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Abstract

In this dissertation, we present our study about deep learning in two parts. The first part is about

leveraging deep learning for Android malware detection. The second part is about Privacy-Preserving

Deep Learning (PPDL) for Machine Learning as a Service (MLaaS)

Part I is focused on implementing feature learning for Android malware detection. The current

Android malware detection method is limited to two kinds of methods, static and dynamic. Static method

is easy to use but difficult to detect new kinds of malware. On the other hand, dynamic method is strong

against a new malware but needs an expert skill to manipulate it. For the last decades, machine learning

has advanced rapidly as a new malware detection method. We propose a modified feature learning

method for malware detection, which is based on Deep Abstraction and Weighted Feature Selection

proposed (DFES) for Intrusion Detection System. The methodology consists of a combination between

Stacked Autoencoder (SAE) for feature extraction and weight based Artificial Neural Network (ANN)

for feature selection and classification. The goal of this dissertation is to conduct a study to compare the

performance of Modified DFES (mDFES), DFES, and a simple Feature Extraction and Selection (FES).

Part II is focused on study about leveraging deep learning for privacy-preserving. The exponential

growth of big data and deep learning has increased the data exchange traffic in society. MLaaS, which

leverages deep learning techniques for predictive analytics to enhance decision-making, has become a

hot commodity. However, the adoption of MLaaS introduces data privacy challenges for data owners

and security challenges for deep learning model owners. Data owners are concerned about the safety

and privacy of their data on MLaaS platforms, while MLaaS platform owners worry that their models

could be stolen by adversaries who pose as clients. Consequently, PPDL arises as a possible solution to

this problem.We present a comprehensive study of privacy-preserving techniques, starting from classical

privacy-preserving techniques to well-known deep learning techniques. Additionally, we provide a detailed

description of PPDL and address the issue of using PPDL for MLaaS. Furthermore, we undertake detailed

comparisons between state-of-the-art PPDL methods. Subsequently, we classify an adversarial model

on PPDL by highlighting possible PPDL attacks and their potential solutions. Ultimately, our study

serves as a single point of reference for detailed knowledge on PPDL and its applicability to MLaaS

environments for both new and experienced researchers.

Keywords Android malware detection, feature learning, feature extraction, feature selection, privacy-

preserving, machine learning as a service
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Chapter 1. Preliminaries

1.1 Background

In this dissertation, we will present our research in deep learning for malware detection over Android

and for privacy-preserving. The first part of this dissertation will talk about leveraging deep learning

for Android malware detection, while the second part of this dissertation will discuss about our study in

privacy-preserving deep learning for machine learning as a service.

Malware, which is an abbreviation of malicious software, is a hostile software that purpose to

damage, steal, break, or do any illegal action to the victims. According to Statcounter, per October

2020 Android-based smartphone covers 72.92% of mobile operating system worldwide. On the other

hand, Agrawal et al. [1] states that there are more than 2 million of Android applications in the market.

Those applications cannot be 100% guaranteed safe, even by Google Android market. Currently, there

are three kinds of Android malware detection methods: static method, dynamic method, and machine

learning-based method. Static methods do the manual examination of manifest file and Dalvik byte code

of an Android file. On the other hand, dynamic methods run an Android application in an emulated

environment to observe its behavior. Unlike the other two methods, machine learning-based method for

Android malware detector learns the general rules and features from benign and malicious dataset; then

runs prediction to decide whether a file is a malware or not. The machine learning-based method is

very beneficial for finding the regularities in a dataset, generating feature vectors based on that patterns.

Those feature vectors are the most important thing that decides the performance of the machine learning

model. Good feature vectors have features that highly represent its class, either it is benign or malware.

This is the main challenge in leveraging machine learning for Android malware detection. Previous

publications on malware detection have been proposed as follows: Alkhateeb [2] suggested the use of

API similarity for detection. Lansheng et al. [3] had an idea to do classification on malware based on

their task behavior. Yin et al. [4] showed how to find malware by analyzing the network traffic. However,

all these methods require expert analysis and consume too much time. Our method leverages machine

learning as substitution of human experts that requires much shorter time compared to human analysis.

The challenges in utilizing machine learning are how to improve detection accuracy and how to reduce

the false alarm rate as low as possible, but still require some amount of processing time.

In the part I of this dissertation, we use Android malware dataset, which consists of benign and

malware files. Both benign and malware binaries were extracted into a list of feature in CSV format.

This dataset then needs to be pre-processed in order to train the model during the learning process.

Then, we use this pre-processed dataset as the input of our feature learning approach that consists of

four main parts: dataset pre-processing, feature extraction, feature selection, and classification. During

feature extraction, important features of malware will be extracted from a dataset and the features were

going to be stored as our sample. Then, those new features and original features are concatenated and

important features are selected from the concatenated features in feature selection phase. The feature

extraction expands new features and feature selection chooses important features from them. During the

evaluation, we check the detection accuracy and false alarm rate of our proposed approach.

MLaaS is a service, which usually runs on a cloud platform, with the purpose is to provide prediction

service to clients by utilizing machine learning [5]. The service runs on a cloud environment so that

1



clients do not need to build their own machine learning model to do a prediction [6]. However, there is

a problem. To perform predictions, a model owner needs to receive data from clients. The data may

consist of sensitive information. Thus, clients are reluctant to provide their data. On the other hand,

a model owner will also be worried that an adversary could be disguised as a client to try to steal the

model. Furthermore, there is an issue about the privacy of the prediction result and whether will it be

safe from access by unauthorized parties. In this scenario, Privacy-Preserving Deep Learning (PPDL) is

needed as a solution.

For the part II of this dissertation, we will present our study about Privacy-Preserving Deep Learning

(PPDL). In a business environment, prediction and decision-making are two important processes that

require careful consideration. Good judgement can lead to large profits, but bad decisions can ruin

everything. There was a hypothesis that a computer could help a user predict something or decide what

next step should be taken. As Artificial Intelligence (AI) has grown dramatically, this plan is no longer

considered impossible. AI has the ability to sense, understand, learn, and respond [7]. This solves the

weaknesses of computers without these four abilities. Prediction, on the other hand, is a process of

learning available information and then using that knowledge to generate new information that is not

yet available. A Deep Learning (DL) algorithm is a type of AI that has the ability to interpret data like

a human brain and can learn and classify objects. By leveraging the ability of deep learning, we can

predict the future and make decisions based on the currently available information, which becomes our

training data when we train the DL model. After the training process is completed, a prediction model

is produced. Based on this model, predictions based on clients’ data will be performed. That is how

Machine Learning as a Service (MLaaS), a promising business opportunity, was born.

1.2 Our Contribution

Here is the contribution of this dissertation:

1. Conducting a study about deep learning techniques for Android malware detection and Privacy-

Preserving Deep Learning (PPDL) for Machine Learning as a Service (MLaaS).

2. Design mDFES, a feature learning method for malware detection over Android.

3. Run experiments and analyze the performance of FES, DFES, and mDFES in nine different sce-

narios.

4. Propose a multi-scheme PPDL taxonomy that classifies adversarial models in PPDL, PP methods

used in PPDL, and the challenges and weaknesses in state-of-the-art PPDL methods.

5. Provide detailed comparisons of the surveyed PPDL works based on our defined metrics and covers

the most recent and groundbreaking methods in PPDL.

1.3 Structure of Dissertation

This dissertation is divided into two parts. First part is about feature learning for Android mal-

ware detection and the second part is about privacy-preserving deep learning. The remainder of this

dissertation is organized as follows.

In Part I, we present our research about deep abstraction for Android malware detection. Chapter 2

provides the introduction and Chapter 3 states our objectives. In Chapter 4, we discuss about malware
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and anti-malware detections. In Chapter 5, we briefly discuss about previous publications about malware 
detection in general. In Chapter 6, we explain our methods; while in Chapter 7, we present our experiment 
result and comparison. Finally, in Chapter 8 we conclude our findings as the closing of Part I.

In Part II, we present our study about recent development on privacy-preserving deep learning. 
Chapter 9 provides the introduction and Chapter 10 discusses the classical privacy-preserving method. 
In Chapter 11 we discuss about utilizing deep learning for privacy-preserving. In Chapter 12, we present 
state-of-the-art PPDL methods. Next, in Chapter 13, we provide the comparison of discussed PPDL 
methods in previous chapter. Chapter 14 talks about attacks on deep learning model and privacy-

preserving as deep learning as a possible solution. Finally, in Chapter 15, we provide the concluding 
remark of Part II and also the possible future work.

Lastly, the final Chapter 16 provides the dissertation summary and the open problems that concludes 
this dissertation.
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Chapter 2. Introduction

2.1 Definition and Classification of Deep Learning

2.1.1 Supervised Learning

Supervised learning is an approach where there is already trained data, and there are targeted

variables so that the purpose of this approach is to group data into existing data, unlike unsupervised

learning, unsupervised learning does not have training data, so that from existing data, we group the

data into 2 parts or 3 parts and so on.

2.1.2 Unsupervised Learning

The unsupervised learning approach does not use training data or training data to make predictions

or classifications. Based on the mathematical model, this algorithm does not have a target variable. One

of the goals of this algorithm is to group objects that are almost the same in a certain area.

2.1.3 Semi-supervised Learning

Semi-supervised learning combines the two algorithms above (supervised and unsupervised), where

the input samples given are labeled and some are not labeled. This algorithm generates an appropriate

function based on all given inputs.

Reinforcement Learning Reinforcement learning studies a policy of how to take action based on

observations of the existing environment. Each action produces an impact on the environment, and the

environment provides feedback (feedback) to guide the algorithm.

2.2 Definition and Classification of Malware

2.2.1 Malware Classification Based on the Characteristic

Based on its characteristic, malware can be classified into ten types. For the classification, Aycock

[8] uses three parameters: self-replicating, number of population growth, and parasitic traits. Based on

those parameters, there are logic bomb, Trojan horse, virus, worm, rabbit, spyware, adware, hybrid, and

zombies. Self-replicating is a malware ability for replicate himself. Number of population growth is the

increase number of malware population. Meanwhile, parasitic malware is a malware that will damage

the victim’s system when the malware is activated.

Logic Bomb

Logic bomb is a malware that consists of two parts, payload and trigger. Payload is a part that

contains code about the action performed by the malware. Malware will be activated when the activation

condition is fulfilled. That condition is called trigger. The trigger can be various, depends on the creator

of the malware. One example of the most commonly used triggers are date and time. Logic bomb cannot

replicate himself, its population growth is zero, and it has possibility to be parasitic.
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Trojan horse

Trojan horse is a malware whose name is taken from Greek’s myth. Greek’s soldiers hid inside a

giant wood horse sent to Troy city and did surprise attack when the enemies were off guard. Trojan

horse has the same characteristic, it does its activities in secret. One example of the activity is recording

the victim’s keyboard input. Trojan horse does not have self-replicating ability, its population growth is

zero, and it is parasitic.

Backdoor

Backdoor is a malware that has an ability to bypass normal security check. Usually, programmers

make a backdoor to bypass authentication process that takes a long time when they do server debugging.

One example of backdoor is called Remote Administration Tool (RAT). Backdoor monitors victim’s

activity remotely. Usually, a backdoor is used by workers to access their office computers when they are

at home. However, adversaries take advantage of RAT and install it on victim’s computer. Backdoor

does not have self-replicating ability, zero population growth, and has possibility to become parasitic.

Virus

Virus is a malware that tries to duplicate itself to other executable files when the malware is

executed. This will make the victim’s device run slow as thousands of virus duplicating themselves.

Virus has self-replicating ability, positive population growth, and it is parasitic.

Worm

Worm is a malware that has similar characteristic with virus. The main difference between worm

and virus is that worm is standalone; does not parasitize other files and spreads over network, not

through physical media. The word worm was first used in 1975 by John Brunner in his book ”The

Shockwave Rider”. The first computational experiment on worms was carried out by Xerox PARC in

1980, after previously a worm called Creeped Crawled appeared around 1970. Worms have the ability

to self-replicate, have population growth, and are not parasitic.

Rabbit

Rabbit is a malware that has self-replicating capabilities, but zero population growth. This is because

that malware moves to another device by deleting himself from the previous infected device. Therefore,

rabbit has zero population growth but has the ability to self-replicate. Rabbit is not parasitic. Rabbit is

often used when the adversary needs a malware that can reproduce rapidly. Basically, a rabbit has two

main characteristics. The first one is trying to eat all system resources; for example, a fork bomb that

attempts to create a new process in an infinite loop. The second characteristic is that only one rabbit

hopping from 1 PC to another PC. After moving, the previous data will be deleted.

Spyware

Spyware is a malware that collects information from a victim’s computer, then sends it to the at-

tacker. Information commonly targeted by spyware users are usernames and passwords, email addresses,

bank accounts and credit card numbers, or software license keys that can be used to commit piracy.

Viruses and worms can collect similar information, but the difference is that a spyware does not have
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self-replicating capabilities. Spyware is usually spread by injection into pirated software, so that when

the victim installs the software, the spyware will be embedded in the victim’s computer. In addition,

spyware can also be installed when the victim enters a website, which is often referred to as a drive-by

download. Spyware has zero population growth and it is not parasitic.

Adware

Adware is a malware that has spyware-like characteristics. The difference is that an adware has

a specific purpose, namely spying to find out user habits; which is usually for the sake of advertising.

The sign that our computers are infected with malware is the sudden appearance of pop up ads on our

computer screens. The adware has no self-replicating capability, zero population growth, and it is not

parasitic.

Hybrid

Hybrid is a malware that results from a combination of several types of malware. An example of a

hybrid malware was introduced by Ken Thompson at the ACM Turing Award Lecture [9]. The lecture

introduces a Trojan that can serve as a backdoor and can reproduce itself like a virus. Another example

of a hybrid is called Animal, which was created by John Walker in 1975 [10]. An Animal copies itself to

all directories on the computer, but does not destroy any data. It also does not use the Internet when

it is active, either to spread itself or to send information. Therefore, Animals are a mixture of worms,

Trojans and viruses.

Zombies

Devices that have been taken by the adversaries so that they can be used to carry out attacks

are called zombies. Zombies are usually used by adversaries to send spam and launch denial of service

attacks. In order to carry out the Denial-of-service (DDoS) attack, it takes a lot of computers to send

requests to the target computer so that the target computer traffic becomes overloaded. That is why, a

huge number of zombies are required.

2.2.2 Malware Classification Based on the Target

Based on its target, malware can be classified into three kinds: boot sector infectors, File Infectors,

and Macro Virus.

Boot Sector Infectors

The Boot Sector Infector (BSI), is malware that infects itself by copying itself to the boot block of

the victim’s PC. It will copy the original boot block component to another place first so that the malware

can complete the infection process after the boot process starts. In the past, this type of malware was

indeed quite effective. This is because that it attacks the computer during the boot process, before the

antivirus can work. However, now it is very rare to find malware that attacks the boot sector. Most

BIOSes are protected so that the operating system will prohibit all writing request to the boot block

without official authorization from the admin.
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File Infectors

It is a virus that infects executable files on the target computer. If the boot sector malware infects

a boot block that is outside the OS, then the file infector will infect the files on our computer system.

There are five alternative locations for file infectors to infect the target file. The five sections are the

beginning of file, end of file, overwritten into file, inserted into file, and not in file. The file infector that

infects the beginning of the file will place itself at the beginning of the script file. Therefore, when the file

is opened by the victim, the malware will run immediately. Contrary to the beginning of the file, there

is also a malware that infects the end of the file. This type of malware will change the start location

address to the location of the malware code, then use the jump command to return to the actual initial

code position so that the file can run normally. The third alternative location for malware infection file

infectors is overwritten into the file. Overwriting into file is intended so that the original file size does not

change drastically as in the case of the beginning of a file and the end of a file. The overwriting process

is quite difficult as it can damage the original file. The overwritten part must be the data sector, not the

code sector because it could potentially damage the original file. The fourth alternative is inserted into

a file. In this method, a malware is inserted into a file in the code sector. This method is quite difficult

to do because you have to restructure the file or the file will be damaged. The last alternative is not in

file. Malware will place itself with the same name as the target file so that the malware will be executed

first when someone tries to run the target file. The target file will be renamed with a different name.

Macro Virus

Some applications allow the use of file data, such as in Microsoft word. These data files are commonly

called macros. Macros are code written in a language that the application can interpret. After the macros

are installed to global macros, all files opened by the application become exposed to the malware. When

someone runs an application to open a file, the application will open global macros and the file becomes

infected with malware.

2.2.3 Malware Classification Based on the Concealment Strategy

Based on its concealment strategy, malware is classified into seven types. The seven types of mal-

ware include no concealment, encryption, stealth, metamorphism, strong encryption, polymorphism, and

oligomorphism.

No Concealment

This type of malware does not have the ability to hide itself from antivirus detection so that it can

be detected easily.

Encryption

The body of the virus is encrypted with a certain key so that the antivirus will not be able to detect

any malicious code in it. There are five types of encryption; namely simple encryption, static encryption

keys, variable encryption keys, substation ciphers, and strong encryption. Simple encryption does not

use keys, only arithmetic and basic logic such as plus, minus, rotation, negation. Static encryption uses

one static key. Variable encryption key uses a key that changes based on the variable value used so that

the malware code will be more difficult to be detected. Substitution cipher Is a 1:1 encryption technique.
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Strong encryption combines arithmetic logic, variable encryption key, and substitution cipher so that it

becomes harder to be broken.

Stealth

Stealth malware is malware that can completely hide the infection. One example is by not changing

the timestamp of the infected file so that the file is still the same as before.

Oligomorphism

Oligomorpism malware is a semi polymorphic malware that has a small loop decryptor. Therefore,

antivirus experts can easily brute force it to solve it.

Polymorphism

Polymorphism is a developed form of oligomorphism; by increasing the number of the loop decryptor.

One of them is called Tremor which has 6 million loop decryptor. Due to the large number of them, it

is impossible to do brute force since it takes a very long time.

Metamorphism

Metamorphism is a malware that has a modified body structure. Therefore, the antivirus will not

detect it because with a changed body structure, the location of the virus signature is changed too.

Strong Encryption

Strong encryption is a malware with two encryption keys that are distributed separately. However,

the chances of the two parts meets on the same device are quite small so that they are rarely used.
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Chapter 3. Objectives

3.1 Research Goals

In the first part of this dissertation, we want to achieve these goals:

1. Conducting a study about deep learning techniques for Android malware detection.

2. Propose mDFES, a stacked autoencoder-based feature learning method for detecting Android mal-

ware.

3. Providing comparison and analysis for three methods: FES, DFES, and mDFES using Drebin and

Malgenome dataset.

3.2 Research Hypothesis

We also set these hypothesis in our Android malware detection experiment:

1. Among FES, DFES, and mDFES, FES should be the fastest but has the worst accuracy

2. mDFES should be faster than DFES since mDFES reduce the number of non-extracted feature in

the classification phase.

3. The type of dataset affects the performance of deep learning method. In a same environmental

setting, method X gives better performance than method Y for Dataset A, but method Y gives

better performance than method X for Dataset B.
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Chapter 4. Malware and Anti-Malware Detections

4.1 Malware Detection Method

Generally, malware detection method can be divided into three kinds: static detection method,

dynamic detection method, and machine learning-based detection method.

4.1.1 Static Detection Method

The static detection method is a detection method without executing the file that is going to be

examined. There are three kinds of static detection techniques: scanners, heuristics, and integrity

checkers. There are two type of scanners method; on demand and on access. On demand means that

the scanning process is done by the user request. On access means that the scanning process will

automatically start when a file is accessed. The heuristics method looks for certain codes; such as self-

modifying code, decryption loop, and unusual instructions that tries to access the root or registry. Lastly,

integrity checkers compares the checksums of a file over time. If the file has been infected with a virus,

the checksum will change.

4.1.2 Dynamic Detection Method

Dynamic detection method is a detection method by executing the file that want to be examined and

then observing its behavior. Dynamic detection methods can be divided into two types, namely behavior

monitoring and emulation. Behavior monitoring checks the behavior of a program, while emulation

executes the program in an emulated environment.

4.1.3 Machine Learning-based Detection Method

Machine learning-based methods can be classified into supervised learning [11], unsupervised learning

[12], semi-supervised learning [13], and reinforcement learning. Autoencoder [14] is a neural network

model that has similar input and output. It works by learning the characteristic of the input then try to

do reconstruction to that input data. Autoencoder is useful for reducing the dimensionality of a complex

dataset [15]. When we have high dimensional data with many features, high number of training instances

are needed to achieve a good accuracy. In order to solve this problem, the dimensionality reduction

technique is required. An autoencoder consists of two parts: encoder and decoder. Between the encoder

and the decoder, there are several layers called hidden layer. In those hidden layers, representations

of the data are generated. A sparse autoencoder is an autoencoder that has sparsity penalty, which is

applied on the hidden layer when a rescontruction error occurred. The advantage of the sparsity penalty

is preventing overfitting. A sparse autoencoder also takes the highest activation value in the hidden

layers and zero out the rest of the nodes, which forces to use a reduced number of hidden nodes; not all

of the hidden nodes.
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4.2 Anti-Malware Detection Method

4.2.1 Retroviruses

Retroviruses are malwares that actively work to disable antivirus software so that the antivirus

cannot work.

4.2.2 Obfuscation

Obfuscation is a technique to modify a malware so that the antivirus cannot find the virus signature

inside it. The virus signature can be removed or relocated.

4.2.3 Anti-Emulation

Anti-Emulation can be divided into outlast, outsmart, and overextend. The outlast method is

a method for testing the patience of users who want to emulate malware files by buying some time.

Outsmart is a technique that restructures malware code so that it does not look suspicious. Overextend

is a method for pushing the emulator to its limit so that it crashes.

4.2.4 Armoring

Armoring is a technique of adding protection to malware so that it becomes difficult to ana-

lyze. Against dynamic analysis, anti-debugging armor is used, whereas to counter static analysis, anti-

disassembly armor is required.

4.2.5 Tunneling

Antivirus software usually monitors connections using API code to an operating system to detect

suspicious activity. Tunneling malware is a malware that is able to track whether an API code is under

surveillance or not.

4.2.6 Integrity Checker Attack

This technique works against antiviruses that match the checksum of files over time. The process

is usually done by deleting the checksum database that is stored on the computer so that the antivirus

cannot check it.

4.2.7 Avoidance

Avoidance is a technique of avoiding infecting file types that are usually checked by antivirus. For

example, the files that access the operating system registry or root.
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Chapter 5. Previous Publications

Malware detection has been studied for decades. The old detection technique includes static detec-

tion and dynamic detection. Lately, several machine learning based malware detection methods have

been proposed.

Some methods use malware behaviors as the features of machine learning for malware detection.

Shibahara et al. [16] proposed a deep learning approach based on characteristic of malware communi-

cation using Recurrent Neural Network (RNN). They showed that the proposed method reduced 67.1%

of analysis time while keeping the range of covered URL to 97.9% compared to full analysis method.

Kolosnjaji et al. [17] proposed deep learning based malware detection using system call sequence. They

showed that the combination of Convolutional Neural Network (CNN) and Long-Short Term Memory

(LSTM) gives better accuracy, compared to feedforward network and convolutional network. Firdausi

et al. [18] proposed an automatic behavior based malware detection using machine learning. They used

five classifiers including k-Nearest Neighbors (k-NN), Näıve Bayes, J.48 Decision Tree, Support Vector

Machine (SVM), and Multilayer Perceptron Neural Network (MLP). Their experiment showed that J.48

classifier gave the best performance. Rieck et al. [19] proposed a malware detection scheme based on

malware behavior using machine learning. They showed that the incremental technique in malware

behavior based analysis successfully decreased run time and memory requirement, compared to regular

clustering.

There are methods that combine feature extraction and classification in machine learing for malaware

detection. Tobiyama et al. [20] proposed a malware detection method using deep neural network based

on data traffic on computer. They used RNN for feature extraction and CNN for classification. Their

proposed method achieved 92% detection accuracy. David et al. [21] proposed Deepsign, a deep learning

approach for automatic malware signature generation and classification. They used Deep Belief Network

(DBN) to produce malware signatures. Their proposed approach reached 98.6% accuracy with 0.2 input

noise and 0.001 learning rate. Xu et al. [22] proposed machine learning based malware detection by

using virtual memory access patterns. They used three classifiers (SVM, Random Forest, and Logistic

Regression) to do training phase. They showed that the best performance was achieved by random forest

with 99% true positive rate and 1% false positive rate. Liu et al. [23] proposed a combination between

image processing and machine learning. They used opcode n-gram with gray scale images to extract

malware features. Then, they did clustering process using Shared Nearest Neighbor (SNN) clustering

algorithm. They reached 96.5% accuracy by using random forest classifier.

Rathore et al. [24] proposed random forest based deep learning with opcode frequency as feature

vector for malware detection. Vinayakumar et al. [25] combined image processing with deep learning

for hybrid zero-day malware detection. While Xiao et al. [26] proposed behavior based deep learning

framework to detect malware in cloud service environment. The extracted API calls and use it as

features during the learning process. Zhong et al. [27] proposed multi level deep learning structure

that utilizes tree structure to do clustering on malware detection system. Liu et al. [28] implemented

malware detection system by leveraging deep learning on API calls. Karbab et al. [29] extraced API

from Android devices as features for deep learning based malware detection on IoT devices.

Other methods combine feature selection and classification in machine learning for malware detec-

tion. Raman et al. [30] proposed an approach to do feature selection in malware classification, with the
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addition of using intuitive method during feature selection. They used random forest algorithm to do

feature selection. Then, four classifiers, PART, IBk, J48Graft, and J48 were used to choose the highest

seven features. Gandotra et al. [31] proposed zero-day malware detection by combining static and dy-

namic malware analysis with machine learning algorithm. They generated their own dataset from Virus

Share (for malwares) and Windows system directories (for benign files). They did feature selection by

using information gain method, an entropy based technique for selecting features. Then, for classifica-

tion, they used seven classifiers from Weka, including IB1, Näıve Bayes, J48, Random Forest, Bagging,

Decision Table, and Multi-layer Perceptron. The best performance was achieved by Random Forest with

99.97% accuracy.

13



Chapter 6. Our Methods

Dataset Pre-processing In this dissertation, we use two well known Android malware dataset:

Malgenome [32] and Drebin [33] collected by Yerima et al. [34]. The Malgenome dataset contains

3,799 instances with 215 static features extracted from 1260 malware apps and 2539 benign apps. The

Drebin dataset contains 15,036 instances with 215 static features extracted from 5560 malware apps and

9476 benign apps. The details of those dataset can be seen in the appendix and source code page. In

order to use the dataset; firstly, we need to pre-process it. The purpose of dataset pre-processing is to

convert the data format into a process-able input for the feature extraction. There two main processes:

dataset normalization and dataset balancing. In dataset normalization, we convert benign (B) string in

the dataset into 1 value and malware (S) string in the dataset into 0 value. In dataset balancing, we

balance the size of the dataset. We ignore this step if we want to use unbalanced dataset during the

experiment. The next process is converting the data into double format and exporting it into csv file.

The flowchart of dataset pre-processing can be seen in Fig. 6.1.

Algorithm 1 Dataset Pre-processing Algorithm

1: function Dataset Pre-processing(InputData)

2: Open Dataset

3: Read InputData

4: function Dataset Normalization(InputData)

5: return NormalizedDataset

6: end function

7: function Dataset Balancing(NormalizedDataset)

8: return BalancedDataset

9: end function

10: return InputDataF inal

11: end function

Feature Extraction Feature extraction is a process to extract new features from the original features.

The main purpose is to reduce the original features’ dimensionality. The compressed representation

preserve the essential information from the original input. In this dissertation, we use Autoencoder [35]

for the feature extraction phase. Autoencoder is a neural network model for dimensionality reduction in

a learning process. When we have high dimensional data with many features, the feature can be spread.

As a result, we need many training data during the learning process. Another way to address this issue

is by reducing the data dimension. That is the reason why we need an autoencoder. An autoencoder

has one hidden layer and same number of input and output [36]. Stacked Autoencoder (SAE), as shown

in Fig. 6.2, is a neural network that consists of multiple encoders [37]. In our approach, we use two

autoencoders for feature extraction [38] and train them separately. However, the two autoencoders are

not dependent from each other. The second autoencoder uses the hidden layer from the first autoencoder

and the number of neurons in each hidden layer will decrease accordingly. During the SAE training, we

use unlabeled dataset. The labeled dataset can be used during classification process. The classification

process can be done by softmax regression function in the last step of the training process [39]. The
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Figure 6.1: The flowchart of dataset pre-processing
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Figure 6.2: Stacked Autoencoder (SAE) network with two hidden layers

flowchart of feature extraction can be seen in Fig. 6.3.

Algorithm 2 Feature Extraction Algorithm

1: function Feature Extraction(InputDataF inal)

2: Import InputDataF inal

3: for i=1 to j do . j=number of hidden layers

4: for each data instance do

5: Compute hidden representation yi

6: Reconstruct the instance zi

7: Minimize the cost function Ei

8: end for

9: end for

10: return Extracted Features

11: end function

Feature Selection Feature selection is a process to select important features from the input features.

Compared to feature extraction, no new feature is produced in feature selection; since we only choose

the essentail representation. Feature selection is done by measuring the weight of all features, calculating

the average weight value, set the threshold, and finally choose all features that have weight value higher

than the threshold. In this dissertation we use Artificial Neural Network (ANN) [40] for feature selection

phase. ANN, as shown in Fig. 6.5, is a neural network model that consists of many neurons. Each neuron

receives input, multiplies the input with weight, and adds bias, resulting in parameters for activation

function. The activation function decides whether that neuron should be active or not, based on the

weighted sum [41]. In our proposed approach, we use ANN to do feature selection and classification. The

ANN can be trained with two target classes: benign class and malware class. The flowchart of feature

extraction can be seen in Fig. 6.4.

We measure the weight of each feature in dataset to decide which feature is important. The weight

here represents the level of influence from input feature to the first hidden layer [42]. If the value is small

(nearly zero), it means that the feature is not a deciding factor to pick whether a file is a malware or

benign file. We will measure the average weight of all features and set a threshold value. We pick all
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Figure 6.3: The flowchart of feature extraction

Algorithm 3 Feature Selection Algorithm

1: function Feature Selection(FeatureV ectors)

2: Import FeatureV ectors

3: Training ANN

4: Wij

5: for each input feature do

6: Compute weight

7: end for

8: Sort descending

9: SelectedFeatures← weight > threshold

10: return SelectedFeatures

11: end function
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Figure 6.4: The flowchart of feature selection

Figure 6.5: The structure of Artificial Neural Network
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features that have weight value higher than the threshold. This is how we do the feature selection [43].

We also use ANN for classification process. Our scheme executes minimum global error function with a

scale conjugate gradient optimizer [44] in supervised learning environment. We decide to use supervised

approach because it will increase the performance of our classifier.

6.1 Feature Extraction Selection (FES)

Figure 6.6: Structure of FES

The structure of FES is shown in Fig. 6.6. This method consists of feature extraction and feature

selection, which is the basic structure for feature learning. The feature extraction reconstructs its input

and transforms the original inputs from dataset into a meaningful representation. The feature selection

measures the weight of each features and selects features which weights are higher than the average

weight. The classification does learning process with a minimum global error function with a scaled

conjugate gradient optimizer.

6.2 Deep Feature Extraction and Selection (DFES)

Figure 6.7: Structure of DFES

The structure of DFES is shown in Fig. 6.7. This method consists of a combination between feature

extraction, feature selection, and classification for learning the essential meaning from a massive dataset.

DFES enhanced the FES method by providing deep abstraction, concatenating the extracted features

with the original features as the input of feature selection.
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6.3 Modified Deep Extraction and Selection (mDFES)

Figure 6.8: Structure of mDFES

The structure of mDFES is shown in Fig. 6.8. This method modifies DFES by concatenating the

extracted features (result of feature extraction) and selected feature from the original features. The

difference with the DFES is that we increase the output of feature extraction, while reducing the input

of feature selection. The feature selection only selects features from the original features. This idea comes

from the fact that the feature extraction of SAE is capable to transform original features from a massive

dataset into more meaningful; but less complex features. That is why we decide to do feature selection on

original features only and then concatenate the result with extracted features. The concatenated features

become the input of learning process during the classification phase. Extracted features should have more

meaningful representation than original features. The nature of stacked Autoencoder guarantees that

the autoencoder is actually learning latent representations, instead of redundant information in the input

data [45]. So, in mDFES; we reduce the number of original feature and use all extracted features during

the classification. Based on those logical theory, we expect that mDFES can gives better accuracy than

DFES with faster classification time.

20



Chapter 7. Our Experiments and Comparison

7.1 Evaluation Metrics

In order to measure the performance of our proposed method, we use several evaluation metrics.

We use the most well referenced parameter measurements [46], including accuracy, detection rate, false

alarm rate, false negative rate, F1 score, and precision. Accuracy (Acc) means the proximity of measured

result to the true value. Detection rate (DR) refers to the number of malwares detected, divided by the

total number of malwares. False Alarm Rate (FAR) is the number of benign files that is detected as

malwares, divided by the total number of benign files in the dataset. False Negative Rate (FNR) is the

number of malwares that is wrongly detected as benign, divided by the total number of malwares in the

dataset. F1 score is a measurement of harmonic mean between precision and recall. Precision is the

number of correctly detected malwares, divided by the number of files that is detected as malwares. The

measurement formulas can be defined as shown in Eqs. (7.1) to (7.5):

Acc =
TP + TN

TP + TN + FP + FN
(7.1)

DR = Recall =
TP

TP + FN
(7.2)

FAR =
FP

TN + FP
(7.3)

F1 = 2 ·
Precision · Recall

Precision + Recall
(7.4)

Precision =
TP

TP + FP
(7.5)

7.2 Outcome

In this dissertation, we conduct a study of stacked autoencoder-based feature learning method using

two Android malware datasets: Malgenome and Drebin dataset. We performed our experiment in several

scenarios, as shown in Table 7.1.

Scenario 1: FES-DREB-BAL In this scenario, we used balanced Drebin dataset with FES method.

The experiment result shows that this setup achieved 92% accuracy. The detection rate is 93.83%, the

false alarm rate is 9.74%, and the F1 score is 92.07%. Theoretically, FES structure should give the worst

performance compared to the DFES and mDFES. When we compared this scenario result with DFES

(Scenario 5) and mDFES (Scenario 9), the performance result of this scenario is lower; the accuracy

result of Scenario 5 and 9 are 97.95% and 95.66%, respectively.

Scenario 2: FES-DREB-UNB In this scenario, we use unbalanced Drebin dataset with FES method.

The experiment result shows that this setup achieved 92.86% accuracy. The detection rate is 89.42%, the

false alarm rate is 5.13%, and the F1 score is 90.24%. Theoretically, FES structure should give the worst

performance compared to the DFES and mDFES. When we compared this scenario result with DFES

(Scenario 6) and mDFES (Scenario 10), the performance result of this scenario is lower; the accuracy

result of Scenario 5 and 9 are 97.10% and 96.33%, respectively.
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Table 7.1: List of All Experiment Scenarios

Scenario

Number
Method Dataset Name Dataset Type

FES DFES mDFES DREB MALG BAL UNB

1 √ √ √

2 √ √ √

3 √ √ √

4 √ √ √

5 √ √ √

6 √ √ √

7 √ √ √

8 √ √ √

9 √ √ √

10 √ √ √

11 √ √ √

12 √ √ √

Figure 7.1: Confusion matrix of scenario 1

Table 7.2: Experimental result of FES-DREB-BAL

TN FP TP FN DR FAR F1 Acc

Train 3604 388 3646 229 94.090% 9.719% 92.199% 92.157%

Validate 758 93 773 63 92.464% 10.928% 90.834% 90.753%

Test 769 73 793 51 93.957% 8.670% 92.749% 92.645%

All 5131 554 5212 343 93.825% 9.745% 92.077% 92.020%
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Figure 7.2: Confusion matrix of scenario 2

Table 7.3: Experimental result of FES-DREB-UNB

TN FP TP FN DR FAR F1 Acc

Train 6306 349 3448 419 89.165% 5.244% 89.979% 92.701%

Validate 1377 77 720 80 90.000% 5.296% 90.169% 93.035%

Test 1307 60 799 89 89.977% 4.389% 91.471% 93.392%

All 8990 486 4967 588 89.415% 5.129% 90.243% 92.855%

Figure 7.3: Confusion matrix of scenario 3
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Table 7.4: Experimental result of FES-MALG-BAL

TN FP TP FN DR FAR F1 Acc

Train 1024 34 844 47 94.725% 3.214% 95.421% 95.844%

Validate 214 9 184 10 94.845% 4.036% 95.090% 95.444%

Test 236 6 169 6 96.571% 2.479% 96.571% 97.122%

All 1474 49 1197 63 95.000% 3.217% 95.531% 95.976%

Scenario 3: FES-MALG-BAL In this scenario, we use balanced Malgenome dataset with FES

method. The experiment result shows that this setup achieved 95.98% accuracy. The experiment result

shows that this setup achieved 95.98% accuracy. The detection rate is 95.00%, the false alarm rate

is 3.22%, and the F1 score is 95.53%. Theoretically, FES structure should give the worst performance

compared to the DFES and mDFES. When we compared this scenario result with DFES (Scenario 7) and

mDFES (Scenario 11), the performance result of this scenario is lower; the accuracy result of Scenario 7

and 11 are 96.36% and 98.26%, respectively.

Figure 7.4: Confusion matrix of scenario 4

Table 7.5: Experimental result of FES-MALG-UNB

TN FP TP FN DR FAR F1 Acc

Train 1732 24 823 80 91.141% 1.367% 94.057% 96.089%

Validate 393 3 159 15 91.379% 0.758% 94.643% 96.842%

Test 377 10 168 15 91.803% 2.584% 93.075% 95.614%

All 2502 37 1150 110 91.270% 1.457% 93.993% 96.131%

Scenario 4: FES-MALG-UNB In this scenario, we use unbalanced Malgenome dataset with FES

method. The experiment result shows that this setup achieved 96.13% accuracy. The detection rate is
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91.27%, the false alarm rate is 1.46%, and the F1 score is 93.99%. Theoretically, FES structure should

give the worst performance compared to the DFES and mDFES. When we compared this scenario result

with DFES (Scenario 8) and mDFES (Scenario 12), the performance result of this scenario is lower; the

accuracy result of Scenario 8 and 12 are 96.58% and 97.92%, respectively.

Figure 7.5: Confusion matrix of scenario 5

Table 7.6: Experimental result of DFES-DREB-BAL

TN FP TP FN DR FAR F1 Acc

Train 3933 62 3796 78 97.987% 1.552% 98.189% 98.221%

Validate 830 17 812 27 96.782% 2.007% 97.362% 97.390%

Test 825 18 813 29 96.556% 2.135% 97.191% 97.211%

All 5588 97 5421 134 97.588% 1.706% 97.914% 97.945%

Scenario 5: DFES-DREB-BAL In this scenario, we use balanced Drebin dataset with DFES

method. The experiment result shows that this setup achieved 97.95% accuracy. The detection rate

is 97.59%, the false alarm rate is 1.71%, and the F1 score is 97.91%. When we compared this scenario

result with DFES (Scenario 5) and mDFES (Scenario 9), the accuracy result of Scenario 1 and 9 are

92.02% and 95.66%, respectively. This shows that for balanced Drebin dataset, DFES structure gives

the best performance compared to FES and mDFES.

Scenario 6: DFES-DREB-UNB In this scenario, we use unbalanced Drebin dataset with DFES

method. The experiment result shows that this setup achieved 97.10% accuracy. The detection rate is

97.12%, the false alarm rate is 2.92%, and the F1 score is 97.07%. When we compared this scenario

result with FES (Scenario 2) and mDFES (Scenario 10), the accuracy result of Scenario 2 and 10 are

92.86% and 96.33%, respectively. This shows that for unbalanced Drebin dataset, DFES structure gives

the best performance compared to FES and mDFES.
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Figure 7.6: Confusion matrix of scenario 6

Table 7.7: Experimental result of DFES-DREB-UNB

TN FP TP FN DR FAR F1 Acc

Train 3842 105 3815 107 97.272% 2.660% 97.297% 97.306%

Validate 834 25 794 31 96.242% 2.910% 96.594% 96.675%

Test 843 36 786 22 97.277% 4.096% 96.442% 96.562%

All 5519 166 5395 160 97.120% 2.920% 97.067% 97.100%
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Figure 7.7: Confusion matrix of scenario 7

Table 7.8: Experimental result of DFES-MALG-BAL

TN FP TP FN DR FAR F1 Acc

Train 864 30 842 35 96.009% 3.356% 96.284% 96.330%

Validate 183 3 186 7 96.373% 1.613% 97.382% 97.361%

Test 185 4 177 13 93.158% 2.116% 95.418% 95.515%

All 1232 37 1205 55 95.635% 2.916% 96.323% 96.362%

Scenario 7: DFES-MALG-BAL In this scenario, we use balanced Malgenome dataset with DFES

method. The experiment result shows that this setup achieved 96.36% accuracy. The detection rate is

95.64%, the false alarm rate is 2.92%, and the F1 score is 96.32%. When we compared this scenario

result with FES (Scenario 3) and mDFES (Scenario 11), the accuracy result of Scenario 3 and 11 are

95.98% and 98.26%, respectively. This shows that for balanced Malgenome dataset, DFES structure

gives better performance compared to FES but lower performance compared to mDFES.

Table 7.9: Experimental result of DFES-MALG-UNB

TN FP TP FN DR FAR F1 Acc

Train 1733 28 842 56 93.764% 1.590% 95.249% 96.841%

Validate 382 15 164 9 94.798% 3.778% 93.182% 95.789%

Test 370 11 178 11 94.180% 2.887% 94.180% 96.140%

All 2485 54 1184 76 93.968% 2.127% 94.796% 96.578%

Scenario 8: DFES-MALG-UNB In this scenario, we use unbalanced Malgenome dataset with

DFES method. The experiment result shows that this setup achieved 96.58% accuracy. The detection

rate is 93.97%, the false alarm rate is 2.13%, and the F1 score is 94.80%. When we compared this
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Figure 7.8: Confusion matrix of scenario 8

scenario result with FES (Scenario 4) and mDFES (Scenario 12), the accuracy result of Scenario 1 and

9 are 96.13% and 97.92%, respectively. This shows that for unbalanced Malgenome dataset, DFES

structure gives better performance compared to FES but lower performance than mDFES.

Figure 7.9: Confusion matrix of scenario 9

Scenario 9: mDFES-DREB-BAL In this scenario, we use balanced Drebin dataset with mDFES

method. The experiment result shows that this setup achieved 95.66% accuracy. The detection rate is

94.31%, the false alarm rate is 3.03%, and the F1 score is 95.55%. When we compared this scenario

result with FES (Scenario 1) and DFES (Scenario 5), the accuracy result of Scenario 1 and 5 are 92.02%
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Table 7.10: Experimental result of mDFES-DREB-BAL

TN FP TP FN DR FAR F1 Acc

Train 3888 107 3665 207 94.654% 2.678% 95.892% 96.009%

Validate 814 37 781 54 93.533% 4.348% 94.495% 94.603%

Test 811 28 793 55 93.514% 3.337% 95.027% 95.080%

All 5513 172 5239 316 94.311% 3.026% 95.550% 95.658%

and 97.95%, respectively. This shows that for balanced Drebin dataset, mDFES structure gives better

performance compared to FES but lower performance than DFES.

Figure 7.10: Confusion matrix of scenario 10

Table 7.11: Experimental result of mDFES-DREB-UNB

TN FP TP FN DR FAR F1 Acc

Train 3881 103 3729 156 95.985% 2.585% 96.644% 96.709%

Validate 815 29 800 41 95.125% 3.436% 95.808% 95.846%

Test 821 36 781 48 94.210% 4.201% 94.897% 95.018%

All 5517 168 5310 245 95.590% 2.955% 96.257% 96.326%

Scenario 10: mDFES-DREB-UNB In this scenario, we use unbalanced Drebin dataset with mD-

FES method. The experiment result shows that this setup achieved 96.33% accuracy. The detection rate

is 95.59%, the false alarm rate is 2.96%, and the F1 score is 96.26%. When we compared this scenario

result with FES (Scenario 2) and DFES (Scenario 6), the accuracy result of Scenario 2 and 6 are 92.86%

and 97.10%, respectively. This shows that for unbalanced Drebin dataset, mDFES structure gives better

performance compared to FES but lower performance than DFES.
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Figure 7.11: Confusion matrix of scenario 11

Table 7.12: Experimental result of mDFES-MALG-BAL

TN FP TP FN DR FAR F1 Acc

Train 889 6 860 16 98.174% 0.670% 98.737% 98.758%

Validate 181 6 186 6 96.875% 3.209% 96.875% 96.834%

Test 183 4 186 6 97.382% 2.139% 97.382% 97.361%

All 1253 16 1232 28 98.246% 1.261% 98.246% 98.260%
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Scenario 11: mDFES-MALG-BAL In this scenario, we use balanced Malgenome dataset with

mDFES method. The experiment result shows that this setup achieved 98.26% accuracy. The detection

rate is 97.78%, the false alarm rate is 1.26%, and the F1 score is 98.25%. When we compared this scenario

result with FES (Scenario 3) and DFES (Scenario 7), the accuracy result of Scenario 1 and 5 are 95.98%

and 96.36%, respectively. This shows that for balanced Malgenome dataset, mDFES structure gives the

best performance compared to FES and DFES.

Figure 7.12: Confusion matrix of scenario 12

Table 7.13: Experimental result of mDFES-MALG-UNB

TN FP TP FN DR FAR F1 Acc

Train 1786 5 827 41 95.276% 0.279% 97.294% 98.270%

Validate 366 5 188 11 94.472% 1.348% 95.918% 97.193%

Test 372 5 181 12 93.782% 1.326% 95.515% 97.018%

All 2524 15 1196 64 94.921% 0.591% 96.803% 97.921%

Scenario 12: mDFES-MALG-UNB In this scenario, we use unbalanced Malgenome dataset with

mDFES method. The experiment result shows that this setup achieved 97.92% accuracy. The detection

rate is 94.92%, the false alarm rate is 0.59%, and the F1 score is 96.80%. When we compared this

scenario result with FES (Scenario 4) and DFES (Scenario 8), the accuracy result of Scenario 4 and

8 are 96.13% and 96.58%, respectively. This shows that for unbalanced Malgenome dataset, mDFES

structure gives the best performance compared to FES and DFES.

7.3 Comparison

Droid-Fusion [34] proposed a four-ranking based algorithm for classifying Android malware dataset.

The classifier has stacked generalization with multilevel architecture. They used Drebin dataset and

Malgenome dataset for the evaluation. Because it has multilevel architecture, Droid-Fusion can be
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applied for singular classifier and ensemble classifier. Firstly, the model is trained using a N-fold cross-

validation technique to estimate the prediction accuracies. Then, the output is used by four different

ranking-based algorithms to determine the selected items. The results are combined in pairs to find the

strongest pair that will be used to build the final model after testing against the unweighted parallel

combination. The training phase is distinct from the prediction phase. Different validation and testing

dataset have been prepared for the classification phase. For the feature extraction, python-based static

analyzer is deployed to do automatic feature extraction. While for feature selection, Information Gain

(IG) method is utilized. Droid-NNet [47] proposed an optimized neural network framework optimized

with different parameters and tested with two real-world Android datasets: Malgenome and Drebin.

The authors utilize random forest classifier and deep neural network with 2, 4, and 7 layers. They

compare the performance of four experimental scenarios: support vector machine, decision tree, logistic

regression, and neural network with various number of features. The dataset is split into training and

testing dataset while maintaining the ratio between benign and malware instances. Droid-NNet leverages

ReLu activation function in the hidden layer and sigmoid function in the output layer. For the optimizer,

Adam optimizer is chosen; while for loss function, binary cross-entropy is implemented. In order to stop

the training once the model’s performance has stopped improving, a selected validation loss is deployed.

Finally, in order to prevent overfitting, regularization technique is applied at the output of the hidden

layer. All parameters are optimized my grid search. Deep-Droid [48] proposed a combination of feature

extraction and sequential neural network model to detect Android malware using Drebin and Malgenome

dataset. The sequential neural network consists of input layer, one or more hidden layer, and output

layer. Nonlinear activation function is deployed to capture nonlinear data. During the training phase,

the weight value is constantly updated by applying backpropagation algorithm. The input layer of

Deep-Droid has 215 neurons, the hidden layer has 215 neurons, and the output layer has one neuron

to do binary classification. Binary entropy is applied as a loss function and optimizer to estimate the

adaptive movements, calculating the error and updating the weight. They compare the performance of

Deep-Droid with several well-known approaches such as: random forest, support vector machine, and

k-nearest neighbor. Deep-Droid successfully returned the best F-measure compared to those methods.

We will compare the performance of three works mentioned above. All those works proposed deep

learning for Android malware detection using Drebin and Malgenome dataset. Droid-Fusion [34] achieved

98.40% F1 score with 0.07 seconds classification time for Malgenome dataset and 98.10% F1 score

with 0.38 seconds classification time for Drebin dataset. Droid-NNet [47] achieved 99.26% F1 score for

Malgenome dataset and 98.80% F1 score with for Drebin dataset. Deep-Droid [48] achieved 99.20% F1

score for Malgenome dataset and 98.70% F1 score for Drebin dataset. Table. 7.14 shows the performance

comparison of Droid-Fusion, Droid-NNET, and Deep-Droid.

Table 7.14: The Performance Comparison of Droid-Fusion, Droid-NNET, and Deep-Droid

2*Method F1 Score (%)

Malgenome Drebin

Droid-Fusion 98.40 98.10

Droid-NNet 99.26 98.80

Deep-Droid 99.20 98.70

Overall, in a similar setting, for balanced Drebin dataset; the best performance is given by DFES

with 97.95% accuracy, 97.59% detection rate, 1.71% FAR, and 97.91% F1 score. For unbalanced Drebin
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dataset, the best performance is given by DFES with 97.10% accuracy, 97.12% detection rate, 2.92%

FAR, and 97.07% F1 score. For balanced Malgenome dataset, the best performance is given by mDFES

with 96.40% accuracy, 95.71% DR, 2.92% FAR, and 96.36% F1 score. For unbalanced Malgenome

dataset, the best performance is given by mDFES with 98.26% accuracy. 97.78% DR, 1.26% FAR, and

98.25% F1 score. The experimental result shows that all our hypothesis are correct. Among FES, DFES,

and mDFES; FES is the fastest, but has worst accuracy. mDFES is faster than DFES. Finally, the type

of dataset affects the performance of deep learning method, as shown that mDFES is better than DFES

for Malgenome dataset, while DFES is better than mDFES for Drebin dataset.
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Chapter 8. Concluding Remarks

To summarize, we have proposed mDFES, a feature learning method for malware detection over 
Android. We did experiments on FES, DFES, and mDFES using 9 different scenarios to compare their 
performance. From our experiments, we can conclude that FES is the fastest method but has the worst 
accuracy. For Malgenome dataset, mDFES is the best performer. For Drebin dataset, DFES is the 
best performer. Using DFES for Android malware Dataset achieves 96-98% accuracy, while using DFES 
for AWID Dataset [37] (with same configuration) achieved 99% accuracy. So, different type of dataset 
requires different deep learning approach to achieve the best result.
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Chapter 9. Introduction

In a business environment, prediction and decision-making are two important processes that require

careful consideration. Good judgement can lead to large profits, but bad decisions can ruin everything.

There was a hypothesis that a computer could help a user predict something or decide what next step

should be taken. As Artificial Intelligence (AI) has grown dramatically, this plan is no longer considered

impossible. AI has the ability to sense, understand, learn, and respond [7]. This solves the weaknesses of

computers without these four abilities. Prediction, on the other hand, is a process of learning available

information and then using that knowledge to generate new information that is not yet available. A

Deep Learning (DL) algorithm is a type of AI that has the ability to interpret data like a human brain

and can learn and classify objects. By leveraging the ability of deep learning, we can predict the future

and make decisions based on the currently available information, which becomes our training data when

we train the DL model. After the training process is completed, a prediction model is produced. Based

on this model, predictions based on clients’ data will be performed. That is how Machine Learning as a

Service (MLaaS), a promising business opportunity, was born.

MLaaS is a service, which usually runs on a cloud platform, with the purpose is to provide prediction

service to clients by utilizing machine learning [5]. The service runs on a cloud environment so that

clients do not need to build their own machine learning model to do a prediction [6]. However, there is

a problem. To perform predictions, a model owner needs to receive data from clients. The data may

consist of sensitive information. Thus, clients are reluctant to provide their data. On the other hand,

a model owner will also be worried that an adversary could be disguised as a client to try to steal the

model. Furthermore, there is an issue about the privacy of the prediction result and whether will it be

safe from access by unauthorized parties. In this scenario, Privacy-Preserving Deep Learning (PPDL) is

needed as a solution.
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Chapter 10. Classical Privacy-Preserving Method

We classify the classical PP method into three categories, as shown in Fig. 10.1. The three categories

are group-based anonymity, cryptography method, and differential privacy.

Figure 10.1: Classical PP Classification

10.1 Group Anonymity

While homomorphic encryption, functional encryption, and secure multi-party computation tech-

niques enable computation on encrypted data without revealing the original plaintext, we need to preserve

the privacy of sensitive personal data such as medical and health data. One of the earliest milestones to

preserving this privacy is to hide these sensitive personal data using data anonymization techniques.

The concept of k-anonymity was first introduced by Sweeney and Samarati [49] in 1998 to solve the

problem: ”Given sensitive personal data, produce the modified data which remains useful while the data

cannot specify the corresponding person.” Modified data are said to have k-anonymity if the information

for any person whose information is in the modified data cannot be distinguished from at least k − 1

individuals in the modified data. While k-anonymity is a simple and promising approach for group-

based anonymization, it is susceptible to attacks such as a homogeneity attack or background knowledge

attack [50] when background knowledge is available to an attacker. To overcome these issues, there are

many privacy definitions, such as l-diversity, t-closeness, and m-invariance [50, 51, 52]. The concept of

l-diversity means that each equivalent class has at least l distinct values for each sensitive attribute, and

t-closeness is a further refinement of l-diversity created by also maintaining the distribution of sensitive

attributes.
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10.2 Cryptography Method

10.2.1 Homomorphic and Functional Encryption

In 1978, Rivest et al. [53] questioned whether any encryption scheme can support computation of

encrypted data without knowledge of the encrypted information. If some encryption scheme supports an

operation ◦ on encrypted data Enc(m1 ◦m2), this scheme is called Homomorphic Encryption (HE) on

an operation ◦. Depending on the computation type that HE supports, it is called partially HE when

it supports the specific computation on encrypted data and Fully HE (FHE) when it supports arbitrary

computation. For example, the well-known RSA encryption [54] supports multiplication on encrypted

data without decryption, therefore RSA encryption is called multiplicative HE. Likewise, a scheme is

additive HE if it supports addition on encrypted data without decryption.

The design of FHE remained as an interesting open problem in cryptography for decades, until

Gentry suggested the first FHE in 2009 [55]. Afterwards, there have been a number of studies of HE

schemes based on lattices with Learning With Errors (LWE) and Ring Learning With Errors (Ring-LWE)

problems and schemes over integers with the approximate Greatest Common Divisor (GCD) problem

[56, 57, 58, 59, 60, 61, 62, 63, 64, 65]. Earlier works focused on HE were impractical for implementation;

however, there are currently many cryptographic algorithm tools that support HE efficiently, such as

HElib, FHEW, and HEEAN [66, 67, 68].

Functional Encryption (FE) was proposed by Sahai and Waters [69] in 2005 and formalized by Boneh

et al. [70] in 2011. Let a functionality F : K × X → {0, 1}∗. The functionality F is a deterministic

function over (K,X) that outputs (0, 1)∗ where K is the key space and the set X is the plaintext space.

We say a scheme is FE for a functionality F over (K,X) if it can calculate F (k, x) given a ciphertext of

x ∈ X and a secret key skk for k ∈ K.

Predicate encryption [71] is a subclass of FE scheme with a polynomial-time predicate P : K × I →
{0, 1} where K is the key space, I is the index set, and the plaintext x ∈ X is defined as (ind,m); X

is the plaintext space, ind is an index, and m is the payload message. As an example, we can define

FE functionality FFE(k ∈ K, (ind,m) ∈ X) = m or ⊥ depending on whether the predicate P (k, ind)

is 1 or 0, respectively. Depending on the choice of the predicate, Identity-based Encryption (IBE)

[72, 73, 74, 75, 76, 77, 78] and Attribute-based Encryption (ABE) [69, 79] are well-known examples of

predicate encryption schemes.

Both FE and HE enable computation over encrypted data. The difference is that the computation

output of FE is a plaintext, while the output of HE remains encrypted as HE evaluates the encrypted

data without decryption. There is no need for a trusted authority within HE systems. Additionally,

HE enables the evaluation of any circuit g over the encrypted data if skg is given, but FE enables the

computation of only some functions.

10.2.2 Secure Multi-party Computation

The purpose of Multi-party Computation (MPC) is to solve the problem of collaborative computing

that keeps the privacy of an honest/dishonest user in a group without using any trusted third party.

Formally, in MPC, for a given number of participants, p1, p2, · · · , pn, each participant has private data,

d1, d2, · · · , dn, respectively. Then, participants want to compute the value of a public function f on those

private data, f(d1, d2, · · · , dn), while keeping their own inputs secret.

The concept of secure computation was formally introduced as secure two-party computation in 1986
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by Yao [80] with the invention of Garbled Circuit (GC). Yao’s GC requires only a constant number of

communication rounds, and all functions are described as a Boolean circuit. To transfer the information

obliviously, Oblivious Transfer (OT) is used. The OT protocol allows a receiver PR to obliviously select

i and receive a message mi from a set of messages M that belong to a sender party PS . PR does not

know the other messages in M while PS does not know the selected message.

Secret sharing is yet another building block for secure MPC protocols, e.g., Goldreich et al. [81]

suggested a simple and interactive secure MPC protocol using the secret-shared values to compute the

value. Secret sharing is a cryptographic algorithm where a secret is parted and distributed to each

participant. To reconstruct the original value, a minimum number of secret-shared values are required.

Compared with HE and FE schemes, in secure MPC, parties jointly compute a function on their

inputs using a protocol instead of a single party. During the process, information about parties’ secret

must not be leaked. In secure MPC, each party has almost no computational cost with a huge commu-

nication cost, whereas the server has a huge computational cost with almost no communication cost in

the HE scheme. The parties encrypt their data and send them to the server. The server computes the

inner product between the data and the weight value of the first layer and sends the computation result

back to the parties. Then, the parties decrypt the results and compute the non-linear transformation.

The result is encrypted and transmitted again to the server. This process continues until the last layer

has been computed. To apply secure MPC to deep learning, we must handle the communication cost as

it requires many rounds of communication between the parties and the server, which is non-negligible.

10.3 Differential Privacy

Differential privacy (DP) was first proposed by Dwork et al. [82] in 2006 as a strong standard to

guarantee the privacy of the data. A randomized algorithm A gives ε-differential privacy if for all datasets

D1 and D2 differ in at most one element, and for all subsets S ∈ Range(imA), where imA denotes the

image of A, such that

Pr[A(D1) ∈ S] ≤ exp (ε) · Pr[A(D2) ∈ S].

Differential privacy addresses when a trusted data manager wants to release some statistics on the data

while the adversary cannot reveal whether some individual’s information is used in the computation.

Thus, differentially private algorithms probably resist identification and reidentification attacks.

An example of the latest implementation of differential privacy technique was proposed by Qi et al.

[83]. They suggested a privacy-preserving method for a recommender system using Locality-Sensitive

Hashing (LSH) technique, which is more likely to assign two neighboring points to the same label. As a

result, sensitive data can be converted into less sensitive ones.

10.4 Secure Enclaves

Secure enclaves, also known as Trusted Execution Environments (TEEs), are a secure hardware

method that provides enclaves to protect code and data from another software on the related platform,

including the operating system and hypervisor [84]. The concept of an enclave was firstly introduced

by Intel [85], which introduced Software Guard Extensions (SGX), available on Intel processors starting

from the Skylake generation [86]. Utilizing only SGX for privacy-preserving is not sufficient from the

security and privacy perspectives because the code from the MLaaS provider is not trusted. SGX only

protects the execution of trusted code on an untrusted platform. A code is called trusted if it is public

38



and users can inspect the code. If the code is private, users cannot be assured that the code does not

steal their data. Because of this, SGX needs to be confined to a sandbox to prevent data exfiltration.

The most widely used sandbox for SGX is Ryoan [87]. The Ryoan sandbox also enables users to verify

that the enclave executes standard ML code without seeing the model specifications. As a result, a

combination of the SGX and Ryoan sandboxes can guarantee the privacy of both clients and ML models.
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Chapter 11. Deep Learning for Privacy-Preserving

PPDL is a development from the classical DL method. It combines the classical PP method with

the emerging DL field. DL itself is a sub-class of machine learning the structure and functionality of that

resemble a human brain. The structure of a deep learning model is modelled like a layered architecture.

It starts from an input layer and ends with an output layer. Between an input layer and an output layer,

there can be one or more hidden layers. The more hidden layers are used, the more accurate the DL

model becomes. This is caused by the characteristic of a hidden layer. The output of one hidden layer

will become the input of the next hidden layer. If we use more hidden layers, the deeper hidden layer will

learn about more specific features. There are several DL methods that are widely used for PP. Based on

our research, the most popular DL methods for PP are the Deep Neural Network (DNN), Convolutional

Neural Network (CNN), and Generative Adversarial Network (GAN).

11.1 Deep Neural Network

There are several commonly used layers in DNN, including the activation layer, pooling layer, fully

connected layer, and dropout layer.

11.1.1 Activation Layer

The activation layer, as shown in Fig. 11.1, decides whether the data is activated (value one) or

not (value zero). The activation layer is a non-linear function that applies a mathematical process on

the output of a convolutional layer. There are several well-known activation functions, such as Rectified

Linear Unit (ReLU), sigmoid, and tanh. Because those functions are not linear, the complexity becomes

really high if we use the functions to compute the homomorphically encrypted data. Hence, we need to

find a replacement function that only contains multiplication and addition operations. The replacement

function will be discussed later.

Figure 11.1: Activation Layer

11.1.2 Pooling Layer

A pooling layer, as shown in Fig. 11.2, is a sampling layer with the purpose of reducing the size

of the data. There are two kinds of pooling: max and average pooling. In HE, we cannot use a max

pooling function because we cannot search for the maximum value of encrypted data. As a result, average

pooling is the solution to be implemented in HE. Average pooling calculates the sum of values; thus,

there is only the addition operation here, which can be used over homomorphically encrypted data.
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Figure 11.2: Pooling Layer

11.1.3 Fully Connected Layer

An illustration of a fully connected layer is shown in Fig. 11.3. Each neuron in this layer is connected

to a neuron in the previous layer; thus, it is called a fully connected layer. The connection represents the

weight of the feature like a complete binary graph. The operation in this layer is the dot product between

the value of the output neuron from the previous layer and the weight of the neuron. This function is

similar to a hidden layer in a Neural Network (NN). There is only a dot product function that consists

of multiplication and addition function; thus, we can use it over homomorphically encrypted data.

Figure 11.3: Fully Connected Layer

11.1.4 Dropout Layer

A dropout layer, shown in Fig. 11.4, is a layer created to solve an over-fitting problem. Sometimes,

when we train our machine learning model, the classification result will be too good for some kind of

data, showing bias based on the training set. This situation is not ideal, resulting in a large error during

the testing period. The dropout layer will drop random data during training and set the data to zero. By

doing this iteratively during the training period, we can prevent over-fitting during the training phase.

Figure 11.4: Dropout Layer
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11.2 Convolutional Neural Network

CNN [88] is a class of DNN usually used for image classification. The characteristic of CNN is a

convolutional layer, as shown in Fig. 11.5, the purpose of which is to learn features extracted from

the dataset. The convolutional layer has n × n size, on which we will perform a dot product between

neighboring values to make a convolution. As a result, only addition and multiplication occurs in the

convolutional layer. We do not need to modify this layer as it can be used for HE data, which are

homomorphically encrypted. Table 11.1 shows the commonly used layers in DNN and CNN models.

Figure 11.5: Convolutional Layer

11.3 Generative Adversarial Network

GAN [89] is a class of DNN usually used for unsupervised learning. GAN, as shown in Fig. 11.6,

consists of two NNs that generate a candidate model and an evaluation model in a zero-sum game

framework. The generative model will learn samples from a dataset until it reaches a certain accuracy.

On the other hand, the evaluation model discriminates between the true data and the generated candidate

model. GAN learns the process by modeling the distribution of individual classes.

Figure 11.6: GAN Structure

11.4 Limitation of Implementing Deep Learning for
Privacy-Preserving

During our studies, we found some incompatibilities between DL structures and classical PP tech-

niques. Modifications had to be made to combine the DL structures and PP techniques. We cover the

three most widely required modifications, as shown in Fig. 11.7, including the batch normalization layer,

an approximation of activation function, and the convolutional layer with increased stride.
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Table 11.1: Commonly Used Layers in DNN and CNN models

Deep Learning Layer Description Function

Activation

Function
ReLu Maximum

Sigmoid Hyperbolic

Tanh Trigonometric

Softmax Hyperbolic

2Pooling Max Pooling

Computing the

maximum value

of overlapping

region in the

preceding layer

Maximum

Mean Pooling

Computing the

average value

of non-overlapping

region in the

preceding layer

Mean

Fully Connected

Dot product between

the value of output

neuron from the

previous layer and

the weight of the neuron

Matrix-vector

multiplication

Dropout

Set random data

to zero during

training to

prevent overfitting

Drop

Convolutional

Dot product between

neighbor values in order

to make convolution,

then sum up the result

Weighted Sum

Figure 11.7: Required Modification for PPDL
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11.4.1 Batch Normalization Layer

The Batch Normalization (BN) layer was proposed by Ioffe and Szegedy [90]. The main purpose

of the BN layer is to accelerate the training process by increasing the stability of the NN. This layer

receives the output from the activation layer and then performs the re-scaling process, resulting in a

value between zero and one. The BN layer computes the subtraction of each input with the batch mean

value, and then divides it by the average value of the batch.

11.4.2 Approximation of Activation Function

Several studies [91, 92, 93] have performed polynomial approximations for the activation function.

Some well-known methods include numerical analysis, Taylor series, and establishing polynomials based

on the derivative of the activation function. Numerical analysis generates some points from the ReLU

function and then uses the points as the inputs of the approximation function. The Taylor series uses

polynomials of different degrees to approximate the activation function.

11.4.3 Convolutional Layer with Increased Stride

This architecture was proposed by Liu et al. [93] to replace the pooling layer. The architecture

leverages a convolutional layer with increased stride as a substitution of the pooling layer. The BN layer

is used between the fully connected layer and ReLU. By doing this, the depth of the data stays the same,

but the dimension is reduced [90].
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Chapter 12. State-of-the-Art PPDL Methods

As shown in Fig. 12.1, we classified each PPDL method by its privacy-preserving techniques: HE-

based PPDL, secure MPC-based PPDL, differential privacy-based PPDL, secure enclaves-based PPDL,

and hybrid-based PPDL. Hybrid-based PPDL means that the PPDL method combines more than one

privacy-preserving technique mentioned before.

Figure 12.1: Classification of PPDL Methods by Its Privacy Preserving Techniques

We have surveyed several key publications on PPDL per each year since 2016 as shown in Fig. 12.2.

12.1 HE-based PPDL

HE-based PPDL combines homomorphic encryption with deep learning. The structure of HE-based

PPDL is shown in Fig. 12.3. Generally, there are three phases in HE-based PPDL: the training phase

(T1-T2-T3-T4), inference phase (I1-I2-I3)), and result phase (R1-R2-R3). In the training phase, a client

encrypts the training dataset using HE (T1) and sends the encrypted dataset to the cloud server (T2).

In the cloud server, secure training is executed (T3), resulting in a trained model (T4). This is the end

of the training phase. For the inference phase, the client sends the testing dataset to the cloud server

(I1). The testing dataset becomes the input of the trained model (I2). Then, the prediction process is

run using the trained model (I3), resulting in an encrypted computation result. This is the end of the

inference phase. Next, the cloud server prepares to transport the encrypted computation result (R1) and

sends it to the client (R2). The client finally decrypts it and obtains its computation result (R3).

Cryptonets was proposed by Gilad-Bachrach et al. et al. [94] to address the privacy issue in Machine

Learning as a Service (MLaaS). The author combined cryptography and machine learning to present a

machine learning framework that can receive encrypted data as an input. Cryptonets improves the

performance of ML Confidential [95] developed by Graepel et al., a modified PPDL scheme based on

Linear Means Classifier [96] and Fisher Linear Discriminant [97] that works on HE. ML Confidential

uses polynomial approximation to substitute for the nonlinear activation function. In this case, the PoM

is not guaranteed because the client must generate the encryption parameter based on the model. ML
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Figure 12.2: The Surveyed Paper of PPDL Since 2016
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Figure 12.3: The Structure of HE-based PPDL

Confidential uses a cloud service-based scenario, and its main feature is ensuring the privacy of data

during the transfer period between the client and the server. At first, the cloud server produces a public

key and its private key for each client. Then, the client data are encrypted using HE and transferred

to the server. The cloud server will perform the training process using the encrypted data and use the

training model to perform classification on the testing dataset.

Cryptonets applies prediction based on encrypted data and then provides the prediction result, also

in encrypted form, to users. Later, users can use their private key to decrypt the prediction result. By

doing this, the privacy of the client and the privacy of the result are guaranteed. However, the privacy of

model is not guaranteed because the client must generate an encryption parameter based on the model.

The weakness of Cryptonets is the performance limitation because of the complexity issue. It does not

work well on deeper NNs that have a large number of non-linear layers. In this case, the accuracy will

decrease and the error rate will increase.

Cryptonets has trade-off between accuracy and privacy. This is caused by the utilization of activation

function approximation using low-degree polynomial during the training phase. The neural network needs

to be retrained again using plaintext with the same activation function in order to achieve good accuracy.

Another weakness of Cryptonets is the limited number of neural network layer. The multiplicative

leveled HE cannot be run on deep neural network with many layers. Faster Cryptonets [98] accelerates

homomorphic evaluation in Cryptonets [94] by pruning network parameter such that many multiplication

operations can be omitted. The main weakness of Faster Cryptonets is that it has vulnerability to

membership inference attack [99] and model stealing attack [100].

Aono17 [101] is a PPDL system based on a simple NN structure. The author shows a weakness in the

paper by Shokri and Shmatikov [102] that leaks client data during the training process. The weakness is

called Gradients Leak Information. It is an adversarial method for obtaining input values by calculating

the gradient of the corresponding truth function to weight and the gradient of the corresponding of truth

function to bias. If we divide the two results, we obtain the input value. Because of that reason, Aono17

[101] proposes a revised PPDL method to overcome this weakness. The key idea is allowing the cloud

server to update the deep learning model by accumulating gradient values from users. The author also
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utilized additively HE to protect gradient values against curious servers. However, a weakness actually

remains in this approach because it does not prevent attacks between participants. Proper authentication

of participants should be performed by the cloud server to prevent this vulnerability. This method is

able to prevent data leakage by encrypting the gradient value. However, it has some limitations as the

homomorphic encryption is compatible with parameter server only.

Chabanne17 [103] is a privacy-preserving scheme on DNN. The scheme is a combination of HE and

CNN. The main idea is to combine Cryptonets [94] with polynominal approximation for the activation

function and batch normalization layer proposed by Ioffe and Szegedy [90]. The scheme wants to improve

the performance of Cryptonets, which is only good when the number of non-linear layers in the model

is small. The main idea is to change the structure of the regular NN by adding a batch normalization

layer between the pooling layer and activation layer. Max pooling is not a linear function. As a result,

in pooling layers average pooling is used instead of max pooling to provide the homomorphic part with

a linear function. The batch normalization layer contributes to restricting the input of each activation

layer, resulting in a stable distribution. Polynomial approximation with a low degree gives a small error,

which is very suitable for use in this model. The training phase is performed using the regular activation

function, and the testing phase is performed using the polynomial approximation as a substitution to

non-linear activation function. Chabanne17 showed that their model achieved 99.30% accuracy, which

is better than that of Cryptonets (98.95%). The pros of this model is its ability to work in a NN with

a high number of non-linear layers while still providing higher than 99% accuracy, unlike Cryptonets

which exhibits a decrease in accuracy when the number of non-linear layers is increased. Chabanne17’s

weakness is that the classification accuracy relies on the approximation of activation function. If the

approximation function has high degree, it will be hard to get best approximation so that the accuracy

will decrease.

CryptoDL [92], proposed by Hesamifard et al., is a modified CNN for encrypted data. The activation

function part of CNN is substituted with a low-degree polynomial. That paper showed that the poly-

nomial approximation is indispensable for NN in HE environments. The authors tried to approximate

three kinds of activation functions: ReLU, sigmoid, and tanh. The approximation technique is based on

the derivative of the activation function. First, during the training phase, CNN with polynomial approx-

imation is used. Then, the model produced during the training phase is used to perform classification

over encrypted data. The authors applied the CryptoDL scheme to the MNIST dataset and achieved

99.52% accuracy. The weakness of this scheme is not covering privacy-preserving training in DNN. The

privacy-preserving is only applied for the classification process. The advantage of this work is that it can

classify many instances (8,192 or larger) for each prediction round, whereas DeepSecure [104] classifies

one instance per round. Hence, we can say that CryptoDL works more effectively than DeepSecure.

The weakness of CryptoDL is claimed to be the limited number of layers in DNN. Since as the number

of layer increases, the complexity is also increased multiplicatively due to HE operations, reducing its

performance like Cryptonets [94].

In TAPAS [105], the author addresses the weakness of Fully Homomorphic Encryption in PPDL,

which requires a large amount of time to evaluate deep learning models for encrypted data [64]. The

author developed a deep learning architecture that consists of a fully-connected layer, a convolutional

layer, and a batch normalized layer [90] with sparsified encrypted computation to reduce the computation

time. The main contribution here is a new algorithm to accelerate binary computation in the binary

neural network [106], [107]. Another superiority of TAPAS is supporting parallel computing. The

technique can be parallelized by evaluating gates in the same level at the same time. A serious limitation
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of TAPAS is that it only supports binary neural network. In order to overcome this limitation, a method

to encrypt non-binary or real-valued neural network is required.

FHE DiNN [108] is a PPDL framework that combines FHE with a discretized neural network. It

addresses the complexity problem of HE in PPDL. FHE-DiNN offers a NN with linear complexity with

regard to the depth of the network. In other words, FHE-DiNN has the scale invariance property.

Linearity is achieved by the bootstrapping procedure on a discretized NN with a weighted sum and a

sign activation function that has a value between -1 and 1. The sign activation function will maintain

linearity growth such that it will not be out of control. The computation of the activation function will be

performed during the bootstrapping procedure to refresh the ciphertext, reducing its cumulative noise.

When we compare the discretized neural network to a standard NN, there is one main difference: the

weight, the bias value, and the domain of the activation function in FHE DiNN needs to be discretized.

The sign activation function is used to limit the growth of the signal in the range of -1 and 1, showing its

characteristic of linear scale invariance for linear complexity. Compared with Cryptonets [94], FHE DiNN

successfully improves the speed and reduces the complexity of FHE but with a decrease in accuracy;

thus, a trade-off exists. The weakness of this method happens in the discretization process, which uses

sign activation function that leads to a decrease in accuracy. It gets better if the training process is

directly executed in a discretized neural network, rather than by converting a regular network into a

discretized one.

E2DM [109] converts an image dataset into matrices. The main purpose of doing this is to reduce

the computational complexity. E2DM shows how to encrypt multiple matrices into a single ciphertext. It

extends some basic matrix operations such as rectangular multiplication and transposition for advanced

operations. Not only is the data encrypted; the model is also homomorphically encrypted. As a result,

PoC and PoM are guaranteed. E2DM also fulfills the PoR as only the client can decrypt the prediction

result. For the deep learning part, E2DM utilizes CNN with one convolutional layer, two fully connected

layers, and a square activation function. The weakness of E2DM is that it can only support simple

matrix operation. Extending the advanced matrix computation will be a promising future work.

Xue18 [110] tries to enhance the scalability of the current PPDL method. A PPDL framework

with multi-key HE was proposed. Its main purpose [110] was to provide a service to classify large-scale

distributed data. For example, in the case of predicting road conditions, the NN model must be trained

from traffic information data from many drivers. For the deep learning structure, [110] modification to the

conventional CNN architecture is necessary, such as changing max pooling into average pooling, adding

a batch normalization layer before each activation function layer, and replacing The ReLU activation

function with a low-degree approximation polynomial. PoC and PoR are guaranteed here. However,

the privacy of the model is not guaranteed because the client must generate an encryption parameter

based on the model. The weakness of this approach is that the neural network must be trained by using

encrypted data during the training phase. So, privacy leakage may happen if appropriate countermeasure

is not deployed.

Liu18 [93] is a privacy-preserving technique for convolutional networks using HE. The technique uses

an MNIST dataset that contains handwritten numbers. Liu18 [93] encrypts the data using HE and then

uses the encrypted data to train CNN. Later, the classification and testing process is performed using

the model from CNN. The idea is to add a batch normalization layer before each activation layer and

approximate activation layer using Gaussian distribution and the Taylor series. The non-linear pooling

layer is substituted for with the convolutional layer with increased stride. By doing this, the author

successfully modified CNN to be compatible with HE, achieving 98.97% accuracy during the testing
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phase. The main difference between regular CNN and modified CNN in privacy-preserving technology is

the addition of the batch normalization layer and the change of the non-linear function in the activation

layer and the pooling layer into a linear function. The proposed approach has weakness from the point

of complexity since the HE has massive computational overhead leading to huge memory overhead.

CryptoNN [111] is a privacy-preserving method that utilizes functional encryption for arithmetic

computation over encrypted data. The FE scheme protects the data in the shape of a feature vector

inside matrices. By doing this, the matrix computation for NN training can be performed in encrypted

form. The training phase of CryptoNN comprises two main steps: a secure feed-forward step and a secure

back-propagation step. The CNN model is adapted with five main functions: a dot-product function,

weighted-sum function, pooling function, activation function, and cost function. During the feed-forward

phase, the multiplication of the weight value and feature vector cannot be performed directly because

the vector value is encrypted. As a result, a function-derived key is used to transform the weight value

such that it can computed. However, the scalability of CryptoNN is still in question since the dataset

used in their experiment is a simple one. It needs to be tested with more complex dataset and deeper

neural network model.

Zhang19 [91] is a secure clustering method for preserving data privacy in cloud computing. The

method combines a probabilistic C-Means algorithm [112] with a BGV encryption scheme [12] to produce

HE-based big data clustering on a cloud environment. The main reason for choosing BGV in this scheme

is its ability to ensure a correct result on the computation of encrypted data. The author also addresses

the weakness of the probabilistic C-Means algorithm, which is very sensitive and needs to be initialized

properly. To solve this problem, fuzzy clustering [113] and probabilistic clustering [114] are combined.

During the training process, there are two main steps: calculating the weight value and updating the

matrix. To this end, a Taylor approximation for the activation function is used as the function is

polynomial with addition and multiplication operations only. The main weakness is that the computation

cost will increase proportionally to the number of neural network layers due to characteristic of HE.

According to Boulemtafes et al. [115], based on its learning method, PPDL techniques can be

classified into two kinds; server-based and server-assisted. Server-based means that the learning process

is executed on the cloud server. On the other hand, server-assisted means that the learning process is

performed collaboratively by the parties and the server. Table 12.1 shows the features of our surveyed

HE-based PPDL.

12.2 Secure MPC-based PPDL

Generally, the structure of a secure MPC-based PPDL is shown in Fig. 12.4. Firstly, users perform

local training using their private data (1). Then, the gradient result from the training process is secret-

shared (2). The shared gradient is transmitted to each server (3). After that, the server aggregates the

shared gradient value from users (4). The aggregated gradient value is transmitted from each server to

each client (5). Each client reconstructs the aggregated gradient and updates the gradient value for the

next training process (6). In the case of multi-party computation, secret sharing is used to preserve the

data privacy. However, for specific secure two-party computation, a garbled circuit with secret sharing

is widely used instead of secret sharing.

The structure of secure two-party computation is shown in Fig. 12.5. In secure two-party compu-

tation, a client uses garbled circuit to protect the data privacy. The communication between the client

and the server is securely guaranteed by using oblivious transfer. At first, a client sends the private data
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Table 12.1: Features of Our Surveyed HE-based PPDL

References Key Concept
Learning

Type
Dataset

Cryptonets

[94]

Enables cloud-based NN

training using polynomial

approximation of activation

function

Server-

based
MNIST

Aono17

[101]

Enables collaborative learning

between participants over

combined datasets

Server-

assisted
MNIST

Chabanne17

[103]

Applies FHE with low

degree approximation of

activation function

Server-

based
MNIST

CryptoDL

[92]

Applies leveled HE with

approximation of activation

function based on the

derivative of the function

Server-

based

MNIST

CIFAR-10

TAPAS

[105]

Proposes a sparsified

encrypted computation

to speed up the computation

in binary neural network

Server-

based
MNIST

FHEDiNN

[108]

Applies FHE in discretized

neural network with linear

complexity, in regards to the

network’s depth

Server-

based
MNIST

E2DM

[109]

Proposes multiple matrices

encryption into a single

chipertext to reduce

computational complexity

Server-

based
MNIST

Xue18

[110]

Applies multi-key HE with

batch normalization layer

before each activation

function layer

Server-

based
MNIST

Liu18

[93]

Proposes the addition of

batch normalization layer

and approximates activation

function using Gaussian

distribution and Taylor series

Server-

based
MNIST

Faster

Cryptonets

[98]

Accelerates homomorphic

evaluation by pruning the

network parameters

Server-

based
MNIST

CryptoNN

[111]

Utilizes FE for arithmetic

computation over encrypted

data

Server-

based
MNIST
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Figure 12.4: The Structure of Secure MPC-based PPDL
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input to the garbled circuit for the garbling process (1). Then, the next process is the data exchange

between the client and the server using oblivious transfer (2). After the data exchange has been com-

pleted, the server runs the prediction process, using the data as an input in the deep learning model (3).

The prediction result is sent back to the client. The client uses the garbled table to aggregate the result

(4) and obtain the final output (5).

Figure 12.5: The Structure of Secure Two-party Computation-based PPDL

SecureML [116] is a new protocol for privacy-preserving machine learning. The protocol uses Obliv-

ious Transfer (OT), Yao’s GC, and Secret Sharing to ensure the privacy of the system. For the deep

learning part, it leverages linear regression and logistic regression in a DNN environment. The protocol

proposes an addition and multiplication algorithm for secretly shared values in the linear regression.

The Stochastic Gradient Descent (SGD) method is utilized to calculate the optimum value of regression.

The weakness of this scheme is that it can only implement a simple NN without any convolutional layer;

thus, the accuracy is quite low. The weakness of SecureML relies on the non-colluding assumption. In

the two-servers model, the servers can be untrusted but not collude with each other. If the servers may

collude, the privacy of participants can be compromised.

MiniONN [117] is a privacy-preserving framework for transforming a NN into an oblivious Neural

Network. The transformation process in MiniONN includes the nonlinear functions, with a price of

negligible accuracy lost. There are two kinds of transformation provided by MiniONN, including oblivious

transformation for the piecewise linear activation function and oblivious transformation for the smooth

activation function. A smooth function can be transformed into a continuous polynomial by splitting the

function into several parts. Then, for each part, polynomial approximation is used for the approximation,

resulting in a piecewise linear function. Hence, MiniONN supports all activation functions that have

either a monotonic range or piecewise polynomial or can be approximated into a polynomial function.

The experiment showed that MiniONN outperforms Cryptonets [94] and SecureML [116] in terms of

message size and latency. The main weakness is that MiniONN does not support batch processing.

MiniONN is also based on honest-but-curious adversary, so it has no countermeasure against malicious

adversary.

ABY3 [118] proposed by Mohassel et al., is a protocol for privacy-preserving machine learning based

on three-party computation (3PC). The main contribution of this protocol is its ability to switch among

arithmetic, binary, and Yao’s 3PC depending on the processing needs. The main purpose of ABY3 is to

solve the classic PPDL problem that requires switching back and forth between arithmetic (for example

addition and multiplication) and non-arithmetic operations (such as activation function approximation).

The usual machine learning process works on arithmetic operations. As a result, it cannot perform a
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polynomial approximation for activation function. ABY3 can be used to train linear regression, logistic

regression, and NN models. Arithmetic sharing is used when training linear regression models. On

the other hand, for computing logistic regression and NN models, binary sharing on three-party GC is

utilized. The author also introduced a new fixed-point multiplication method for more than three-party

computation, extending the 3PC scenario. This multiplication method is used to solve the limitation of

using MPC with machine learning. MPC is suitable for working over rings, unlike machine learning which

works on decimal values. ABY3 provides a new framework that is secure against malicious adversaries;

so it is not limited to honest-but-curious adversary. However, since the protocols are built in their own

framework, it will be difficult to be implemented with other deep learning scheme.

DeepSecure [104] is a framework that enables the use of deep learning in privacy-preserving envi-

ronments. The author used OT and Yao’s GC protocol [80] with CNN to perform the learning process.

DeepSecure enables a collaboration between client and server to perform the learning process on a cloud

server using data from the client. The security of the system was proven using an honest-but-curious

adversary model. The GC protocol successfully keeps the client data private during the data transfer

period. The weakness of this method is its limitation of number of instances processed each round. The

method can only classify one instance during each prediction round. DeepSecure offers a preprocessing

phase that reduces the size of data. The strength of DeepSecure is that the preprocessing phase can

be adopted easily because it is independent from any cryptographic protocol. Its main weakness is the

inability to process batch processing.

Chameleon [119] is a PPDL method that combines Secure-MPC and CNN. For the privacy part,

Chameleon uses Yao’s GC which enables two parties to perform joint computation without disclosing

their own input. There are two phases: an online phase and offline phase. During the online phase all

parties are allowed to communicate, whereas during the offline phase the cryptographic operations are

precomputed. Chameleon utilizes vector multiplication (dot product) of signed fixed-point representa-

tion which improves the efficiency of heavy matrix multiplication for encrypted data classification. It

successfully achieves faster execution compared with CryptoNets [94] and MiniONN [117]. Chameleon

requires two non-colluding servers to ensure the data privacy and security. For the private inference,

it requires an independent third party or a secure hardware such as Intel SGX. Chameleon is based

on honest-but-curious adversary, there is no countermeasure against malicious adversary. Chameleon’s

protocol is based on two party computation, so it is not efficient to implement in more than two-party

scenario.

SecureNN [120] provides the first system that ensures the privacy and correctness against honest-

but-curious adversaries and malicious adversaries for complex NN computation. The system is based

on secure MPC combined with CNN. SecureNN was tested on an MNIST dataset and successfully

achieved more than 99% prediction accuracy with execution times 2-4 times faster than other secure

MPC based PPDL, such as SecureML [116], MiniONN [117], Chameleon [119], and GAZELLE [121].

Its main contribution is developing a new protocol for Boolean computation (ReLU, Maxpool, and its

derivatives) that has less communication overhead than Yao GC. This is how SecureNN achieves a faster

execution time than the other techniques mentioned above. The weakness of SecureNN is claimed to

refine more communication overhead compared to ABY3 [86]. If the SecureNN protocol is modified so

that it utilizes matrix multiplication like ABY3, the number of communication rounds will be reduced.

CodedPrivateML [122] distributes the training computation across several stations and proposes

a new approach for secret sharing of the data and DL model parameter that significantly reduces the

computation overhead and complexity. However, the accuracy of this method is only about 95%, which
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Table 12.2: Features of Our Surveyed Secure MPC-based PPDL

References Key Concept
Learning

Type
Dataset

SecureML

[116]

Proposes a combination

of garbled circuit with

oblivious transfer and

secret sharing in a

DNN environment

Server-

assisted

MNIST

CIFAR-10

MiniONN

[117]

Transforms a NN into

an oblivious NN

Server-

assisted
MNIST

ABY3

[118]

Provides an ability to

switch between arithmetic,

binary, and three-party

computation

Server-

assisted
MNIST

DeepSecure

[104]

Enables a collaboration

between client and server

to do a learning process

on cloud server

Server-

assisted
MNIST

Chameleon

[119]

Enables a secure joint

computation with two

distinguished phases;

online and offline

Server-

assisted
MNIST

SecureNN

[120]

Develops a new protocol

for Boolean computation

that has small overhead

Server-

assisted
MNIST

Coded

PrivateML

[122]

Proposes a distributed

training computation

across clients with a

new approach of secret

sharing

Server-

assisted
MNIST

is not as high as other method such as GAZELLE [121] or Chameleon [119].

Table 12.2 shows the features of our surveyed secure MPC-based PPDL.

12.3 Differential Privacy-based PPDL

The structure of differential privacy-based PPDL is shown in Fig. 12.6. First, training data are

used to train the teacher model (1). Then, the teacher model is used to train the student model. In this

case we illustrated the student model as a GAN model that consists of a generator and discriminator (2).

Random noise is added to the generator as it generates fake training data (3). On the other hand, the

teacher model trains the student model using the public data (4). The student model runs a zero-sum

game between the generator and the discriminator. Then, the student model is ready to be used for

the prediction process. A client sends a query (5) to the student model. The student model runs the
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Table 12.3: Features of Our Surveyed Differential Privacy-based PPDL

References Key Concept
Learning

Type
Dataset

PATE

[123]

Proposes a differentially

private learning process

by utilizing teacher models

and student models

Server-

based

MNIST

SVHN

Bu19

[124]

Proposes a Gaussian

differential privacy that

formalizes the original

differential privacy-

based PPDL

Server-

based

MNIST

MovieLens

inference phase and returns the prediction result to the user (6).

Figure 12.6: The Structure of Differential Privacy-based PPDL

Table 12.3 shows the features of our surveyed differential privacy-based PPDL.

Private Aggregation of Teacher Ensembles (PATE) [123] is a PPDL method for MLaaS that uses

a differential privacy-based approach in Generative Adversarial Network (GAN). PATE is a black box

approach that tries to ensure the privacy of data during training by using teacher-student models. During

the training phase, the dataset is used to train the teacher models. Then, student models learn from

the teacher models using a voting-based differential privacy method. By doing this, the teacher model is

kept secretive, and the original data cannot be accessed by the student. The advantage of this model is

due to the distinguished teacher model; when an adversary obtains a student model, the model will not

give the adversary any confidential information. PATE has a serious weakness, which is not to provide

good accuracy for complex data. If the data is too diverse, adding noise to the data will lower the

performance of PATE. So, the performance of PATE depends on the type of input. It is only suitable

for simple classification task. Furthermore, the computation cost is expensive due to many interactions

between server and clients.

Another PPDL method that utilizes differential privacy is Bu19 [124]. Bu19 proposes Gaussian

Differential Privacy (Gaussian DP) which formalizes the original DP technique as a hypothesis test from

the adversaries’ perspective.The concept of adding Gaussian noise is interesting. It must be evaluated
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in order to analyze the trade-off between the noise and the accuracy. The scalability issue implemented

in the daily life remains in question.

12.4 Secure Enclaves-based PPDL

The structure of secure enclaves-based PPDL is shown in Fig. 12.7. At first, a client sends data

to the secure enclave environment (1). Then, the model provider sends the deep learning model to the

enclaves (2). In the secure enclaves environment, the prediction process is executed using the client’s

data and the deep learning model (3). Then, the prediction result is sent to the client (4). The process

in secure enclaves is guaranteed to be secure, and all of the data and models inside cannot be revealed

to any other party outside the enclaves.

Figure 12.7: The Structure of Secure Enclaves-based PPDL

SLALOM [125] uses Trusted Execution Environments (TEEs), which isolate the computation process

from untrusted software. The DNN computation is partitioned between trusted and untrusted parties.

SLALOM runs DNN in the Intel SGX enclave which delegates the computation process to an untrusted

GPU. The weakness of this approach is believed to limit CPU operation since the TEE does not allow

to access GPU. A vulnerability by side channel attack may occur as shown by Van et al. [126].

Chiron [84] provides a black-box system for PPDL. The system conceals training data and model

structure from the service provider. It utilizes SGX enclaves [127] and the Ryoan sandbox [87]. As SGX

enclaves only protect the privacy of the model, the Ryoan sandbox is chosen here to ensure, even if the

model tries to leak the data, that the data will be confined inside the sandbox, preventing the leakage.

Chiron also supports a distributed training process by executing multiple enclaves that exchange model

parameters through the server.

Chiron focuses on outsourced learning by using a secure enclave environment. The main difference

between Chiron and Ohrimenko16 [128] is the code execution. Chiron allows the execution of untrusted

code to update the model and implements protection by using sandboxes such that the code will not

leak the data outside the enclave. On the other hand, Ohrimenko16 requires all codes inside the SGX

enclave to be public to ensure that the code is trusted. The main weakness relies on the assumption that

the model is not exposed to other parties. As a result, if an adversary can get an access to the trained

model, there will be leakage of data, as shown by Shokri et al. [129]. This leakage problem can be solved

by using differential privacy-based training algorithm [123].
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Table 12.4: Features of Our Surveyed Secure Enclaves-based PPDL

References Key Concept
Learning

Type
Dataset

Chiron

[84]

Combines SGX enclaves

and Ryoan sandbox to

provide a black-box

system for PPDL

Server-

based

CIFAR

ImageNet

SLALOM

[125]

Utilizes a trusted

execution environment

to isolate computation

processes

Server-

based
-

Table 12.4 shows the features of our surveyed secure enclaves-based PPDL.

12.5 Hybrid-based PPDL

Ohrimenko16 [128] proposes a secure enclave platform based on the SGX system for secure MPC.

It focuses on collaborative learning, providing a prediction service in a cloud. Ohrimenko16 requires all

codes inside the SGX enclave to be public to ensure that the code is trusted. The main weakness of this

method is claimed to its inherent vulnerability to information leakage due to GAN attack as shown by

Hitaj et al. [130].

Chase17 [131] wants to propose a private collaborative framework for machine learning. The main

idea is to combine secure MPC with DP for the privacy part and leverage NN for the machine learning

part. The weakness of this method is found to undergo a decrease in accuracy when implemented in a

large network, exhibiting the scalability issue. In addition, its data privacy can only be guaranteed if

the participants are non-colluding.

In GAZELLE [121], HE is combined with GC to ensure privacy and security in a MLaaS environment.

For the HE library, it utilizes Single Instruction Multiple Data (SIMD) which includes addition and

multiplication of ciphertext to improve the encryption speed. The Gazelle algorithm accelerates the

convolutional and the matrix multiplication processes. An automatic switch between HE and GC is

implemented such that encrypted data can be processed in NN. For the deep learning part, it leverages

CNN comprising two convolutional layers, two ReLU layers as activation layers, one pooling layer, and

one fully connected layer. The author used MNIST and CIFAR-10 datasets during the experiment

and successfully showed that Gazelle outperforms several popular techniques such as MiniONN [117]

and Cryptonets [94] in terms of run time. Furthermore, to prevent a linkage attack, Gazelle limits

the number of classification queries from a client. The limitation of GAZELLE is claimed to support

two-party computation scheme only since it utilizes garbled circuit for the secure exchange of two parties.

Ryffel18 [132] introduces a PPDL framework using federated learning built over PyTorch [133].

Federated learning requires multiple machines to train data in a decentralized environment. It enables

clients to learn a shared prediction model using the data in their own device. The author combines

secure MPC with DP to build a protocol enables federated learning. Overall, the proposed approach has

overhead problem because of the bottleneck in the low-level library, compared to the high level python

API. The proposed approach is vulnerable to collusion attack if the participants collude with each other.
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CrypTFlow [134] combines secure enclaves with secret sharing in DNN to secure the learning process

of the ImageNet dataset. The main weakness of CrypTFlow is believed not to support GPU processing.

As a result, the computation overhead during the secure training is still high.

Table 12.5 shows the features of our surveyed hybrid-based PPDL.

Table 12.5: Features of Our Surveyed Hybrid-based PPDL

References Key Concept
Learning

Type
Dataset

Ohrimenko16

[128]

Applies secure enclaves

platform based for secure

MPC

Server-

based

MovieLens

MNIST

Chase17

[131]

Proposes a private

collaboration framework

by combining secure MPC

with DP

Server-

assisted
MNIST

GAZELLE

[121]

Combines HE with garbled

circuit using SIMD

Server-

based

MNIST

CIFAR-10

Ryffel18

[132]

Builds a new protocol for

federated learning in PPDL

Server-

assisted

Boston Housing

Pima Diabetes

CrypTFlow

[134]

Combines secure enclaves

with secret sharing in DNN

Server-

assisted
ImageNet

We have summarized the general limitations of each PPDL method and our idea to overcome those

limitations in table 12.6.

59



Table 12.6: Summary of Weakness and How to Overcome It

Method Main Limitation How to Overcome

HE-based

PPDL

More layer leads to more complexity

because of the property of HE.

Adding batch normalization layer between

pooling layer and activation layer.

Accuracy highly dependents on the

approximation of the activation function.

Using the polynomial with lowest possible

degree as the activation function.

SecureMPC-

based PPDL

Most of the current publications only guarantee

privacy of clients based on honest-but-curious

adversary, but they do not have

protection against malicious adversary.

Designing a protocol that each participant

shares their secret data, then the server

runs secure computation to generate the

output. By doing this, even if the server is

malicious, it cannot see either the input

or output value.

Differential

Privacy-

based PPDL

Differential privacy is computationally

very expensive because it requires

many interactions between server and

client when adding the noise.

Distributed differential privacy can be a

good solution to reduce the interactions.

Since the architecture of previous

differential privacy-based PPDL techniques

are centralized, distributed differential privacy

will be an interesting option.

Secure

Enclaves-

based PPDL

There is a data leakage issue due to

side channel attack.

Utilizing differential privacy so that the

adversary cannot get the real data, even

if the side channel attack is successful.
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Chapter 13. Comparison of State-of-the-Art PPDL Methods

13.1 Comparison Metrics

To compare the performances of each surveyed article, we used two kinds of metrics, qualitative

metrics and quantitative metrics. Fig. 13.1 shows the metrics for the surveyed PPDL works in this

dissertation. Qualitative metrics include Privacy of Client (PoC), Privacy of Model (PoM), and Privacy

of Result (PoR). PoC means that neither the model owner nor the cloud server or any other party

knows about the client data. PoM means that neither the client nor the cloud server or any other party

knows about the DL model. PoR means that neither the model owner nor the cloud server or any other

party can obtain the information about the prediction result. Quantitative metrics include accuracy

and inference time. Accuracy means the percentage of correct predictions made by a PPDL model.

The inference time is the time needed by the model to perform encryption/decryption, send data from

the client to the server, and execute the classification process. We measured the average accuracy and

inference time of each method. Then, we set the average value as the relative evaluation. If the accuracy

value is higher than average, the accuracy of the proposed method is good. Furthermore, if the run time

and data transfer are lower than average, the run time and data transfer of the proposed methods are

good. We used the comparison data from the respective papers as we believe they are the best result to

be achieved. We did not re-execute their codes as not all of the codes are open to the public. We focused

our dissertation on the Hybrid PPDL method, which combines classical privacy-preserving with various

deep learning practices.

Figure 13.1: Metrics for Surveyed PPDL Works

13.2 Performance Comparison

We divided our comparison table into two types: performance comparison I and performance com-

parison II in Fig. 13.2 and Fig. 13.3, respectively. To compare the performance of each surveyed paper,

we used the privacy metrics and performance metrics defined in section ??. The privacy metrics include

Privacy of Client (PoC), Privacy of Model (PoM), and Privacy of Result (PoR). The performance metrics

include accuracy, run time, and data transfer.
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Figure 13.2: Performance Comparison I
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Figure 13.3: Performance Comparison II
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13.3 Challenges and Weaknesses

In this section, we will discuss the challenges and weaknesses of utilizing PPDL for MLaaS from

the papers that we surveyed. To analyze the limitations, we divided the PPDL approach into two main

categories based on the type of transmission: the model parameter transmission approach and the data

transmission approach. The model parameter transmission approach means that the model parameter

is transmitted from the client to the server while the local data is kept by the client, and the training is

performed on the client side. On the other hand, the data transmission approach means that the client

data itself is transferred to the server for the training process. In short, the challenges and weaknesses

of state-of-the-art PPDL methods are shown in Fig. 13.4.

Figure 13.4: The Challenges and Weaknesses of State-of-the-Art PPDL Methods

13.3.1 Model Parameter Transmission Approach

In this approach, during the training process, a model parameter is transmitted instead of the

training data. PPDLs based on distributed machine learning and federated learning are included in this

scenario. In distributed learning [135, 136, 122, 137], data owners keep their own data secret without

revealing this data to another party. During each training stage, participants send their locally computed

parameters to the server. By doing this, the participants can learn collaboratively without revealing their

own data [138]. On the other hand, in federated learning [139, 140, 141], model provider sends the model

to participants. Then, each participant executes the training process using their local data, resulting

in an updated model. After that, the updated model is sent back to the model provider. The model

provider will measure the average value of the gradient descent and update the model. We can see that

the model parameter transmission approach reduces the communication overhead but increases the local

computation overhead. This learning approach is vulnerable to backdoor attacks [142] and GAN-based

attacks [143].

13.3.2 Data Transmission Approach

In this approach, the participants send their data to the training server. Some PPDL methods that

belong to this class are anonymization, HE, and DP-based PPDL. The main purpose of the anonymization

technique is to remove the correlation between the data owner and the data entries. However, it requires

a trusted coordinator to perform the anonymization process and distribute the result to the participants.
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It is also vulnerable to a single point of failure as a trusted proxy needs to perform the anonymization

process and send the result to the participants [144]. HE-based PPDL does not require key distribution

management because the computation can be performed on encrypted data. However, it has limitations

in the computation format. The computation is limited to a polynomial of bounded degree; thus, it

works in a linear nature. Another weakness of HE-based PPDL is the slow training process as it has

huge complexity, and the computation process will lead to data swelling [145].

A bootstrapping idea [67, 64, 146] has been introduced to solve this problem by reducing the com-

plexity and the computation time. The majority of the work focuses on polynomial approximation for

non-linear operations. The main goal of DP-based PPDL is to perturb the sample data for the training

process. It is often used for data such as histograms or tables. The main weakness of DP-based PPDL

is its centralized nature. One main trusted coordinator that is responsible for data collection and giving

the response to queries from participants. This trusted coordinator is vulnerable to a single point of

failure. If this kind of failure occurs and each participant perturbs the training data, the model will yield

poor accuracy [145]. Thus, a centralized coordinator is very susceptible to the single point of failure

problem. In a nutshell, we can conclude that the data transmission approach reduces the computation

overhead but increase the communication overhead.

13.4 Analysis and Summary

After discussing the challenges and weaknesses in PPDL from the two categories above, we summa-

rize the two main problems in PPDL: the computation overhead and communication overhead.

13.4.1 Computation Overhead

One of the most important issues in MLaaS is the computation overhead. In MLaaS, the overhead

issues occur during the HE process, deep learning training (including inferencing), and data perturbation.

Currently, utilizing deep learning for large-scale service is not feasible in real life because of this scalability

problem.

13.4.2 Communication Overhead

In MLaaS, communication overhead occurs during the interaction among clients, model providers,

and server providers. In particular, we can categorize communication overhead into the HE process,

additive or multiplicative perturbation, and iterative communication. In the distributed machine learning

scenario, including the federated learning, this factor is the main scalability problem that becomes the

main issue. The iterative communications to exchange data and model parameters between each party

will produce a significant overhead problem.
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Chapter 14. Attacks on DL Model and PPDL as a Possible

Solution

14.1 Adversarial Model and Security Goals of PPDL

PPDL solutions on DL-as-a-service frameworks have three major security goals. The first goal is

to prevent the server from acquiring the training data in the training phase which would be sensitive

data owned by the client. All PPDL schemes contain privacy measures to prevent the direct leak of the

training data. HE- and MPC-based approaches solve this by encrypting and distributing the training

data, respectively. Some methods perform lower-layer calculations in the client side while hardware-based

approaches encapsulate lower-layer calculations inside some confidential environment.

The second security goal of PPDL aims to prevent the server from directly acquiring the input to

the model in the prediction phase. In most cases, this goal is achieved together with the first goal. This

goal is only applied when the client delegates prediction to the server.

The third goal is to prevent the server from taking advantage of white-box access of the model. With

the white-box access on a model, a server (as an adversary) may deploy several known attacks which

are known to be easy on the white-box assumption. As DNNs tend to have more parameters than other

machine learning algorithms due to the hidden layers, black-box models could retain more information

on training data.

Many cryptography-based approaches achieve the third goal by keeping the parameters encrypted.

However, some PPDL models do not assume this third goal and allow the server to access the plaintext

parameters of the model. For instance, DP-based models allow white-box access, but the schemes aim

to make the information extractable from the parameters negligible.

Although there are many other types of attacks on DL models, in this section we only discuss the

attacks that can be mitigated by some of the PPDL approaches. In other words, the following attacks are

related to one of the goals of PPDL. Table 14.1 provides a brief summary on PPDL as a countermeasure

against attacks.

We categorize the adversarial model in PPDL based on the adversary’s behavior, adversary’s power,

and adversary’s corruption types as shown in Fig. 14.1.

14.1.1 Adversarial Model Based on the Behavior

We categorize the adversarial model based on the behavior into honest-but-curious and malicious.

Honest-but-Curious

In an Honest-but-Curious (HbC) adversary model, all parties, including the corrupted party, follow

the security protocol honestly. They do not pursue any malicious activity toward the system or other

participants. However, the corrupted party tries to perform a “curious action” to learn sensitive infor-

mation from the model or from the other participants. This model is the one most commonly used in

PPDL.
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Table 14.1: PPDL as Countermeasures Against Attacks on DL Models

PPDL

Types

Cryptography

-based

DP

-based

Hardware

-based

Membership

Inference

Attack

O ∆ X

Model

Inversion

Attack

O ∆∗ X

Model

Extraction

Attack

O N/A N/A

O : An effective countermeasure for the given attack.

X : An ineffective countermeasure for the given attack.

∆ : The effectiveness of the defense against the given attack has a trade-off with the privacy-preserving parameters

of DL models.

∆∗ : This trade-off has been confirmed for non-DL models, and it is expected to be the same for DL models.

N/A: The adversarial assumption of the given attack is not applicable for the PPDL method.

Figure 14.1: Adversarial Model in PPDL
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Malicious This scenario is also known as the active adversary model because the corrupted parties

will actively try to attack even if they must deviate from the existing security protocol. If the corrupted

parties can prematurely halt their attacking process, sometimes the model is also recognized as a fail

stop model.

14.1.2 Adversarial Model Based on the Power

We categorize adversarial model based on the behavior into computationally unbounded and com-

putationally bounded.

Computationally Unbounded This means that the adversary has unlimited computational power.

As a result, it is considered as the ideal adversary. It is usually used in theoretical information security

field as it does not exist in real life.

Computationally Bounded This means that the adversary has limited computational power. Usu-

ally, it requires cryptographic assumption. The time assumption during the attack process is defined as

the polynomial time.

14.1.3 Adversarial Model Based on Corruption Type

We categorize the adversarial model based on the corruption type into static adversary and adaptive

adversary.

Static Adversary In this model, the corrupted parties are defined before the protocol starts. An

honest party will always stay honest, and a corrupted party will always stay corrupted.

Adaptive Adversary In this model, an adversary will decide which party to corrupt based on the

current situation. As a result, an honest party can become corrupted in the middle of protocol execution.

However, in the adaptive model, an adversary can change the corrupted party such that the corrupted

party can become honest again. This is classified as an adaptive-mobile adversary.

14.2 Attacks on DL Model and PPDL as the Countermeasure

14.2.1 Membership Inference Attack

Generally, membership inference means deciding whether given data were used for generating some

aggregation of the data (or not). In the context of deep learning, a model itself (including the model

parameters) can be regarded as the ‘aggregation’ of the training data. Therefore, membership inference

attacks on DL models indicate attacks to decide whether given data belong to the training dataset (or

not). Shokri et al. [129] provided one of the first suggestions of membership inference attacks.

Membership inference attacks are the attacks for the models violating the first security goal of PPDL.

Stronger versions of membership inference attacks include extraction of some properties of sensitive

training data or even recovery of the training data, which can be reduced to normal membership inference

attacks. Usually, membership inference attacks harness overfitting during training, producing a difference

in accuracy between the training data and the other data. Some defensive mechanisms dedicated to

membership inference have been proposed including dropout [147] and adversarial regularization [148].
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In cryptography-based PPDL models, the security against the membership inference attack can be

reduced to the security of the underlying cryptosystems. In such models, the adversarial server cannot

obtain model parameters in plaintext. Only if the model is public can the adversary have black-box

access of the model, just like any outsider attacker. For HW-based models, the adversarial server owns

white-box models, allowing the use of white-box membership inference attacks.

For DP-based models, the trade-off between the model accuracy and the performance of membership

inference attacks according to the selection of the privacy parameter has been studied [149]. Appropriate

choices of the privacy parameter result in moderate utility with low membership inference accuracy.

However, further experiments are required for the extensibility of their analysis toward other types of

tasks outside image classification.

14.2.2 Model Inversion Attack

As an attack toward the models does not satisfy the second security goal of PPDL, a model inversion

attack is a prediction-phase attack introduced by Fredrikson et al. [150, 99]. Given the non-sensitive

features of the original input data and their prediction results for a model, model inversion attacks aim

to find the sensitive features of the input data.

In cryptography-based and HW-based PPDL models, we expect a similar advantage as that of

membership inference attacks. For DP-based models, there has been limited research on the trade-off

between the model accuracy and the attack performance, such as the analysis by Wang et al. [151]

against regression models. Although a similar analysis for differentially private DL models remains for

future work, we expect a similar trade-off.

14.2.3 Model Extraction Attack

Model extraction attacks [100], also known as model-stealing attacks, are attacks toward the third

security goal of PPDL. When a black-box (target) model is given, the objective of model extraction

attacks is to construct a model equivalent to the target model. Once an adversary succeeds with a

model extraction attack, the adversary then accesses a white-box model. The attacker can take direct

advantage of the model if the model owner sells the model access. The obtained model also becomes a

“stepping stone” [152] toward further attacks utilizing white-box models.

Again, adversarial servers against cryptography-based DL models have negligible advantages over

those of outsiders, excepting that of the model structure. Without the help of the client, the server

cannot obtain the decrypted parameter values of the model.

Most differentially private models and hardware-based PPDL models do not fulfill the third security

goal, as they reveal model parameters to the server. The extraction of such PPDL models is meaningless

for the adversarial servers, as the servers already have the white-box access on the models, which is the

purpose of the attack. Although the servers possess some part of the model parameters, it is relatively

easy to extract the remaining parameters by observing the intermediate activation levels.
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Chapter 15. Concluding Remarks

To summarize the main trend, an annual roadmap that highlights the development of PPDL com-

plemented with detailed comparisons of each PPDL work has been presented. Security goals and attack

models on PPDL also have been discussed, with the possible countermeasures for each scenario. In

brief, the trade-off between accuracy and complexity during the substitution process of the non-linear

activation function is identified as the main challenge in PPDL.

The main challenge of PPDL is to ensure the PoC, PoM, and PoR simultaneously with two extra

computations from the client’s and model’s perspectives while maintaining the computational perfor-

mance. Last but not least, implementing PPDL based on federated learning will be an interesting topic.

We believe that the future direction of PPDL is going to focus on combining federated learning and

state-of-the-art PPDL to overcome the current privacy issues during data collection phase in MLaaS.

70



Chapter 16. Summary and Open Problems

On the part I of this dissertation, we conclude that among FES, DFES, and mDFES; FES is the

fastest, but has worst accuracy. mDFES is faster than DFES. Finally, the type of dataset affects the

performance of deep learning method, as shown that mDFES is better than DFES for Malgenome dataset,

while DFES is better than mDFES for Drebin dataset. Feature learning method is more suitable for

non-binary dataset. Different type of dataset requires different deep learning method to achieve the best

result. An open problem for future research in malware detection over Android is how to adapt feature

learning method in binary dataset. Extracting substantial representation from binary dataset is a very

challenging work. It will improve the performance of the model significantly.

On the part II of this dissertation, we have provided a complete review of state-of-the-art PPDL

on MLaaS. Our discussion covers the classical PP method and the utilization of DL for PP. Our work

also addresses the limitation of implementing novel DL techniques with PP, including the analysis of

the original structure of NN and the modifications needed to use it in privacy-preserving environment.

Furthermore, we have proposed a multi-scheme PPDL classification based on adversarial model, PP

methods, and the challenges and weaknesses in state-of-the-art PPDL methods. An open problem for

future research in PPDL is reducing computational burden. How to divide the burden between a client

and a server optimally to achieve the best performance is a big challenge that needs to be addressed in

the future.
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Appendix and Source Code 

 

Dataset Pre-processing 

fid = fopen ('drebinwithoutheader.txt','r'); %change to MALG here 
data=textscan(fid,repmat('%s ',1,216), 'delimiter','\t'); 

 
target=data{216}; 
i_end=size(target,1); 

 
for i=1:i_end 
    if strcmp(target{i,1},'B') 
        newM(i,216)=1; 
    else if strcmp(target{i,1},'S') 
        newM(i,216)=2; 
    else  newM5(i,155)=3; 
        end     
    end 
end 
jumlahkolom=215; 
for p=1:jumlahkolom 
    target=data{p}; 
    i_end=size(target,1); 
    for i=1:i_end 
        tmp9=target{i}; 
        tmp10=num2cell(tmp9); 
        tmp7=cell2mat(tmp10); 
        tmp8=str2double(tmp7); 
        newM(i,p)=tmp8; 
     end 
end 

  
csvwrite('norm_drebin_train.txt',newM); %change to MALG here 

 

FES-DREB/MALG-BAL/UNB 

raw_train=importdata('norm_drebin_train.txt'); %change to MALG here 
raw_test=importdata('norm_drebin_test.txt'); %change to MALG here 
tmpt1=raw_train(:,216)==1;%benign 
tmpt3=raw_train(:,216)==2;%malware 
tmpt2=raw_test(:,216)==1;%benign 
tmpt4=raw_test(:,216)==2;%malware 
train_IA=raw_train(tmpt3,:);  
test_IA=raw_test(tmpt4,:);  
train_N=raw_train(tmpt1,:);  
test_N=raw_test(tmpt2,:);  
rng(1); 
n_train = size(train_N,1); 
c_train = cvpartition(n_train,'Holdout',3/5); %for balancing modify here 
train_N_reduced=train_N(test(c_train),:);  
rng(1); 
n_test = size(test_N,1); 
c_test = cvpartition(n_test,'Holdout',3/5); %for balancing modify here    
test_N_reduced=test_N(test(c_test),:);  
raw_train=cat(1,train_N_reduced,train_IA); %merging reduced benign + 

malware train 
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raw_test=cat(1,test_N_reduced,test_IA); %merging reduced benign + malware 

test 
csvwrite('bal_norm_drebin_train.txt',raw_train); 
csvwrite('bal_norm_drebin_test.txt',raw_test); 

 
x_train_all=raw_train(:,1:215); 
x_train_all=x_train_all'; 
y_train_all_int=raw_train(:,216); 
y_train_all_int=y_train_all_int'; 
y_train_all=dummyvar(y_train_all_int); 
y_train_all=y_train_all'; 
x_test_all=raw_test(:,1:215); 
x_test_all=x_test_all'; 
y_test_all_int=raw_test(:,216); 
y_test_all_int=y_test_all_int'; 
y_test_all=dummyvar(y_test_all_int); 
y_test_all=y_test_all'; 

  
rng('default'); 
hiddenSize1 = 100;  
autoenc_saya = trainAutoencoder(x_train_all,hiddenSize1, ... 
    'MaxEpochs',400, ... 
    'L2WeightRegularization',0.004, ... 
    'SparsityRegularization',4, ... 
    'SparsityProportion',0.15, ... 
    'ScaleData', false);% 
feat1_saya = encode(autoenc_saya,x_train_all); 
hiddenSize2 = 50; 
autoenc2_saya = trainAutoencoder(feat1_saya,hiddenSize2, ... 
    'MaxEpochs',100, ... 
    'L2WeightRegularization',0.002, ... 
    'SparsityRegularization',4, ... 
    'SparsityProportion',0.1, ... 
    'ScaleData', false); 
feat2_saya = encode(autoenc2_saya,feat1_saya); 
softnet_saya = trainSoftmaxLayer(feat2_saya,y_train_all,'MaxEpochs',400); 
deepnet_saya = stack(autoenc_saya,autoenc2_saya,softnet_saya); 
view(deepnet_saya) 
y = deepnet_saya(x_test_all); 
plotconfusion(y_test_all,y); 
csvwrite('SAE_out_feat_TBD.csv',feat2_saya); 

 
raw_train=importdata('bal_norm_drebin_train.txt'); 
extracted=importdata('SAE_out_feat_TBD.csv'); 
extracted=extracted';  
y_train_all_int=raw_train(:,216); 
feature=horzcat(extracted,y_train_all_int); 
indeks_att=[1:1:51];  
feature=vertcat(indeks_att,feature);  
csvwrite('trainandextracted.csv',feature); 

 
d_IA_train=importdata('trainandextracted.csv'); 
d_IA_train=d_IA_train(1:11245,:); 
d_IA_train_WoT=d_IA_train(:,1:50); 
d_IA_train_T=d_IA_train(:,51); 
d_IA_train_T_dummy=dummyvar(d_IA_train_T); 
Xtrain=d_IA_train_WoT; 
Xtrain=Xtrain'; 
Ytrain=d_IA_train_T_dummy; 
Ytrain=Ytrain'; 
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tic 
d_IA_test=importdata('trainandextracted.csv');  
d_IA_test=d_IA_test(2:11246,:); d_IA_test_trans=d_IA_test'; 
selected_features=[33;37;45;8;29;39;11;10;30;15;42;19;1;13;23;26;17;28;3;12

;6;9;4;5;2]; 
ukuran_mat=size(selected_features); 
jumlah_fitur=ukuran_mat(1,1); 
indeks_fitur=[1:51]; 
for j=1:50 
    for i=1:jumlah_fitur 
        if indeks_fitur(1,j)==selected_features(i,1) 
            indeks_fitur(2,j)=1; 
            break; 
        else indeks_fitur(2,j)=0; 
        end 
    end 
end 

  
indeks_fitur_aja=indeks_fitur(2,:); 
indeks_fitur_aja=indeks_fitur_aja'; 
indeks_fitur_aja_kelas=indeks_fitur_aja 

 
indeks_fitur_aja_kelas(51,1)=1; 
indeks_fitur_aja_logical=logical(indeks_fitur_aja_kelas); 

  
test_data=d_IA_test_trans; 
test_data=test_data(indeks_fitur_aja_logical,:); 
input_test=test_data(1:jumlah_fitur,:); 
target_test=test_data((jumlah_fitur+1),:); 
target_test_final=dummyvar(target_test); 
target_test_final=target_test_final'; 
toc 

 

 

DFES-DREB/MALG-BAL/UNB 

raw_train=importdata('norm_drebin_train.txt'); %change to MALG here 
raw_test=importdata('norm_drebin_test.txt'); %change to MALG here 
tmpt1=raw_train(:,216)==1;%benign 
tmpt3=raw_train(:,216)==2;%malware 
tmpt2=raw_test(:,216)==1;%benign 
tmpt4=raw_test(:,216)==2;%malware 

  
train_IA=raw_train(tmpt3,:);  
test_IA=raw_test(tmpt4,:);  
train_N=raw_train(tmpt1,:);  
test_N=raw_test(tmpt2,:);  
rng(1); 
n_train = size(train_N,1); 
c_train = cvpartition(n_train,'Holdout',3/5);   %for balancing modify here 
train_N_reduced=train_N(test(c_train),:);  
rng(1); 
n_test = size(test_N,1);%get #rows #benign test 
c_test = cvpartition(n_test,'Holdout',3/5);   %for balancing modify here 
test_N_reduced=test_N(test(c_test),:);  

  
raw_train=cat(1,train_N_reduced,train_IA); %merging reduced benign + 

malware train 
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raw_test=cat(1,test_N_reduced,test_IA); %merging reduced benign + malware 

test 
csvwrite('bal_norm_drebin_train.txt',raw_train); 
csvwrite('bal_norm_drebin_test.txt',raw_test); 

 
x_train_all=raw_train(:,1:215); 
x_train_all=x_train_all'; 
y_train_all_int=raw_train(:,216); 
y_train_all_int=y_train_all_int'; 
y_train_all=dummyvar(y_train_all_int); 
y_train_all=y_train_all'; 
x_test_all=raw_test(:,1:215); 
x_test_all=x_test_all'; 
y_test_all_int=raw_test(:,216); 
y_test_all_int=y_test_all_int'; 
y_test_all=dummyvar(y_test_all_int); 
y_test_all=y_test_all'; 

  
rng('default'); 
hiddenSize1 = 100;  
autoenc_saya = trainAutoencoder(x_train_all,hiddenSize1, ... 
    'MaxEpochs',400, ... 
    'L2WeightRegularization',0.004, ... 
    'SparsityRegularization',4, ... 
    'SparsityProportion',0.15, ... 
    'ScaleData', false);% 

 
feat1_saya = encode(autoenc_saya,x_train_all); 
hiddenSize2 = 50; 
autoenc2_saya = trainAutoencoder(feat1_saya,hiddenSize2, ... 
    'MaxEpochs',100, ... 
    'L2WeightRegularization',0.002, ... 
    'SparsityRegularization',4, ... 
    'SparsityProportion',0.1, ... 
    'ScaleData', false); 
feat2_saya = encode(autoenc2_saya,feat1_saya); 
softnet_saya = trainSoftmaxLayer(feat2_saya,y_train_all,'MaxEpochs',400); 
deepnet_saya = stack(autoenc_saya,autoenc2_saya,softnet_saya); 
view(deepnet_saya) 
y = deepnet_saya(x_test_all); 
plotconfusion(y_test_all,y); 
csvwrite('SAE_out_feat_TBD.csv',feat2_saya); 

 
raw_train=importdata('bal_norm_drebin_train.txt'); 
extracted=importdata('SAE_out_feat_TBD.csv'); 
extracted=extracted';  
x_train_all=raw_train(:,1:215); 
y_train_all_int=raw_train(:,216); 
feature=horzcat(x_train_all,extracted); 
feature=horzcat(feature,y_train_all_int); 
indeks_att=[1:1:266]; 
feature=vertcat(indeks_att,feature); 
csvwrite('trainandextracted.csv',feature); 

 

d_IA_train=importdata('trainandextracted.csv'); 
d_IA_train=d_IA_train(2:11246,:); 
d_IA_train_WoT=d_IA_train(:,1:265); 
d_IA_train_T=d_IA_train(:,266); 
d_IA_train_T_dummy=dummyvar(d_IA_train_T); 
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Xtrain=d_IA_train_WoT; 

Xtrain=Xtrain'; 
Ytrain=d_IA_train_T_dummy; 
Ytrain=Ytrain'; 

 
berat=net.IW{1,1}; 
indeks=net.inputs{1}.range; 
for l=1:265  
    range_indeks=indeks(l,2)-indeks(l,1); 
    if range_indeks==0 
        tmp(l,1)=0; 
    else tmp(l,1)=1; 
    end 
end 
tmp=logical(tmp); 
indeks(:,1)=[1:265]; 
indeks2=indeks(tmp,:); 
indeks_aja=indeks2(:,1); 
indeks_aja=indeks_aja'; 

  
berat=abs(berat); 
sizenya = size(berat); 
col=sizenya(1,2); 
row=sizenya(1,1); 
berat_per_input=zeros(1,col); 
berat_per_input(1,:)=indeks_aja; 
for i=1:col  
    berat_per_input(2,i)=0; 
    for j=1:row  
        berat_per_input(2,i)=berat_per_input(2,i)+berat(j,i); 
    end 
end 
berat_per_input=berat_per_input'; 
berat_sort=sortrows(berat_per_input, 2); 
tmp2=berat_sort(:,2)>=8.1; 
selected_features=berat_sort(tmp2,1); 

  
tic 
d_IA_test=importdata('trainandextracted.csv'); 
d_IA_test=d_IA_test(2:11246,:); 
d_IA_test_trans=d_IA_test'; 
selected_features=[27;53;63;48;147;37;29;36;245;114;231;217;18;59;177;186;1

65;172;31;19;194;91;83;259;80;233;211;16;239;39;208;70;60;64;183;129;118;15

7;173;182;123;110;124;6;7;102;185;138;54;94;9;207;111;35;197;52;105;109;33;

42;10]; 
ukuran_mat=size(selected_features); 
jumlah_fitur=ukuran_mat(1,1); 
indeks_fitur=[1:265]; 
for j=1:265 
    for i=1:jumlah_fitur 
        if indeks_fitur(1,j)==selected_features(i,1) 
            indeks_fitur(2,j)=1; 
            break; 
        else indeks_fitur(2,j)=0; 
        end 
    end 
end 

  
indeks_fitur_aja=indeks_fitur(2,:); 
indeks_fitur_aja=indeks_fitur_aja'; 
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indeks_fitur_aja_kelas=indeks_fitur_aja; 
indeks_fitur_aja_kelas(266,1)=1; 
indeks_fitur_aja_logical=logical(indeks_fitur_aja_kelas); 

  
test_data=d_IA_test_trans; 
test_data=test_data(indeks_fitur_aja_logical,:); 
input_test=test_data(1:jumlah_fitur,:); 
target_test=test_data((jumlah_fitur+1),:); 
target_test_final=dummyvar(target_test); 
target_test_final=target_test_final'; 
toc 

 
 
MDFES-DREB/MALG-BAL/UNB 
 
raw_train=importdata('norm_drebin_train.txt'); %change to MALG here 
raw_test=importdata('norm_drebin_test.txt'); %change to MALG here 
tmpt1=raw_train(:,216)==1;%benign 
tmpt3=raw_train(:,216)==2;%malware 
tmpt2=raw_test(:,216)==1;%benign 
tmpt4=raw_test(:,216)==2;%malware 

  
train_IA=raw_train(tmpt3,:);  
test_IA=raw_test(tmpt4,:);  
train_N=raw_train(tmpt1,:);  
test_N=raw_test(tmpt2,:);  
rng(1); 
n_train = size(train_N,1); 
c_train = cvpartition(n_train,'Holdout',3/5);   %for balancing modify here 
train_N_reduced=train_N(test(c_train),:);  
rng(1); 
n_test = size(test_N,1); 
c_test = cvpartition(n_test,'Holdout',3/5);   %for balancing modify here 
test_N_reduced=test_N(test(c_test),:);  

  
raw_train=cat(1,train_N_reduced,train_IA); %merging reduced benign + 

malware train 
raw_test=cat(1,test_N_reduced,test_IA); %merging reduced benign + malware 

test 
csvwrite('bal_norm_drebin_train.txt',raw_train); 
csvwrite('bal_norm_drebin_test.txt',raw_test); 

 

x_train_all=raw_train(:,1:215); 
x_train_all=x_train_all'; 
y_train_all_int=raw_train(:,216); 
y_train_all_int=y_train_all_int'; 
y_train_all=dummyvar(y_train_all_int); 
y_train_all=y_train_all'; 
x_test_all=raw_test(:,1:215); 
x_test_all=x_test_all'; 
y_test_all_int=raw_test(:,216); 
y_test_all_int=y_test_all_int'; 
y_test_all=dummyvar(y_test_all_int); 
y_test_all=y_test_all'; 

  
rng('default'); 
hiddenSize1 = 100;  
autoenc_saya = trainAutoencoder(x_train_all,hiddenSize1, ... 
    'MaxEpochs',400, ... 
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    'L2WeightRegularization',0.004, ... 
    'SparsityRegularization',4, ... 
    'SparsityProportion',0.15, ... 
    'ScaleData', false);% 
feat1_saya = encode(autoenc_saya,x_train_all); 
hiddenSize2 = 50; 
autoenc2_saya = trainAutoencoder(feat1_saya,hiddenSize2, ... 
    'MaxEpochs',100, ... 
    'L2WeightRegularization',0.002, ... 
    'SparsityRegularization',4, ... 
    'SparsityProportion',0.1, ... 
    'ScaleData', false); 
feat2_saya = encode(autoenc2_saya,feat1_saya); 
softnet_saya = trainSoftmaxLayer(feat2_saya,y_train_all,'MaxEpochs',400); 
deepnet_saya = stack(autoenc_saya,autoenc2_saya,softnet_saya); 
view(deepnet_saya) 
y = deepnet_saya(x_test_all); 
plotconfusion(y_test_all,y); 
csvwrite('SAE_out_feat_TBD.csv',feat2_saya); 

 

d_IA_train=importdata('bal_norm_drebin_train.txt'); 
d_IA_train=d_IA_train(1:11245,:); 
d_IA_train_WoT=d_IA_train(:,1:215); 
d_IA_train_T=d_IA_train(:,216); 
d_IA_train_T_dummy=dummyvar(d_IA_train_T); 
Xtrain=d_IA_train_WoT; 
Xtrain=Xtrain'; 
Ytrain=d_IA_train_T_dummy; 
Ytrain=Ytrain'; 

 
berat=net.IW{1,1}; 
indeks=net.inputs{1}.range; 
for l=1:215  
    range_indeks=indeks(l,2)-indeks(l,1); 
    if range_indeks==0 
        tmp(l,1)=0; 
    else tmp(l,1)=1; 
    end 
end 
tmp=logical(tmp); 
indeks(:,1)=[1:215]; 
indeks2=indeks(tmp,:); 
indeks_aja=indeks2(:,1); 
indeks_aja=indeks_aja'; 

  
berat=abs(berat); 
sizenya = size(berat); 
col=sizenya(1,2); 
row=sizenya(1,1); 
berat_per_input=zeros(1,col); 
berat_per_input(1,:)=indeks_aja; 
for i=1:col  
    berat_per_input(2,i)=0; 
    for j=1:row  
        berat_per_input(2,i)=berat_per_input(2,i)+berat(j,i); 
    end 
end 
berat_per_input=berat_per_input'; 
berat_sort=sortrows(berat_per_input, 2); 
tmp2=berat_sort(:,2)>=10.5; 
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selected_features=berat_sort(tmp2,1); 

 

raw_train=importdata('bal_norm_drebin_train.txt'); 
extracted=importdata('SAE_out_feat_TBD.csv'); 
extracted=extracted';  
x_train_all=raw_train(:,1:215); 
y_train_all_int=raw_train(:,216); 
feature=horzcat(x_train_all,extracted); 
feature=horzcat(feature,y_train_all_int); 
indeks_att=[1:1:266]; 
feature=vertcat(indeks_att,feature);  
csvwrite('trainandextracted.csv',feature); 

 
tic 
d_IA_test=importdata('trainandextracted.csv'); 
d_IA_test=d_IA_test(2:11246,:); 
d_IA_test_trans=d_IA_test'; 
selected_features=[165;89;3;152;116;209;71;31;92;32;18;106;147;213;101;182;

181;26;118;40;171;189;83;76;50;169;111;184;52;103;157;124;16;173;155;64;70;

42;53;197;105;183;11;107;9;109;110;186;33;7;216;217;218;219;220;221;222;223

;224;225;226;227;228;229;230;231;232;233;234;235;236;237;238;239;240;241;24

2;243;244;245;246;247;248;249;250;251;252;253;254;255;256;257;258;259;260;2

61;262;263;264;265]; 
ukuran_mat=size(selected_features); 
jumlah_fitur=ukuran_mat(1,1); 
indeks_fitur=[1:265]; 
for j=1:265 
    for i=1:jumlah_fitur 
        if indeks_fitur(1,j)==selected_features(i,1) 
            indeks_fitur(2,j)=1; 
            break; 
        else indeks_fitur(2,j)=0; 
        end 
    end 
end 

  
indeks_fitur_aja=indeks_fitur(2,:); 
indeks_fitur_aja=indeks_fitur_aja'; 
indeks_fitur_aja_kelas=indeks_fitur_aja; 
indeks_fitur_aja_kelas(266,1)=1; 
indeks_fitur_aja_logical=logical(indeks_fitur_aja_kelas); 
test_data=d_IA_test_trans; 
test_data=test_data(indeks_fitur_aja_logical,:); 
input_test=test_data(1:jumlah_fitur,:); 
target_test=test_data((jumlah_fitur+1),:); 
target_test_final=dummyvar(target_test); 
target_test_final=target_test_final'; 
toc 

  

  

 

Feature details of Drebin and Malgenome Dataset 

 

Feature Name Details 
transact API call signature 

onServiceConnected API call signature 

bindService API call signature 

attachInterface API call signature 
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ServiceConnection API call signature 

android.os.Binder API call signature 

SEND_SMS Manifest Permission 

Ljava.lang.Class.getCanonicalName API call signature 

Ljava.lang.Class.getMethods API call signature 

Ljava.lang.Class.cast API call signature 

Ljava.net.URLDecoder API call signature 

android.content.pm.Signature API call signature 

android.telephony.SmsManager API call signature 

READ_PHONE_STATE Manifest Permission 

getBinder API call signature 

ClassLoader API call signature 

Landroid.content.Context.registerReceiver API call signature 

Ljava.lang.Class.getField API call signature 

Landroid.content.Context.unregisterReceiver API call signature 

GET_ACCOUNTS Manifest Permission 

RECEIVE_SMS Manifest Permission 

Ljava.lang.Class.getDeclaredField API call signature 

READ_SMS Manifest Permission 

getCallingUid API call signature 

Ljavax.crypto.spec.SecretKeySpec API call signature 

android.intent.action.BOOT_COMPLETED Intent 

USE_CREDENTIALS Manifest Permission 

MANAGE_ACCOUNTS Manifest Permission 

android.content.pm.PackageInfo API call signature 

KeySpec API call signature 

TelephonyManager.getLine1Number API call signature 

DexClassLoader API call signature 

HttpGet.init API call signature 

SecretKey API call signature 

Ljava.lang.Class.getMethod API call signature 

System.loadLibrary API call signature 

android.intent.action.SEND API call signature 

Ljavax.crypto.Cipher API call signature 

WRITE_SMS Manifest Permission 

READ_SYNC_SETTINGS Manifest Permission 

AUTHENTICATE_ACCOUNTS Manifest Permission 

android.telephony.gsm.SmsManager API call signature 

WRITE_HISTORY_BOOKMARKS Manifest Permission 

TelephonyManager.getSubscriberId API call signature 

mount Commands signature 

INSTALL_PACKAGES Manifest Permission 

Runtime.getRuntime API call signature 

CAMERA Manifest Permission 

Ljava.lang.Object.getClass API call signature 

WRITE_SYNC_SETTINGS Manifest Permission 

READ_HISTORY_BOOKMARKS Manifest Permission 

Ljava.lang.Class.forName API call signature 

INTERNET Manifest Permission 

android.intent.action.PACKAGE_REPLACED Intent 
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Binder API call signature 

android.intent.action.SEND_MULTIPLE Intent 

RECORD_AUDIO Manifest Permission 

IBinder API call signature 

android.os.IBinder API call signature 

createSubprocess API call signature 

NFC Manifest Permission 

ACCESS_LOCATION_EXTRA_COMMANDS Manifest Permission 

URLClassLoader API call signature 

WRITE_APN_SETTINGS Manifest Permission 

abortBroadcast API call signature 

BIND_REMOTEVIEWS Manifest Permission 

android.intent.action.TIME_SET Intent 

READ_PROFILE Manifest Permission 

TelephonyManager.getDeviceId API call signature 

MODIFY_AUDIO_SETTINGS Manifest Permission 

getCallingPid API call signature 

READ_SYNC_STATS Manifest Permission 

BROADCAST_STICKY Manifest Permission 

android.intent.action.PACKAGE_REMOVED Intent 

android.intent.action.TIMEZONE_CHANGED Intent 

WAKE_LOCK Manifest Permission 

RECEIVE_BOOT_COMPLETED Manifest Permission 

RESTART_PACKAGES Manifest Permission 

Ljava.lang.Class.getPackage API call signature 

chmod Commands signature 

Ljava.lang.Class.getDeclaredClasses API call signature 

android.intent.action.ACTION_POWER_DISCONNECTED Intent 

android.intent.action.PACKAGE_ADDED Intent 

PathClassLoader API call signature 

TelephonyManager.getSimSerialNumber API call signature 

Runtime.load API call signature 

TelephonyManager.getCallState API call signature 

BLUETOOTH Manifest Permission 

READ_CALENDAR Manifest Permission 

READ_CALL_LOG Manifest Permission 

SUBSCRIBED_FEEDS_WRITE Manifest Permission 

READ_EXTERNAL_STORAGE Manifest Permission 

TelephonyManager.getSimCountryIso API call signature 

sendMultipartTextMessage API call signature 

PackageInstaller API call signature 

VIBRATE Manifest Permission 

remount Commands signature 

android.intent.action.ACTION_SHUTDOWN Intent 

sendDataMessage API call signature 

ACCESS_NETWORK_STATE Manifest Permission 

chown Commands signature 

HttpPost.init API call signature 

Ljava.lang.Class.getClasses API call signature 

SUBSCRIBED_FEEDS_READ Manifest Permission 
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TelephonyManager.isNetworkRoaming API call signature 

CHANGE_WIFI_MULTICAST_STATE Manifest Permission 

WRITE_CALENDAR Manifest Permission 

android.intent.action.PACKAGE_DATA_CLEARED Intent 

MASTER_CLEAR Manifest Permission 

HttpUriRequest API call signature 

UPDATE_DEVICE_STATS Manifest Permission 

WRITE_CALL_LOG Manifest Permission 

DELETE_PACKAGES Manifest Permission 

GET_TASKS Manifest Permission 

GLOBAL_SEARCH Manifest Permission 

DELETE_CACHE_FILES Manifest Permission 

WRITE_USER_DICTIONARY Manifest Permission 

android.intent.action.PACKAGE_CHANGED Intent 

android.intent.action.NEW_OUTGOING_CALL Intent 

REORDER_TASKS Manifest Permission 

WRITE_PROFILE Manifest Permission 

SET_WALLPAPER Manifest Permission 

BIND_INPUT_METHOD Manifest Permission 

divideMessage API call signature 

READ_SOCIAL_STREAM Manifest Permission 

READ_USER_DICTIONARY Manifest Permission 

PROCESS_OUTGOING_CALLS Manifest Permission 

CALL_PRIVILEGED Manifest Permission 

Runtime.exec API call signature 

BIND_WALLPAPER Manifest Permission 

RECEIVE_WAP_PUSH Manifest Permission 

DUMP Manifest Permission 

BATTERY_STATS Manifest Permission 

ACCESS_COARSE_LOCATION Manifest Permission 

SET_TIME Manifest Permission 

android.intent.action.SENDTO Intent 

WRITE_SOCIAL_STREAM Manifest Permission 

WRITE_SETTINGS Manifest Permission 

REBOOT Manifest Permission 

BLUETOOTH_ADMIN Manifest Permission 

TelephonyManager.getNetworkOperator API call signature 

/system/bin Commands signature 

MessengerService API call signature 

BIND_DEVICE_ADMIN Manifest Permission 

WRITE_GSERVICES Manifest Permission 

IRemoteService API call signature 

KILL_BACKGROUND_PROCESSES Manifest Permission 

SET_ALARM API call signature 

ACCOUNT_MANAGER API call signature 

/system/app Commands signature 

android.intent.action.CALL Intent 

STATUS_BAR Manifest Permission 

TelephonyManager.getSimOperator API call signature 

PERSISTENT_ACTIVITY Manifest Permission 
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CHANGE_NETWORK_STATE Manifest Permission 

onBind API call signature 

Process.start API call signature 

android.intent.action.SCREEN_ON Intent 

Context.bindService API call signature 

RECEIVE_MMS Manifest Permission 

SET_TIME_ZONE Manifest Permission 

android.intent.action.BATTERY_OKAY Intent 

CONTROL_LOCATION_UPDATES Manifest Permission 

BROADCAST_WAP_PUSH Manifest Permission 

BIND_ACCESSIBILITY_SERVICE Manifest Permission 

ADD_VOICEMAIL Manifest Permission 

CALL_PHONE Manifest Permission 

ProcessBuilder API call signature 

BIND_APPWIDGET Manifest Permission 

FLASHLIGHT Manifest Permission 

READ_LOGS Manifest Permission 

Ljava.lang.Class.getResource API call signature 

defineClass API call signature 

SET_PROCESS_LIMIT Manifest Permission 

android.intent.action.PACKAGE_RESTARTED Intent 

MOUNT_UNMOUNT_FILESYSTEMS Manifest Permission 

BIND_TEXT_SERVICE Manifest Permission 

INSTALL_LOCATION_PROVIDER Manifest Permission 

android.intent.action.CALL_BUTTON Intent 

android.intent.action.SCREEN_OFF Intent 

findClass API call signature 

SYSTEM_ALERT_WINDOW Manifest Permission 

MOUNT_FORMAT_FILESYSTEMS Manifest Permission 

CHANGE_CONFIGURATION Manifest Permission 

CLEAR_APP_USER_DATA Manifest Permission 

intent.action.RUN Intent 

android.intent.action.SET_WALLPAPER Intent 

CHANGE_WIFI_STATE Manifest Permission 

READ_FRAME_BUFFER Manifest Permission 

ACCESS_SURFACE_FLINGER Manifest Permission 

Runtime.loadLibrary API call signature 

BROADCAST_SMS Manifest Permission 

EXPAND_STATUS_BAR Manifest Permission 

INTERNAL_SYSTEM_WINDOW Manifest Permission 

android.intent.action.BATTERY_LOW Intent 

SET_ACTIVITY_WATCHER Manifest Permission 

WRITE_CONTACTS Manifest Permission 

android.intent.action.ACTION_POWER_CONNECTED Intent 

BIND_VPN_SERVICE Manifest Permission 

DISABLE_KEYGUARD Manifest Permission 

ACCESS_MOCK_LOCATION Manifest Permission 

GET_PACKAGE_SIZE Manifest Permission 

MODIFY_PHONE_STATE Manifest Permission 

CHANGE_COMPONENT_ENABLED_STATE Manifest Permission 
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CLEAR_APP_CACHE Manifest Permission 

SET_ORIENTATION Manifest Permission 

READ_CONTACTS Manifest Permission 

DEVICE_POWER Manifest Permission 

HARDWARE_TEST Manifest Permission 

ACCESS_WIFI_STATE Manifest Permission 

WRITE_EXTERNAL_STORAGE Manifest Permission 

ACCESS_FINE_LOCATION Manifest Permission 

SET_WALLPAPER_HINTS Manifest Permission 

SET_PREFERRED_APPLICATIONS Manifest Permission 

WRITE_SECURE_SETTINGS Manifest Permission 

class B=Benign; S=Malware 
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