unmodified Applications in SGX

Cloud computing provides tenants with shared and configurable computing resources where the
tenants’ application can execute. This approach can benefit the tenants to run the applications faster
with the minimal management costs and the improved manageability. However, security administrators

are still reluctant to introduce cloud computing into their own organizations due to various security
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concerns, such as information disclosure. To address the security concerns, SGX has been leveraged to
run the unmodified tenants’ applications securely in cloud computing [19,71-74].

Haven [71] provides shielded execution of unmodified server applications (e.g., SQL server and
Apache) on a commodity OS (Windows). Haven leverages an in-enclave library OS which is derived
from Drawbridge [75] to run legacy binary code inside an enclave. Haven also utilizes an SGX remote
attestation mechanism to guarantee the security of the running applications without trusting cloud
providers.

SCONE [72] is a secure container mechanism for Docker that utilizes SGX to run Linux applications
securely in multi-tenant environments. SCONE provides a secure C standard library interface and sup-
ports user-level threading and asynchronous system calls for low-performance overhead. The prototypes
based on SCONE includes Apache, Redis, NGINX, and Memcached to show the operations of SCONE
and measure the performance overhead caused by SCONE.

Graphene-SGX (73] ports Graphene [76] to SGX for a fully-featured library OS where unmodified
Linux applications can execute on SGX. Graphene-SGX realizes the security improvements that contain
integrity support of dynamically-loaded libraries, enclave-level forking, and secure inter-process com-
munication (IPC). The evaluation of Graphene-SGX includes famous Linux web applications (Apache,
Redis, NGINX, and Memcached) and commonly used command-line applications (R, GCC, CURL).

PANOPLY [19] presents a micro-container which is a unit of code and data isolated in SGX enclaves.
This micro-container provides commodity Linux applications with the standard POSIX abstractions in-
cluding access to filesystems, network, multi-threading, multi-processing and thread synchronization
primitives. PANOPLY also supports an integrity property for the inter-enclave interactions by en-
forcing that the execution of the application follows the legitimate control and data-flow. PANOPLY
demonstrates 4 real-world Linux applications based on PANOPLY including Tor, H20, OpenSSL, and
FreeTDS.

SGXKernel [74] presents an in-enclave library OS that provides asynchronous cross-enclave com-
munication and preemptible in-enclave multi-threading. These properties of SGXKernel can achieve a
switchless design that obviates the needs of enclave transitions.

These SGX-based mechanisms leverage the hardware-assisted isolation and protection of applica-
tions’ code and data, so the inherent security concerns raised in cloud computing have been addressed.
However, without the consideration of enclave migration, these approaches can suffer from management

problems such as fault management, load balancing, system maintenance, etc.

3.3.2 Distributed Computations with SGX

Running entire legacy applications in enclaves have limitations because of the limited EPC size
(128MB) and the large Trusted Code Base (TCB) size [77]. Regarding of distributed computations in
cloud computing, it is more efficient to partition the applications in trusted and untrusted parts where
the actual data processing tasks are running in the enclaves [77-79].

Brenner et al. [78] presented the ZooKeeper Privacy Proxy (ZPP) that supports a lightweight and
transparent encryption layer for ZooKeeper [80]. ZPP runs inside a TEE (e.g., enclaves) to protect data
and naming information while mediating client connections.

VC3 [79] supports the secure execution of MapReduce [81] computations in cloud computing while
protecting the code and data and ensuring the correctness and completeness of the results. VC3 ex-
ecutes the actual data processing tasks inside enclaves while the underlying framework, Hadoop [82],

is unchanged. VC3 also deploys new protocols for secure distributed MapReduce computations. VC3
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provides a compiler that enforces region self-integrity invariants for all MapReduce code running within
the enclaves to prevent attacks of unsafe memory reads and writes.

SecureKeeper [77] is an enhanced version of the ZooKeeper that uses SGX to preserve the confiden-
tiality and basic integrity of ZooKeeper-managed data. SecureKeeper leverages two enclaves; an entry
enclave that protects the client-replica connection and the data security of the ZooKeeper data store,
and a counter enclave that processes special write requests of sequential nodes at the leader replica of

the ZooKeeper.

3.3.3 SGX in Networking

SGX, one of the commoditized Trusted Execution Environments (TEEs), has been considered to
address the security and privacy concerns in network applications because many networking applications
run on commodity hardware [83]. In [83], SGX shows the possibilities to solve policy privacy issues
in software-defined inter-domain routing, secure the Tor anonymity network, and introduce in-network
functions (middleboxes) into TLS sessions securely.

SGX has been also utilized to secure the existing network functions in Network Function Virtual-
ization (NFV) [84-89], edge computing [90], and Tor [91]. However, to the best of our knowledge, there
is no related work that uses SGX to address the privacy concerns in cloud VPN.

S-NFV [84] identifies security problems raised in the management of the internal states of NFV
applications. S-NFV utilizes SGX to securely isolate the state of NFV applications so that malicious
hosts and buggy applications cannot access them. As a proof-of-concept, S-NFV uses Snort [58] to
demonstrate the operations of S-NFV.

Trusted Click [85] presents an integration of SGX into Click [92] for supporting arbitrary NFV
applications securely. Each Click element receives encrypted packets from a gateway that outsources the
packet processing to NFV. Then, each Click element decrypts the encrypted packets using a decryption
key that the gateway sends it via a secure channel established after remote attestation of the Click
element. Finally, each Click element processes the decrypted packets and re-encrypts them before passing
to the next element. Trusted Click attempts to demonstrate the usability and the performance of SGX
in NFV. However, Trusted Click does not provide the key management of the decryption key and the
practical implementation of the NFV applications.

SGX-Box [86] presents a secure middlebox system that supports secure inspection on encrypted
traffic by using SGX. SGX-Box protects decrypted payloads and session keys within the SGX enclave,
and thus all payloads travel to other middlebox components as encrypted forms. To help middlebox
developers, SGX-Box supports SB lang that has characteristics of easy-to-use abstraction and a high-
level programming language. As a proof-of-concept, SGX-Box utilizes Intrusion Detection System (IDS).
SGX-Box proposes a secure out-of-band key sharing mechanism that allows an end server to share
its session keys with an SGX-Box middlebox through an out-of-band channel established via remote
attestation.

LightBox [87] provides a system that supports full-stack protected stateful middleboxes at native
speed. Using LightBox, enterprises can forward the packets to the SGX-enabled middleboxes securely
with all metadata, including low-level packet headers, packet size, count and timestamps. To this end,
LightBox introduces a virtual network device (etap) that allows access to fully protected network packets
at line rate without leaving the enclave. LightBox uses PRADS [93] that detects network assets in packets
based on predefined fingerprints and signatures, and implements a simple IDS that identifies malicious
patterns based on a TCP reassembly library libntoh [94].
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SafeBricks [88] protects generic network functions (NFs) from an untrusted cloud by executing
the NFs within enclaves. SafeBricks builds upon NetBricks [95] that provides a framework to build
and execute arbitrary NFs. SafeBricks leverages an architecture that partitions an NF application into
enclave code and non-enclave code to reduce TCB size. Also, SafeBricks develops an architecture that
uses shared memory where enclave thread and non-enclave thread compute without the need for enclave
transitions. Instead of using a separate enclave for each NF, SafeBricks supports chains of NF's within the
same enclave and utilizes Rust language to isolate the NFs. SafeBricks uses four different NF applications;
firewall, deep packet inspection, network address translation, and load balancer, for the evaluation.

EndBox [89] provides a decentralized system that executes middlebox functions on client machines
at the network edge. EndBox combines VPN and middlebox functions that SGX protects to ensure
that the middlebox processes all traffic, including encrypted packets. EndBox implements all middlebox
functions using the Click modular router [92] in the client machines. EndBox leverages VPN as the
only access point to the network, and thus VPN forwards all packets to the middlebox functions for
processing. After the middlebox functions complete their processing on the packets, VPN handles the
process packets to be transferred to the network in the encrypted forms. EndBox uses four different
middlebox functions; load balancing, IP firewall, intrusion detection, and prevention system, and DDoS
prevention, for the evaluation.

AirBox [90] supports fast, scalable and secure edge functions (EFs) for device-cloud interactions.
AirBox provides back-end driven onloading to the edge that guarantees fast and scalable EF provisioning,
integrity of EF execution, and confidentiality of the state stored at the edge.

SGX-Tor [91] leverages SGX to prevent code modifications and to restrict the information disclosure
to untrusted parties. SGX-Tor can reduce the power of Tor adversaries to that of a network-level
adversary, and thus the adversaries cannot see the internal state of Tor components. To this end, SGX-

Tor protects private Tor operations like TLS decryption and circuit demultiplexing from the adversaries.
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Chapter 4. SGX-VPN: Security-Enhanced Cloud VPN with
SGX

4.1 Problem Definition

4.1.1 System Models

We consider that each tenant 7" operates a VPN gateway Vr in its on-premise network, and Vp
connects to V¢ for managing VM instances in the VPC network as depicted in Figure 4.1. Hypervisors
where Vi and the VM instances run support SGX [22] and DPDK. Thus, the hypervisors run in com-
modity servers that support the SGX-enabled processors and the DPDK-compatible network interfaces.
Vr operates in the on-premise network with 7”s control, and we assume that Vp runs as intended. We
assume that Vo and the VM instances connect to the Intel-operated service called Intel Attestation
Service (IAS) [96] so that T' launches remote attestation via the protocol that the SGX implementation
supports.

z ( VPC Network |
Adv. CD

Vr =—&"= Ve T e
¢ IPsec VPN Q) VMs
E O ©

Adv.

Figure 4.1: System and Threat Models

4.1.2 Threat Models

We assume the semi-trusted cloud environment, and trust only enclaves and the mechanisms imple-
mented in the SGX-enabled processors. In the semi-trusted cloud environment, V- and VM instances
are usually running as intended, but they can become malicious when an attacker Adv. corrupts them
via security attacks or software bugs of hypervisors or cloud VPN. Because Adv. has full control over the
memory and the network resources of the hypervisors or the cloud VPN, Adv. can read all memory pages
of DRAM excluding the EPC and sniff all packets. As depicted in Figure 4.1, Adv. can sniff packets not
only between Vr and Vi but also within the VPC network (@) Adv. also attempts to acquire sensitive
information by reading the memory pages that the hypervisors or the cloud VPN access (@) Adv. can
simply discard key exchange messages and /or inbound/outbound packets; such a denial-of-service (DoS)
attack is out of scope in SGX-VPN.
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4.1.

3 Goals

To resolve the privacy concerns in cloud VPN, SGX-VPN should support the strong isolation of

key exchange and packet processing for each tenant. Adv. should not access any cryptographic keys
including credentials (C), ephemeral keys (EK), and session keys (SK). Adv. should not falsify the
SPs that SGX-VPN utilizes to process packets. T should convince that its intended SPs are running in
SGX-VPN indeed. We define the goals for SGX-VPN as follows.

G1:

G2:

G3:

G4:

Isolated execution of cloud VPN.

SGX-VPN should feature the isolated execution of key exchange and packet processing for each 7.
That is, SGX-VPN should guarantee the strong isolation rather than the weak isolation.

Secrecy of cryptographic keys.
SGX-VPN should guarantee the secrecy of cryptographic keys including C, EK, and SK by re-

stricting the access on these keys only to trustworthy parties. Thus, Adv. should not access any
cryptographic key so as to camouflage as a legitimate entity and sniff key exchange messages and
inbound /outbound packets. It is crucial to restrict the access on these keys only to trustworthy

parties because Adv. can attempt to steal the keys by reading the memory.

Integrity protection on SPs.

SGX-VPN should protect the integrity of running SPs and convince 7' that SGX-VPN operates
its intended SPs without any modification. Thus, Adv. should not falsify any SP in SGX-VPN in
order that Adv. cannot control any packet maliciously. If Adv. adds a rule to forward decrypted

packets to Adv., Adv. can obtain valuable information easily.

Protection on packets within the VPC network.

Adv. should not extort any content in packets transmitted inside the VPC network. It is essential

to encrypt all packets in the VPC network.

4.2 Design

4.2.1 Overview

SGX-VPN supports privacy-protected key exchange and packet processing by leveraging SGX. SGX-

VPN consists of SKE (SGX-based Key Exchange) and SPP (SGX-based Packet Processing), that guar-
antee the strong isolation of the VPN services for each tenant using enclaves. SKE includes an enclave
(ex), and SPP contains an SGX-based DPDK cryptodev (Cp) and an enclave (ep).

4.2.2 Terminologies

We define the notations for SGX-VPN as depicted in Table 4.1 where i is an index (i = 0,1,2,-).

4.2.3 SGX-VPN Architecture

The SGX-VPN architecture consists of Vp, Vi, and T’s VMs that enables SPP as depicted in

Figure 4.2. Vp performs remote attestation to V¢ for establishing a secure channel with ex of V. Using
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Table 4.1: Notations for SGX-VPN

| Notation | Description
SAp Security association for key exchange
SA; Security association for packet processing
SP; A set of rules for packet processing
E(k An encryption of input I using K
H(I) A hash calculation of input I
Kra A session key resulted from local attestation
Kra A session key resulted from remote attestation
SP; )
ST “ —— VPC Network
-7 C,CFG Tt

o | Ve e ws &)
SA;, SA; 3 SA; ‘
Vpr < . SKE >> SPP

C J

Figure 4.2: SGX-VPN architecture; provisioning C, CFG and SP; (-»), establishing SA; and SA; (=),
loading SA; (—»), and transmitting encrypted packets (—>)

the secure channel, Vp provisions C' and CFG to ex of Vo. CFG defines security configurations that
SGX-VPN utilizes to establish SA; and SA;.

Ve equips with SKE and SPP, and negotiates SA; and SA; with Vp using SKE. Each VM instance
enables SPP to protect the packets within the VPC network. Instead of implementing SKE into each VM,
SGX-VPN operates only one SKE in Vi to execute key exchange on behalf of each VM. To identify the
target VMs, Vr includes a new IKE payload, VM 1D, while executing key exchange. When establishing
SA;, SKE in V¢ loads SA; to SPP in V¢ and in each VM using K1 4 and Kg4, respectively.

SPP also needs SPs for processing packets. Vp provisions 7”’s intended SPs (SP;) to SPP using
Kpra. SP; consist of rules and their order numbers that specify the method for SPP to process the
packets. Using SA; and SP;, SPPs in V¢ and each VM process the packets. Vp can request the remote
verification of the running SP; to SPP in V- and each VM. For this verification, V7 verifies the evidence

that SPP generates against SP; via the remote attestation mechanism.

4.2.4 SKE: SGX-enabled Key Exchange for Cloud VPN

SKE provides the SGX-based key exchange by leveraging ex along with remote attestation. Vp
provisions C' and CFG to ek via a secure channel established by remote attestation. Then, SKE
establishes SA; and SA; with Vp by using ey that stores C and CFG securely and processes the tasks
for the key exchange payloads inside the enclave. This isolated execution of key exchange prevents Adv.

from accessing sensitive information.
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Provisioning C and CFG to egk.

Vr provisions C and CFG to ek that runs in V. Vp performs remote attestation with ex to
check if Vi uses the legitimate SGX-enabled processor and ek is not altered. After remote attestation
succeeds, a secure channel is established between Vp and ey, and Kr4 is produced that Vp uses for
encryption. Vp yields Ey by encrypting C and CFG using K4, and calculate Hy against Ey. Then,
Vr sends Ey and Hj to ek, and ex verifies Hy and decrypts them using Kr4. Finally, ex loads C' and
CFQ@ to its EPC to prevent other software components from accessing them. Algorithm 1 depicts the
protocol for provisioning C' and CFG to ek.

Algorithm 1 Protocol for provisioning C' and CFG

Vr < ek: Perform remote attestation - Kpa
Vr: Ey » E(C,CFG)kp,

VT2 Ho - H(E())

Vr = ex: Ey, Hy

ex: Check Hy and decrypt Ey - C, CFG
ex: Load C and CFG

SR A O A

Key exchange enclave

ek is an enclave that provides SKE with the key exchange functions. ex equips with the essential
features such as secure storage for C and CFG and secure operations for the key exchange payloads.
ek also provides cryptographic functions such as modular exponentiation, random number generation,
pseudo-random function (PRF), and symmetric algorithms. Using the isolated execution environment
that SGX guarantees, ey protects the security sensitive information from Adv.’s access. ey supports
three types of functions as denoted in Table 4.2: storage of Provisioned Data (PD), and generation of
Dynamic Data (DD) and contents for the Key Exchange Payloads (KEP).

Table 4.2: Functions of eg.

| | Type | Description

c PD Secure storage
CFG PD Secure storage
EK DD Ephemeral keys
SK DD Session keys for SA; and SA;
SA KEP SA proposals from CFG
KE KEP DH public numbers
N KEP Nonces
ID KEP Identifications from CFG
TS KEP Traffic selectors from CFG
AUTH KEP Authentication data using EK and C
ENC KEP Contents in encrypted payload

Processing key exchange for Vi

After Algorithm 1 succeeds, Vp can connect to Vi securely. Vpr and SKE in Vi perform Algorithm
2 to establish SA; and SAy. This algorithm extends the initial exchange of the existing key exchange
protocol [16]. Then, SKE in Vi loads SAy to SPP in Vi using a secure channel established by local
attestation. SKE can support any authentication method, but we use the pre-shared key (PSK) method

for simplicity.
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Algorithm 2 Key exchange protocol for Ve

Vr - Ve @ SAil, KEi, Ni

Ve - Vp @ SArl, KEr, Nr

Vr, Vo : Establish SAj

Vr » Ve @ ENCi « E(IDi, AUTHi, SAi2, TSi, TSr)ga,
Ve - Vp : ENCr « E(IDr, AUTHr, SAr2, TSi, TSr)sa4,
Vr, Vo : Establish SA,

Ve (SKE) < Vi(SPP): Perform local attestation — K 4
Vc(SKE : El d E(SAO)KLA

Ve(SKE): Hy. » H(E)

VC(SKE = Vc(SPP) E],Hl

: Ve(SPP): Check H; and decrypt E; — SAg

Ve (SPP): Load SAg

© NSO RN

-
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Suppose that Vp and Vi act as the initiator and the responder, respectively. Vp and SAj in
Ve exchange the key exchange payloads including SA (SAil, SArl), KE (KEi, KEr), and N (Ni, Nr)
to establish SA;. Then, Vp and SA; in Vi exchange the payloads containing ID (IDi, IDr), AUTH
(AUTHi, AUTHr), SA (SAi2, SAr2), TS (TSi, TSr) to establish SA;. When receiving the payloads,
SKE delegates the payload processing to ey for generating SA; and SAy. ex generates EK, SK, SAj,
and SAj in the isolated memory where ek runs and this sensitive data does not leave eg.

Once Vp establishes SAy with SKE in Vi, SKE executes local attestation to ep of V. In this
attestation, SKE in Vi interworks with e to establish K4 with ep of V. ex of Vi produces E; by
encrypting SAg using K, 4, and calculates H; against E;. Then, SKE in Vi sends E; and H; to ep of
Ve. ep of Vi loads SA after checking H; and decrypting E; using K 4.

Processing key exchange for SPP of VMs

SGX-VPN adds SPP to each VM to protect packets within the VPC network. After establishing
SA; and SAy with Vi, Vr establishes additional SA; (i > 1) with SKE in Vi for SPPs of VMs using
the existing SA;. Then, SKE in V¢ loads SA; to SPP of the VMs using secure channels established by

remote attestation.

Algorithm 3 Key exchange protocol for SPP

Vr - Ve : ENCi « E(SAi, Ni, TSi, TSr, VMID, [VMID])s 4,
Ve —» Vp : ENCr « E(SAr, Nr, TSi, TSr)sa4,

Vr, Ve @ Establish SA;

Ve <> SPP: Perform remote attestation - Kgra

Vct E,; - E(SAi)KRA

Vct Hi - H(E,)

VC - SPP: Ei,H,‘

SPP: Check H; and decrypt E; - SA;

SPP: Load SA;

© PSR

Algorithm 3 depicts the protocol that establishes SA; for SPP of the VMs. This algorithm extends
the CREATE_CHILD_SA exchange of the existing key exchange protocol [16]. SKE in Vi includes a new
IKE payload (VMID) that indicates the target VMs equipped with SPP. If the key exchange message
includes only one VMID, the established SA; protect packets between Vi and SPP of the VM indicated
by VMID. Otherwise, the established SA; protects packets between two SPPs of the VMs indicated by
VMIDs.
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When establishing SA; for SPPs of the VMs with V, SKE in Vi executes remote attestation to
eps of SPPs. This remote attestation produces Kr4 between ex of Vi and ep of SPP. ex of Vi yields
FE; by encrypting SA; using K4, calculates H; against E;. Then, SKE in V¢ sends E; and H; to ep of
SPP. ep of SPP loads SA; after checking H; and decrypting E; using Kr4.

4.2.5 SPP: SGX-enabled Packet Processing for Cloud VPN

SPP processes actual packets arriving at V- or each VM using the rules defined in the SPs and S A;
sent from SKE in Vz. Vp provisions its intended SP; to ep of SPP. SP; includes the rules to process
all PROTECT packets and to allow remote attestation (BYPASS). Thus, SPP simply drops the packets
which are not the target of PROTECT excluding remote attestation (BYPASS).

SPP leverages DPDK to process the packets using ep. Because enclaves run only in the user space,
SPP should leverage this framework for supporting fast packet processing in the user space using ep.
SPP introduces Cp that is an SGX-based DPDK cryptodev to invoke ep.

Provisioning SPs to ep

Vr provisions SP; to ep of SPP that runs in Vi or each VM. V7 performs remote attestation with
ep to check if Vo or SPP uses the legitimate SGX-enabled processors and ep launched in Vi or SPP is
not forged. Vi provisions SP; to ep securely by using K4 as depicted in Algorithm 4. Then, ep loads

SP; to its EPC to prevent other software components from accessing or falsifying SP;.

Algorithm 4 Protocol for provisioning SP;

Vr < ep: Perform remote attestation - Kpa
VT: Ei nd E(SPi)KR_A

VT2 H.,; - H(El)

Vr - ep: E;, H;

ep: Check H; and decrypt E; - SP;

ep: Load SP;

S @R W

SP; is a chain of rules that define how SPP behaves on each packet such as PROTECT, BYPASS,
or DISCARD. When a packet arrives at SPP, SPP invokes ep to find the rule that matches the packet
by traversing SP; in order. Thus, if ep cannot find the matched rule for the packet at a specific trial,
ep examines the next rules in turn at the next trials. If ep finds the matched rule, SPP performs the
action indicated by ep without traversing the next rules further. Accordingly, the integrity of the rules
and their order information is essential for SPP to process packets as intended by 7.

SP; consists of tuples, and each tuple composes of a rule (r,,) and their associated order (o,,) where
n is an index of each tuple. 7, includes IP protocol version (ipv4 or ipv6), direction (in or out),
action (bypass, protect, or discard), priority(1,2,3,), source and destination addresses, source and
destination ports (0 - 65535), and protocol (0 - 255). The tuple also contains the SPI(spi) if the action
defined in the tuple is protect. o,, contains the order number (1,2,3,--) of r,, that SPP examines each

packet against SP;. The lowest number of 0,, means the last r,, that SPP examines.

Packet processing enclave

ep is an enclave that provides SPP with the packet processing functions based on SGX SSL [97].
When receiving SP; from Vp via a secure channel between Vp and ep, ep loads SP; inside the enclave.

After Vi establishes SA; for SPP, ep also receives SA; via another secure channel between ex and ep
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and loads SA; inside the enclave. SPP supports the protection on SA; and SP; because ep receives them
via the secure channels resulted from remote attestation and processes the packets inside the enclave.
This isolated execution of packet processing prevents Adv. from accessing SA; and SP; illegally.

When receiving a packet, SPP first invokes ep to retrieve each entry of SP; against the packet.
If ep finds the matched one, SPP processes the packet through ep (PROTECT) or depending on the
response from ep (BYPASS, DISCARD). If the packet is the target of BYPASS or DISCARD, SPP
simply forwards the packet to the destination or drops the packet. In the case of PROTECT, ep returns
the SPI to SPP for performing the ESP processing on the packet. Using the SPI received from ep,
SPP invokes Cp to encrypt (outbound) or decrypt (inbound) the packet. Then, Cp calls ep in turn, to
encrypt or decrypt the packet.

SPP presents an optimized invocation between Cp and ep. The existing cryptodev based on
OpenSSL [98] processes each packet as follows repeatedly; feeding Initialization Vector (IV) to the en-
cryption or decryption context, encrypting or decrypting the packet, authenticating the packet, finalizing
encryption or decryption, and finalizing authentication. If SPP applies this approach in a straightforward
way, the throughput decreases drastically because of the frequent enclave transitions. To overcome this
inefficiency, SPP realizes the optimized invocation to reduce the number of enclave transitions. First,
Cp executes the encryption/decryption of packets along with IVs at one invocation of ep. Second, Cp
does not call ep for finalizing the encryption/decryption if the packets are aligned to the block size of
the underlying cryptographic algorithm. Third, Cp performs the authentication of the packets at one

invocation of ep.

Processing packets using ep

SPP processes inbound and outbound packets using ep as depicted in Figure 4.3.

[ DISCARD SPP
i f i
Packet — Handler BYPASS —| Forwarding —— Packet

'

PROTECT

=

Cp

Figure 4.3: Packet processing using ep; packet flows (—») and invocations of ep (—>)

When receiving an outbound packet, SPP calls ep to find matched rule from SP; (@) Depending
on the indication from ep, SPP processes the packet: BYPASS, DISCARD or PROTECT. If the packet
is the target of PROTECT, SPP invokes ep via Cp to encrypt and integrity protect the packet using
the SPI from ep (@) Then, SPP forwards the processed packet to be routed if the packet is the target
of BYPASS or PROTECT.
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The inbound packet processing is quite different from the outbound packet processing. When re-
ceiving an inbound packet, SPP examines if the packet needs SA lookups by checking the presence of
the SPI in the packet’s header. If the packet includes the SPI, SPP invokes ep via Cp to integrity check
and decrypt the packet using SA; indexed by the SPI (@) After SPP completes the integrity check
and decryption on the packet, ep checks if the packet matches with SA; (@) If the verification against
S A; fails, SPP drops the decrypted packet. If the packet does not include the SPI, SPP calls ep to find
matched rule for the packet (@) Using the indication from ep, SPP processes the packet: BYPASS
or DISCARD. Then, SPP also forwards the processed packet to be routed if the packet is the target of
BYPASS or PROTECT.

Algorithm 5 Pseudo-code for outbound packet processing

1: 7 « search-rule(p) via ep

2: if r indicates discard then drop(p)

3: else if r indicates bypass then enqueue(p)
4: else if r indicates protect then

5: if spi found then enqueue(p, spi)

6: else drop(p)

7: else drop(p)

8: p « dequeue()

9: if p is enqueued with spi then

10:  p « process-outbound(p, spi) via Cp (ep)
11: return route(p)

Algorithm 5 shows the pseudo-code of processing the outbound packets using ep. SPP processes an

outbound packet (p) using ep as follows:
1. SPP calls ep to search the rule (r) matched to p.
2. If ep finds the matched rule, ep returns the result (bypass, discard or protect/spi) to SPP.
3. SPP drops p if ep indicates discard or ep cannot find any matched rule.
4. SPP simply enqueues p if p is the target of bypass.
5. SPP enqueues p with spi if p is the target of protect. If no SPI for p is found, SPP drops p.
6. SPP dequeues p.
7. SPP calls ep via Cp to encrypt p with integrity protection if it is enqueued with spi.
8. SPP routes the processed packet (protect or bypass) to forward p to the destination.

Algorithm 6 shows the pseudo-code of processing the inbound packets using ep. SPP processes an

inbound packet (p) using ep as follows:
1. SPP checks if p includes spi in its header.
2. If p does not include spi, SPP calls ep to search the rule (r) matched to p.
3. If ep finds the matched rule, ep returns the result (bypass or discard) to SPP.
4. SPP drops p if ep indicates discard or ep cannot find any matched rule.

5. SPP simply enqueues p if p is the target of bypass.
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Algorithm 6 Pseudo-code for inbound packet processing

if p’s header includes spi then
if SA; for spi found then enqueue(p, spi)
else drop(p)

else
r « search-rule(p) via ep
if r indicates discard then drop(p)
else if r indicates bypass then enqueue(p)
else drop(p)
: p < dequeue()
10: if p is enqueued with spi then
11:  p « process-inbound(p, spi) via Cp (ep)
12: if p is not valid with SA; then drop(p)
13: return route(p)

A A S o 2 e

©o

6. If p includes spi, SPP enqueues p with spi. If ep cannot find any SA; that spi indexes, SPP
drops p.

7. SPP dequeues p.
8. SPP invokes ep via Cp to integrity check and decrypt p if it is enqueued with spi.

9. ep checks if the processed packet is appropriate by matching the packet against the selectors defined
in SA;. If this verification fails, SPP drops p.

10. SPP routes the processed packet (protect or bypass) to forward p to the destination.

Remote verification on security policies.

SPP provides remote verification on SP; to 7. This verification leverages remote attestation to
generate the evidence on SP; as depicted in Algorithm 7. Vp sends a nonce (N) with a command
message (msg) to initialize the remote verification. After receiving N and msg via SPP, ep requests
QE to generate QUOTE against N, msg, and SP;. Then, ep replies SP; and QUOTE to Vp, and Vp
verifies QUOTE using IAS. If the verification succeeds, T' checks if SP; is correct or not.

Algorithm 7 Protocol for remote verification of SP;
1: Vp - SPP: N, msg
2: ep: Generate QUOTE against N, msg, and SP;
3: SPP —» Vp: SP,, QUOTE
4: Vp: Verify QUOTE and SP;

4.3 Evaluation

4.3.1 Analysis

We evaluate SGX-VPN from the perspective of the goals defined in Section 4.1.3. We utilize Scyther
[20], one of formal analysis tools, to prove secrecy of cryptographic keys (G2) and integrity protection
of SPs (G3).

Scyther [20] is an automated protocol verification tool that supports the verification, the falsification,

and the analysis of security protocols. Because Scyther is based on a pattern refinement algorithm,
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this tool can prove the correctness of protocols for an unbounded number of sessions with guaranteed
termination and also assist in protocol analysis by providing classes of protocol behavior (or classes
of attacks). Due to the performance of Scyther, it is also possible to support multi-protocol analysis.
Scyther leverages the spdl language to describe a protocol, and this language is based on the operational
semantics found in [99]. With these features, Scyther enables to verify if the security claims in the
protocol description hold or not; to produce appropriate security claims for a protocol and verify them
automatically; to analyze the protocol by executing complete characterization. Characterization means
that Scyther analyzes the protocol, and provides a finite representation of all traces that contain an
execution of the protocol role. This tool can verify that a certain value is confidential (secrecy) or
certain properties (authentication) should hold for the communication partners. Scyther is appropriate
for the analysis of SGX-VPN because this tool can prove the secrecy of cryptographic keys including the
key for integrity protection on SPs.

SGX-VPN relies on ex and ep to execute key exchange and packet processing, respectively. SGX-
VPN provisions the sensitive data to these enclaves by leveraging secure channels established by remote
attestation. With the strong isolation that SGX supports [19] and the securely provisioned data, the
enclaves in SGX-VPN perform the tasks in the isolated memory region without revealing any information.
Moreover, SGX-VPN provides each tenant with its own dedicated enclaves for cloud VPN. Thus, Adv.
cannot violate the isolated execution of cloud VPN for each tenant that SGX-VPN supports even in the

semi-trusted cloud environment. (G1)

/*
* Protocol for algorithm 1
* Secure provisioning of C and CFG

*/
// The protocol description
usertype DataForProvisioning;

hashfunction H1;

protocol algorithmi (I, R)

{
# V_T
role I
{
fresh CCFG: DataForProvisioning;
send_1(I, R, {CCFG}k(I,R), H1({CCFG}k(I,R)));
claim(I, Secret, CCFG);
}
# V_C(eK)
role R
{
var CCFG: DataForProvisioning;
recv_1(I, R, {CCFG}k(I,R),H1({CCFG}k(I,R)));
claim(R, Secret, CCFG);
}
}

Figure 4.4: Scyther script for Algorithm 1

Vr provisions C to ex via a secure channel established as a result of remote attestation. ey
generates EK inside the enclave, and this ephemeral key does not leave the enclave. eg derives SK
from FK and sends SA; including SK to ep through a secure channel established by local and remote
attestation. ep processes packets using SK inside the enclave, and this session key never leaves the

enclave. Thus, Adv. cannot extort C, FK, and SK from the secure channels because only legitimate
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Claim Status Comments
algorithm1 | algorithm1,11 Secret CCFG Ok Verified  No attacks.

R  algorithm1,R1  Secret CCFG Ok Verified  No attacks.

Done.

Figure 4.5: Analysis result of Algorithm 1

enclaves and SGX-enabled processors can perform attestation successfully. Furthermore, Adv. cannot
access the isolated memory region where the enclaves execute and these keys reside. We perform formal
analysis on Algorithm 1, 2, 3 using Scyther to prove the secrecy of these keys. Figure 4.4, 4.6, and 4.8
show the Scyther scripts for this analysis. Figure 4.5, 4.7, and 4.9 show the analysis results from Scyther.
(G2)

Vr provisions SP; to ep via a secure channel established by remote attestation. Using remote
attestation, SPP provides T' with an on-demand verification that checks if the intended SP; is running
in ep without any illegal modification. Thus, Adv. can neither alter SP; transferring to ep nor generate
the valid QUOTE because only legitimate enclaves and SGX-enabled processors can perform attestation
successfully. Moreover, Adv. cannot access the isolated memory region where SP; resides. We also
perform formal analysis on Algorithm 4, 7 using Scyther to prove the secrecy of the provisioned SP; and
the key for generating the valid QUOTE. Figure 4.10 and 4.12 show the Scyther scripts for this analysis.
Figure 4.11, 4.13, and 4.9 show the analysis results from Scyther. (G3)

Adv. cannot sniff the packets transmitted via SGX-VPN because SPP encrypts and integrity-protects
all packets between V7 and V- and within the VPC network using ep via Cp. To this end, SGX-VPN
presents an architecture that adds SPP to each VM in the VPC network and manages the security

associations efficiently. (G4)

4.3.2 Comparison

Table 4.3 shows the comparison between SGX-VPN and the existing approaches analogous to SGX-
VPN [2,3] against the goals defined in Section 4.1.3. Protego [2] and sVPN [3] provide each tenant with
the hypervisor-based shared VPN services (weak isolation [18]). While SGX-VPN leverages enclaves
that guarantee the strong isolation [19] to support the isolated execution of VPN services for each
tenant. In the semi-trusted cloud environment, Adv. can extort cryptographic keys (e.g., session keys)
of Protego and sVPN because Adv. can compromise the hypervisor. In SGX-VPN;, the cryptographic
keys reside in the isolated memory region where Adv. cannot access, and the session keys transfer to
other entities only if the entities have been attested to be trustworthy by remote attestation. None of
the existing approaches provides the tenants with remote verification of the SPs running in cloud VPN.
Like the existing approaches, SGX-VPN also encrypts and integrity protects all packets within the VPC
networks. We mainly focus on the evaluation of the security aspects defined in the goals of Section 4.1.3.
This evaluation is useful for the government or the military because cloud VPNs for these organizations

can consider the security aspects as being more important than the performance.
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/*
* Protocol for algorithm 2
* JKEv2 & Send IPsec SA for V_C securely
*/

hashfunction prf, KDF;

hashfunction H1;

hashfunction g, h;

hashfunction MAC;

usertype Number, SecurityAssociation, TrafficSelector, IPsecSA;
const 0: Number;

const SA1 ,SA2, SA3: SecurityAssociation;

const TSi, TSr: TrafficSelector;

protocol algorithm2(I, R, S)

{
# V_T
role I {
fresh i, Ni, SPIi: Nonce;
var Nr, SPIr: Nonce;
var Gr: Ticket;
send_1( I, R, SPIi, 0, SA1, g(i), Ni );
recv_2( R, I, (SPIi,SPIr), SA1, Gr, Nr );
send_!3( I, R, (SPIi,SPIr), {I, R, MAC(k(I,R), SPIi, 0, SA1, g(i), Ni, Nr, prf(KDF(Ni,
Nr,h(Gr,i) ,SPIi,SPIr), I)), SA2, TSi, TSr}KDF(Ni,Nr,h(Gr,i),SPIi,SPIr) );
recv_'4( R, I, (SPIi,SPIr), {R, MAC(k(I,R), SPIi, SPIr, SA1, Gr, Nr, Ni, prf (KDF(Ni,Nr
,h(Gr,i),SPIi,SPIr), R)), SA2, TSi, TSr}KDF(Ni,Nr,h(Gr,i),SPIi,SPIr) );
claim(I, SKR, KDF(Ni,Nr,h(Gr,i),SPIi,SPIr));
}
# V_C(eK)
role R {
fresh r, Nr, SPIr: Nonce;
fresh SA4: IPsecSA;
var Ni, SPIi: Nonce;
var Gi: Ticket;
recv_1( I, R, SPIi, 0, SA1, Gi, Ni );
send_2( R, I, (SPIi,SPIr), SA1, g(r), Nr );
recv_!3( I, R, (SPIi,SPIr), {I, R, MAC(k(R,I), SPIi, 0, SA1, Gi, Ni, Nr, prf (KDF(Ni,Nr
,h(Gi,r),SPIi,SPIr), I)), SA2, TSi, TSr}KDF(Ni,Nr,h(Gi,r),SPIi,SPIr) );
send_'4( R, I, (SPIi,SPIr), {R, MAC(k(R,I), SPIi, SPIr, SA1, g(r), Nr, Ni, prf(KDF(Ni,
Nr,h(Gi,r),SPIi,SPIr), R)), SA2, TSi, TSr}KDF(Ni,Nr,h(Gi,r),SPIi,SPIr) );
claim(R, SKR, KDF(Ni,Nr,h(Gi,r),SPIi,SPIr));
send_5(R, S, {SA4}k(R,S), H1({SA4}k(R,S)));
claim(R, Secret, SA4);
}
# V_C(eP)
role S{
var SA4: IPsecSA;
recv_5(R,S, {SA4}k(R,S), H1({SA4}k(R,S)));
claim(S, Secret, SA4);
}
}

Figure 4.6: Scyther script for Algorithm 2
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Claim Status  Comments

algorehm2 | agonthm2 Secret KOFIN A FGe il S9N 590 ok No stiacks within bounde.
R agonthm2 R Secrat KOFIRIL N R 520 5FI0 ok No attacks wthin bounde.
Fgorthm2R2Z  Secret SAL Ok No sttacks within bounds.
5 agorthm25'  Secret SAC L No attacks within bounds.
Dorm
AICT

Figure 4.7: Analysis result of Algorithm 2

/*
* Protocol for algorithm 3
* Send IPsec SA for VMs securely
*/
hashfunction prf, KDF;
hashfunction H1;
hashfunction g, h;

usertype SecurityAssociation, IPsecSA;
const SA1 ,SA2, SA3: SecurityAssociation;

protocol algorithm3(I, R, S)
{

# V_T

role I {

fresh i, Ni: Nonce;
var Nr: Nonce;

var Gr: Ticket;

send_!1( I, R, {SA3, Ni, g(i)}k(I,R) );
recv_!'2( R, I, {SA3, Nr, Gr}k(I,R) );

claim( I, SKR, KDF(k(I,R),h(Gr,i),Ni,Nr) );
}

# V_C(eK)

role R {

fresh r, Nr: Nonce;
fresh SA4: IPsecSA;
var Ni: Nonce;

var Gi: Ticket;

recv_!'1( I, R, {SA3, Ni, Gi}k(R,I) );
send_!2( R, I, {SA3, Nr, g(r)}k(R,I) );

claim( R, SKR, KDF(k(R,I),h(Gi,r),Ni,Nr) );

send_3(R, S, {SA4}k(R,S), H1({SA4}k(R,S)));
claim(R, Secret, SA4);
}

# VMs (eP)
role S{
var SA4: IPsecSA;
recv_3(R, S, {SA4}k(R,S), H1({SA4}k(R,S)));
claim(S, Secret, SA4);
}
}

Figure 4.8: Scyther script for Algorithm 3
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Claim Status  Comments

lgorthed agorthman Secrot KDFIK|LR) hGr,i| NN ok No attacks mettin Dounds.
R sgonthmd RY Secret KDFIKIRI MG N N s No attacks mettin Dounds,
wgorithm3 R2  Secrel SAL o No ot lacks mettin Dounds
S ogorthm3 St  Secrot 5AL & No attacks wethin Dounds.
Cone
—

Figure 4.9: Analysis result of Algorithm 3

/*

* Protocol for algorithm 4
* Secure provisioning of SP

*/

// The protocol description
usertype DataForProvisioning;

hashfunction H1;

protocol algorithm4 (I, R)

{

# V_T
role I

{

}

fresh SP: DataForProvisioning;
send_1(I, R, {SP}k(I,R), H1({SP}k(I,R)));
claim(I, Secret, SP);

# eP (V_C/VMs)

role R
{

var SP: DataForProvisioning;
recv_1(I, R, {SP}k(I,R),H1({SP}k(I,R)));
claim(R, Secret, SP);

Figure 4.10: Scyther script for Algorithm 4

Claim Status Comments
algorithmd | algorithm4, |1 Secret SP Ok Verified  No attacks.

R  algorithm4 R1  Secret SP Ok Verified  No attacks.
Done.

Figure 4.11: Analysis result of Algorithm 4
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/*
* Protocol for algorithm §
* Remote werification of SP
*/

// The protocol description

usertype SecurityPolicy, QuoteKey, VerificationCommand;
usertype QuoteResult;

hashfunction H1;

const msg: VerificationCommand;

const PK: Function;

secret QK: Function;

inversekeys (PK, QK);

protocol algorithm5(I, R, IAS)

{

macro Quote = H1(N, SP, QK);

# V_T

role I

{
fresh N: Nonce;
var SP: SecurityPolicy;
var Result: QuoteResult;
send_1(I, R, N, msg);
recv_2(R, I, SP, Quote);
send_3(I, IAS, Quote);
recv_4(IAS, I, Result);
claim(I, Secret, QK);

}

# eP (V_C/VMs)

role R

{
var N: Nonce;
fresh SP: SecurityPolicy;
recv_1(I, R, N, msg);
send_2(R, I, SP, Quote);
claim(R, Secret, QK);

}

# Attestation Service

role IAS

{
var SP: SecurityPolicy;
var N: Nonce;
fresh Result: QuoteResult;
recv_3(I, IAS, Quote);
send_4 (IAS, I, Result);
claim(IAS, Secret, QK);

}

}

Figure 4.12: Scyther script for Algorithm 7

Table 4.3: Comparison with the existing approaches; O - support, x - not support, N/A - Not Available.

| | SGX-VPN | sVPN [3] | Protego [2] |

G1 Strong Weak Weak
G2 O x X
G3 O N/A N/A
G4 ©) ©) ©)

G1 - Which isolation supports?

G2 - Does secrecy of cryptographic keys support?
G3 - Does integrity protection on SPs support?
G4 - Does encryption on all packets support?
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Claim Status Comments

algorithm5 | algorithm5,11 Secret QK Ok Verified  No attacks.
R algorithm5,R1 Secret QK Ok Verified  No attacks.
IAS  algorithm5,IAS1  Secret QK Ok Verified  No attacks.

 Done.
AY Do |

Figure 4.13: Analysis result of Algorithm 7
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(b) SA management in SGX-VPN

Figure 4.14: SA management in BASE and SGX-VPN

4.3.3 Efficiency in SA management

SGX-VPN presents an architecture that has benefits in the number of SAs and key exchange mes-
sages for protecting packets within the VPC network as shown in Table 4.4 and Figure 4.14. In the
existing cloud VPN (called BASE), each VM should manage additional N SA; and N SA;. However,
SGX-VPN reduces this addition only to N because SGX-VPN uses the existing SA; of V- to manage
N SA; for each VM. Moreover, each VM in BASE should process additional 4N key exchange messages
because the existing key exchange protocol [16] necessitates the 4-way handshake protocol to establish
each SA; and SA;. Meanwhile, SKE in SGX-VPN processes only 2N additional messages because SGX-
VPN extends the existing 2-way handshake protocol [16] to negotiate additional SA; using the existing
SAj. For the SA management, SGX-VPN leverages SKE running in V¢ that the CSPs operate reliably.
However, BASE utilizes each VM for the SA management, and thus tenants should guarantee the reliable
operations of the VMs.
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Table 4.4: Additional SAs and key exchange messages for packets within the VPC network; N is a
number of VMs.

| [ BASE | SGX-VPN |

SAr N 0
SA; N N
key exchange messages AN 2N
SA Management entity | each VM | SKE in Vg

4.3.4 Performance

The utilization of SGX into cloud VPN introduces inevitable performance penalty in processing
packets. SPP invokes ecalls to execute features implemented in ep. These ecalls usually consumes

8000 CPU cycles, and this overhead is 50 times more expensive than a system call [100].

SPP
shared buffer (queue)
/ i
y DPDK A
Intel NUC8i7THVK
\ UIO Driver SGX Driver
R

ethernet ports SGX-enabled

processor

Figure 4.15: A prototype of SPP

Implementation

We have implemented a prototype of SPP in an Intel NUC8i7THVK (Core i7-8809G 3.10GHz quad
core CPU) machine running Ubuntu 16.04 LTS (64-bit) as shown in Figure 4.15. We implement Cp that
is compatible with DPDK 18.11 [21] and leverages SGX SSL [97]. We use the SGX Software Development
Kit (SDK) for Linux [101] to implement ep.

The prototype utilizes a shared buffer, queue of DPDK framework, between ep and Cp to process
packets. Receiving the memory addresses of the packets from Cp, ep processes the packets without
copying the packets into its own EPC pages. This approach enhances the throughput of packet processing
and is widely deployed in previous work [88]. When SPP receives the packets from ethernet ports, SPP
enqueues the packets into the shared buffer. Then, Cp processes the packets via ep and SPP forwards
the processed packets to the destination.

First, we implement Cp to invoke ecalls that ep provides for processing packets in a straight-
forward way as OpenSSL-based cryptodev in DPDK supports (called SPP V1). That is, to encrypt
a single outbound packet or decrypt a single inbound packet, SPP Cp invokes three ecalls to call
C_En/DecryptInit_ex() for feeding an IV to the existing en/decryption context, C_En/DecryptUpdate
for performing encryption or decryption, and C_En/DecryptFinal_ex() for finalizing encryption or de-

cryption. To generate or verify the authentication data of the packet, Cp also invokes three ecalls to
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Table 4.5: Packet processing that ep supports for SPP V1

| Operation | ecall I Description |
sgx_packet_encrypt_init () Feed an IV to the existing
Encryption encryption context inside ep
sgx_packet_encrypt_update () Perform packet encryption inside ep
sgx-packet_encrypt_final() Finalize packet encryption inside ep
sgx-packet_decrypt_-init () Feed an IV to the existing
Decryption decryption context inside ep
sgx-packet_decrypt_update () Perform packet decryption inside ep
sgx_packet_decrypt_final() Finalize packet decryption inside ep
sgx_packet_auth_update () Perform packet authentication
Authentication inside ep
sgx-packet_auth_final () Finalize packet authentication
inside ep
sgx-packet_auth_clear() Clear the authentication context
inside ep

call C_HMAC Update () for performing authentication, C_HMAC Final() for finalizing authentication, and
C_HMAC_Init_ex() for clearing the used authentication context. For this implementation, ep implements
ecalls as depicted in Table 4.5.

As an initial benchmark, we measure the throughput of SPP V1 as shown in Table 4.6. We utilize
AES128-CBC HMAC-SHA1, which is one of secure encrypt-then-MAC cipher suites and a widely used
cipher suite in benchmarking DPDK-based IPsec gateway, for this measurement. Regarding of the ESP
tunnel mode that SGX-VPN supports, encryption only and MAC-then-encrypt configurations are proven
to be insecure [102,103]. The throughput of SPP V1 shows 470.70Mbps against 986.3Mbps, and thus
52.28% packet loss happens. The number of enclave transitions per packet causes this deterioration

because the only difference is the utilization of an enclave and enclave transitions are expensive [104].

Table 4.6: Throughput of SPP V1

| Packet size(byte) | Throughput(Mbps) |

64 29.26

72 32.10
128 51.92
256 93.11
512 175.98
768 252.73
1024 336.44
1280 409.71
1420 470.70

Thus, we optimize SPP V1 to minimize the number of enclave transitions for processing packets
using ep (called SPP V2). For this optimized implementation, ep implements ecalls as depicted in
Table 4.7. To this end, ep implements a function to encrypt or decrypt packets with feeding IVs to the
existing cryptographic contexts inside ep at one ecall. Moreover, according to RFC 4303 [26], ESP
packets include the padding field to ensure that the original packets to be encrypted are a multiple of the
algorithm’s block size. Thus, SPP adds padding fields to outbound packets, and Cp adds a routine to
check if the packet size is aligned to the block size of the underlying block algorithm. If the packet size is
aligned, Cp does not invoke ecall to finalize encryption or decryption. ep also implements a function to

perform the packet authentication at one ecall. This merging mechanism reduces the number of ecalls
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Table 4.7: Packet processing that ep supports for SPP V2

| Operation | ecall I Description |
. sgx_packet_fast_encrypt_update() | Perform packet encryption while
Encryption feeding an IV to the existing
encryption context inside ep
sgx-packet_encrypt_final() Finalize packet encryption inside ep
. sgx-packet_fast_decrypt.update() | Perform packet decryption while
Decryption feeding an IV to the existing
decryption context inside ep
sgx_packet_decrypt_final() Finalize packet decryption inside ep
Authentication | sgx_packet_fast_auth() Perform and finalize packet
authentication with clearing the
authentication context inside ep

from six to two at the most. Consequently, the prototype executes only two ecalls to en/decrypt and

authenticate a single packet.
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Figure 4.16: Comparison of Throughput and Packet Per Second (AES128-CBC HMAC-SHA256)

Throughput and Latency

We measure the throughput and latency of SPP in processing packets via ep. For this measurement,
we leverage SPP V2 (called SGX-VPN), follow a standard RFC 2544 [105], and leverage Agilent N2X,

a network tester.

OpenSSL-based cryptodev (called Original).

Figure 4.16 and 4.17 show the maximum effective throughput of SGX-VPN, which is a ratio of the
maximum theoretic rate to the actual rate when the packet loss does not happen. SGX-VPN shows high
throughput (89%, 95%, and 96%), which are almost identical to those of Original when the packet size

For the comparison, we leverage the existing IPsec implementation that uses the

is more than 1024 byte. The average latencies of SGX-VPN for this packet size are also similar to those

of Original as shown in Table 4.8.
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Figure 4.17: Comparison of Throughput and Packet Per Second (AES128-CTR HMAC-SHA256)

However, as the packet size decreases, SGX-VPN shows the lower throughput than those of Original
as depicted in Figure 4.16 and 4.17. The rationale behind this decrement is that the smaller packets
inevitably increase the number of enclave transitions. For the given input traffic, it is certain that the
number of packets that SGX-VPN should process per second increases as the packet size decreases.
Nevertheless, the overheads of the enclave transitions prevent SGX-VPN from processing more packets,
and thus SGX-VPN shows the lower throughput than those of Original. Figure 4.16 and 4.17 also show
the number of packets per second (PPS) that SGX-VPN and Original process. For reference, Figure
4.16 and 4.17 depict the number of theoretical PPS. SGX-VPN processes almost the even number of
PPS regardless of the packet size, whereas Original processes more packets for the smaller packets. The
overheads of the enclave transitions also exacerbate the average latencies of SGX-VPN for the packets
whose size is below 1024 byte. Thus, the average latencies of SGX-VPN are much higher than those of
Original as shown in Table 4.8.

Table 4.8: Comparison of Average Latency(us)

[ Packet size (Byte) | Original |  SGX-VPN |
1420 6683.04 6339.01
1280 6153.62 6662.36
1024 5102.91 5512.51
< 1024 196.85~4038.60 | 2697.83~7840.82
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Chapter 5. eMotion: An SGX Extension for Migrating
Enclaves

5.1 Problem Definition

5.1.1 System Models

We consider two different physical machines, the source host (Hg) and the destination host (Hp)
where the source VMM (VM Mg) and the destination VMM (VM Mp) are running. In general, the
VMM supports the migration of multiple VMs concurrently. For the simplicity and focusing on the
intrinsic problems of enclave migration, we assume that Hg has a single VM (V) which uses enclaves
(E) including AEs and E has no sealed data. VM Mg executes a migration protocol P to transfer the
memory pages of V and E along with the VM state (S) to VM Mp. VMMp also executes P to load
the memory pages of V' and E along with S into its memory for restoring V' and E. Hg and Hp locate
in the same network infrastructure where they can communicate with each other and access the same
VM image of V.

5.1.2 Threat Models

We trust only enclaves and the mechanisms implemented in the SGX-enabled processors. VM Mg
and VM Mp are usually operating as intended, but they can become malicious when the attacker Adv.
corrupts them via the security attacks or software bugs of the VMMSs and/or the VMs. As a result, Adv.
can have full control over the memory and the network resources of the VMMs and the VMs, and it can
read all memory pages of DRAM excluding the PRM and sniff all network packets. When VM Mg and
VMMp execute P, Adv. attempts to acquire the valuable information of E by sniffing the transferred
memory pages and reading the memory pages that two VMMs can access.

Adv. can conduct the attacks like rollback and forking attacks [106] that can violate the data
consistency of E. Adv. that subverts VM Mg can also incur the state inconsistency of E by preventing
VM Mg from tracking the changes of the EPC pages during P. We do not consider these types of attacks
because cloud tenants can detect them via the existing detection mechanism [106]. Adv. can simply

discard messages for executing P; such a denial-of-service (DoS) attack is out of scope in eMotion.

5.1.3 Goals

To migrate E in the managed manner securely, two different physical hosts (i.e., Hs and Hp) should
establish Migration Master Key (MMK). Also VM Mg and VM Mp can use M M K to migrate enclave

pages of E. We define the goals of these operations for secure managed migration of the enclave.

G1: End-to-end protection on migrated enclave pages.

Hg and Hp should establish M M K without the involvement of an additional server (e.g., trusted
third party). This M MK should protect the migrated enclave pages between Hg and Hp in an
end-to-end manner. When evicted to the untrusted memory by VM Mg, transferred to VM Mp
by VM Mg, and loaded to the PRM by VM Mp, the migrated enclave pages should retain Confi-
dentiality, Integrity, and Anti-replay (CIA) not to ruin the genuine security properties supported
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by SGX. This end-to-end protection prevents Adv. from extorting the sensitive information via
sniffing the migrated enclave pages between two hosts or reading the untrusted memory in both
hosts.

G2: Restricted access to MM K.
Only the designated enclave and the SGX-enabled processor should be able to access MMK. It

is crucial to restrict the access on MM K only to trustworthy parties because Adv. can attempt
to steal MM K by reading the untrusted memory in both hosts. If other enclaves except for the
designated enclave are malicious or erroneous, Adv. can use these enclaves to export MMK to
the untrusted memory. Thus, M M K should not be revealed to V, VM Mg, VM Mp and other

software components except for the designated enclave.

G3: New SGX instructions for VMMs to migrate running enclaves.

New SGX instructions should support VMMs to migrate running enclaves because VMMs cope with
operations for migrating the SGX-enabled VM (V' and E) in the managed manner. Using these
instructions, VM Mg should be able to evict the contents of the enclave as well as the associated
data structures to the untrusted memory securely. V M Mp should be able to load the entire enclave
pages to its PRM by leveraging these instructions. Recall that the EPC page swapping mechanism

cannot evict some EPC pages (e.g., TCS) and can evict only the stopped enclave.

5.2 Design

5.2.1 Overview

eMotion is an SGX extension for VMMs to migrate the running enclave securely. eMotion consists of
additional instructions and migration support. Migration Enclave (ME), a new AE, establishes M MK
between Hg and Hp securely. eMotion adds a new SGX instruction (EPUTKEY), one SECS attribute
(MIGRATION) and one register (MKR) to the SGX-enabled processor for enforcing the access control on
MMK. eMotion also adds new SGX instructions (ESE, ESL) to the SGX-enabled processor so that
VMMg and VM Mp can migrate E using MMK.

Using eMotion, we introduce two phases: key exchange with remote attestation (P)) and secure
eviction and loading for migration (P,), which compose P. ME executes P; to establish MMK via
remote attestation and store M MK into MKR (Migration Key Register) of the SGX-enabled processor.
VMMg and VM Mp proceed P, to migrate E using MMK.

In this section, we explain eMotion by dividing it into two distinct extensions: one for P, and the

other for P,. We also present diagrams of two phases and an architecture based on eMotion.

5.2.2 SGX Extension for Key Exchange with Remote Attestation

To migrate E from Hg to Hp securely, Hs and Hp should establish M M K first. MKR of the SGX-
enabled processor should store the established M M K for being used in P,. Other entities except for the
designated enclave and the SGX-enabled processor should not be able to access this key.
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Establishing Migration Master Key by Migration Enclave.

Migration Enclave (ME), which belongs to each host, is an AE that establishes M M K between Hg
and Hp. MEs perform mutual remote attestation to convince that the SGX-enabled processor and ME
in the other host are trustworthy. During the processes of remote attestation, MEs exchange keying
materials like nonces and agree on M M K per the result of remote attestation. eMotion is independent
of the underlying key exchange protocol used by ME. ME can utilize any key exchange protocols such
as Diffie-Hellman (DH) key exchange protocol [107] depending on the security policy defined by the ME
provider.

When enclave migration starts, the VMMs trigger ME Hosts to launch P; for establishing M M K
between the source ME (M Es) and the destination ME(M Ep), that are running in Hg and Hp, re-
spectively. Then, ME Host executes its ME to manipulate the key exchange messages according to
Algorithm 8. ME generates a key exchange message (msg). ME calculates the hash value, h, of msg
using a cryptographic hash function, H(-). ME invokes LocalAttest(-) to obtain REPORT that includes
a MAC tag for local attestation. LocalAttest(-), which calls the EREPORT instruction, calculates the
MAC of the REPORT data structure containing h using Report key, and feeds the MAC into the MAC
tag. ME requests QE to generate QUOTE by sending msg and REPORT. QE checks if REPORT is valid
by re-computing the MAC over the REPORT data structure using msg and Report key, and verifying
that ME produced REPORT inside the same SGX-enabled processor. Note that the SGX implementation
guarantees that Report key is known only to the target enclave (i.e., QE) and the EREPORT instruction
[1]. Then, QE produces QUOTE of msg and replies QUOTE to ME. The ME Host sends QUOTE with msg to
the other ME Host for remote attestation.

Algorithm 8 Protocol for manipulating key exchange messages

1: ME: Generate key exchange message, msg

2: h < H(msg)

3: REPORT « LocalAttest(h)

4: ME—-QE : msg, REPORT

5. QE: if REPORT is valid then Generate QUOTE else Abort
6: QE-ME : QUOTE

7. ME: return msg, QUOTE
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ME executes Algorithm 9 to derive MM K. Suppose that the ME Host receives msg’ and QUOTE’
from the other ME Host, whereas the key exchange message of the ME Host is msg. By verifying
QUOTE' for remote attestation, ME convinces that the opposite host equips with the legitimate SGX-
enabled processor and AEs. To this end, the ME Host connects to the Intel-operated service called Intel
Attestation Service (IAS) [96] that verifies QUOTE’ and returns the result of remote attestation via the
protocol that the SGX implementation supports. If ME did not generate its key exchange message (msg),
ME executes Algorithm 8. After remote attestation completes successfully, MEs invoke Derive(:) to
derive MM K using keying materials that are exchanged via msg and msg’ during remote attestation.
Only MEs in Hg and Hp can access M MK at this point, and any additional server cannot participate
in this key exchange. ME utilizes local and remote attestation that the SGX implementation supports,
and thus refer to [1,23,29,30,96] for further details.

Algorithm 9 Protocol for deriving M MK
1: if QUOTE' is valid then
if msg is NULL then Execute Algorithm 8
MMK « Derive(msg,msg’)
else Abort
return MM K

Enforcing Access Control on Migration Master Key.

EPUTKEY is an ENCLU instruction (i.e., user-level instruction) to store M M K into MKR of the SGX-
enabled processor. MEs execute this instruction after M MK is established so that the SGX-enabled
processors can use M MK to migrate E. For the end-to-end protection on the migrated enclave pages,
MM K should be accessible only by MEs (i.e., the producers of M M K') and the SGX-enabled processors
(i.e., the consumers of MM K).

To realize this restriction, we add an access control mechanism that utilizes Launch Enclave (LE)
and MIGRATION. MIGRATION is the proposed SECS attribute that is added into the current SGX im-
plementation in order that only ME can execute EPUTKEY. LE checks if MIGRATION of each enclave is
illegally configured when the enclave is initialized. Furthermore, the SGX-enabled processor allows only
the enclave whose MIGRATION is set to true to invoke EPUTKEY.

Generally, LE is an AE that prevents unauthorized enclaves from setting specialized attributes
(e.g., PROVISONKEY) of their SECSs to access the sensitive services (e.g., provisioning service). We
extend this mechanism to prevent other software components including malicious enclaves from falsifying
MMK inside and outside the SGX-enabled processor. During the enclave initialization, LE checks if
the initializing enclaves, except for ME, set their MIGRATIONs to true illegally by rejecting initialization
requests from those enclaves. This check routine is possible because LE refers to the list of authorized
enclaves and signs the initialization tokens (called EINITTOKEN) for the listed enclaves. Thus, only MEs
can receive valid EINITTOKENs from LE among enclaves that attempt to set their MIGRATIONs to true.
Without a valid EINITTOKEN, any enclave cannot be launched in the SGX-enabled processor [30].

The SGX-enabled processor further checks if a caller enclave is ME by examining MIGRATION when
the enclave invokes EPUTKEY. If MIGRATION of the enclave does not set to true, the SGX-enabled pro-
cessor simply rejects the invocation of EPUTKEY. This two-step verification, which is enforced by LE and
the SGX-enabled processor, convinces that only ME can execute EPUTKEY. As a result, M M K is only
accessible by the designated enclaves (i.e., MEs) and the SGX-enabled processors.
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Diagram of Key Exchange with Remote Attestation.
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Figure 5.2: Diagram of key exchange with remote attestation; register read/write () and instruction
execution (-»)

Figure 5.2 depicts the diagram of P;. Recall that eMotion does not limit the underlying key exchange
protocol if M M K is established between M Es and M Ep based on remote attestation. Thus, the flows in
Figure 5.2 can vary slightly depending on used protocols. When V M Mg launches the migration, VM Mp
also starts V' with the exact parameters that VM Mg used. VM Mg initiates P, by establishing the
network connection with VM Mp. Then, the VMMs request ME Hosts to execute MEs for operating the
key exchange protocol. M Ep generates the key exchange message (msg1) and performs local attestation
with its local QE. When local attestation succeeds, the QE produces QUOTE1 of msgl. M Ep sends msgl
and QUOTE1 to M Eg via VMMp and VM Mg. MEg verifies QUOTE1, and generates the key exchange
message (msg2). Similarly, M Es performs local attestation with its local QE, and receives QUOTE2 from
the QE. M Eg sends msg2 and QUOTE2 to M Ep via VM Mg and VM Mp. Then, MEg generates MMK
using keying materials included in msgl and msg2. MEp verifies QUOTE2, and also generates MMK.
Finally, MEs execute EPUTKEY to store the established M M K to MKR.

5.2.3 SGX Extension for Secure Eviction and Loading for Migration
Privileged Instructions for Migrating Enclaves.

eMotion supports ESE (Enclave Secure Eviction) and ESL (Enclave Secure Loading) for VM Mg and
VMMp to evict and load the entire enclave pages securely. These instructions are ENCLS instructions,
privileged instructions, that extend the EPC paging instructions (EWB, ELDU/B). Migration Key (MK)
and Initialization Vector (IV') are derived from M MK inside the SGX-enabled processor during the
initial execution of ESE and ESL. ESE and ESL utilize NIST SP 800-108 [108] as a key derivation function
that the SGX implementation supports [30]. Suppose that KDF(-) is the key derivation function that ESE
and ESL use. Then, MK and IV are derived using Equation 5.1.

MK =KDF(MMK,Crk)
IV =KDF(MMK, C1v) (5.1)

where Cyrx and Cjy are constant string values.

ESE encrypts and integrity protects the migrated enclave pages using M K and IV. For anti-replay,
IV increases by one for each EPC page, but M K does not change until the enclave migration completes.
Therefore, the protection using M K and I'V can preserve the CIA of the migrated enclave pages. Because

the SGX-enabled processors perform the derivation and the protection, it is impossible for other entities
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such as the VMMs to notice and falsify the migrated enclave pages.

This derivation can utilize VM identifiers to generate different M Ks and I'V's from each guest VM
when VM Mg migrates multiple SGX-enabled VMs simultaneously. That is, ESE and ESL can derive
multiple M Ks and IVs for guest VMs by passing VM identifiers as input parameters to the underlying
key derivation function. Suppose that VM; is an VM identifier where i =1,2,3,---. Then, MK and IV
for VM; are derived using Equation 5.2.

MK; = KDF(MMK, CMK,VMi)
IV; =KDF(M MK, Crv,VM;) (5.2)

where M K; and IV; are MK and IV for V M;.

To reuse the SGX implementation, ESE and ESL execute routines similar to the EPC paging instruc-
tions. The cryptographic algorithm used by ESE and ESL is AES-GCM [109], which is used by the EPC
paging instructions and supports both confidentiality and integrity. These instructions also take input
as the unit of a single EPC page like other SGX instructions.

V M Mg executes ESE to evict enclave pages of the running E from its PRM to the untrusted memory.
ESE evicts the entire enclave pages, including PT_SECS, PT_TCS, and PT_REG. This instruction encrypts
and integrity protects the enclave pages using MK and IV. VM Mp executes ESL to load the evicted
enclave pages from the untrusted memory to its PRM. ESL loads the evicted enclave pages into the PRM,
where PT_SECS, PT_TCS, and PT_REG reside. This instruction decrypts and integrity checks the evicted
enclave pages using MK and IV.

Figure 5.3 and 5.4 depict the flow charts of ESE and ESL. For the sake of simplicity, the flow charts
omit routines used to check the memory alignment.

ESE (Figure 5.3) works as follows:

1. Checks if the evicting page locates in EPC (if not, page fault exception (#PF) is raised).
2. Allocates the output addresses for the evicted EPC page and PCMD.

3. Searches EPCM to retrieve the metadata of the EPC page.

4. Searches the associated SECS if the EPC page type is PT_REG or PT_TCS.

5. Sets a temporary MAC header using the metadata in the searched EPCM.

6. Encrypts and integrity protects the EPC page.

7. Sets PCMD to complete the page information using the metadata in the searched EPCM.
ESL (Figure 5.4) works as follows:

1. Checks if the loading page locates in EPC (if not, the page fault exception (#PF) is raised).
2. Allocates the input addresses of the evicted EPC page and PCMD.

3. Searches EPCM to retrieve the metadata of the loading EPC page.

4. Sets a temporary MAC header using the metadata in the searched EPCM.

5. Decrypts the EPC page.

6. Compares the computed MAC with the received one.

7. Sets EPCM using the decrypted metadata in the temporary MAC header.
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Figure 5.3: Flow chart of ESE

Diagram of Secure eviction and loading for migration.

During executing P for V, VM Mg starts P, when VM Mg encounters the memory pages of E in
its managed page table. The initial executions of ESE and ESL use M M K to derive M K and IV, which
are utilized to evict and load the entire enclave pages securely. VM Mg executes ESE to evict the enclave
pages of E using MK and IV from its PRM to the untrusted memory. Then, VM Mg transfers the
evicted enclave pages to VM Mp. Once VM Mg transfers the evicted enclave pages, VM Mp executes
ESL to load them using MK and IV from the untrusted memory to its PRM. Figure 5.5 depicts the
diagram of P,.

During P>, VM Mg checks if each enclave page alters by tracking the accessed and dirty flags of
the enclave pages. The VMM utilizes the Extended Page Table (EPT) to manage the VM’s address
space that includes the enclave pages. Thus, VM Mg can notice the accessed and dirtied EPC pages by
scanning the EPT. When detecting the updated enclave pages, V.M Mg executes ESE against the updated
enclave pages and retransmits the output to VM Mp.

VM Mg can also transfer the swapped enclave pages to VM Mp during VM migration. Because
V M Mg swapped out the enclave pages due to the lack of its PRM, VM Mg can be aware of the swapped

enclave pages. However, VM Mg cannot notice the swapped enclave pages if V' swaps out the enclave
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Figure 5.5: Diagram of secure eviction and loading for migration; register read/write (—), and instruc-
tion execution (-»)

pages by itself. This mismatch between VM Mg and V can be addressed if VM Mg emulates SGX

instructions for V' [110]. To migrate the swapped enclave pages, VM Mg executes the EPC paging

instructions to load them to its PRM again and continues to execute ESE for evicting the enclave pages.

49



5.2.4 eMotion Architecture

Figure 5.6 depicts an architecture to show the practical deployment of eMotion. We assume that
VMMg in Hg migrates V along with E to VM Mp in Hp.
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Figure 5.6: An architecture of eMotion; key exchange with remote attestation (—»), and secure eviction
and loading for migration (—>)

P, establishes MMK for enclave migration between Hg and Hp. When starting P to migrate
V along with E, VM Mg triggers ME Host, a daemon running in the host, to execute MEs. MEg
proves its authenticity to QE based on local attestation and to M Ep based on remote attestation. In
consequence of remote attestation, M Eg and M Ep establishes MMK and execute EPUTKEY to store
MMK into MKRs of the SGX-enabled processors.

In P, VM Mg executes ESE to evict the enclave pages of E to the untrusted memory, and VM Mp
executes ESL loads them to its PRM. Because the VMMs manage the memory mappings of the VM
and its enclaves, the VMMs can pass the physical addresses of the enclave pages (in the PRM) and
the evicted enclave pages (in the untrusted memory) to ESE and ESL, respectively. After loading the
enclave pages, VM Mp activates V along with the enclaves including E using S received from VM Mp,.
Because VM Mg transfers VM’s whole memory pages including the entire enclave pages and VM state
to VMMp, VM Mp can restore the execution of V' and FE.

5.3 Implementation

We have implemented a prototype of eMotion on top of OpenSGX [9] in a Dell Inspiron-13-7359 (Intel
Core i5-6200 2.30GHz quad core CPU, 8GB RAM) machine running Ubuntu 14.04 LTS (64-bit). Using
this open source SGX emulator, we add additional instructions and migration support to demonstrate

the operations of eMotion.

5.3.1 OpenSGX

OpenSGX is an open source SGX emulator that emulates the SGX instructions and provides oper-

ating components. This emulator is implemented on top of QEMU’s user-mode emulation. OpenSGX
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extends the CPU state of QEMU by adding CREGS data structure. CREGS maintains registers about the
enclave context and the current instruction pointer. This data structure controls a program’s next exe-
cuting point when the enclave enters and exits. OpenSGX utilizes the QEMU helper routine and adds
helper_sgx-encls(u) for emulating ENCLU/ENCLS instructions. When ENCLU/ENCLS instructions

are invoked, the helper functions implemented in helper_sgx-encls(u) are called.

5.3.2 eMotion on OpenSGX

We implement three new SGX instructions (EPUTKEY, ESE, ESL), migration support (MEs, MKR and
MIGRATION), and other SGX components (QEs) to OpenSGX. We implement MEs to operate a sample
of P; based on the 1024-bit DH key exchange protocol [107] to establish MMK. We also implement
QEs to use a pre-defined RSA key pair for signing each key exchange message from MEs and verifying
each REPORT from MEs. QE and ME utilize PolarSSL[111] for local and remote attestation. We add
EPUTKEY to helper_sgx_enclu, and insert MKR into the CREGS data structure of QEMU SGX. We add ESE
and ESL to helper_sgx_encls and implement the routine to derive M K and IV when these privileged
instructions execute for the first time. To support CIA of the evicted enclave pages, ESE and ESL leverage
OpenSSL 1.0.2d [98] to encrypt and integrity protect the enclave pages based on AES-GCM [109].

We add a new OpenSGX application (hereafter, vmm) that acts as the VMMs (VM Ms and VM Mp)
for executing Pys. After P, completes, vmm in each host calls the functions of the OS-level emulation
wrappers for ESE and ESL. Once both hosts complete P,, vmm in Hp attempts to re-enter the migrated

enclave (E) and check if enclave migration has been completed.

5.3.3 Implementation Result

In the current prototype, we add a total of 2,286 lines of code to OpenSGX and confirm the operations
of eMotion. Figure 5.7 shows the implementation result of the prototype. We describe the execution

steps as follows:

1. MEg requests MEp to start P;. Then, M Ep generates msgl, and requests the destination QE to
generate QUOTE1. (5.7e)

2. When local attestation succeeds, M Ep responds with QUOTE1 of msg1 for remote attestation. (5.7f)

3. When receiving msgl and QUOTE1, M Egs verifies QUOTE1. If remote attestation succeeds, MEg
generates msg2, and requests the source QE to generate QUOTE2. (5.7b)

4. When local attestation succeeds, the source QE responds with QUOTE2 of msg2 for remote attesta-

tion. (5.7c)

5. When receiving msg2 and QUOTE2, M Ep verifies QUOTE2. If remote attestation succeeds, M Ep
generates M M K based on msgl and msg2. In the same way, M Es generates MM K. (5.7b and
5.7e)

6. MEs cooperate with E's in both hosts for executing EPUTKEY to store M MK to MKR. (5.7a and
5.7d)

7. The vmm in Hg executes ESE to evict the entire enclave pages of E. (5.7a)

8. The vmm in Hp executes ESL to load the evicted enclave pages of E. Then, vmm again launches E
to check if E is migrated successfully. (5.7d)
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sgx@ubuntu:-/opensgx$ ./opensgx -1 user/demo/Im-target-source, sgx user/demo/Im-t
larget-source.conf source
Hello, this is the source host
sgx_target lm: listening to ME on 8024...
recelved MK:
0000 46 a f7 16 5b 92 ad ¢6 74 19 7¢ 54 2c 90 a5 08 F...[...t.-T,...
succeed in getting MK
MK:

60” 4e €0 1a 78 B1 65 de 1e ¢B 96 26 f2 54 89 56 bd N..x.e....&.T.V.

0000 eb d4 4b c7 7a 75 73 f4 2a 6e d3 4c 00 00 00 00 . .K.zus.*n.L....

[Connecting to destination host on 8622
secure eviction for migration: sending evkted EPC pages to destination..
sgx@ubuntu:-/opensgx$

(a) Ein Hg

sgx@ubuntu:~/opensgx$ . /opensgx -1 user/demo/Im-target-dest,sgx user/demo/\m-tar|
1-dest. conf dest
Lo, this is the destination host |

received MHK:
0000 46 8a f7 16 5b 92 ad ¢6 74 19 7p 54 2c 90 a5 08 F...[...t.-T,...

succeed in getting MK

Listening to source host on 8622...

secure loading for migration: receive & load evicted EPC pages. ..

MK
0000 4e ¢0 1a 78 81 65 de le ¢B 96 2p 12 54 89 56 bd N..x.e.

IV:
0000 eb 34 4b 7 7a 75 73 14 2a 6e df 4Ac 60 00 00 00

Koazus. L.

re-enter enclave to check the success o secure loading for migration...
515 Source
arget lm: listening to ME on 8824...

(d) Ein Hp

opensgx$ ./opensgx user/demo/Ln-remote-attest-source-me.sgx user/de
mo/Lm- remote-attest-source-me. conf

[Connecting to destination on 8025...

Receving msgl.

lsucceed to verify QUOTE!
[Generating msg2. .

[Connecting to QE on 8026...
[Generating REPORT for msg2...
[Sending request of REPORT to QE
Receiving rsa N, ru,E. and QUOTE. ..
Receiving QUOTE. .

[Sending msg2. .

(nl:ulal ing Dﬂ(

P

0000 46 02 17 16 5b 92 ad ¢6 74 19 7¢ 54 2¢ 90 a5 08 F...[...t.-T,...
[Connecting to target enclave on 8624, ..
[Sending MMK to target enclave...
key exchange with remote attestation completed!
sgu@ubuntu:-/opensgxs [

(b) MEs

sgu@ubuntu:~/opensgx$ ./opensgx user/demo/Ln-remote-attest-quote-source.sgx user|
/demo/ - remote-attest-quote-source, conf

Listening to ME on 8026...

REPORT received from ME

REPORT verification succeed!

[Generating QUOTE. ..

IE end

IQUOTE2 generation :onpie(cd

(c) source QE

$gr@ubun 'opensgx$ ./opensgx user/demo/Im-remote-attest-dest-me.sgx user/demo|
/In-remote-attest-dest-me. conf
[Set DHM modulus (P) and mrnor (6)
Listening to source ME on 8025
[Generating msgl. .
[Connecting to QE on 8027...
[Generating REPORT for msgl...
[Sending request of REPORT to QE...
Receiving rsa N, rsa_E, and QUOTE..,
Receiving MTE. .
[Sending msgl. .
Receving
[Succeed to verﬂy QUOTE!
[Calculating MK, .
P
0000 46 82 f7 f6 5b 92 ad ¢6 74 19 7¢ 54 2¢ 90 a5 88 F...[...t.-T,...
[Connecting to target enclave on 8023,..
[Sending MMK to target enclave...
key exchange with rmie attestation completed!

(e) MED

sgu@ubuntu:~/opensgxs ./opensgx user/demo/In-remote-attest-quote-dest.sgx user/d
femo/Im-remote-attest-quote-dest, conf

Listening to ME on 8027...

REPORT received from ME

REPORT verification succeed!

IQUOTE] generation completed
sgu@ubuntu:~/opensgxs [

(f) destination QE

Figure 5.7: Implementation result of eMotion in OpenSGX

As indicated by the arrow in Figure 5.7d, vmm migrates E using eMotion.
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5.4 Evaluation

5.4.1 Analysis

We evaluate eMotion from the perspective of the goals defined in Section 5.1.

In P, MEs and MFEp in both hosts perform remote attestation to convince that two legitimate
enclaves establish MM K because local and remote attestation can vouch for this authentication. Ad-
ditionally, it promises that two legitimate SGX-enabled processors execute this protocol because only
genuine processors-can perform remote attestation successfully. During P», ESE encrypts and integrity
protects the enclave pages and ESL integrity checks and decrypts the evicted enclave pages using M K
and IV, which are derived from MM K. IV increases by one for each EPC page to guarantee anti-replay.
Thus, the migrated enclave pages can guarantee CIA during enclave migration. During P; and Ps, no
additional trusted server involves, but rather two participating hosts establish M M K directly to provide
the end-to-end protection on the migrated enclave pages. Adv. cannot acquire M M K because it cannot
access the EPC pages directly, which is protected by the SGX-enabled processor, and the access on MM K
is restricted only to MEs and the SGX-enabled processors. Adv. cannot read the migrated enclave pages
in plain-text because the SGX-enabled processor encrypts the migrated enclave pages. Moreover, Adv.
cannot violate the security properties of the migrated enclave pages during enclave migration because
ESE and ESL guarantee CIA of the migrated enclave pages. (G1)

eMotion stores M MK in MKR of the SGX-enabled processor and restricts the execution of EPUTKEY
only to MEs. Thus, no other software including the VMs and the VMMs can use or change MMK
illegally. This restriction on EPUTKEY is not avoidable because LE prevents other enclaves from setting
MIGRATION during the enclave initialization, and the SGX-enabled processor checks if the caller sets
MIGRATION when EPUTKEY is invoked. Adv. cannot hijack M MK established by MEs as well because
they are infeasible to access directly the EPC pages and MKR of the SGX-enabled processor where MM K
resides. (G2)

We add new SGX instructions (ESE and ESL) to evict and load the entire enclave pages including
ones that cannot be evicted and loaded by the existing EPC paging instructions. During P, VM Mg
can evict the entire enclave pages of the running F to the untrusted memory using ESE and VM Mp
can load the evicted enclave pages to its PRM using ESL. To migrate the running E, VM Mg transfers
the update enclave pages continually and transfers its running state S to VM Mp at the end of Py,.
Because of this operation, VM Mp can restore the memory mappings for E and activate the execution

of E. Thus, using newly added SGX instructions, two VMMs can migrate the running E. (G3)

5.4.2 Comparison

Table 5.1 shows the comparison between eMotion and the existing migration schemes [7,8,24,25] for
SGX enclaves against the goals defined in Section 5.1.3. eMotion and the mechanisms based on the self
migration manner [24,25] support the end-to-end protection on migrated enclave pages and the restricted
access to the the cryptographic key used in enclave migration because only trustworthy entities establish
the secure channels directly for secure enclave migration. However, an architecture in Intel’s patent [§]
cannot guarantee the end-to-end protection on the migrated enclave pages because the trusted server
mediates the transportation of the migration capable keys and thus it is difficult to ensure that only the
participating hosts can access the migration capable keys. Only eMotion and Intel’s patent [7] provides

the VMMs with instructions for enclave migration.
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Table 5.1: Comparison with the existing migration schemes for SGX enclaves; O - support, x - not
support.

| | eMotion | Gu et al. [24] | Intel’s patents [7,8] | Alder et al. [25] |

G1 O O x O
G2 ©) o x ©)
G3 | Managed (Q) Self (x) Managed (Q) Self (x)

G1 - Does end-to-end protection on migrated enclave pages support?
G2 - Can only trustworthy party access MM K?
G3 - Which type of enclave migration support?

5.4.3 Performance

We measure the overhead of eMotion to estimate the impact on the migration time and migration
downtime of SGX-enabled VMs. We use the prototype based on OpenSGX as mentioned in Section 5.3.
Though this performance evaluation is not measured in the actual SGX-enabled machine, we expect
that these results can help others understand and estimate the overheads caused by managed enclave

migration.

Overhead in key exchange with remote attestation.

Table 5.2 shows the overhead caused by key exchange with remote attestation in ME and QE in
terms of the number of instructions. We refer to the model used in [83] to calculate CPU cycles consumed
by ME and QE for operating P;. Therefore, we assume that each SGX instruction consumes 10K CPU
cycles [71], and use 1.8 CPU cycles for each normal instruction [83]. ME consumes 259M cycles to perform
1024-bit DH key exchange protocol and derive M M K together with local and remote attestation. QE
consumes 25M cycles to generate and verify QUOTE. Note that P; occurs only once before the actual

migration starts. Thus, this overhead is minimal and does not affect the migration downtime.

Table 5.2: The number of instructions in ME and QE during key exchange with remote attestation

ME QE
SGX instructions 110 39
Normal instructions 144M 14M

Overhead in secure eviction and loading for migration.

We also measure the overhead caused by secure eviction and loading for migration in VM Mg and
VMMp. For this, we implement an sample enclave, which occupies 616 EPC pages including PT_SECS,
PT_TCS, and PT_REG. Recall that VM Mg and VM Mp execute ESE and ESL for each memory page in the
unit of a single EPC page. Obviously, the number of instructions that VM Mg and VM Mp execute in
P, changes according to as the number of EPC pages that consists of E increases.

Because the overhead in P, influences the migration downtime directly, we measure the elapsed time
for P,. Table 5.3 reports that the elapsed time for P, in VM Mg is about 6.69 ms and the one for P,
in VM Mp is about 4.31 ms. As shown in Figure 5.3 and 5.4, the additional routines used to check the
condition and search SECS in ESE cause this gap between two measured times.

Using the measured time, we can further estimate the elapsed time for a single ESE (10.9 us) and
ESL (7.0 us). Besides the sample enclave, we calculate the elapsed time to migrate Tor enclaves used as

a case study for OpenSGX. The Tor enclaves include Directory node (472 EPC pages) and Exit node
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Table 5.3: Elapsed time for secure eviction and loading for migration

I | VMMs | VMMp |
| elapsed time (ms) | 6.69ms | 4.31ms |

(475 EPC pages) as mentioned in [9]. Figure 5.8 shows the elapsed time for secure eviction and loading
for migration on the enclaves; our sample enclave, Directory node, and Exit node. This estimation can

help cloud tenants to profile the impacts of their SGX-enabled VMs during live migration.

| | |

716.69 i
—_~ 6 -
8
(5}
g 5.13 5.16
B 5 .
2
2 4.31
=
B4 .
3.3 3.32
3

Our Sample  Directory node Exit node

lpoeselDESL

Figure 5.8: Elapsed time for secure eviction and loading for migration on enclaves; Directory node and
Exit node are Tor enclaves in [9]
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Figure 5.9: Possible deployments of eMotion to pre-copy approach [10]
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Figure 5.10: Possible deployments of eMotion to post-copy approach [11]

5.5 Possible Deployments

The existing live migration of VMs [10,11] can use eMotion by adding two phases, as depicted in
Figure 5.9 and 5.10. Key exchange with remote attestation occurs during the pre-migration stage to
establish the migration master key between two participating hosts before the actual live migration of
the SGX-enabled VM begins. During the iterative pre-copy and/or the stop and copy stages, secure
eviction and loading for migration operate using the established migration master key when the VMM
encounters the EPC pages. Similarly, other live migration protocols [112] can add eMotion to support
live migration of SGX-enabled VMs.

eMotion can extend to cope with the attacks that the active adversaries can perform by combining
with the existing security mechanisms. The active adversaries that subvert the VMMs can incur the
state inconsistency in the migrated enclave pages by preventing the VMMs from tracking the updated
enclave pages. The existing VMM attestation mechanisms [113,114] can launch before enclave migration
to verify if the genuine VMM launched and is running on the source host. Moreover, users can utilize the
existing detection mechanism [106] to detect the rollback and forking attacks that the active adversaries

can perform.
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Chapter 6. Concluding Remark

6.1 Conclusion

In this dissertation, we present SGX-VPN that leverages enclaves and attestation to support the
security-enhanced cloud VPN for each tenant in the semi-trusted cloud environment. With the enclaves,
SGX-VPN provides each tenant with the strong isolation of key exchange and packet processing. SGX-
VPN also provides each tenant with an on-demand functionality to verify the integrity of the running SPs
in the VPC network. Using remote attestation, the tenant provisions the sensitive information securely
to SGX-VPN securely. The participating entities in SGX-VPN exchanges the SAs for packet processing
securely using local and remote attestation. We evaluate the algorithms in SGX-VPN using Scyther,
a formal analysis tool, to prove the security of SGX-VPN. We implement a prototype on the actual
SGX-enabled machine to measure the performance overhead of SGX-VPN in the packet processing.

We also propose eMotion, an SGX extension for migrating enclaves, that adds additional instruc-
tions and migration support to the SGX architecture for enabling the secure managed migration of
running enclaves. eMotion supplements the current SGX implementation with three SGX instructions,
one register, one SECS attribute and one AE for migrating the running enclave. Using eMotion, the
participating hosts directly establish the migration master key used in enclave migration and the VMMs
in the hosts migrate running enclaves using this established key without the loss of the security properties
guaranteed by SGX. eMotion restricts the access on the migration master key only to the designated
AEs (MEs) and the SGX-enabled processors. We implement a prototype on top of OpenSGX, an open
source SGX emulator, to demonstrate the operations of eMotion and to estimate the impact of eMotion
on the migration time and the migration downtime. We hope that Intel refers to eMotion for realizing
managed enclave migration in the actual SGX-enabled processor and the SGX framework, and cloud
tenants use the evaluation result to estimate the impact of eMotion on their SGX-enabled VMs during

live migration.

6.2 Future Work

The literature of cloud VPN and enclave migration are relatively new, and there are still challenging
problems to be addressed to accelerate the deployment of SGX-VPN and eMotion into cloud computing,.

The performance of the SGX-VPN prototype decreases drastically against the smaller packets.
Because the number of packets grows as the packets shorten for the given input traffic, the number of
enclave transitions also increases. This increment yields to the decrement of the performance. We will
apply Switchless Calls [115] that eliminates enclave transitions to SPP for guaranteeing the enhanced
performance for short packets.

The number of remote verifications on SPs in SGX-VPN can increase depending on the number of
SPP in the VPC network. Because each verification involves interworking with IAS for remote attesta-
tion, it is necessary to centralize the remote verifications to a single component in the VPC network with
regard to the tenant’s management efforts. We will study about a mechanism to adopt the 3rd party
attestation service [116], which enables non-Intel parties to build their own attestation infrastructure,

to SGX-VPN. Using this extension, it is possible to implement a single point in the VPC network that
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manages remote verifications on SPs.

eMotion mainly focuses on the extensions of SGX implementation to enable managed enclave migra-
tion. The prototype based on OpenSGX confirm the operations of eMotion. However, we cannot confirm
the operations of the eMotion-enabled VMMSs because OpenSGX, which uses the user-mode QEMU em-
ulation, does not run on top of the VMM. We will research other SGX emulators like S-OpenSGX [117]
that runs on top of the VMM so that we realize the eMotion-enabled VMM. Then, our prototype will
extend to confirm the operations of the eMotion-enabled VMM.

eMotion does not consider that the enclave has the sealed data, which is encrypted by a unique key
inside the SGX-enabled processor. The VMM cannot notice the sealed data because the enclave performs
the sealing operation by itself. Thus, migrating the sealed data of the enclave is another challenging

problem. We will study about migrating the sealed data of the enclave securely.
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