
석 사 학 위 논 문
Master’s Thesis

RLWE 문제 기반 3라운드 정적

그룹키 교환 프로토콜의 구현 연구

Implementation of Static and 3-round

Group Key Agreement with RLWE Assumption

2020

한 성 호 (韓盛淏 Han, Seongho)

한 국 과 학 기 술 원

Korea Advanced Institute of Science and Technology

석 사 학 위 논 문

RLWE 문제 기반 3라운드 정적

그룹키 교환 프로토콜의 구현 연구

2020

한 성 호

한 국 과 학 기 술 원

전산학부 (정보보호대학원)

RLWE 문제 기반 3라운드 정적

그룹키 교환 프로토콜의 구현 연구

한 성 호

위 논문은 한국과학기술원 석사학위논문으로

학위논문 심사위원회의 심사를 통과하였음

2019년 12월 16일

심사위원장 김 광 조 (인)

심 사 위 원 신 인 식 (인)

심 사 위 원 이 주 영 (인)

Implementation of Static and 3-round

Group Key Agreement with RLWE Assumption

Seongho Han

Advisor: Kwangjo Kim

A dissertation submitted to the faculty of

Korea Advanced Institute of Science and Technology in

partial fulfillment of the requirements for the degree of

Master of Science in Computer Science (Information Security)

Daejeon, Korea

December 16, 2019

Approved by

Kwangjo Kim

Professor of Computer Science

The study was conducted in accordance with Code of Research Ethics1.
1 Declaration of Ethical Conduct in Research: I, as a graduate student of Korea Advanced Institute of Science and

Technology, hereby declare that I have not committed any act that may damage the credibility of my research. This

includes, but is not limited to, falsification, thesis written by someone else, distortion of research findings, and plagiarism.

I confirm that my thesis contains honest conclusions based on my own careful research under the guidance of my advisor.

MIS

20174478

한성호. RLWE 문제 기반 3라운드 정적 그룹키 교환 프로토콜의 구현

연구 . 전산학부 (정보보호대학원) . 2020년. 51+iv 쪽. 지도교수: 김광조.

(영문 논문)

Seongho Han. Implementation of Static and 3-round Group Key Agree-

ment with RLWE Assumption . School of Computing (Graduate School of

Information Security) . 2020. 51+iv pages. Advisor: Kwangjo Kim. (Text

in English)

초 록

통신 기술이 발달하면서 한 그룹에서 동일한 키를 공유하는 프로토콜이 점차 중요해지고 있다. 그러나 현재

대부분의그룹키교환방식은이산대수문제에기반하기때문에양자컴퓨터공격에취약하다. 이를해결하기

위해 다양한 양자내성암호가 제안되었다. RLWE문제는 유망한 양자내성암호 중 하나인 격자기반암호에서

사용되는 문제이다. RLWE 문제를 활용하여 여러 그룹키 교환 방식이 제안되었으나, 알려진 바에 의하면

RLWE 문제 기반 그룹키 교환 프로토콜을 구현하고 검증한 적은 없다. 본 석사 논문에서는 RLWE 문제

기반 3라운드 정적 그룹키 교환 프로토콜을 구체화하고, 중재자 기반 네트워크 환경에서 구현한다. 또한

구현된 프로토콜의 성능을 정량적으로 분석한다.

핵 심 낱 말 양자내성암호, RLWE, 그룹키 교환, 분산형

Abstract

With the development of communication technology, the demand for group key agreement protocols is

growing. However, most of the group key agreement protocols are based on discrete logarithm problem,

which is vulnerable to a quantum adversary. To solve this problem, various quantum-resistant cryptosys-

tems have been proposed. RLWE problem is a kind of problems used in lattice-based cryptography, one

of the promising post quantum cryptography. Several group key agreement protocols have been proposed

based on RLWE problem. To the best of our knowledge, RLWE-based group key agreement protocol has

never been implemented. In this thesis, we instantiate a static and 3-round group key agreement with

RLWE assumption and implement the protocol on the arbiter-aided network. We also quantitatively

analyze the performance of the implemented protocol.

Keywords Post-quantum cryptosystem, RLWE, Group key agreement, Contributory

Contents

Contents . i

List of Tables . iii

List of Figures . iv

Chapter 1. Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Organization . 3

Chapter 2. Background 4

2.1 Notations . 4

2.2 Definitions . 4

2.2.1 On the lattice problems 4

2.2.2 Reconciliation method . 6

2.2.3 Sampling from distribution χ 9

Chapter 3. Related Work 10

3.1 Implementation of 2-party RLWE-based key exchange 10

3.1.1 Ding et al.’s 2-party protocol 10

3.1.2 BCNS . 11

3.1.3 Newhope . 11

3.2 RLWE-based group key agreement 12

3.2.1 Ding et al.’s multi-party protocol 13

3.2.2 Apon et al.’s protocol . 14

3.2.3 Choi et al.’s protocol . 14

Chapter 4. Instantiation of Choi et al.’s Protocol 16

4.1 Parameter choice . 16

4.2 Security evaluation . 18

Chapter 5. Implementation of Choi et al.’s Protocol 19

5.1 Ring polynomial arithmetic . 19

5.2 Sampling from a discrete Gaussian distribution 19

5.3 Network configuration . 21

i

Chapter 6. Performance Evaluation 22

6.1 Experimental setup . 22

6.2 Experiments . 22

6.2.1 Experiment 1 . 22

6.2.2 Experiment 2 . 23

6.2.3 Experiment 3 . 24

6.2.4 Experiment 4 . 25

Chapter 7. Concluding Remark 26

Bibliography 27

Appendices 31

A Source code of arbiter . 31

B Source code of peer . 41

Acknowledgments in Korean 49

Curriculum Vitae in Korean 50

ii

List of Tables

2.1 Notations and Variables . 4

4.1 Parameter choice . 17

6.1 Average runtime of single operations . 23

6.2 Average runtime of each function in GKA . 23

6.3 Time complexity of CHK, ADGK19, and DXL-mul . 24

6.4 Performance evaluation of lattice-based cryptographic schemes [1] 25

6.5 Performance evaluation of our protocol and DB . 25

iii

List of Figures

2.1 Ding et al.’s signal function [2] . 6

2.2 BCNS reconciliation function [2] . 7

iv

Chapter 1. Introduction

1.1 Overview

D-Wave Systems announced the first commercial quantum computer ‘D-Wave One’ operating on a

128-qubit chipset using quantum annealing in 2011. Recently, Google introduced 72 qubit superconduct-

ing quantum chip ’Bristlecone’ in 2018 and announced Sycamore with 53 qubit in October 2019 [3]. In

the meantime, IBM developed IBM Q 20 Austin with 20 qubits in 2018 and IBM Q 53 with 53 qubits

in October 2019. Thus, the era of quantum computing is expected to come within the short term.

Most public key cryptosystems used today are based on the hardness of discrete logarithm problem

(DLP) or the difficulty of integer factorization problem (IFP). Breaking the cryptosystems is very hard

since both problems are resolved in a computationally infeasible time with classical computers. However,

IFP and DLP can be solved within the polynomial-time by Shor’s algorithm using a quantum computer

[4]. On the other hand, symmetric key cryptosystems such as Advanced Encryption Standards (AES)

can be solved in a feasible time using Grover’s algorithm [5], which can be used in the data search

problem. To be specific, the adversary takes O(2n) time with a classical computer but takes O(
√

2n)

time with a quantum computer to solve the data search problem. Therefore, researchers are actively

studying post-quantum cryptography (PQC) against quantum computer attacks.

There are five categories on PQC: lattice-based, code-based, polynomial-based, hash-based, and

isogeny-based. NIST has initiated a process to standardize one or more quantum-resistant public-key

cryptographic algorithms in February 2016. The round 2 candidates were announced in January 2019.

NIST plans to begin round 3 in 2020 or 2021.

1

1.2 Motivation

Key exchange protocol between two parties became essential to establish a secure channel that

prevents the leak of information after Diffie and Hellman [6] proposed the breakthrough using public

key cryptosystem. With the development of communication technologies, the importance of sharing a

common group key among multiple parties is growing. Group key agreement (GKA) protocol is a key

exchange protocol among multiple parties in which a shared secret is derived from each group member.

Several group key exchange protocols [7, 8, 9, 10, 11, 12] have been proposed. Each group member

equally contributes to deriving a shared secret in GKA. Every group member has to interact in order

to compute the group key, and no entity can predetermine the resulting value. GKA protocol does not

require the existence of secure channels between its participants since no secure transfer takes place

during processing. However, most of the existing GKA protocols are vulnerable to a quantum adversary

because they are based on the difficulty of DLP.

Many researchers have actively been researching quantum-resistant cryptosystem that is secure

against a quantum adversary. Regev [13] proposed a lattice-based cryptosystem based on Learning with

Error (LWE) problem. As LWE-based cryptosystem has low efficiency, protocols based on ring learning

with error (RLWE) have been proposed by Lyubashevsky et al. [14]. Then Alkim et al. [15] (hereafter

referred to as Newhope) and Bos et al. [16] (hereafter referred to as BCNS) implemented RLWE-based

2-party key exchange protocols.

Extending 2-party RLWE-based key exchange protocols, several RLWE-based GKA protocols have

been proposed. Ding et al. [17] and Apon et al. [18] proposed RLWE-based GKA protocols. Choi et

al. [19] is now in preparation on submitting the paper of dynamic constant-round GKA from RLWE

assumption improving Apon et al.’s protocol. To the best of our knowledge, there is no practical im-

plementation of RLWE-based GKA with specified parameters. In this thesis, we instantiate Choi et

al.’s RLWE-based static and 3-round GKA protocol and implement the protocol on the arbiter-aided

network. Also, we quantitatively analyze the performance of our implementation.

2

1.3 Organization

The rest of this thesis is organized as follows: Chapter 2 describes notations and definitions as

preliminaries. The related work on the implementation of RLWE-based 2-party key exchange protocols

and the algorithms of RLWE-based GKAs is introduced in Chapter 3. In Chapter 4 and Chapter 5,

we describe an instantiation of Choi et al.’s generic static and 3-round GKA and implementation of the

protocol in detail, respectively. Performance evaluation is presented in Chapter 6. Finally, concluding

remark and future work are discussed in Chapter 7, respectively.

3

Chapter 2. Background

2.1 Notations

The following notations are used in this thesis. Table 2.1 describes the notations.

Table 2.1: Notations and Variables

Variables Description

N number of peers
Pi ith peer of a protocol
n dimension of polynomial ring
R = Z[x]/(xn + 1) the ring of integers with dimension n
q integer modulus
Rq = Zq[x]/(xn + 1) quotient ring of R
ρ statistical security parameter
λ computational security parameter
χ distribution over R
χσ discrete Gaussian distribution with standard deviation σ
H() cryptographic hash function

Statistical security parameter ρ determines the correctness of the protocol, i.e. all peers can share

the same session key with probability 1− 2ρ+1. We describe the details in Chapter 4.1.

Computational security parameter λ determines the security level of the protocol, i.e. the protocol

ensures λ-bit security. We also describe the details in Chapter 4.1.

2.2 Definitions

In this section, we introduce the basic background for the lattice problems, which were introduced

in [13, 14], and present the necessary notations.

2.2.1 On the lattice problems

Learning with Errors (LWE) problem

Since Regev [13] proposed LWE, a number of cryptographic schemes based on LWE problem have

been introduced. LWE problem is a computational hard problem that is secure against quantum com-

puter attacks. There are two versions of LWE problem: search-LWE and decisional-LWE. As decisional-

LWE is used as the primitives for many cryptosystems, we focus on decisional-LWE problem.

4

Definition 2.2.1. (Decisional-LWE) LWE distribution is defined as follows: For a secret vector s ∈ Znq ,

LWE distribution As,χ over Znq × Zq is sampled by choosing a ∈ Znq uniformly at random and e ← χ,

and outputting (a, b = 〈s, a〉+ e mod q)

Given m independent samples (ai, bi) ∈ Znq × Zq where every sample is distributed from either:

(1) As,χ for a uniformly random s ∈ Znq
(2) The uniform distribution

Distinguish whether samples are from (1) LWE distribution or (2) uniform distribution (with non-

negligible advantage)

The difficulty of the decisional-LWE problem is based on the worst-case quantum hardness of two

main computational problems on lattices: the decisional version of the shortest vector problem (GapSVP)

and the shortest independent vectors problem (SIVP) [13].

Ring Learning with Errors (RLWE) problem

As the cryptographic schemes based on LWE problem are not enough efficient for practical applica-

tions, [14] introduced an algebraic variant of LWE called RLWE. There are also two versions of RLWE

problem: search-RLWE and decisional-RLWE. We focus on decisional-RLWE, which is widely used for

cryptographic schemes.

Definition 2.2.2. (Decisional-RLWE) Let R = Z[x]/(xn + 1) be the ring of integers with dimension

n and q be an integer modulus. Define Rq = R/qR ∼= Zq[x]/(xn + 1) with Zq = Z/qZ. Let χ be a

distribution over R, and let s← χ. Define distribution Oχ,s over Rq ×Rq is sampled by choosing a from

uniform distribution on Rq and e← χ, and outputting (a, as+ e) ∈ Rq ×Rq
Distinguish whether samples are from (1) distribution Oχ,s (2) uniform distribution on Rq × Rq

(with non-negligible advantage)

In definition 2.2.2, the secret s is chosen from the error distribution χ instead of the uniform

distribution over Rq as originally defined in [14]. This problem is as hard as the one in which s is chosen

uniformly at random [20].

The hardness of the decisional-LWE problem is guaranteed by quantum reduction from worst-case

ideal lattice problems to decisional RLWE problem [21].

5

2.2.2 Reconciliation method

Two parties in RLWE-based key exchange protocol compute very close values in Zq, not the same

value if using a naive approach as shown in the below procedure. To be specific, we can verify that

kA 6= kB since kA = b′s+ e′′′ = (as′ + e′)s+ e′′′ = ass′ + e′s+ e′′′ and kB = bs′ + e′′ = (as+ e)s′ + e′′ =

ass′ + es′ + e′′. There are two ways to resolve this problem: the reconciliation method and error

correction code. We focus on the reconciliation method, which is used for group key agreement protocols

with RLWE assumption.

Naive RLWE-based Key Exchange

Alice Bob

s, e
$←− χ s′, e′

$←− χ
b← as+ e ∈ Rq

b−→ b′ ← as′ + e′ ∈ Rq
e′′′

$←− χ b′←− e′′
$←− χ

kA ← b′s+ e′′′ kB ← bs′ + e′′

There are two major reconciliation methods on RLWE-based key exchange protocols [2]: Ding et

al.’s method [17] and Peikert’s method [22]. We will describe each method in detail.

Ding et al.’s method

Ding et al. [17] proposed a first reconciliation method in 2012. Ding et al. use a robust extractor

to ensure the correctness of the protocol. The following is the definition of robust extractor.

Figure 2.1: Ding et al.’s signal function [2]

Definition 2.2.3 (Robust Extractors). An algorithm E is a robust extractor on Zq with error tolerance

δ with respect to a hint functions Cha, if the following holds:

• The deterministic algorithm E takes an input an x ∈ Zq and a signal w ∈ {0, 1}, outputs k =

E(x,w) ∈ {0, 1}.

6

• The hint algorithm Cha takes as input a y ∈ Zq and outputs a signal w ← Cha(y) ∈ {0, 1}.

• For any x, y ∈ Zq such that x − y is even and |x − y| ≤ δ, then it holds that E(x,w) = E(y, w),

where w ← Cha(y).

The errors of x, y in the definition can be set to be multiple of t, where t is a small integer.

The hint function Cha which is also called ”signal function” is defined in the following.

Definition 2.2.4 (Signal Functions). There are two signal functions used in the robust extractor. For

prime q > 2, define S0(x), S1(x) from Zq to {0, 1}.

S0(x) =

0 if x ∈ [−b q4c, b
q
4c]

1 otherwise
; S1(x) =

0 if x ∈ [−b q4c+ 1, b q4c+ 1]

1 otherwise

For any y ∈ Zq, Cha(y) = Sb(y), where b
$←− {0, 1}. Figure 2.1 gives intuition on signal functions.

Thus the robust extractor E is defined as: E(x,w) = (x+w · q−12 mod q) mod 2. For any odd q > 2,

if x is uniformly random in Zq, then E(x) is uniformly random conditioned on w, where w ← Cha(x)

[17]. Both parties in the protocol compute the shared key using the robust extractor E.

Peikert’s method

Peikert [22] gives a variant of error reconciliation method of Ding et al.’s protocol. Peikert observed

that the agreed-upon bit produced by Ding et al.’s protocol is inevitably biased, not uniform. Even one

applies post-processing on Ding et al.’s protocol, it reduces the length of the available key. To solve this

problem, Peikert directly produces an unbiased key via rounding function, cross-rounding function, and

doubling function. Figure 2.2 provides intuition on these functions. We focus on Peikert’s method for

the reconciliation method in this thesis.

Figure 2.2: BCNS reconciliation function [2]

7

The followings are notation and concepts required for Peikert’s reconciliation function. Let b·e :

R← Z be the general round function, i.e. bxe = z for z ∈ Z and x ∈ [z − 1/2, z + 1/2).

Definition 2.2.5. Let q be a positive integer. Define the modular rounding function

b·eq,2 : Zq → Z2, x 7→ bxeq,2 =
⌊2

q
x
⌉

mod 2

and the cross-rounding function

〈·〉q,2 : Zq → Z2, x 7→ 〈·〉q,2 =
⌊4

q
x
⌉

mod 2

Both functions are extended to elements of quotient ring Rq coefficient-wise: for f = fn−1X
n−1 +

· · ·+ f1X + f0 ∈ Rq, define

bfeq,2 : (bfn−1eq,2, bfn−2eq,2, ..., bf0eq,2),

〈f〉q,2 : (〈fn−1〉q,2, 〈fn−2〉q,2, ..., 〈f0〉q,2).

If the modulus q is odd, we have to operate in Z2q instead of Zq to avoid bias in a shared key. As

we choose odd q in this thesis, we have to define a randomized doubling function in [22, 16]. Let dbl():

Zq → Z2q, x 7−→ dbl(x) = 2x − e, where e is sampled from {−1, 0, 1} with probabilities p−1 = p1 = 1
4

and p0 = 1
2 . The rounding of dbl(v) ∈ Z2q for a uniform element v ∈ Zq is uniformly random in Z2q

given its cross-rounding [22].

Define the sets I0 = {−, 1, · · · , b 2q e−1} and I0 = {−b q2c, · · · ,−1}. Let E = [− q4 ,
q
4) the reconciliation

function rec() function as follows:

rec(w, b) =

0 if w ∈ Ib + E mod 2q

1 otherwise

From reconciliation function, one can recover the rounding bdbl(v)e2q,2 of a random element v ∈ Zq

from an element w ∈ Zq that is close to v and the cross-rounding 〈dbl(v)〉2q,2. Note that reconciliation

of a polynomial in Rq is computed coefficient-wise using the reconciliation function on Z2q × Z2.

As Peikert’s method has better performance and security than Ding et al.’s method, we use Peikert’s

method as the reconciliation method.

8

2.2.3 Sampling from distribution χ

The distribution χ denotes a discrete Gaussian on Rq. As we use n = 1, 024 being a power of

2 for our implementation, sampling from a discrete Gaussian can be done coefficient-wise using a 1-

dimensional discrete Gaussian DZ,σ with parameter σ [14]. For each x ∈ Z, DZ,σ(x) = 1
S e
−x2/(2σ2)

where S = 1 + 2
∑∞
k=1 e

−k2/(2σ2).

Since implementing a true discrete Gaussian distribution is impossible in the real world, many

researchers have tried to approximate the true discrete Gaussian. There are two basic methods to

implement a true discrete Gaussian distribution closely: rejection sampling [23], and the inversion method

[24].

Rejection sampling from a set S is done by sample x ∈ S from some easy distribution such as uniform

distribution and then accepting the sample with probability proportional Pr(x). Rejection sampling is

used in Zhang et al.’s protocol [25]. An averaged M times repetition on sampling is required to compute

a shared session key with probability 1− 1
M . Then rejection sampling is inefficient if we want to guarantee

a low failure rate, which is required to guarantee the correctness of RLWE-based GKA. This method is

suitable for constrained devices.

On the other hand, BCNS uses the inversion method to implement discrete Gaussian distribution.

To sample with the inversion method, a table that translates sampling from the discrete Gaussian

distribution into sampling form a uniform distribution on a different set is required. The inversion

method requires a large precomputed table to store values of the cumulative distribution function of a

discrete Gaussian distribution. We can enormously improve the performance if using a precomputed

table compared to using rejection sampling under the same failure probability.

Meanwhile, Newhope tried to substitute a binomial distribution for discrete Gaussian. Newhope

provides proof that sampling from a centered binomial distribution accommodates for the little loss in

security when σ =
√

8. However, using the binomial distribution for a large standard deviation σ is not

practical [26]. In this thesis, σ2 = 2, 509, 945/
√

2π is used for random sampling as described in Chapter

4.1. Thus we do not use a centered binomial distribution.

Consequently we choose to implement the inversion method to sample errors based on BCNS source

code1 for fast computation.

1https://github.com/dstebila/rlwekex

9

Chapter 3. Related Work

In this chapter, we introduce the implementation of 2-party RLWE-based key exchange protocols.

Then we describe the algorithms of group key agreement protocols from RLWE assumption.

3.1 Implementation of 2-party RLWE-based key exchange

Several implementations of 2-party RLWE-based key exchange protocols have been published. There

exist two categories implementing RLWE-based key exchange protocols: based on the reconciliation

method or based on the error correction code. Implementation of Ding et al.’s two-party RLWE-based

key exchange protocol, BCNS, and Newhope are typical examples for the former. On the other hand,

Round5 [27] and LAC [28] use error correction code to agree on a shared session key. As we use

reconciliation method for our implementation, we focus on Ding et al.’s 2-party protocol, BCNS, and

Newhope. We will describe each protocol in detail.

3.1.1 Ding et al.’s 2-party protocol

Ding et al. [17] proposed a first 2-party RLWE key exchange protocol (hereafter referred to as Ding

Key Exchange) in 2012. Then Gao et al. presents [2] two protocols called P30 and P14 implementing

Ding Key Exchange in 2017. Protocol 1 describes the algorithms of P30 and P14.

Protocol 1: Ding Key Exchange

Alice Bob

s, e
$←− χ s′, e′

$←− χ
b← as+ 2e ∈ Rq

b−→ b′ ← as′ + 2e′ ∈ Rq
e′′

$←− χ
kB ← bs′ + 2e′′

e′′′
$←− χ b′,w←−− w ←− Cha(kB) ∈ {0, 1}n

kA ← b′s+ 2e′′′ ∈ {0, 1}n
σA ← E(kA, w) ∈ {0, 1}n σB ← E(kB , w) ∈ {0, 1}n

A signal function Cha() and a robust extractor E is described in Chapter 2.2.2.

The parameter choice of P30 is very close to BCNS and that of P14 is exact same as Newhope.

Parameters of P30 are n = 1, 024, q = 1, 073, 479, 681, σ = 8
2π ≈ 3.192. P30 uses an inversion method

10

to sample errors. Meanwhile, parameters of P14 are n = 1, 024, q = 12, 289. P14 utilize a centered

binomial distribution Ψk with parameter k = 16 for error sampling.

3.1.2 BCNS

Bos et al. [16] implemented 2-party RLWE key exchange protocol BCNS based on [22] in 2015.

Protocol 2 describes the algorithms of BCNS.

Protocol 2: BCNS

Alice Bob

s, e
$←− χ s′, e′

$←− χ
b← as+ e ∈ Rq

b−→ b′ ← as′ + e′ ∈ Rq
e′′

$←− χ
v ← bs′ + e′′ ∈ Rq
v

$←− dbl(v) ∈ R2q

b′,c←−− c← 〈v〉2q,2 ∈ {0, 1}n
kA ← rec(2b′s, c) ∈ {0, 1}n kB ← bve2q,2 ∈ {0, 1}n

We describe rounding function, cross-round function, doubling function, and reconciliation function

in Chapter 2.2.2.

BCNS use n = 1,024, q = 232 − 1, σ = 8
2π ≈ 3.192 for parameters. They use an inversion method

to sample from a discrete Gaussian distribution.

3.1.3 Newhope

Alkim et al. [15] suggested 2-party RLWE key exchange protocol Newhope in 2016 and imple-

mented the protocol in 2016. Protocol 3 describes the algorithms of Newhope.

Protocol 3: Newhope

Alice Bob

seed
$←− {0, 1}256

a← Parse(SHAKE-128(seed))

s, e,
$←− Ψn

16 s′, e′, e′′
$←− Ψn

16
(b,seed)−−−−→ a← Parse(SHAKE-128(seed))

u← as′ + e′

v ← bs′ + e′′

v′ ← us
(u,r)←−−− r

$←− HelpRec(v)
ν ← Rec(v′, r) ν ← Rec(v, r)

µ← SHA3-256(ν) µ← SHA3-256(ν)

11

Note that HelpRec() and Rec() functions are defined in the protocol Newhope. The followings are

detailed description of HelpRec() and Rec(). Let CVPD̂4
(x ∈ R4) is that an integer vector z such that is

a closest vector to x : x−Bz ∈ V. HelpRec(x; b) is defined as follows:

HelpRec(x; b) = CVPD̂4

(2r

q
(x + bg)

)
mod 2r

where b ∈ {0, 1} is uniformly chosen random bit.

Decode(x ∈ R4/Z4) is that a bit k such that kg is a closest vector to x + Z4 : x − kg ∈ V + Z4.

Rec(x, r) is defined as follows:

Rec(x, r) := Decode
(1

q
x− q

2r
Br
)

Reconciliation method of Newhope is highly optimized version of BCNS.

They choose n = 1, 024 and q = 12, 289 for parameters. The binomial distribution Ψn
16 is used for

error sampling.

3.2 RLWE-based group key agreement

Sharing a common group key is required for secure group communication in group-oriented applica-

tions. We can derive a group key in two ways called centralized group key distribution and contributory

group key agreement (shorten as GKA) [29]. In the GKD, A trusted third party usually has the duties for

choosing a session key and distributing it to the group members. Meanwhile, all members collaboratively

derive a session key without the support from any trusted third party in the case of GKA.

GKA protocols have several advantages on the security and performance. First of all, GKA has no

central authority since each party equally contributes to establishing a shared group key. Then the risk

of corruption of central authority is removed. Second, the risk of communication failure is low as each

party in GKA manages the only one group key per each session. To be specific, the probability of loss

of a session key is low. Finally, GKA protocols provide perfect forward secrecy, i.e. we can protect past

sessions from the leakage of future group keys. Thus we only deal with GKA protocols.

There are hundreds of works on secure and efficient GKA protocols. However, most of the existing

GKA protocols are based on the hardness of Diffie-Hellman (DH) problem, which is vulnerable to a

12

Algorithm 1: DXL-mul(P [0, 1, · · · , N − 1] , a, σ)

(Round 1) For each peer Pi for i = 0 to N − 1, do the following in parallel.

1. Computes zi = asi + 2e0i where si, e
0
i ← χσ;

2. Each peer Pi sends zi to peer Pi+1;

(Round j (j=2,3,...,N − 1)) For each peer Pi for i = 0 to N − 1, do the following in parallel.

1. Peer Pi+j−1 computes zj−1i = si+j−1 · zj−2i + 2ej−1i at j-th Round;

2. Each peer Pi+j−1 sends zj−1i to Pi+j ;

(Round N) For peer P0 only.

1. Samples eN−10 ← χσ and computes K0 = s0 · zN−21 + 2eN−10 ;

2. Computes w ← Cha(K0);

3. Calculates session key SK0 = E(k0, w);

4. Broadcasts w;

(Key Computation) For each peer Pi for i = 1 to N − 1, do the following in parallel.

1. Samples eN−1i ← χσ and computes Ki = si · zN−2i+1 + 2eN−1i ;

2. Computes session key SKi = E(Ki, w);

quantum adversary. To design quantum-resistant GKA protocols, researchers have tried to extend 2-

party quantum-resistant key exchange protocols. For instance, Azarderakhsh et al. [30] proposes n-party

GKA protocol extending 2-party isogeny-based group key exchange protocol. While Ding et al. [17]

suggests n-party GKA protocol (hereafter referred to as DXL-mul) extending Ding Key Exchange.

In this thesis, we focus on RLWE-based GKA.

To the best of our knowledge, the only two RLWE-based GKA protocols have been proposed and

the one GKA protocol with RLWE assumption is now in preparation to submit the paper: DXL-mul,

Apon et al.’s protocol [18] (hereafter referred to as ADGK19), and Choi et al.’s protocol [19] (hereafter

referred to as CHK). We will describe each protocol in detail. From this section to the end of our

thesis, we will use the term ’peer’ who participated in GKA instead of ’party’. Also, peer index number

operation is done in mod N .

3.2.1 Ding et al.’s multi-party protocol

DXL-mul is a GKA protocol similar to the protocol in [9] except for the underlying problem.

DXL-mul is based on the hardness of RLWE problem, but the protocol in [9] is based on the hardness

of DH problem. Algorithm 1 describes the GKA procedure of DXL-mul.

13

Algorithm 2: ADGK19(P [0, 1, · · · , N − 1] , a,H, σ1, σ2)

(Round 1) For each peer Pi for i = 0 to N − 1, do the following in parallel.

1. Computes zi = asi + ei where si, ei ← χσ1
;

2. Broadcasts zi;

(Round 2) For each peer Pi for i = 0 to N − 1, do the following in parallel.

1. Peer P0 samples e′0 ← χσ2 . Each of the other peers Pi samples e′i ← χσ1 ;

2. Each peer Pi broadcasts Xi = (zi+1 − zi−1) si + e′i;

(Round 3) For peer PN−1 only.

1. Samples e′′N−1 ← χσ1 and computes
bN−1 = zN−2NsN−1 + (N − 1) ·XN−1 + (N − 2) ·X0 + · · ·+XN−3 + e′′N−1;

2. Computes (rec, kN−1) = recMsg(bN−1) ;

3. Broadcasts rec and gets the session key as skN−1 = H(kN−1);

(Key Computation) For peer Pi (i 6= N − 1).

1. Computes bi = zi−1Nsi + (N − 1) ·Xi + (N − 2) ·Xi+1 + · · ·+Xi+N−2;

2. Calculates ki = recKey(bi, rec)

3. Gets the session key as ski = H(ki);

After (Key Computation), all peers can compute an identical session key with overwhelming

probability. We can easily observe that DXL-mul has not a constant-round from algorithm 1.

3.2.2 Apon et al.’s protocol

ADGK19 is a generic RLWE-based 3-round GKA that is derived from Burmester and Desmedt [7]

(hereafter referred to as BD) protocol by transforming DH problem into RLWE problem. Algorithm 2

describes the key agreement procedure of ADGK19

After (Key Computation), all peers can agree on a shared session key with overwhelming proba-

bility. As we can see in algorithm 2, ADGK19 always performs 3-round procedures to derive a shared

group key. Any reconciliation method can be used for ADGK19.

3.2.3 Choi et al.’s protocol

Choi et al. prepares to submit a paper of a generic 3-round GKA called CHK based on Dutta and

Barua [12] (hereafter referred to as DB) protocol. CHK has better performance than ADGK19. Also,

CHK provides both static and dynamic group key agreement. In this thesis, we only deal with static

GKA in CHK. Algorithm 3 describes the static group key agreement procedure of CHK.

14

Algorithm 3: CHK(P [0, 1, · · · , N − 1] , a,H, σ1, σ2)

(Round 1) For each peer Pi for i = 0 to N − 1, do the following in parallel.

1. Computes zi = asi + ei where si, ei ← χσ1
;

2. Broadcasts zi;

(Round 2) For i = 0 to N − 1, do the following in parallel.

1. If i = 0, peer P0 samples e′0 ← χσ2 and otherwise, peer Pi samples e′i ← χσ1 ;

2. Each peer Pi broadcasts Xi = (zi+1 − zi−1) si + e′i;

(Round 3) For peer PN−1 only.

1. Samples e′′N−1 ← χσ1 and computes YN−1,N−1 = XN−1 + zN−2sN−1 + e′′N−1;

2. For j = 1 to N − 1, computes YN−1,(N−1)+j = X(N−1)+j + YN−1,(N−1)+(j−1);

3. Calculates bN−1 =
∑N−1
j=0 YN−1,(N−1)+j ;

4. Runs recMsg() to output (rec, kN−1) = recMsg(bN−1);

5. Broadcasts rec and gets the session key as skN−1 = H(kN−1);

(Key Computation) For peer Pi (i 6= N − 1).

1. Computes Yi,i = Xi + zi−1si;

2. For j = 1 to N − 1, computes Yi,i+j = Xi+j + Yi,i+(j−1);

3. bi =
∑N−1
j=0 Yi,i+j ;

4. Runs recKey() to output ki = recKey (bi, rec) and gets the session key as ski = H(ki);

After (Key Computation), all peers can derive a shared session key with overwhelming probability.

CHK always performs 3-round procedures to share a group key as we can see in algorithm 3. We can

use any reconciliation method to instantiate CHK.

According to algorithm 1,2,3, CHK is more practical to implement than ADGK19 and DXL-

mul. First of all, CHK is similar to DB, which is an efficient DH-based GKA protocol. On contrast,

ADGK19 is similar to BD. Thus CHK is more efficient than ADGK19, as DB is more efficient than

BD [12]. The details are described in Chapter 6. Second, the algorithm of DXL-mul is similar to that

of Bresson et al.’s protocol [9] except for cryptographic primitives. However, DXL-mul is not practical

due to the large complexity on ring polynomial multiplication and error sampling as we described in

Chapter 6. Thus we choose to implement CHK.

15

Chapter 4. Instantiation of Choi et al.’s Protocol

Since CHK is a generic static 3-round GKA protocol from RLWE assumption, we have to instantiate

the protocol with specified parameters. In this chapter, we describe the parameter choices required to

implement CHK. Then, we evaluate the security under the selected parameters.

4.1 Parameter choice

To instantiate CHK, we first consider the restrictions for choosing parameters. We should sat-

isfy Theorem 1 and Theorem 2 for correctness and security. Then the performance is considered for

practicality.

Theorem 1. For a fixed ρ, and assume that

(N − 1)N/2 ·
√
nρ3/2σ2

1 + (N(N + 1)/2 +N)σ1 + (N − 2)σ2 ≤ βRec.

Then all participants in a group have the same key except with probability at most 2−ρ+1.

Theorem 1 provides the correctness of the GKA protocol. i.e. all peers who participate in CHK

can agree on a shared group key with probability 1− 2ρ+1.

Note that βRec = q/8 since we use Peikert’s reconciliation method [16].

Theorem 2. (Simplified version) For basic GKA protocol CHK, 2N
√
nλ3/2σ2

1 + (N − 1)σ1 ≤ βRényi and

σ2 = Ω
(
βRényi

√
n/ log λ

)
≤ q . Then the protocol has λ-bit security against a classical adversary.

Theorem 2 provides the security level of the GKA protocol. Note that the security model to measure

the security level of GKA is proposed by [10]. We can ensure λ-bit security level of the protocol from

Theorem 2.

Considering theorem 1 and theorem 2, we first set a statistical security parameter ρ = 256 related

to correctness and a computational security parameter λ = 64 related to the security level. We initially

tried to implement the protocol with λ = 256, which is the recommended security level from NIST,

but failed when we generate a precomputed table. Thus λ = 64 is selected for a practical reason. If

generating a precomputed table having more than 20,000,000 indices is possible, λ can be set to 128 or

over.

16

Table 4.1: Parameter choice

ρ λ N n q σ1 σ2 βrec βRényi

256 64 3 1,024 232 − 1 8/
√

2π 2, 509, 945/
√

2π 229 − 1 1,001,323

Then we choose adequate values for dimension n and modulus q to implement RLWE-based protocol

more efficient. Generally, n can be a power of 2 as cyclotomic rings are used for RLWE. We set n = 1, 024

which is used for many RLWE-based protocols such as Newhope, BCNS.

q can be any integers since decisional RLWE is hard over a prime cyclotomic ring with any modulus

[21]. Then we can use any modulus q for better performance. According to [27], general choices of

the modulus q are (1) A number theoretical transform (NTT) friendly prime number, such as 12,289 in

Newhope [15], (2) A composite number that fits in a data type for modern computers, such as 232−1 in

BCNS [16], (3) A power of 2 that makes modulo operations and integer multiplications efficient, such as

211 in NTRUEncrypt [31]. q should be sufficiently large due to Theorem 2. Thus we choose q = 232− 1,

which is used in BCNS.

Finally, we calculate σ2, N , βRényi under the determined parameters. Note that σ1 = 8/
√

2π since

we extend BCNS protocol. N = 3, σ2 = 2, 509, 945/
√

2π, and βRényi = 1, 001, 323 are chosen for a

practical reason.

Parameters used for our implementation are summarized in Table 4.1.

17

4.2 Security evaluation

We analyze the security of our implementation from two perspectives. We evaluate the security of

CHK with our parameter settings based on Theorem 2. From theorem 2, we can observe that CHK

has λ = 64 level bit of security.

On the other hand, we consider cryptanalytic attacks on RLWE problem. Even though there are

many algorithms to attack RLWE, many of those are inappropriate for our settings [15]. Thus we

consider only two BKZ attacks [32, 33], usually referred to as primal and dual attacks. The security level

of RLWE is estimated with the approach presented in [34]. According to [15], BCNS provides 86-bit

classical security and 78-bit quantum security against primal attack. Likewise, BCNS provides 86-bit

classical security and 78-bit quantum security against dual attack [15]. These security levels are applied

to our protocol since we extend BCNS protocol.

Therefore, since we assume that an adversary attacks the weakest part of the protocol for conser-

vative estimation, the classical security level of our protocol is 64-bit, and the quantum security level is

64-bit.

18

Chapter 5. Implementation of Choi et al.’s Protocol

In this chapter, we provide details on our implementation of CHK with parameters described in

Chapter 4.

5.1 Ring polynomial arithmetic

Polynomial arithmetic in the cyclotomic ring Rq = Zq[x]/(Φ2k+1(x)) is used for RLWE-based GKA

where Zq = Z/qZ and Φ2k+1(x) = X2l +1 is the 2l+1-th cyclotomic polynomial. As we choose q = 232−1,

2 is invertible in the ring Zq. Multiplication of two ring polynomials in Rq can be done by computing the

discrete Fourier transform via fast Fourier transform (FFT) [35] algorithms, which are used in BCNS.

Then we use a Nussbaumer’s approach [36] as summarized by Knuth [37]. We can efficiently compute

the modular reduction from Nussbaumer’s approach in case of the degree n = 2k for some integer k and

the modulus q = 232 − 1. The strategy we follow for the modular arithmetic is described in [38].

Most of the basic structures on polynomial arithmetic follow the implementation of BCNS. We

further implement a subtraction algorithm for polynomial arithmetic, which is used in CHK round 2.

5.2 Sampling from a discrete Gaussian distribution

The inversion method adopted in BCNS is used in our implementation for sampling elements

in the ring Rq. We independently sample each of the n = 1, 024 coefficients of an element in Rq

from a one-dimensional discrete Gaussian. For a one-dimensional discrete Gaussian distribution DZ,σ

centered at µ = 0 with standard deviation σ, the probability of sample x ∈ Z from a random variable

is DZ,σ(x) = 1
S e
−x2/(2σ2) where S = Σ∞k=−∞e

−k2/(2σ2). In our parameter settings, we use two σ values:

σ1 = 8/
√

2π, σ2 = 2, 509, 945/
√

2π. Then we have approximate values S1 = 8 and S2 = 2, 509, 945.

To efficiently implement the inversion method, we use a precomputed lookup table T1 and T2 of

size 52 and 7,707,672, respectively. T1 and T2 are used to sample from a distribution DZ,σ1 and DZ,σ2 ,

respectively. The elements in each Ti (i = 1, 2) are set as follows: Ti[j] = b2ci · (1
Si

+ 2Σjx=1DZ,σi
(x))c

where c1 = 192 and c2 = 64. All table elements in T1, T2 are integers in [2189, 2192], [7349461471749, 264],

respectively. Note that Ti[j + 1] > Ti[j] holds for i = 1, 2 and 0 ≤ j ≤ maxindi − 1 where maxindi is

19

the size of Ti.

The elements and the size of T1, T2 are derived from the lemmas in [39]. As we set σ1 = 8/
√

2π,

we take T1 from BCNS implementation. Then we only need to compute a table T2. The followings

are the way to obtain T2. Let D′′ is the distribution on Zn corresponding to taking n independent

samples using a precomputed lookup table and let DZn,σ be the true discrete Gaussian distribution on

Zn. From the lemma in [39], the statistical difference ∆(D′′, DZn,σ) of the two distributions is bounded

by 2−k+2mtσε. As we take the parameters from BCNS implementation, we obtain k = 129, m = 1024,

t = 42, σ2 = 2, 509, 945/
√

2π and ε = 2−64. Note that small ε = 2−64 is chosen for a practical reason. We

first tried to derive T2 with λ = 256 and ε = 2−192. We calculated that σ2 is at least 20, 079, 439/
√

2π and

the size of T2 is at least 122, 154, 285 since the size of T2 is equal to the smallest integer x that satisfies

DZ,σ(x) ≥ ε. However, the process of table generation was killed in the middle under these parameter

settings. Then we tried to modify ε and λ. From several attempts, we find that the size of a precomputed

lookup table becomes large when we choose small ε or large λ. Thus we can verify the trade-off between

the accuracy of error sampling and performance. Finally, we set λ = 64 and ε = 64. In our parameter

choice, the statistical difference of sampling distribution using a table T2 and the theoretical distribution

is less than 2−27.

To obtain a precomputed lookup table T2 in the real world, we should preserve 64 decimal places

for each element. To achieve this, we use Taylor series. As a result, we successfully computed T2.

The error sampling ei from χσi
using the precomputed tables is done as follows: Let ei = Σ1023

j=0 ei,jx
j .

To sample from χσi , we independently generate a ci-bit integer vi,j uniformly at random and find

the smallest integer index indi,j ∈ [0,maxindi − 1] such that vi,j < T [indi,j] for each i = 1, 2 and

j = 0, ..., 1023. Then one additional random bit is generated to decide the signi,j ∈ {−1, 1}, and return

the j-th coefficient of ei as ei,j ← signi,j · indi,j .

There are two approaches to find the smallest integer index. The first approach increases the

index by one until the generated random element becomes smaller than the element in a precomputed

table. We denote this approach as non-constant-time. On the other hand, constant-time approach is

implemented in our protocol. We loads every table element and creates a mask based on whether the

input is bigger than each accessed element in constant-time approach. Constant-time approach provides

resistance against timing attack such as cache attacks [40] using the information indicating whether or

20

not the elements in the precomputed table is already loaded.

Note that we need a large amount of random data as every operation of random sampling requires

1,024 random strings of ci bits. For obtaining a lot of random numbers, OpenSSL’s RAND bytes

function is used to generate a 256-bit seed, then AES in counter mode is applied as the PRNG function.

For each ring element, we reseed the PRNG.

5.3 Network configuration

We configure the network using socket programming. From our parameter settings, 3 peers partic-

ipate in the GKA protocol. Each peer broadcasts the computed intermediate values to all other peers

in the algorithm of CHK. However, no one can act as a bulletin board due to the feature of socket

programming. Thus we employ an arbiter-peer network for communication.

The roles of an arbiter are as followings: 1) participates in GKA 2) receive public information from

a peer such as zi or Xi in CHK 3) collect received data 4) broadcasts collected data to other peers 5)

computes rec and broadcasts rec to other peers. We set P2 as an arbiter in our implementation. Note

that node number is randomly assigned.

The roles of a peer are as followings: 1) participates in GKA 2) calculate and send public information

3) calculate session key from received data. Peers (P0, P1) can calculate session keys with received values

from an arbiter.

The entire source code of an arbiter and a peer are described in Appendices A and B, respectively.

The full reference source code is available in our github address2.

2https://github.com/hansh17/DRAGKE

21

Chapter 6. Performance Evaluation

In this chapter, we describe experiments on our implementation. First of all, the experimental setup

is introduced. Then we explain four experiments that measure the correctness and the performance of

the implementation.

6.1 Experimental setup

The experimental environment is as follows: Intel(R) CPU i5-8250, RAM 8GB, and OS Ubuntu

v16.04.5 LTS. As we use a virtual machine, only a partial power of the computer is utilized for performance

evaluation. We use 2 processors with 100% execution cap for CPU and 4GB for RAM. gcc v5.4.0 is used

as compiler. −O3 optimizations are used when compiling.

6.2 Experiments

We performed four experiments on our protocol. We measure the correctness of our protocol in

experiment 1. Then the runtime for our implementation is evaluated in experiment 2. In experiment 3, we

theoretically compare the complexity of CHK with other RLWE-based GKAs. Finally, the comparison

between our implementation and DH-based GKA is performed in experiment 4.

6.2.1 Experiment 1

In experiment 1, we measured the correctness of CHK. As CHK has never been implemented, we

have to check whether CHK works correctly or not. According to Theorem 1, all peers in GKA should

agree on a shared key except 2−ρ+1. In our parameter settings, the failure probability of a group key

agreement is 2−257. We simulated 1,000 times to verify our implementation since 1,000 trials are enough

to measure the accuracy of the protocol. The algorithm of checking the correctness is as follows:

1) calculate each Pi’s session key for i = 0, 1, 2.

2) Check whether {session key of Pi} = {session key of Pj} (0 ≤ i < j ≤ 2).

The test was performed on a local environment. We did not consider the reliability of the network.

If the network environment is unstable, the failure rate will increase.

22

Table 6.1: Average runtime of single operations

non-constant-time constant-time

Operation runtime(µsec) runtime(µsec)

Random sampling from χσ1
137 589

Random sampling from χσ2
816,431 14,146,619

Ring polynomial addition 0 0
Ring polynomial multiplication 200 274

Table 6.2: Average runtime of each function in GKA

non-constant-time constant-time

Operation runtime(µsec) runtime(µsec)

Compute zi 524 936
Compute X0 844,847 11,882,138
Compute Xi 418 675

Compute reconcile (arbiter) 432 678
Compute session key (peer) 236 237

As an experimental result, no failure occurred on all the 1,000 tests. Thus we verified that both the

protocol CHK and our implementation works correctly.

6.2.2 Experiment 2

We evaluated the runtime of single operations and functions in GKA in experiment 2. The runtime of

each operation is measured 200 times and averaged. Table 6.1 shows the performance of single operations.

The term non-constant-time and constant-time is described in Chapter 5.2.

As we can see in Table 6.1, constant-time implementation has a much longer runtime than non-

constant-time implementation. Thus we found the trade-off between the performance and the security.

On the other hand, random sampling from χσ2
takes much longer time than random sampling from

χσ1 . This is derived from the difference in size of σ1 = 8/
√

2π and σ2 = 2, 509, 945/
√

2π. Ring polynomial

addition running time is almost 0, but ring polynomial multiplication running time is 280 µsec. Therefore

ring polynomial multiplication and random sampling is an important factor for performance.

We also evaluated the runtime of each function in GKA. We measure the time of computing zi, Xi,

rec, and session key. These values are described in Chapter 3.2. As we can see in Table 6.2, computing

X0 takes much longer time than computing Xi due to sampling from χσ2
. Note that only P0 samples

from χσ2 . Therefore random sampling from χσ2 is the most important factor in measuring performance

of CHK.

23

Table 6.3: Time complexity of CHK, ADGK19, and DXL-mul

Time Complexity of operations CHK ADGK19 DXL-mul

of rounds 3 3 N
of ring polynomial addition operations 2N2 + 3N + 1 (N + 1)2 N2

of ring polynomial multiplication operations 3N 3N N2

of secret samplings N N N
of error samplings 2N+1 2N+1 N2

denotes the number.
Bold texts denote that less computation is required for each operation than other protocols. We ex-
clude the number of ring polynomial addition operations because of its low importance on computation
time.

6.2.3 Experiment 3

We theoretically analyze and compare the performance of CHK, ADGK19, and DXL-mul in ex-

periment 3. As there are no implementations of ADGK19 and DXL-mul, we compare three protocols

from the perspective of time complexity of the number of rounds, the number of ring polynomial addition

operations, the number of ring polynomial multiplication operations, and the number of secret sampling

and error sampling. The number of ring polynomial addition operations is counted whenever peer calcu-

lates + or −, and the number of ring polynomial multiplication operations is calculated whenever peer

calculates ·. Secret sampling and error sampling are counted once per each sampling. Ring polynomial

multiplication and samplings are the most critical factors in measuring the efficiency of the protocol as

we described in experiment 2.

Table 6.3 shows the number of each operation of CHK, ADGK19 and DXL-mul as functions of

the number of peers N . We can observe that the number of multiplications and error samplings of CHK

and ADGK19 are less than that of DXL-mul as N increases. Thus we can expect that CHK and

ADGK19 outperforms DXL-mul even though DXL-mul performs less polynomial addition operations

than other protocols. On the other hand, CHK is much more efficient than ADGK19 since ADGK19

performs scalar multiplication on the ring polynomial, but CHK does not. Note that we do not consider

scalar multiplication in Table 6.3.

Therefore, as the number of peers N in GKA increases, CHK provides better performance than

ADGK19 and DXL-mul.

24

Table 6.4: Performance evaluation of lattice-based cryptographic schemes [1]

BCNS Newhope Frodo

Security level (bit) 163 206 142
Runtime(ms) 2.774 0.31 2.6

Payload (bytes) 8,320 3,872 22,673

Table 6.5: Performance evaluation of our protocol and DB

non-constant-time constant-time DB

Security level (bit) 64 64 86
Total runtime (µsec) 846,039 11,883,989 2,040

Payload (bytes) 24,960 24,960 768
Secure against quantum adversary O O X

6.2.4 Experiment 4

We compared the performance of our implementation and DH-based GKA in experiment 4 to check

the utility of RLWE-based GKA. We chose DB as DH-based GKA. Note that CHK and DB has similar

procedure except underlying cryptographic problem.

We first surveyed the performance of two-party lattice-based schemes to check whether BCNS is

the optimized implementation. Then analyze the performance of BCNS, Newhope, and Frodo [1].

We observed that BCNS is not an optimized implementation of RLWE from Table 6.4. RLWE-

based protocol outperform LWE-based protocol in theoretically, but BCNS has similar performance

as Frodo. Since our implementation extends BCNS, we found that our protocol is not optimized.

Improving CHK via optimization remains an open problem.

To compare the total runtime of CHK and DB, we implemented DB using openssl library. We

also adopted an arbiter-peer network to implement DB. We measured the whole procedure of GKA,

i.e., the protocol ends when all peers calculate a shared group key. Since the calculation is performed in

parallel, we add the longest time to calculate a public value in each round.

As we can see in Table 6.5, our {non-constant-time, constant-time} implementation takes {×415,

×5826} longer than DB to share a group key even though our protocol has lower security. Also, the

payloads of our protocol are much larger than that of DB. RLWE-based GKA is much slower than

DH-based GKA despite using the fastest method for error sampling. Consequently, we can infer that

trade-off between quantum-resistance and performance exists.

25

Chapter 7. Concluding Remark

This thesis tries the first practical implementation of RLWE-based GKA protocol. We instantiate

Choi et al.’s generic protocol and implement the protocol on an arbiter-aided network for a practical

reason. For fast implementation, we use FFT algorithms for ring-polynomial operations, which are

efficient in our parameter settings. Also, Peikert’s reconciliation method is used to remove bias from

a shared key. Moreover, Error sampling is done by the inversion method, which is suitable for large

modulus q. Consequently, we extend BCNS protocol to implement CHK, then evaluate the security of

implemented protocol. Besides, we evaluate the performance of the implemented protocol and compare

it with other GKA protocols. We verify that our implementation and CHK works correctly. Also,

we check the trade-off between the performance and timing attack resistance. We find the fact that

the running time of sampling from discrete Gaussian with a large standard deviation is much longer

than other operations. Furthermore, we theoretically verify that CHK has better performance than

ADGK19 and DXL-mul. Finally, we observe that CHK is much slower than DB to derive a session

key.

As future work, we can improve our implementation in several directions. First of all, we will

improve the security level from 64 to 128 by generating a larger precomputed table. Second, we can

reduce the time required for the error sampling via optimization. Third, we will integrate our protocol

into TLS v1.3 instead of TLS v1.2 by upgrading OpenSSL v1.0.2g to v1.1.1d which is the latest released

version at this point. We can improve security and speed using TLS v1.3. Finally, we will implement

our protocol in dynamic settings. In the real world, group members who participate in GKA protocol

changes frequently. Thus this improvement will make our protocol more practical.

26

Bibliography

[1] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan, and D. Ste-

bila, “Frodo: Take off the ring! practical, quantum-secure key exchange from LWE,” in Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1006–1018,

ACM, 2016.

[2] X. Gao, J. Ding, R. Saraswathy, L. Li, and J. Liu, “Comparison analysis and efficient implementation

of reconciliation-based RLWE key exchange protocol.,” IACR Cryptology ePrint Archive, vol. 2017,

p. 1178, 2017.

[3] E. Gibney, “Hello quantum world! Google publishes landmark quantum supremacy claim.,” Nature,

vol. 574, no. 7779, p. 461, 2019.

[4] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring,” in Pro-

ceedings, Annual Symposium on Foundations of Computer Science–FOCS’94, pp. 124–134, IEEE,

1994.

[5] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the

twenty-eighth annual ACM symposium on Theory of computing, pp. 212–219, ACM, 1996.

[6] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE transactions on Information

Theory, vol. 22, no. 6, pp. 644–654, 1976.

[7] M. Burmester and Y. Desmedt, “A secure and efficient conference key distribution system,” in

Workshop on the Theory and Application of of Cryptographic Techniques, pp. 275–286, Springer,

1994.

[8] M. Steiner, G. Tsudik, and M. Waidner, “Key agreement in dynamic peer groups,” IEEE Transac-

tions on Parallel and Distributed Systems, vol. 11, no. 8, pp. 769–780, 2000.

[9] E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater, “Provably authenticated group

Diffie-Hellman key exchange,” in Proceedings of the 8th ACM conference on Computer and Com-

munications Security, pp. 255–264, ACM, 2001.

27

[10] E. Bresson, O. Chevassut, and D. Pointcheval, “Provably authenticated group Diffie-Hellman key

exchange—the dynamic case,” in International Conference on the Theory and Application of Cryp-

tology and Information Security, pp. 290–309, Springer, 2001.

[11] E. Bresson, O. Chevassut, and D. Pointcheval, “Dynamic group Diffie-Hellman key exchange under

standard assumptions,” in International Conference on the Theory and Applications of Crypto-

graphic Techniques, pp. 321–336, Springer, 2002.

[12] R. Dutta and R. Barua, “Constant round dynamic group key agreement,” in International Confer-

ence on Information Security, pp. 74–88, Springer, 2005.

[13] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” Journal of

the ACM (JACM), vol. 56, no. 6, p. 34, 2009.

[14] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors over rings,”

Journal of the ACM (JACM), vol. 60, no. 6, p. 43, 2013.

[15] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum key exchange—a new hope,”

in 25th USENIX Security Symposium (USENIX Security 16), pp. 327–343, 2016.

[16] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-quantum key exchange for the TLS

protocol from the ring learning with errors problem,” in 2015 IEEE Symposium on Security and

Privacy, pp. 553–570, IEEE, 2015.

[17] J. Ding, X. Xie, and X. Lin, “A Simple Provably Secure Key Exchange Scheme Based on the

Learning with Errors Problem.,” IACR Cryptology ePrint Archive, vol. 2012, p. 688, 2012.

[18] D. Apon, D. Dachman-Soled, H. Gong, and J. Katz, “Constant-Round Group Key Exchange from

the Ring-LWE Assumption.,” IACR Cryptology ePrint Archive, vol. 2019, p. 398, 2019.

[19] R. Choi, D. Hong, and K. Kim, “Constant-round Dynamic Group Key Exchange from RLWE

Assumption,” private communication, 2019.

[20] V. Lyubashevsky, C. Peikert, and O. Regev, “A toolkit for ring-LWE cryptography,” in Annual

International Conference on the Theory and Applications of Cryptographic Techniques, pp. 35–54,

Springer, 2013.

28

[21] C. Peikert, O. Regev, and N. Stephens-Davidowitz, “Pseudorandomness of ring-LWE for any ring

and modulus,” in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-

puting, pp. 461–473, ACM, 2017.

[22] C. Peikert, “Lattice cryptography for the internet,” in international workshop on post-quantum

cryptography, pp. 197–219, Springer, 2014.

[23] V. Lyubashevsky, “Lattice signatures without trapdoors,” in Annual International Conference on

the Theory and Applications of Cryptographic Techniques, pp. 738–755, Springer, 2012.

[24] L. Devroye, “Sample-based non-uniform random variate generation,” in Proceedings of the 18th

conference on Winter simulation, pp. 260–265, ACM, 1986.

[25] J. Zhang, Z. Zhang, J. Ding, M. Snook, and Ö. Dagdelen, “Authenticated key exchange from ideal

lattices,” in Annual International Conference on the Theory and Applications of Cryptographic

Techniques, pp. 719–751, Springer, 2015.

[26] H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee, and R. Cammarota, “Post-quantum

lattice-based cryptography implementations: A survey,” ACM Computing Surveys (CSUR), vol. 51,

no. 6, p. 129, 2019.

[27] H. Baan, S. Bhattacharya, S. R. Fluhrer, O. Garcia-Morchon, T. Laarhoven, R. Rietman, M.-J. O.

Saarinen, L. Tolhuizen, and Z. Zhang, “Round5: Compact and Fast Post-Quantum Public-Key

Encryption.,” IACR Cryptology ePrint Archive, vol. 2019, p. 90, 2019.

[28] X. Lu, Y. Liu, Z. Zhang, D. Jia, H. Xue, J. He, B. Li, K. Wang, Z. Liu, and H. Yang, “LAC:

Practical Ring-LWE Based Public-Key Encryption with Byte-Level Modulus.,” IACR Cryptology

ePrint Archive, vol. 2018, p. 1009, 2018.

[29] H. Xiong, Y. Wu, and Z. Lu, “A Survey of Group Key Agreement Protocols with Constant Rounds,”

ACM Computing Surveys (CSUR), vol. 52, no. 3, p. 57, 2019.

[30] R. Azarderakhsh, A. Jalali, D. Jao, and V. Soukharev, “Practical Supersingular Isogeny Group Key

Agreement,” IACR Cryptology ePrint Archive, vol. 2019, p. 330, 2019.

29

[31] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, W. Whyte, and Z. Zhang, “Choosing pa-

rameters for NTRUEncrypt,” in Cryptographers’ Track at the RSA Conference, pp. 3–18, Springer,

2017.

[32] Y. Chen and P. Q. Nguyen, “BKZ 2.0: Better lattice security estimates,” in International Conference

on the Theory and Application of Cryptology and Information Security, pp. 1–20, Springer, 2011.

[33] C.-P. Schnorr and M. Euchner, “Lattice basis reduction: Improved practical algorithms and solving

subset sum problems,” Mathematical programming, vol. 66, no. 1-3, pp. 181–199, 1994.

[34] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of learning with errors,” Journal

of Mathematical Cryptology, vol. 9, no. 3, pp. 169–203, 2015.

[35] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,”

Mathematics of computation, vol. 19, no. 90, pp. 297–301, 1965.

[36] H. Nussbaumer, “Fast polynomial transform algorithms for digital convolution,” IEEE Transactions

on Acoustics, Speech, and Signal Processing, vol. 28, no. 2, pp. 205–215, 1980.

[37] D. E. Knuth, “The art of computer programming. volume 1: Fundamental algorithms. volume 2:

Seminumerical algorithms,” Bull. Amer. Math. Soc, 1997.

[38] J. W. Bos, C. Costello, H. Hisil, and K. Lauter, “Fast cryptography in genus 2,” in Annual In-

ternational Conference on the Theory and Applications of Cryptographic Techniques, pp. 194–210,

Springer, 2013.

[39] N. C. Dwarakanath and S. D. Galbraith, “Sampling from discrete gaussians for lattice-based cryptog-

raphy on a constrained device,” Applicable Algebra in Engineering, Communication and Computing,

vol. 25, no. 3, pp. 159–180, 2014.

[40] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: the case of AES,” in

Cryptographers’ track at the RSA conference, pp. 1–20, Springer, 2006.

30

Appendices

A Source code of arbiter

#include <arpa/inet.h>

#include <getopt.h>

#include <stdbool.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

#include <stdint.h>

#include <fcntl.h>

#include <openssl/evp.h>

#include <openssl/sha.h>

#include "fft.h"

#include "rlwe.h"

#include "rlwe_a.h"

#include "rlwe_rand.h"

#define MAX_PEER 6

#define POLY_LEN 1024

#define KEY_LEN 16

#define HASH_LEN 129

bool check_augmented_pub_keys[MAX_PEER];

bool option_check [4][MAX_PEER];

uint32_t sec_keys[MAX_PEER][POLY_LEN];

uint32_t pub_keys[MAX_PEER][POLY_LEN];

uint32_t augmented_pub_keys[MAX_PEER][POLY_LEN];

uint64_t session_keys[MAX_PEER][KEY_LEN];

unsigned char hashed_keys[MAX_PEER][HASH_LEN];

uint64_t reconcile[KEY_LEN];

int calculate_pubkey(int peer , const uint32_t *a, uint32_t s[1024] , FFT_CTX *

ctx);

int calculate_augmented_pubkey(int peer , int num_peer , uint32_t s[1024] ,

FFT_CTX *ctx);

int calculate_reconcile(int num_peer , uint32_t s[1024] , uint64_t rec[16],

uint64_t k[16], unsigned char hk[129] , FFT_CTX *ctx);

void run_server(int num_peer , int server_port);

31

int calculate_pubkey(int peer , const uint32_t *a, uint32_t s[1024] , FFT_CTX *

ctx) // calculate z_i in Round 1 (i=peer)

{

if (peer < 0 || peer > MAX_PEER)

{

printf("peer range error !\n");

return -1;

}

int ret;

uint32_t e[1024];

RAND_CTX rand_ctx;

ret = RAND_CHOICE_init (& rand_ctx); // initialize seed

if (!ret)

{

return ret;

}

#if CONSTANT_TIME

rlwe_sample_ct(s, &rand_ctx); // sample s_i (constant)

rlwe_sample_ct(e, &rand_ctx); // sample e_i (constant)

#else

rlwe_sample(s, &rand_ctx); // sample s_i (non -constant)

rlwe_sample(e, &rand_ctx); // sample e_i (non -constant)

#endif

uint32_t tmp [1024];

rlwe_key_gen(tmp , a, s, e, ctx); // compute tmp=as_i+e_i

for(int t=0; t <1024; t++)

{

pub_keys[peer][t]=tmp[t]; // save tmp as pub_keys[peer]

}

rlwe_memset_volatile(e, 0, 1024 * sizeof(uint32_t));

rlwe_memset_volatile(tmp , 0, 1024 * sizeof(uint32_t));

RAND_CHOICE_cleanup (& rand_ctx);

return ret;

}

int calculate_augmented_pubkey(int peer , int num_peer , uint32_t s[1024] ,

FFT_CTX *ctx) // calculate X_i in Round 2 (i=peer)

{

int ret;

uint32_t e[1024];

RAND_CTX rand_ctx;

ret = RAND_CHOICE_init (& rand_ctx); // initialize seed

if (!ret)

{

return ret;

32

}

uint32_t result [1024]={0 ,};

uint32_t tmp1 [1024];

uint32_t tmp2 [1024];

if (peer==num_peer -1) // if i = N-1

{

#if CONSTANT_TIME

rlwe_sample_ct(e, &rand_ctx); // sample e’_{N-1} (constant)

#else

rlwe_sample(e, &rand_ctx); // sample e’_{N-1} (non -constant)

#endif

for(int t=0; t <1024; t++)

{

tmp1[t]= pub_keys [0][t]; // tmp1 = z_0

tmp2[t]= pub_keys[peer -1][t]; // tmp2 = z_{N-2}

}

FFT_sub(result , tmp1 , tmp2); // result = z_0 - z_{N-2}

FFT_mul(result , result , s, ctx); // result = (z_0 - z_{N-2}) * s_{N-1}

FFT_add(result , result , e); // result = (z_0 - z_{N-2}) * s_{N-1} + e’_{N

-1}

}

else if (peer ==0) // if i = 0

{

#if CONSTANT_TIME

rlwe_sample2_ct(e, &rand_ctx); // sample e’_0 from sigma2 (constant)

#else

rlwe_sample2(e, &rand_ctx); // sample e’_0 from sigma2 (non -constant)

#endif

for(int t=0; t <1024; t++)

{

tmp1[t]= pub_keys[peer +1][t]; // tmp1 = z_1

tmp2[t]= pub_keys[num_peer -1][t]; // tmp2 = z_{N-1}

}

FFT_sub(result , tmp1 , tmp2); // result = z_1 - z_{N-1}

FFT_mul(result , result , s, ctx); // result = (z_1 - z_{N-1}) * s_0

FFT_add(result , result , e); // result = (z_1 - z_{N-1}) * s_0 + e’_0

}

else // if 1<= i <= N-2

{

#if CONSTANT_TIME

rlwe_sample_ct(e, &rand_ctx); // sample e’_i (constant)

#else

rlwe_sample(e, &rand_ctx); // sample e’_i (non -constant)

#endif

for(int t=0; t <1024; t++)

{

tmp1[t]= pub_keys[peer +1][t]; // tmp1= z_{i+1}

33

tmp2[t]= pub_keys[peer -1][t]; // tmp2 = z_{i-1}

}

FFT_sub(result , tmp1 , tmp2); // result = z_{i+1} - z_{i-1}

FFT_mul(result , result , s, ctx); // result = (z_{i+1} - z_{i-1}) * s_i

FFT_add(result , result , e); // result = (z_{i+1} - z_{i-1}) * s_i + e’_i

}

for(int t=0; t <1024; t++)

{

augmented_pub_keys[peer][t]= result[t]; // save result as augmented_pub_keys

[peer]

}

rlwe_memset_volatile(result , 0, 1024 * sizeof(uint32_t));

rlwe_memset_volatile(tmp1 , 0, 1024 * sizeof(uint32_t));

rlwe_memset_volatile(tmp2 , 0, 1024 * sizeof(uint32_t));

rlwe_memset_volatile(e, 0, 1024 * sizeof(uint32_t));

RAND_CHOICE_cleanup (& rand_ctx);

return ret;

}

void sha512_session_key(uint64_t *in, char outputBuffer [129]) // calculate hash

value of session key (SHA -512)

{

unsigned char hash[SHA512_DIGEST_LENGTH]; // SHA512_DIGEST_LENGTH =64

SHA512_CTX sha512;

SHA512_Init (& sha512);

SHA512_Update (&sha512 , in , 8*16);

SHA512_Final(hash , &sha512);

int i = 0;

for(i = 0; i < SHA512_DIGEST_LENGTH; i++)

{

sprintf(outputBuffer + (i * 2), "%02x", hash[i]);

}

outputBuffer [128]=0;

}

int calculate_reconcile(int num_peer , uint32_t s[1024] , uint64_t rec[16],

uint64_t k[16], unsigned char hk[129] , FFT_CTX *ctx){ // calculate reconcile

int ret;

uint32_t e[1024];

RAND_CTX rand_ctx;

ret = RAND_CHOICE_init (& rand_ctx); // initialize seed

if (!ret)

{

return ret;

}

34

#if CONSTANT_TIME

rlwe_sample_ct(e, &rand_ctx); // sample e’’_{N-1} (constant)

#else

rlwe_sample(e, &rand_ctx); // sample e’’_{N-1} (non -constant)

#endif

uint32_t Y[MAX_PEER][POLY_LEN];

uint32_t tmp [1024];

uint32_t tmp2 [1024];

for(int t=0; t <1024; t++){

tmp[t]= pub_keys[num_peer -2][t]; // tmp = z_{N-2}

tmp2[t]= augmented_pub_keys[num_peer -1][t]; // tmp2 = X_{N-1}

}

FFT_mul(tmp , tmp , s, ctx); // tmp = z_{N-2} * s_{N-1}

FFT_add(tmp , tmp , tmp2); // tmp = z_{N-2} * s_{N-1} + X_{N-1}

FFT_add(tmp , tmp , e); // tmp = z_{N-2} * s_{N-1} + X_{N-1} + e’’_{N-1}

for(int k=0; k <1024; k++){

Y[num_peer -1][k]=tmp[k]; // save tmp as Y_{N-1}

tmp2[k]= augmented_pub_keys [0][k]; // tmp2 = X_0

}

FFT_add(tmp , tmp , tmp2); // tmp = Y_{N-1} + X_0

for(int k=0; k <1024; k++){

Y[0][k]=tmp[k]; // save tmp as Y_0

tmp2[k]= augmented_pub_keys [1][k]; // tmp2 = X_1

}

for (int j=1; j<num_peer -1; j++){

FFT_add(tmp , tmp , tmp2); // tmp = Y_{j-1} + X_j

for(int k=0; k <1024; k++){

Y[j][k]=tmp[k]; // save tmp as Y_j

tmp2[k]= augmented_pub_keys[j+1][k]; // tmp2 = X_{j+1}

}

}

uint32_t result [1024]={0 ,};

for (int i = 0; i < num_peer; i++) // compute b_{N-1}

{

for(int k=0; k <1024; k++)

{

tmp[k]=Y[i][k]; // tmp = Y_i

}

FFT_add(result , result , tmp); // result = result + Y_i

}

#if CONSTANT_TIME

rlwe_crossround2_ct(rec , result , &rand_ctx); // compute rec (constant)

35

rlwe_round2_ct(k, result); // compute key k_{N-1} (constant)

#else

rlwe_crossround2(rec , result , &rand_ctx); // compute rec (non -constant)

rlwe_round2(k, result); // compute key k_{N-1} (non -constant)

#endif

sha512_session_key(k, hk); // compute hash value of k_{N-1} and save as hk_{N

-1}

rlwe_memset_volatile(result , 0, 1024 * sizeof(uint32_t));

rlwe_memset_volatile(e, 0, 1024 * sizeof(uint32_t));

rlwe_memset_volatile(Y, 0, 1024 * MAX_PEER * sizeof(uint32_t));

rlwe_memset_volatile(tmp , 0, 1024 * sizeof(uint32_t));

rlwe_memset_volatile(tmp2 , 0, 1024 * sizeof(uint32_t));

RAND_CHOICE_cleanup (& rand_ctx);

return ret;

}

int next_option(int option , int num_peer) // To check whether (step i) finish

or not

{

bool check = true;

for (int i = 0; i < num_peer - 1; i++)

{

check = check && option_check[option][i];

}

if (check)

return option + 1;

return option;

}

void run_server(int num_peer , int server_port) // Communication between peers

and arbiter

{

int server_socket;

server_socket = socket(PF_INET , SOCK_STREAM , 0);

if (server_socket == -1)

{

printf("socket () error !\n");

exit (1);

}

struct sockaddr_in server_addr;

memset (& server_addr , 0, sizeof(server_addr));

server_addr.sin_family = AF_INET;

server_addr.sin_port = htons(server_port);

server_addr.sin_addr.s_addr = htonl(INADDR_ANY);

if (bind(server_socket , (struct sockaddr *)&server_addr , sizeof(server_addr

36

)) == -1)

{

printf("bind() error !\n");

exit (1);

}

if (listen(server_socket , 5) == -1)

{

printf("listen () error !\n");

exit (1);

}

struct sockaddr_in client_addr;

socklen_t client_addr_size;

client_addr_size = sizeof(client_addr);

int client_socket[MAX_PEER];

for (int i = 0; i < num_peer; i++)

{

client_socket[i] = 0;

}

fd_set readfds;

int sd , max_sd;

int activity;

int new_socket;

int peer;

int option = 0;

bool first_process;

uint32_t result[POLY_LEN];

memset(check_augmented_pub_keys , false , sizeof(check_augmented_pub_keys));

memset(option_check , false , sizeof(option_check));

bool reconcile_calculated = false;

FFT_CTX ctx;

FFT_CTX_init (&ctx);

calculate_pubkey(num_peer - 1, rlwe_a , sec_keys[num_peer - 1], &ctx); //

calculate z_{N-1}

while (option < 4)

{

FD_ZERO (& readfds);

FD_SET(server_socket , &readfds);

max_sd = server_socket;

for (int i = 0; i < num_peer -1; i++)

{

sd = client_socket[i];

if (sd > 0)

FD_SET(sd, &readfds);

if (sd > max_sd)

37

max_sd = sd;

}

activity = select(max_sd + 1, &readfds , NULL , NULL , NULL);

if (FD_ISSET(server_socket , &readfds)) // peer and arbiter connect

{

new_socket = accept(server_socket , (struct sockaddr *)&client_addr ,

&client_addr_size);

for (int i = 0; i < num_peer -1; i++)

{

if (client_socket[i] == 0)

{

client_socket[i] = new_socket;

break;

}

}

}

for (int p = 0; p < num_peer -1; p++)

{

sd = client_socket[p];

if (FD_ISSET(sd, &readfds))

{

recv(sd, &peer , sizeof(peer), 0);

if (!(0 <= peer && peer < num_peer))

{

printf("peer number error\n");

close(sd);

continue;

}

if (! reconcile_calculated) // if rec is not computed

{

bool all_augmented_pub_keys = true;

for (int i = 0; i < num_peer; i++)

{

if (! check_augmented_pub_keys[i])

{

all_augmented_pub_keys = false;

break;

}

}

if (all_augmented_pub_keys) // if receive all X_i (0<=i<=N

-2)

{

calculate_reconcile(num_peer , sec_keys[num_peer - 1],

reconcile , session_keys[num_peer - 1], hashed_keys[num_peer -1], &ctx);

38

reconcile_calculated = true;

}

}

send(sd, &option , sizeof(option), 0); // send step i (i=option)

if (option == 1) // if step 0 is done , compute X_{N-1}

{

calculate_augmented_pubkey(num_peer - 1, num_peer , sec_keys

[num_peer - 1], &ctx);

check_augmented_pub_keys[num_peer - 1] = true;

}

first_process = !option_check[option][peer];

send(sd, &first_process , sizeof(first_process), 0);

if (! first_process)

continue;

switch (option)

{

case 0:

{

recv(sd , pub_keys[peer], POLY_LEN * sizeof(uint32_t),

0); // receive z_i

printf("option 0 clear with peer %d!\n", peer);

break;

}

case 1:

{

send(sd , pub_keys , sizeof(uint32_t) * num_peer *

POLY_LEN , 0); // broadcast z

recv(sd , result , sizeof(result), 0); // receive X_i

memcpy(augmented_pub_keys[peer], result , sizeof(

augmented_pub_keys[peer]));

check_augmented_pub_keys[peer] = true;

printf("option 1 clear with peer %d!\n", peer);

break;

}

case 2:

{

send(sd , augmented_pub_keys , sizeof(uint32_t) *

num_peer * POLY_LEN , 0); // broadcast X

printf("option 2 clear with peer %d!\n", peer);

break;

}

case 3:

{

39

send(sd , reconcile , sizeof(reconcile), 0); // broadcast

rec

recv(sd , hashed_keys[peer], sizeof(hashed_keys[peer]), 0); //

receive sk_i

printf("option 3 clear with peer %d!\n", peer);

}

}

option_check[option][peer] = true;

option = next_option(option , num_peer); // if communication

with all peers is done , go to next step

}

}

}

printf("Arbiter hased key : "); // print sk_{N-1}

for (int i = 0; i < 129; i++)

printf("%c", hashed_keys[num_peer - 1][i]);

printf("\n");

}

int main(int argc , char *argv [])

{

int num_peer = 3; // N=3

int server_port = 4000; // default port = 4000

char op;

while ((op = getopt(argc , argv , "p:")) != -1)

{

switch (op)

{

case ’p’:

server_port = atoi(optarg);

break;

}

}

run_server(num_peer , server_port);

return 0;

}

40

B Source code of peer

#include <arpa/inet.h>

#include <ctype.h>

#include <getopt.h>

#include <stdbool.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <unistd.h>

#include <stdint.h>

#include <fcntl.h>

#include <openssl/evp.h>

#include <openssl/sha.h>

#include "fft.h"

#include "rlwe.h"

#include "rlwe_a.h"

#include "rlwe_rand.h"

#define MAX_PEER 6

#define POLY_LEN 1024

#define KEY_LEN 16

#define HASH_LEN 129

uint32_t sec_keys[MAX_PEER][POLY_LEN];

uint32_t pub_keys[MAX_PEER][POLY_LEN];

uint32_t augmented_pub_keys[MAX_PEER][POLY_LEN];

uint64_t session_keys[MAX_PEER][KEY_LEN];

unsigned char hashed_keys[MAX_PEER][HASH_LEN];

uint64_t reconcile[KEY_LEN];

int calculate_pubkey(int peer , const uint32_t *a, uint32_t s[1024] , FFT_CTX *

ctx);

int calculate_augmented_pubkey(int peer , int num_peer , uint32_t s[1024] ,

FFT_CTX *ctx);

int calculate_session_key(int peer , int num_peer , uint32_t s[1024] , uint64_t

rec[16], uint64_t k[16], unsigned char hk[129], FFT_CTX *ctx);

int calculate_pubkey(int peer , const uint32_t *a, uint32_t s[1024] , FFT_CTX *

ctx) // calculate z_i in Round 1 (i=peer)

{

if (peer < 0 || peer > MAX_PEER)

{

printf("peer range error !\n");

return -1;

}

41

int ret;

uint32_t e[1024];

RAND_CTX rand_ctx;

ret = RAND_CHOICE_init (& rand_ctx); // initialize seed

if (!ret)

{

return ret;

}

#if CONSTANT_TIME

rlwe_sample_ct(s, &rand_ctx); // sample s_i (constant)

rlwe_sample_ct(e, &rand_ctx); // sample e_i (constant)

#else

rlwe_sample(s, &rand_ctx); // sample s_i (non -constant)

rlwe_sample(e, &rand_ctx); // sample e_i (non -constant)

#endif

uint32_t tmp [1024];

rlwe_key_gen(tmp , a, s, e, ctx); // compute tmp=as_i+e_i

for(int t=0; t <1024; t++)

{

pub_keys[peer][t]=tmp[t]; // save tmp as pub_keys[peer]

}

rlwe_memset_volatile(e, 0, 1024 * sizeof(uint32_t));

rlwe_memset_volatile(tmp , 0, 1024 * sizeof(uint32_t));

RAND_CHOICE_cleanup (& rand_ctx);

return ret;

}

int calculate_augmented_pubkey(int peer , int num_peer , uint32_t s[1024] ,

FFT_CTX *ctx) // calculate X_i in Round 2 (i=peer)

{

int ret;

uint32_t e[1024];

RAND_CTX rand_ctx;

ret = RAND_CHOICE_init (& rand_ctx); // initialize seed

if (!ret)

{

return ret;

}

uint32_t result [1024]={0 ,};

uint32_t tmp1 [1024];

uint32_t tmp2 [1024];

if (peer==num_peer -1) // if i = N-1

{

#if CONSTANT_TIME

42

rlwe_sample_ct(e, &rand_ctx); // sample e’_{N-1} (constant)

#else

rlwe_sample(e, &rand_ctx); // sample e’_{N-1} (non -constant)

#endif

for(int t=0; t <1024; t++)

{

tmp1[t]= pub_keys [0][t]; // tmp1 = z_0

tmp2[t]= pub_keys[peer -1][t]; // tmp2 = z_{N-2}

}

FFT_sub(result , tmp1 , tmp2); // result = z_0 - z_{N-2}

FFT_mul(result , result , s, ctx); // result = (z_0 - z_{N-2}) * s_{N-1}

FFT_add(result , result , e); // result = (z_0 - z_{N-2}) * s_{N-1} + e’_{N

-1}

}

else if (peer ==0) // if i = 0

{

#if CONSTANT_TIME

rlwe_sample2_ct(e, &rand_ctx); // sample e’_0 from sigma2 (constant)

#else

rlwe_sample2(e, &rand_ctx); // sample e’_0 from sigma2 (non -constant)

#endif

for(int t=0; t <1024; t++)

{

tmp1[t]= pub_keys[peer +1][t]; // tmp1 = z_1

tmp2[t]= pub_keys[num_peer -1][t]; // tmp2 = z_{N-1}

}

FFT_sub(result , tmp1 , tmp2); // result = z_1 - z_{N-1}

FFT_mul(result , result , s, ctx); // result = (z_1 - z_{N-1}) * s_0

FFT_add(result , result , e); // result = (z_1 - z_{N-1}) * s_0 + e’_0

}

else // if 1<= i <= N-2

{

#if CONSTANT_TIME

rlwe_sample_ct(e, &rand_ctx); // sample e’_i (constant)

#else

rlwe_sample(e, &rand_ctx); // sample e’_i (non -constant)

#endif

for(int t=0; t <1024; t++)

{

tmp1[t]= pub_keys[peer +1][t]; // tmp1= z_{i+1}

tmp2[t]= pub_keys[peer -1][t]; // tmp2 = z_{i-1}

}

FFT_sub(result , tmp1 , tmp2); // result = z_{i+1} - z_{i-1}

FFT_mul(result , result , s, ctx); // result = (z_{i+1} - z_{i-1}) * s_i

FFT_add(result , result , e); // result = (z_{i+1} - z_{i-1}) * s_i + e’_i

}

for(int t=0; t <1024; t++)

43

{

augmented_pub_keys[peer][t]= result[t]; // save result as augmented_pub_keys

[peer]

}

rlwe_memset_volatile(result , 0, 1024 * sizeof(uint32_t));

rlwe_memset_volatile(tmp1 , 0, 1024 * sizeof(uint32_t));

rlwe_memset_volatile(tmp2 , 0, 1024 * sizeof(uint32_t));

rlwe_memset_volatile(e, 0, 1024 * sizeof(uint32_t));

RAND_CHOICE_cleanup (& rand_ctx);

return ret;

}

void sha512_session_key(uint64_t *in, char outputBuffer [129]) // calculate hash

value of session key (SHA -512)

{

unsigned char hash[SHA512_DIGEST_LENGTH]; // SHA512_DIGEST_LENGTH =64

SHA512_CTX sha512;

SHA512_Init (& sha512);

SHA512_Update (&sha512 , in , 8*16);

SHA512_Final(hash , &sha512);

int i = 0;

for(i = 0; i < SHA512_DIGEST_LENGTH; i++)

{

sprintf(outputBuffer + (i * 2), "%02x", hash[i]);

}

outputBuffer [128]=0;

}

int calculate_session_key(int peer , int num_peer , uint32_t s[1024] , uint64_t

rec[16], uint64_t k[16], unsigned char hk[129], FFT_CTX *ctx) // compute

sk_i

{

uint32_t Y[MAX_PEER][POLY_LEN];

uint32_t tmp [1024];

uint32_t tmp2 [1024];

for(int t=0; t <1024; t++)

{

tmp[t]= pub_keys [(peer+num_peer -1)%num_peer][t]; // tmp = z_{i-1} (peer=i)

tmp2[t]= augmented_pub_keys[peer][t]; // tmp2 = X_i

}

FFT_mul(tmp , tmp , s, ctx); // tmp = z_{i-1} * s_i

FFT_add(tmp , tmp2 , tmp); // tmp = X_i + z_{i-1} * s_i

for(int t=0; t <1024; t++)

{

44

Y[peer][t]=tmp[t]; // save tmp as Y_i

tmp2[t]= augmented_pub_keys [(peer +1)%num_peer][t]; // tmp2 = X_{i+1}

}

for (int j=1; j<num_peer; j++)

{

FFT_add(tmp , tmp , tmp2); // tmp = Y_{i+j-1} + X_{i+j}

for(int t=0; t <1024; t++)

{

Y[(peer+j)%num_peer][t]=tmp[t]; // save tmp as Y_{i+j}

tmp2[t]= augmented_pub_keys [(peer+j+1)%num_peer][t]; // tmp2 = X_{i+j+1}

}

}

uint32_t result [1024]={0 ,};

for (int i = 0; i < num_peer; i++) // compute b_i

{

for(int k=0; k <1024; k++)

{

tmp[k]=Y[i][k]; // tmp = Y_i

}

FFT_add(result , result , tmp); // result = result + Y_i

}

#if CONSTANT_TIME

rlwe_rec_ct(k, result , rec); // compute key k_i (constant)

#else

rlwe_rec(k, result , rec); // compute key k_i (non -constant)

#endif

sha512_session_key(k, hk); // compute hash value of k_i and save as hk_i

rlwe_memset_volatile(result , 0, 1024 * sizeof(uint32_t));

rlwe_memset_volatile(Y, 0, 1024 * MAX_PEER * sizeof(uint32_t));

rlwe_memset_volatile(tmp , 0, 1024 * sizeof(uint32_t));

rlwe_memset_volatile(tmp2 , 0, 1024 * sizeof(uint32_t));

return 1;

}

int main(int argc , char *argv [])

{

int client_socket;

client_socket = socket(PF_INET , SOCK_STREAM , 0);

if (client_socket == -1)

{

printf("socket () error !\n");

exit (1);

}

char *server_ip = "127.0.0.1";

int server_port = 4000;

45

char op;

int option = -1;

int peer = -1;

bool first_process;

int num_peer = 3;

FFT_CTX ctx;

FFT_CTX_init (&ctx);

while ((op = getopt(argc , argv , "h:p:o:w:")) != -1)

{

switch (op)

{

case ’h’:

server_ip = optarg;

break;

case ’p’:

server_port = atoi(optarg);

break;

case ’o’:

option = atoi(optarg);

break;

case ’w’:

peer = atoi(optarg);

break;

}

}

struct sockaddr_in server_addr;

memset (& server_addr , 0, sizeof(server_addr));

server_addr.sin_family = AF_INET;

server_addr.sin_port = htons(server_port);

server_addr.sin_addr.s_addr = inet_addr(server_ip);

if (connect(client_socket , (struct sockaddr *)&server_addr , sizeof(

server_addr)) == -1)

{

printf("connect () error !\n");

exit (1);

}

while (true)

{

send(client_socket , &peer , sizeof(peer), 0);

recv(client_socket , &option , sizeof(option), 0);

recv(client_socket , &first_process , sizeof(first_process), 0);

if (! first_process)

continue;

46

if (option > 3)

break;

switch (option)

{

case 0:

{

calculate_pubkey(peer , rlwe_a , sec_keys[peer], &ctx); //

compute z_i

send(client_socket , pub_keys[peer], sizeof(pub_keys[peer]), 0);

// send z_i

break;

}

case 1:

{

recv(client_socket , pub_keys , sizeof(uint32_t) * num_peer *

POLY_LEN , 0); // receive z

calculate_augmented_pubkey(peer , num_peer , sec_keys[peer], &ctx

); // compute X_i

send(client_socket , augmented_pub_keys[peer], sizeof(

augmented_pub_keys[peer]), 0); // send X_i

break;

}

case 2:

{

recv(client_socket , augmented_pub_keys , sizeof(uint32_t) *

num_peer * POLY_LEN , 0); // receive X

break;

}

case 3:

{

recv(client_socket , reconcile , sizeof(reconcile), 0); //

receive rec

uint64_t result[KEY_LEN];

unsigned char hashed_result[HASH_LEN];

calculate_session_key(peer , num_peer , sec_keys[peer], reconcile

, result , hashed_result , &ctx); // compute sk_i

send(client_socket , hashed_result , sizeof(hashed_result), 0); // send

sk_i

printf("Peer %d hased key : ", peer); // print sk_i

for (int i = 0; i < 129; i++)

printf("%c", hashed_result[i]);

printf("\n");

break;

}

default:

{

47

printf("unknown option !\n");

break;

}

}

}

close(client_socket);

return 0;

}

48

Acknowledgments in Korean

이 논문을 작성하기까지 많은 분들의 도움이 있었습니다. 먼저, 끊임없는 조언과 연구 지도를 통해

연구자로서의 삶을 가르쳐주신 김광조 교수님께 진심으로 감사드립니다. 또한, 바쁜 와중에도 귀한 시간

내서 학위논문심사에 참여해주신 신인식 교수님과 이주영 교수님께도 깊은 감사의 말씀을 드립니다.

그리고 2년동안 함께 지낸 연구실 동료들에게 감사의 말을 전하고 싶습니다. 항상 랩장으로서 연구실

사람들을 이끌어준 락용이형, 책임감 있게 힘든 일도 꿋꿋이 해나가던 지은이, 같이 지낸 동안 아낌없이

조언해준 성숙이 누나, 석사 생활동안 계속해서 진심어린 조언을 해준 형철이 형, 연구실 동기로서 항상 의

지할 수 있었던 낙준이, 비슷한 주제로 연구하고 토론하면서 같이 고생했던 동연이, 연구실의 든든한 존재가

되어주었던 나비 누나, 에이스로서 부족한 부분을 잘 채워주었던 승근이, 항상 친근한 모습으로 다가왔던

Harry, 연구실에 색다른 활기를 가져다 준 Aminanto와 Edwin에게 늘 고마웠습니다.

또한, 석사 과정을 함께하며 고생한 정보보호대학원 석사 동기분들과, 행정적인 일을 수월하게 처리해

주신 박찬수 선생님, 이지선 선생님, 그리고 홍지연 선생님께 감사의 말씀을 드립니다.

끝으로, 어떤 상황에서도 저의 버팀목이 되어주시던 부모님, 항상 응원해준 친구들에게 감사의 말을

전하고 싶습니다. 꾸준히 나아가는 사람이 되도록 하겠습니다. 감사합니다.

49

Curriculum Vitae in Korean

이 름: 한 성 호

생 년 월 일: 1991년 6월 14일

전 자 주 소: hansh09@kaist.ac.kr

학 력

2007. 3. – 2009. 2. 서울 한성과학고등학교

2009. 2. – 2016. 2. 한국과학기술원 수리과학과 (B.S.)

2017. 9. – 2020. 2. 한국과학기술원 정보보호대학원 (M.S.)

경 력

2018. 9. – 2018. 12. 한국과학기술원 고급 사이버보안 실무 일반조교

2019. 9. – 2019. 12. 한국과학기술원 고급 정보보호 일반조교

연 구 과 제

2017. 12. – 2018. 1. 양자컴퓨터공격에안전한새로운래티스기반완전준동형서명방식설계및안전성

분석

2018. 3. – 2019. 12. 양자 컴퓨터 환경에서 래티스 문제를 이용한 다자간 인증키 교환 프로토콜 연구

2018. 5. – 2018. 10. 암호화폐와 스마트 컨트랙트 응용 시스템 설계 및 보안 취약성 분석 연구

2019. 9. – 2019. 12. 양자 난수 생성기의 보안성 및 성능 연구

50

연 구 업 적

1. 안형철, 한성호, 최낙준, 김광조, “OQS 프로젝트 중 격자 기반 키 교환 방식의 타이밍 등 공격 분석“,

한국정보보호학회 동계학술대회(CISC-W’17), 2017.12.09. 고려대학교, 서울.

2. Seongho Han, Nakjun Choi, Hyeongcheol An, Rakyong Choi, and Kwangjo Kim, “Prey on Lizard

: Mining Secret Key on Lattice-based Cryptosystem“, 2018 Symposium on Cryptography

and Information Security, Session 3A4-2 (SCIS 2018), Jan., 23-26, 2018, Niigata, Japan.

3. 한성호, 홍동연, 최낙준, 이나비, 김광조, “(D)PoS 기반 블록체인의 거래 및 합의 방식 분석“, 한국정

보보호학회 하계학술대회(CISC-S’18), 2018.06.21. 동신대학교, 나주.

4. 한성호, 안형철, 김광조, “EOS 암호화폐의 블록 생성에 대한 인센티브 분석“, 한국정보보호학회 동계

학술대회(CISC-W’18), 2018.12.08. 세종대학교, 서울.

5. Seongho Han, Rakyong Choi, and Kwangjo Kim, “Adding Authenticity into Tree-based

Group Key Agreement by Permissionless Public Ledger“, 2019 Symposium on Cryptography

and Information Security, Session 2G3-3 (SCIS 2019), Jan., 22-25, 2019, Otsu, Japan.

6. 한성호, 최락용, 김광조, “RLWE 기반 분산형 그룹키 교환 방식의 성능 분석“, 한국정보보호학회

동계학술대회(CISC-W’19), 2019.11.30. 중앙대학교, 서울.

51

