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초록

이논문에서는블록암호 IGE모드의양자안전성에대해다루었다. 블록암호는일정블록단위로평문을암호

화하고 있으며, 다양한 길이의 평문을 암호화하기 위하여 운영 모드를 사용한다. 널리 알려진 보안 메신저인

텔레그램은 IGE(Infinite Garble Extension)이라는 특수한 운영 모드를 사용하고 있다. IGE 모드는 European

Union Agency for Network and Information Security(ENISA)에서 2013년 발표한 표준 모드 5개에 속해있지

않은운영모드이다. 텔레그램은표준모드가아닌 IGE모드를사용함에도,내부프로토콜을공개하여그안전

성을공개적으로인정받고있다. 하지만최근양자컴퓨터에대한연구가활발히진행됨에따라현재사용되는

블록암호들에대한양자안전성증명에대한필요성이대두되고있다. 특히,블록암호의양자안전성은사용하

는암호알고리즘과운영모드에따라안전성이결정된다. 본논문에서는텔레그램에서사용되는 IGE모드가

암호알고리즘이 sPRF(Standard-secure PRF)일 때 양자 안전성(IND-qCPA)을 보장하지 않고, qPRF(quantum-

secure PRF)일때안전성이보장됨을증명하였다.

핵심낱말 양자내성암호,양자컴퓨터, IGE모드,블록암호,양자선택평문공격에대한비구별성

Abstract

The Telegram which is a very popular messenger uses a special mode called IGE(Infinite Garble Extension).

IGE mode is not included in standard mode of operation recommended by National Institute of Standards and

Technology(NIST) in 2001. Block cipher encrypts fixed length of plaintext into the corresponding fixed-length

of ciphertext using a secret key shared by two parties and utilizes lots of mode of operation for various length of

plaintext. Even though Telegram uses non-standard IGE mode, Telegram is claimed to be secure and demonstrate

their security is stronger than other IM’s. Thus, we need to verify the security of IGE mode depending on under-

lying block ciphers. In this paper, we show that IGE mode block cipher used in Telegram assuming sPRF is not

IND-qCPA, but assuming qPRF is IND-qCPA.

Keywords Post-quantum cryptography, Infinite Garble Extension(IGE) mode, Telegram, IND-qCPA
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Chapter 1. Introduction

1.1 Post-quantum cryptography

Quantum computers can perform quantum computation using quantum-mechanics happend in quantum states

like superposition and entanglement different to the classical computers. Quantum computation uses quantum bits

( i.e., qubits) compared to binary bits in classical computations. In general, a quantum computer with n qubits can

be in an arbitrary superposition of up to 2n different state simultaneously[4]. This indicates that qubits can hold

exponentially more information than their classical counterpart.

Though the actual quantum computer is not developed yet, many experiments executing on small number of

quantum bits imply that the quantum computer will be realized soon. In real, quantum computer is expected to be

developed within 15 years. Quantum computers are becoming more and more likely including the recent success

of IBM in building 50 qubits.

Modern cryptosystem such as AES, RSA, Diffie-Hellman(DH) and Elliptic Curve Cryptosystem(ECC) are

based on cryptographic primitives. For example,in public key cryptosystem, their security relies on one of three

hard mathmatical problems such as the integer factorization problem(IFP), the discrete logarithm problem(DLP),

and the elliptic-curve discrete logarithm problem. However these problems can be solved within polynomial

time using a powerful quantum computer by Shor’s algorithm [5]. Thus we need to prepare for cryptosystem

secure against the quantum computing attack which we say quantum-safe cryptosystem such like lattice-based,

hash-based, code-based, multivariate, and isogeny cryptography.

In symmetric key cyrptosystem, data search algorithm called Grover’s algorithm [6] can find the member

given database in complexity O(
√
N) compare to O(N) in classical world. The suggested method against quan-

tum computer is doubling the key size; use 256 bits key instead 128 bits key in RSA.
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1.2 Motivation

Block ciphers, one of the symmetric key cryptosystem, can only encrypt a fixed length of a message. But

for practice we need to encrypt or decrypt for arbitrary-length of message. To meet this, block cipher offers lots

of mode of operation like Electronic Codebook(ECB), Output Feedback(OFB), Cipher Feedback(CFB), Cipher

Block Chaining(CBC), and XEX-based tweaked-codebook mode with ciphertext stealing(XTS), etc. Some mode

of operations can increase the message space or provide semantic security depending on the mode of operation.

Telegram, one of the famous instant messaging(IM) services, use Infinite Garble Extension(IGE)[7] mode

in their customised protocol called MTProto. IGE mode is not classified as standard mode of operation National

Institute of Standards and Technology(NIST)[8]. However this Telegram is claimed to be secure though they

use IGE mode. Even Telegram got great score by Electronic Frontier Foundation(EFF) in 2014[3]. Different to

other IM’s, Telegram open their source code, protocol, and API in order to be made by the public scrutiny of the

security experts from the world. This demonstrates indirectly to show that their security is sufficient strong than

other IM’s. However the overall security of Telegram can be vulnerable against the quantum adversaries. Thus we

need to verify the security of Telegram against the quantum adversaries, especially IGE mode used for underlying

block ciphers.

In this paper, we focus on the quantum security of IGE mode in block cipher. We will show that (i) if the

block cipher is assumed to be standard-secure Pseudo Random Function(sPRF), the block cipher of IGE mode is

not IND-qCPA(similar with IND-CPA in classical setting except that the adversary A has the quantum access).

(ii) if the block cipher is assumed to be quantum-secure Pseudo Random Function(qPRF), the block cipher of IGE

mode is IND-qCPA.

2



1.3 Organization

The rest of this thesis is organized as follows: Chapter 2 describes related work about the other study and

preliminaries about our definitions and notation used in this thesis. The overview of Telegram, its IGE mode

and security are described in Chapter 3. The security proof for sPRF, qPRF is explained in Chapter 4 and 5,

respectively. Finally, the conclusion and future work are discussed in Chapter 6.

3



Chapter 2. Related Work and Preliminaries

2.1 Preliminaries

2.1.1 Notation

y ← A(x) means that an algorithm A when takes the input x outputs a value and this value is assigned to y.

Given an algorithm A, we write AH if A can access to an oracle H . (A← B) denote the set of all function from

A to B. We write x $←− A if x is uniformly randomly chosen from the set A. a ‖ b represents concatenations of

two strings and {0, 1}n represents the n-bit strings. a� b means the inner product of two vectors a and b.

We use η(t) to denote a function with a security parameter t. If we say a quantity is negligible(denoted negl.) we

mean that it is in o(ηc) or 1 − o(ηc) for all c > 0. We use the notation A ≈ B to say that quantity A has negl.

difference with quantity B.

For an n-bit string a and binary variable b, a · b = a if b = 1 else a · b = 0n. For a string x = x1x2x3 · · ·xn where

xi is the i− th bit, we use function lastbit(x) = (xn), droplastbit(x) = x1x2x3 · · ·xn−1.

2.1.2 IND-CPA, IND-qCPA

Definition 1 (IND-CPA). A symmetric encryption scheme ΠIGE =(Gen,Enc,Dec) is indistinguishable under

chosen message attack(IND-CPA secure) if no classical polynomial time adversary A can win in the PrivKCPA
A,π

game, except with probability at most 1/2 + negl.

PrivKCPA
A,π (t) game:

Key Gen: The challenger picks a random key k $←− Gen and a random bit b.

Query: Adversary A chooses two messages m0,m1 and sends them to the challenger.

Challenger chooses r $←− {0, 1}∗ and responds with c∗ = Enck(mb; r)

Guess: Adversary A produces a bit b′, and wins if b = b′

There are different kinds of definition of IND-qCPA, but we use one in [9]. In the IND-qCPA, the quantum

adversary can queries in superposition but the challenge queries are classical as in classical world.

Definition 2 (IND-qCPA[9]). A symmetric encryption scheme ΠIGE =(Gen,Enc,Dec) is indistinguishable un-

der a quantum chosen message attack(IND-qCPA secure) if no efficient quantum adversary A can win in the

PrivKqCPA
A,π game, except with probability at most 1/2 + negl.

PrivKqCPA
A,π (t) game:

Key Gen: The challenger picks a random key k $←− Gen and a random bit b.

Queries A is allowed to make two types of queries:

4



- Challenge Queries: A sends two messages m0,m1 to challenger and challenger responds with c∗ =

Enck(mb; r).

- Encryption Queries: For each query, the challenger chooses randomness r $←− {0, 1}∗, and encrypts

each message in the superposition using r as randomness:∑
m,c

ψm,c|m, c〉 →
∑
m,c

|m, c⊕ Enck(m; r)〉

Guess: Adversary A produces a bit b′, and wins if b = b′

2.1.3 sPRF, qPRF

Definition 3 (Standard-secure PRF [10]). A function PRF is a standard-secure PRF if no efficient quantum ad-

versary A making classical queries can distinguish between a truly random function and a function PRFk for a

random k. That is, for every such A, there exist a negligible function ε = ε(t) such that

|Prk←K[APRFk() = 1]−PrO←KX [AO() = 1]| < ε

Definition 4 (Quantum-secure PRF [10]). A function PRF is a standard-secure PRF if no poly-time quantum

adversary A making quantum queries can distinguish between a truly random function and a function PRFk for

a random k.

5



2.1.4 Authenticated Encryption

Although the previous modes of operation give confidentiality for block ciphers, much better modes that

simultaneously provide confidentiality, integrity, and authenticity known as AE were developed. In 2000, Bellare

and Namprempre introduced the notion of AE to guarantee both confidentiality of the message and integrity of

the sender while transmission over an insecure channel like mobile network [11]. As a very natural way to con-

struct AE, they suggested a generic composition paradigm on secure encryption and secure MAC protocols such

as AES and HMAC. They used indistinguishability under chosen-plaintext attack (IND-CPA), non-malleability

under chosen-plaintext attack (NM-CPA), or indistinguishability under chosen-ciphertext attack (IND-CCA) for

confidentiality like the classical block ciphers as security requirements of AE, then introduced two notions for

integrity, namely integrity of plaintexts (INT-PTXT) and integrity of ciphertexts (INT-CTXT) assuming that the

adversary A is allowed a chosen-message attack as below:

Definition 5 (INT-PTXT). AE satisfies INT-PTXT security if the advantage of any probabilistic polynomial-time

adversary A to produce a ciphertext c = E(m), where m is not previously produced by the sender, is negligible.

Definition 6 (INT-CTXT). AE satisfies INT-CTXT security if the advantage of any probabilistic polynomial-time

adversary A to produce a ciphertext c = E(m) not previously produced by the sender is negligible, regardless of

whether the underlying plaintext m is new or not.

From the above security requirements, they designed and analysed three composition methods on encryp-

tion and MAC protocols, namely Encrypt-and-MAC (E&M), MAC-then-Encrypt (MtE), and Encrypt-then-MAC

(EtM) as below:

E&M: For encryption with authentication, we encrypt a plaintext m as Enc(m) where Enc is an encryption

algorithm of secure encryption protocol and append a tag t of m using MAC, i.e., a ciphertext E(m) =

Enc(m)‖t. For decryption with verification, we check the validity of the tag as well as the decryption of

the ciphertext.

Table 2.1: Security results for the composite AE schemes
IND IND NM INT INT

-CPA -CCA -CPA -PTXT -CTXT

E&M insecure insecure insecure secure insecure

MtE secure insecure insecure secure insecure

EtM secure secure secure secure secure

6



MtE: For encryption with authentication, we encrypt a plaintext m as Enc(m) and append a tag t of Enc(m)

instead of m, i.e., a ciphertext E(m) = Enc(m)‖tenc where tenc is a tag of Enc(m). For decryption with

verification, we first verify the tag and then decrypt the ciphertext.

EtM: For encryption with authentication, we append a tag t of m first, then encrypt an appended plaintext m‖t,

i.e., a ciphertext E(m) = Enc(m‖t). For decryption with verification, we first decrypt the ciphertext to get

the plaintext and the tag.

Table 2.1 [11] describes security results for the composite AE schemes when the given MAC is assumed to

be strongly unforgeable and shows that EtM can only reach the highest definition of security in AE.

Aside from this research, Bellare & Rogaway and An & Bellare suggested ‘encode-then-encipher’ [12] and

‘encryption with redundancy’ [13] approaches, respectively, but both of them are rather insecure and inefficient

than the general composition paradigm [14]. Thus, we focus on a generic composition paradigm for the rest of the

paper.

7



2.2 Quantum security

2.2.1 Quantum computation

A quantum system A is a complex Hilbert space H together with and inner product 〈·|·〉. The state of a

quantum system is given by a vector |ψ〉 of unit norm (〈ψ|ψ〉 = 1). Given quantum systemsH1 andH2, the joint

quantum system is given by the tensor product H1 ⊗ H2. Given |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2, the product state is

given by |ψ1〉|ψ2〉 ∈ H1⊗H2. Given a quantum state |ψ〉 and an orthonormal basisB = |b0〉, . . . , |bd−1〉 forH, a

measurement of |ψ〉 in the basisB results in the value i with probability |〈bi|ψ〉|2, and the quantum state collapses

to the basis vector |bi〉. If |ψ〉 actually a state in a joint systemH⊗H′, then |ψ〉 can be written as

|ψ〉 =

d−1∑
i=0

αi|bi〉|ψ′i〉

for some complex values αi and states |ψ′i〉 overH′. Then, the measurement overH obtains the value i with prob-

ability |αi|2 and in this case the resulting quantum state is |bi〉|ψ′i〉. A unitary transformation over a d-dimensional

Hilbert spaceH is a d×d matrix U such that UU† = Id, where U† represents the conjugate transpose. A quantum

algorithm operates on a product spaceHin⊗Hout⊗Hwork and consists of n unitary transformations U1, . . . ,Un

in this space. Hin represents the input to the algorithm, Hout the output, and Hwork the work space. A classical

input x to the quantum algorithm is converted to the quantum state |x, 0, 0〉. Then, the unitary transformations are

applied one-by-one, resulting in the final state

|ψx〉 = Un . . .Ui|x, 0, 0〉.

The final state is then measured, obtaining the tuple (a, b, c) with probability |〈a, b, c|ψx〉|2. The output of the

algorithm is b. We say that a quantum algorithm is efficient if each of the unitary matrices Ui come from some

fixed basis set, and n, the number of unitary matrices, is polynomial in the size of the input.

Quantum-accessible Oracles. We will implement an oracle O : X → Y by a unitary transformation O

where

O|x, y, zi〉 = |x, y +O(x), z〉

where + : X × X → X is some group operation on X . Suppose we have a quantum algorithm that makes

quantum queries to oracles O1, . . . ,Oq . Let |ψ0〉 be the input state of the algorithm, and let U0, . . . ,Uq be the

unitary transformations applied between queries. Note that the transformations U′is can be the products of many

8



simpler unitary transformations. The final state of the algorithm will be

UqOq . . .U1O1U0|ψ0〉

We can also have an algorithm that makes classical queries to Oi. In this case, the input to the oracle is measured

before applying the transformation Oi. We call a quantum oracle algorithm efficient if the number of queries q is

polynomial, and each of the transformations Ui between queries can be written as the product polynomially many

unitary transformations from some fixed basis set.

9



2.2.2 Simon’s algorithm

Simon’s problem deals with the model of decision tree complexity or query complexity and was conceived

by Daniel Simon in 1994 [15]. Simon’s problem is then, by querying f(x) to determine whether the function

belongs to s = 0n or s 6= 0n. Sometimes Simon’s algorithm is required to find s. Daniel showed that by using

Simon’s algorithm solving the problem exponentially is faster than any other classical algorithm.

In Simon’ problem the function f : {0, 1}n → {0, 1}n is given which satisfies the property that for some

s ∈ {0, 1}n, we have for all x, y ∈ {0, 1}n, f(x) = f(y) if and only if x = y or x = y ⊕ s. Classically, order

2n/2 queries are needed to find s. But in quantum algorithm, only n queries.

Consider quantum circuit as described in 2.1:

Prepare the initial state
1√
2n

∑
x |x〉|0n〉 and call the oracle(Uf ) to transform this state to

1√
2n

∑
x |x〉|f(x)〉.

When x = y ⊕ s, the first register is
1√
2

(|x〉+ |x⊕ s〉)(here x is s-periodic in Uf ).

After Hadamard transforms, the state is :

1√
2n+1

∑
z

∑
x[(−1)x·z + (−1)(x⊕x)·z]|z〉|f(x)〉

Since we are working modulo 2, we can factor out the (−1)x·z :
1√

2n+1

∑
z

∑
x(−1)x·z[1 + (−1)s·z]|z〉|f(x)〉.

Then we measure this state in the computational basis, we will obtain uniformly at random a bit string z such

that x · z = 0. Using this property, we can cuts in half the number of possible s strings only in one query. In

classical, we can get nothing in one query. By repeating this query, we can get lineally independent equations

s · z1 = 0, s · z2 = 0, · · · s · zn−1 = 0. Thus using that equations, we can recover s.

Figure 2.1: Quantum circuit in Simon’s algorithm
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2.3 One way to hiding(O2H) Lemma

This lemma below is devised from Unruh in 2015[16]. This lemma basically shows that given a uniformly

random value s, to show thatH(x) is also uniformly random(indistinguishable from random) we need to show this

: when adversary queries to oracle, abort the query toH at random point, measure the input to that query(disturbing

superposition in quantum), then the probability the input equals x is negligible. This lemma is used in Chapter 5

to set up the boundary of probability.

Lemma 1 (One way to hiding(O2H) Lemma). LetH : {0, 1}t → {0, 1}t be a random oracle. Consider an oracle

algorithm AO2H that makes at most qo2h queries to H . Let B be an oracle algorithm that on input x does the

following:

pick i $←− {1, · · · , qo2h} and y $←− {0, 1}t, run AHO2H(x, y) until (just before) the ith query, measure the

argument of the query in the computational basis, output the measurement outcome. (When AO2H makes less

than i queries,B outputs ⊥/∈ {0, 1}t.) Let,

P 1
AO2H

:= Pr[b′ = 1 : H
$←− ({0, 1}t → {0, 1}t), x $←− {0, 1}t, b′ ← AHO2H(x,H(x))],

P 2
AO2H

:= Pr[b′ = 1 : H
$←− ({0, 1}t → {0, 1}t), x $←− {0, 1}t, y $←− {0, 1}t, b′ ← AHO2H(x, y)],

PB := Pr[x′ = x : H
$←− ({0, 1}t → {0, 1}t), x $←− {0, 1}t, x′ ← BH(x, i)].

Then,

|P 1
AO2H

− P 2
AO2H

| ≤ 2qo2h
√
PB .

2.4 Related Work

A lot of study in the security of cryptography against the quantum computer were done. Boneh et al. [17]

and Zhandry [18] prove that the signature, encryption, and identity-based encryption scheme is classical secure in

the quantum random oracle model where the adversary can query the random oracle in superposition. This paper

show some random oracle construction is still secure in the quantum random oracle model.

Also Zhandry [10] showed how to construct pseudorandom functions (PRFs) that remain secure even when

the adversary is allowed to issue quantum queries to the PRF. Zhandry showed that certain PRFs are secure even

under such a powerful query model.

Anand et al. [19] investigated the security of various modes of operations for block cipher against quantum

superposition attacks. They show that OFB and CTR modes are secure, while CBC and CFB are not secure in

general, but are secure if the underlying PRF is quantum secure.

In [20] Boneh and Zhandry show how to construct the message authentication codes(MACs) that remain

secure against a quantum chosen message attack and show that quantum-secure PRF leads to quantum-secure

MACs. Also they showed that some classically secure MACs become insecure against quantum adversary.
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Chapter 3. Telegram

3.1 Overview

Telegram is known as one of the most popular non-profit cloud-based instant messaging(IM) services for

secure communications. Telegram had 100 million monthly active users sending 15 billion messages per day in

2016[21]. People can send messages and exchange photos,video and other files. They offers two modes; regular

chat and secret chat mode. In regular chat mode, all messages can be read by server and stored. But secret chat

uses an end-to-end encryption(E2EE). In this mode, because all messages are encrypted by the end users, server

can not read original messages and the messages is not stored in the middle.

3.1.1 MTProto

Telegram uses a symmetric encryption scheme called MTProto. MTProto uses Diffie-Hellman (DH) key

exchange, Secure Hash Algorithm 1(SHA-1), Key Derivation Function(KDF), and AES-256 in IGE[7] mode as

cryptographic primitives and the overall process is described in 3.1

Key generation

The DH key exchange is used for generating an ephemeral key. After key exchange, the sender and the

receiver share the same 2048-bit symmetric key K. In order to protect past communications, secret key is regen-

erated once a key has been used for more than 100 messages or more than a week.

The payload x is generated by concatenating some auxiliary information, random bytes, message, and

padding such that |x| mod B = 0 where B is the block length. Then the payload except padding is computed by

hash function SHA-1 whose output named tag. This tag is hashed again by KDF for generating AES key and IV.

The input of KDF is (K, tag) and the output is (k, c0,m0) of the length (κ,B,B) where κ = 256 bits and B =

128 bits.

Encryption

The AES-256 in IGE mode is used for encryption. Let x1, . . . , xl be the l blocks of the payload, each of

length B, then ciphertext is computed as below:

ci ← Fk(mi ⊕ ci`1)⊕mi`1

12



Figure 3.1: Secret chats in MTProto [1]

where F is a pseudorandom permutation, e.g., AES. The final output of the encryption is c including other infor-

mation.

c = (tag, c1, . . . , cl)

Decryption

Given ciphertext c, tag is used again in KDF. Using (tag,K), KDF output is (k, c0,m0) same as encryption.

Also, the IGE mode is used again for decryption and the payload x is recovered.

mi ← F−1
k (mi−1 ⊕ ci)⊕ ci−1

The payload except padding is computed by hash function and checks whether the result is same as tag in cipher-

text c. If so, we can verify that the message in payload is original plaintext.

13



3.1.2 Infinite Garble Extension(IGE) mode

IGE[7] mode was initially introduced by Campbell in 1978 to prevent spoofing attacks. It has the property

that errors are propagated forward, that is, any difference in ciphertext changes (i.e., garbles) the decryption of all

subsequent ciphertext. The diagrams of IGE mode for encryption and decryption are depicted in Figure 3.2 and

3.3, repectively.

Definition 7 (IGE scheme). For a given function E : K × {0, 1}t → {0, 1}t we define the symmetric encryption

scheme ΠIGE =(Gen,Enc,Dec) as follows:

Gen: Pick a random key k $←− K.

Enc: For a given messageM = m0m1 · · ·mn, wherem0
$←− {0, 1}t and n is a polynomial in t; Enck(M) :=

c0c1 · · · cn, where c0
$←− {0, 1}t and ci = E(k, ci−1 ⊕mi)⊕mi−1 for 0 < i ≤ n

Dec: For a given cipher-text C = c0c1 · · · cn and the key k; mi := E−1(k, ci⊕mi−1)⊕ ci−1 for 0 < i ≤ n

When encrypt the message, the initialisation vector(IV) can be defined using a second key k0, then the

ciphertext will be c0 = E(k0,m0) or random value like definition 7. But we just take the latter without loss of

generality.

Figure 3.2: Diagram of IGE mode of operation for encryption [2]
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Figure 3.3: Diagram of IGE mode of operation for decryption [2]

3.2 Security of Telegram

As smartphones came into widespread use in the late 2000s, a number of instant messaging (IM) services

such as WhatsApp, KakaoTalk, LINE, Facebook Messenger, and Telegram have burst onto mobile app stores.

The various IM clients can be classified into three types according to their provided encryption protocols: no

encryption, client-to-server encryption, and client-to-client or end-to-end encryption(E2EE). Since the lack of

privacy protection has been issued constantly, now the majority of IM services provide E2EE based on verified

cryptographic protocols. Telegram is particularly regarded as one of the most secure services in public and has

over 100 million active users. Based on Telegram’s customized protocol called MTProto, it provides client-to-

server encryption in cloud chats for syncing all connected devices and E2EE in secret chats for only two devices

that used to initiate or accept the secret chat.

This brand new protocol, however, is actually in doubt and has not been fully scrutinised by cryptanalytic

experts yet. Given that there already exist other protocols that thoroughly audited and universally praised as secure,

avoiding criticism for MTProto seems unlikely unless extensive investigation is done. One of the most popular

cryptographic protocols is Signal Protocol (formerly known as the Axolotl Protocol) developed by Open Whisper

Systems in 2013[22] and currently implemented into Signal, WhatsApp,Google Allo, and Facebook Messenger.

As of October 2016, its latest version is considered as sound and has no major flaws according to the researchers

from three different universities[23].

Meanwhile, Telegram’s MTProto has been criticized until now and Jakobsen et al.[2, 24] theoretically demon-

strated Telegram 2.7.0 (visited GitHub in April 2015) is not indistinguishability under chosen-ciphertext attack
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(IND-CCA) and integrity of ciphertexts (INT-CTXT). From the fact that MTProto does not check neither the

length nor the content of the padding during block cipher decryption, two attacks were tried: (a) adding a random

block at the end of the ciphertext and (b) replacing the last block with a random block. The first weakness can be

fixed easily by adding the process to check the length of the padding during decryption and discard the message

when it is longer than expected. As for mitigating the second weakness, the encryption process should be changed,

which makes communications between patched and unpatched clients difficult. Thus, it is desirable to replace the

current scheme with the entirely different, better one that guarantees Authenticated Encryption(AE).

However still Telegram is claimed secure protocol. Though they use IGE mode, it is not broken in their

implementation. The fact that they do not use IGE as MAC together with other properties of their system makes

the known attacks on IGE irrelevant. IGE mode itself is vulnerable to adaptive CPA, however, the adaptive attack

is impossible in Telegram. Because the adaptive attacks are only for the case when the same key is used in several

messages, but the key is dependent on the message content in Telegram.

Futhermore Electronic Frontier Foundation(EFF) announced “Secure Messaging Scorecard[3]” in 2014 de-

picted in figure 3.4, and Telegram got 4 out of 7 in cloud chat and 7 out of 7 in secret chat whereas Facebook

chat got onlt 2 out of 7. Telegram opens their source code, protocol and API and holds crypto contest to crack

Telegram’s encryption so that people can see how everything works and welcome security experts to audit their

system and get feedback.

Figure 3.4: Secure messaging scorecard [3]
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3.2.1 Known attack on telegram

Jakobsen et al. theoretically demonstrated that MTProto does not meet IND-CCA and INT-CTXT in 2015[2,

24]. Based on random padding vulnerabilities that MTProto does not check neither the length nor the content of

the padding during AES-256 in IGE mode decryption, two attacks were tried: padding length extension and last

block substitution.

3.2.2 Attack 1: Padding Length Extension

From Definition 6, they created a new ciphertext to break INT-CTXT security of MTProto. In order to

understand INT-CTXT security, let us restate why MTProto is not IND-CCA secure using Lemma 2.

Lemma 2. For a probabilistic polynomial-time adversary A, A always wins the following game, i.e., MTProto is

not IND-CCA secure under the following game.

1. A outputs different messages M0 and M1 of the same length.

2. The challenger C chooses b ∈ {0, 1} randomly and outputs the ciphertext Cb ← E(Mb).

3. A appends a 128-bit random block cr to Cb and ask C to decrypt C ′ = Cb‖cr.

4. C returns M ′ where M ′ = Mb for any b.

5. A guesses b as 0 if M ′ = M0, 1 otherwise.

This attack is possible since extra padding on ciphertext yields only the extension of the padding of plaintext

without changing the plaintext. Obviously, A gets a ciphertext C ′ = E(Mb) for Mb and this ciphertext has not

been previously produced by the sender because of the random padding.

Corollary 2.1. MTProto protocol is not INT-CTXT secure from Lemma 2.

To be secure against this attack, it is necessary to check the length of padding in M ′ by modifying the

decryption process. Decryption algorithm will discard the message if the length of padding is larger than the

block size.

3.2.3 Attack 2: Last Block Substitution

Since the padding is not authenticated in the process of MTProto, it is possible to make a collision with a

non-negligible probability as Lemma 3, by modifying the last 128-bit (16-byte) blocks.
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Lemma 3. For a probabilistic polynomial-time adversary A, A wins the following game with a probability at

most 2−8, i.e., MTProto is not INT-CTXT secure under the following game.

1. A outputs a message M whose length in bytes is equal to b mod 16.

2. The challenger C hashes M into the message key msg key ← SHA-1(M) to provide integrity of the

plaintext.

3. Before encryption, 16− b random bytes of padding r are added to M , then sends C = E(M‖r).

4. A modifies last 16-byte blocks of C to get C ′ 6= C.

5. A outputs C ′.

Proof. From the above game, C decrypts C ′ as M ′‖r′. Then, only the last byte of M ′ is different from M by the

non-malleability of IGE mode.

Thus, they claim that it is possible to have M ′ = M with the probability at most 2−8 when A chooses a

message M with the length in bytes equal to 1 mod 16, i.e., they can generate a valid ciphertext C ′ 6= C with the

probability at most 2−8.

To make the protocol secure against this attack, it is sufficient to add padding to the computation of the

authentication tag. But, since this requires to change the whole encryption with authentication process, it becomes

impossible to communicate with the older versions of the protocol due to version compatibility.
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Chapter 4. Insecurity of IGE mode using sPRF

In this chapter, we will show that IGE mode block cipher is not secure when we use standard secure PRF.

That means, we can attack the IGE mode block cipher and even recover the key within polynomial time. To show

that, we first construct a function which is sPRF and not qPRF as described below.

4.1 Standard-secure PRF

For the first step to construct a sPRF, Anand et al. construct a specific block cipher follows[19]:

BCk(x) := EH(k)(droplastbit(x⊕ (k ‖ 1) · lastbit(x)))

where E is a sPRF and H refers to a random oracle. Actually this block cipher is not a block cipher because it is

not decryptable. (This block cipher’s input is x and key k which is n and n− 1bit respectively, but the outcome

is only n− 1 bit. But we will use some trick to change this incomplete block cipher to complete block cipher

explained later in the second step.)

This block cipher has the special property, (k ‖ 1)-periodic:

- Case 1 : x is even, lastbit(x) = 0, lastbit(x⊕ (k ‖ 1)) = 1,

BCk(x⊕ (k ‖ 1)) = EH(k)(droplastbit(x⊕ (k ‖ 1)⊕ (k ‖ 1))) = EH(k)(droplastbit(x))

= EH(k)(droplastbit(x⊕ (k ‖ 1) · lastbit(x))) = BCk(x)

- Case 2 : x is odd, lastbit(x) = 1, lastbit(x⊕ (k ‖ 1)) = 0,

BCk(x⊕ (k ‖ 1)) = EH(k)(droplastbit(x⊕ (k ‖ 1)))

= EH(k)(droplastbit(x⊕ (k ‖ 1) · lastbit(x))) = BCk(x)

Thus we can use this property:

BCk(x) = BCk(x⊕ (k ‖ 1)) (4.1)

The second step for sPRF is to make that BCk(x) to be decryptable. To do that, additional function t is

appended in following construction.

Construction 1:

BCk(x) := EH(k)1
(droplastbit(x⊕ (k ‖ 1) · lastbit(x))) ‖ tH(k)2

(x⊕ (k ‖ 1) · lastbit(x))⊕ lastbit(x)
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where E : {0, 1}n−1 × {0, 1}n−1 → {0, 1}n−1 is a sPRF, t : {0, 1}n × {0, 1}n → {0, 1} is a sPRF,

H : {0, 1}n → {0, 1}n × {0, 1}n is a random oracle, the key k $←− {0, 1}n−1, and

H(k) = H(k)1 ‖ H(k)2

We can easily know this construction is permutation by proving that given BCk(x) = y and k, we can recover x:

Proof. z := x⊕ (k ‖ 1) · lastbit(x), then lastbit(z) = 0

(if x is even, lastbit(x) = 0, z = x, lastbit(z) = 0, else lastbit(x) = 1, z = x⊕ (k ‖ 1), lastbit(z) = 0)

Since the functionE is sPRF, we can get the input ofE using droplastbit(y) andH(k)1. Of course the input

of E is droplastbit(x ⊕ (k ‖ 1) · lastbit(x)) = droplastbit(z). By simply appending 0-bit to droplastbit(z),

we can get z. And z is fed into t with key H(k)2 to get 1 bit; tH(k)2
(z ⊕ (k ‖ 1) · lastbit(z)) = tH(k)2

(z)

This 1 bit is xored with lastbit(y), we can get lastbit(x);

tH(k)2
(z)⊕ lastbit(y) = tH(k)2

(z)⊕ tH(k)2
(z)⊕ lastbit(x) = lastbit(x)

So we can finally compute x from z = x ⊕ (k ‖ 1) · lastbit(x) and lastbit(x). Thus this construction is

injective and invertible.

The remaining part is to prove the construction is a sPRF and it is proved by lemma 4 in [19].

Lemma 4. Construction 1 is a standard secure PRF for any quantum adversary D given classical access to BCk
and quantum access to the random oracle H .

4.2 Attack on IGE mode of operation

We will use the block cipher BC as described in section 4.1 (Construction 1) for the ΠIGE scheme. As

proved, this BC is sPRF, not qPRF. That is, the BC is secure under the condition that quantum adversary has only

classical access to the BC. In this section, we will show the attack using Simon’s algorithm to recover the key k.

Lemma 5. There exists a standard-secure pseudo-random function such that ΠIGE is not IND-qCPA secure.(In

the quantum random oracle model)

Proof. Let the ΠIGE scheme use the block cipher BC. And we know that the quantum adversary can attack

ΠIGE using the encryption queries on messages with two blocks. First, the quantum adversary stores random

n-bit strings, n-zero strings(0n) and equal superposition of messages in m0,m1 and m2 blocks of register M ,

respectively. The quantum adversary initializes the quantum ciphertext register C with string |03n−1〉|+〉. Now

the adversary can make encryption queries to the ΠIGE scheme and will get responses with the corresponding

ciphertext in quantum register C. This attack is described in Figure 4.1
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Figure 4.1: Attack on 1 block IGE using Simon’s algorithm

After the quantum register M and C are applied encryption algorithm Enc of ΠIGE , the message and cipher-

text registers becomes(up to normalization):

|M,C〉 =
∑
m2
|m0〉|0n ‖ m2〉|c0〉|BCk(c0)⊕m0〉|droplastbit{BCk(BCk(c0)⊕m0 ⊕m2)}〉|+〉

Put y := BCk(c0)⊕m0, then we have :

∑
m2
|m0〉|0n ‖ m2〉|c0〉|y〉|droplastbit{BCk(y ⊕m2)}〉|+〉

The quantum adversary now xors c0 to the message register by using a CNOT gate(m2 is xored with c1).

Then the quantum registers change:

∑
m2

|m0〉|0n ‖ m2 ⊕ y〉|c0〉|y〉|droplastbit{BCk(y ⊕m2)}〉|+〉 (4.2)

Also BCk is (k − 1)-periodic, we can use the property mentioned in Section 4.1 :

BCk(x) = BCk(x⊕ (k ‖ 1))

Then the quantum registers are :

∑
m2
|m0〉|0n ‖ m2 ⊕ y〉|c0〉|y〉|droplastbit{BCk(y ⊕m2 ⊕ (k ‖ 1))}〉|+〉

We can modified above equation, we get :

∑
m2

|m0〉|0n ‖ m2 ⊕ y ⊕ (k ‖ 1)〉|c0〉|y〉|droplastbit{BCk(y ⊕m2)}〉|+〉 (4.3)
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Put γ = m2 ⊕ y, Eqs. (4.2) and (4.3) change Eqs. (4.4) and (4.5), respectively :

∑
γ

|m0〉|0n ‖ γ〉|c0〉|y〉|droplastbit{BCk(γ)}〉|+〉 (4.4)

∑
γ

|m0〉|0n ‖ γ ⊕ (k ‖ 1)〉|c0〉|y〉|droplastbit{BCk(γ)}〉|+〉 (4.5)

Hence the adversary has the state(up to normalization),

∑
γ |m0〉|0n〉

(
|γ〉+ |γ ⊕ (k ‖ 1)〉

)
|c0〉|y〉|droplastbit{BCk(γ)}〉|+〉

Now the adversary applies nHadamard gates to the third block of plaintext(m2) and get the following state(up

to normalization):

∑
γ

∑
z((−1)

γ�z
+ (−1)

{γ⊕(k‖1)}�z
)|m0〉|0n〉|z〉|c0〉|y〉|droplastbit{BCk(γ)}〉|+〉

=
∑
γ

∑
z (−1)

γ�z
(1 + (−1)

(k‖1)�z
)|m0〉|0n〉|z〉|c0〉|y〉|droplastbit{BCk(γ)}〉|+〉

Now if the adversary measure n-bit of message register, result is two cases. One is that the adversary can get

a vector z such that (k ‖ 1) � z = 0. The other is when the superposition collapses to 0, the adversary can get

nothing. By doing this attack repeatedly until they can get n independent vectors v′is. Remaining part is that using

Gaussian elimination, then they can retrieve n− 1 bit of k, thereby breaking the ΠIGE scheme.

�
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Chapter 5. Post-quantum security of IGE mode using qPRF

5.1 Techniques

In the previous chapter, the IGE mode assuming sPRF can be broken by Simon’s algorithm and even the

adversary can retrieve the secret key. Thus using only the standard-secure PRF is weak in quantum setting.

However, if only we use the quantum-secure PRF we can overcome this problem which we will show in this

chapter. When proving the random property in cryptography, we usually use the hybrid-game method. One part

of the cryptosystem which we want to prove randomness is changed with random one, and show this change is

so small that we can ignore in the whole cryptosystem. By repeating this, we change original one step-by-step

with randomness. Because the change is very small, the total change is also small. Thus we can prove that the

cryptosystem is indistinguishable from truly random function.

When proving IND-qCPA security, the quantum adversary A has to distinguish between IGE mode block

cipher and truly random function in the challenge queries. That means, the adversaryA has to distinguish between

Enc(m0) and Enc(m1) in challenge query of IND-qCPA;

First, the function that is used in block cipher is quantum secure PRF, we can substitute the PRF with truly

random function H as shown in Figure 5.1.

Second, when the quantum adversaryAmakes challenge queries, we replace the ciphertext with random one

one by one.

Last, we show replacing one block by randomness is negligible change, thus the quantum adversary A gains

only negligible advantage.

Figure 5.1: IGE mode using random function H
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But the problem is that how we can show the last one, proving the difference is negligible. In IGE mode, we

have to show that c2 = H(m2 ⊕ c1)⊕m1(when c1 is random) is indistinguishable from randomly chosen c2. In

the classical setting, we can say that since c1 is random, m2 ⊕ c1 is also random. And because the probability

that m2 ⊕ c1 collides with other H-queries is negligible, the H(m2 ⊕ c1) is random, thus H(m2 ⊕ c1) ⊕m1 is

random. However this is not in quantum setting. Because quantum adversary A queries in superposition, we can

not say H was not queried before.

Instead, we use other method, One-way to Hidding(O2H) Lemma in Section 2.3. The O2H lemma show that

to prove that H(x) is indistinguishable from random given uniformly random x, we only need to show; when the

adversary A performing queries to H , abort the query at random point and measure the input of that query, then

the probability that the input of query equals x is negligible.

5.2 IND-qCPA security of IGE mode of operation

Define Enci,HIGE(M) := c0c1 · · · cn, where cj
$←− {0, 1}t for j ≤ i and cj = H(mj ⊕ cj−1) ⊕ mj−1 for

i < j ≤ n. We prove in the next lemma that for the quantum Adversary A who can access to oracle Enci,HIGE , the

probability the adversary A distinguish the output of Enci,HIGE from Enci+1,H
IGE is negligible in t, where t is the

security parameter. For the sake of simplicity, we use Enci,H instead of Enci,HIGE .

Lemma 6. For any i with i : 0 ≤ i ≤ p(t)− 1, and every quantum adversary A that makes at most qA queries,∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H

; b′ ← AEnci,H

(Enci,H(Mb))] −

Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H

; b′ ← AEnci,H

(Enci+1,H(Mb))]
∣∣∣ ≤

O(p(t)
3qA

3

2t )

where p(t) is the maximum number of blocks in the message M and t is the length of each message block.

Proof.

Put ε(t) =
∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H

; b′ ← AEnci,H

(Enci,H(Mb))]−

Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H

; b′ ← AEnci,H

(Enci+1,H(Mb))]
∣∣∣

For a given message M = m0m1 · · ·mn, let Ẽnc
i

H(Mb, c0, . . . , ci) := ĉ1ĉ2 · · · ĉn where

ĉj =


cj 0 ≤ j ≤ i

H( ˆcj−1 ⊕mj)⊕mj−1 i < j ≤ n
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Then we can substitute EnciH with Ẽnc
i

H ,

ε(t) =
∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H

;

c0, . . . , ci
$←− {0, 1}t; b′ ← AEnci,H

(Ẽnc
i

H(Mb, c0, . . . , ci))]−

Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H

;

c0, . . . , ci+1
$←− {0, 1}t; b′ ← AEnci,H

(Ẽnc
i+1

H (Mb, c0, . . . , ci+1))]
∣∣∣

(5.1)

Figure 5.2: Adversary has to distinguish outputs of (a) and (b) in Eq.(5.1).
In Figure 5.2, R represents randomly chosen value.

We put ci := x ⊕mi+1
b , ci+1 := y ⊕mi

b where mi
b and mi+1

b is the ith and (i+ 1)
th block of the message

Mb, respectively and x $←− {0, 1}t, y $←− {0, 1}t. This means that ci and ci+1 are uniformly random as x and y are

randomly chosen. Therefore, we have

ε(t) =
∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H

;

c0, . . . , ci−1
$←− {0, 1}t, x $←− {0, 1}t, ci := x⊕mi+1

b ; b′ ← AEnci,H

(Ẽnc
i

H(Mb, c0, . . . , ci))]−

Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H

;

c0, . . . , ci−1
$←− {0, 1}t;x $←− {0, 1}t, ci := x⊕mi+1

b , y
$←− {0, 1}t, ci+1 := y ⊕mi

b,

b′ ← AEnci,H

(Ẽnc
i+1

H (Mb, c0, . . . , ci+1))]
∣∣∣

(5.2)
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Figure 5.3: Adversary has to distinguish outputs of (a) and (b) in Eq.(5.2).

By definition of Ẽnc
i

H , we have Ẽnc
i

H(Mb, c0, . . . , ci) = Ẽnc
i+1

H (Mb, c0, . . . , ci+1) with ci+1 := H(x)⊕

mi
b. Hence,

ε(t) =
∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H

;

c0, . . . , ci−1
$←− {0, 1}t, x $←− {0, 1}t, ci := x⊕mi+1

b , ci+1 := H(x)⊕mi
b;

b′ ← AEnci,H

(Ẽnc
i+1

H (Mb, c0, . . . , ci+1))]−

Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H

;

c0, . . . , ci−1
$←− {0, 1}t;x $←− {0, 1}t, ci := x⊕mi+1

b , y
$←− {0, 1}t, ci+1 := y ⊕mi

b,

b′ ← AEnci,H

(Ẽnc
i+1

H (Mb, c0, . . . , ci+1))]
∣∣∣

(5.3)

Figure 5.4: Adversary has to distinguish outputs of (a) and (b) in Eq.(5.3).

Now, the difference between two probabilities is that ci+1 = H(x)⊕mi
b in the former but ci+1 = y⊕mi

b in

the latter. In other words, the difference is ci+1 is whether H(x) or uniformly random value y. Thus we can use

the O2H lemma. We define an adversary AO2H that makes oracle queries to random function H $←− ({0, 1}t →

{0, 1}t) with given input x and y does the following:

26



AdversaryAHO2H(x, y) :

M0,M1 ← AEnci,H

b
$←− {0, 1}

c0, . . . , ci−1
$←− {0, 1}t; ci = x⊕mi+1

b ; ci+1 = y ⊕mi
b;

compute C := Ẽnc
i+1

H (Mb, c0, . . . , ci+1)

b′ ← AEnci,H

(C)

return b′ = b

Because the AO2H can query to H , AO2H also can answer the adversary A’s query. Let q be the number

that AO2H query, then q ≤ 3p(t) · qA. Also, let q1, q2 and q3 be the number that AO2H makes queries to random

function H before the challenge query, during challenge query and after challenge query, respectively. Then we

can get another equation as below from Eq.(5.3).

ε(t) =
∣∣∣Pr[b̃ = 1 : H ← ({0, 1}t → {0, 1}t), x $←− {0, 1}t, b̃← AHO2H(x,H(x))]−

Pr[b̃ = 1 : H ← ({0, 1}t → {0, 1}t), x $←− {0, 1}t, y $←− {0, 1}t, b̃← AHO2H(x, y)]
∣∣∣ (5.4)

Let B be an oracle algorithm described in the O2H Lemma, then we have ε(t) ≤ 2q
√
PB with PB as below:

PB = Pr[x = x′ : j
$←− {1, . . . , q}, x $←− {0, 1}t, H ← ({0, 1}t → {0, 1}t), x′ ← BH(x, j)]

=
1

q
·Pr[x = x′ : x

$←− {0, 1}t, H ← ({0, 1}t → {0, 1}t), x′ ← BH(x, j)] =
1

q
· P jB

P jB is different depending on when the j-th queries to H is done(before, during, or after challenge query).

- Case 1 : j ≤ q1

The j-th iteration query to the random oracle H is done before the challenge query. Because the quantum

Adversary A can not access to x during queries, the adversary A’s queries are independent of x. Thus we

can fix x to any string because it does not affect argument of the query. Therefore, we fix input x as the null

string 0n.

P jB = Pr[x = x′ : x
$←− {0, 1}t, H ← ({0, 1}t → {0, 1}t), x′ ← BH(0, j)] ≤ 2−t

- Case 2 : q1 ≤ j ≤ q1 + q2

The j-th iteration query to the random oracle H is computed during the challenge query. Therefore algo-

rithm B can cease adversary A at any queries:
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H(mi+2
b ⊕ y)⊕mi+1

b , H(mi+3
b ⊕H(mi+2

b ⊕ y)⊕mi+1
b )⊕mi+2

b , · · · ,

H(m
p(t)
b ⊕H(m

p(t)−1
b ⊕ · · ·H(mi+2

b ⊕ y)⊕mi+1
b ) · · · ⊕mp(t)−2

b )⊕mp(t)−1
b

We use the fact that H is indistinguishable from a random permutation[25]. By using this we have,

P jB = Pr[x = x′ : x
$←− {0, 1}t, H $←− Perm(), x′ ← BH(x, j)] +O(

j3

2t
)

Note that the argument of the j-th iteration query is

s := H(mi+j−q1+1
b ⊕H(mi+j−q1

b ⊕ · · ·H(mi+2
b ⊕ y)⊕mi+1

b ) · · · ⊕mi+j−q1−1
b )⊕mi+j−q1

b

As explained in the definition of O2H lemma we know that y is random and y is independent from x and

H . And for a fixed message Mb, j-th query s is assigned an output by permutation and it is independent of

x but dependent on y, because the input to first call to H is mi+2
b ⊕ y. Therefore,

P jB = Pr[x = x′ : x
$←− {0, 1}t, H $←− Perm(), x′ = s] +O(

j3

2t
) ≤ 1

2t
+O(

j3

2t
) ≈ O(

j3

2t
)

- Case 3 : q1 + q2 ≤ j

In this case, the j-th iteration query to the oracle H is done after the challenge query is done. Adversary A,

after making some encryption oracle queries, measures the argument of one of the H oracle query and then

stops. Assume it measures the argument of the kthH oracle query in j-th encryption query.

P jB = Pr[x = x′ : x
$←− {0, 1}t, H ← ({0, 1}t → {0, 1}t), x′ ← BH(x, j)]

Composition of encryption oracle is depicted in Figure 5.5. This circuit diagram representsAO2H ’s working.

AO2H can answers encryption queries because it has the oracle access to H . Let the quantum message and the

corresponding ciphertext are stored in the quantum register M and C, respectively. The encryption circuit consist

of the unitary gates UIV , UH , CNOT and measurements;

UIV |M〉 = |M ⊕ IV 〉, UH |M,C〉 = |M,C ⊕H(M)〉, CNOT |M,C〉 = |M,C ⊕M〉

and the measurements are in the computational basis of the message space.

Measuring can all registers can commutes with other unitary operations performed during encryption, be-

cause the unitary gates are diagonal in the computational basis. Hence, we can measure the message register M
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Figure 5.5: Composition of Encryption Oracle using H oracle.

at the beginning of the encryption(before performing the unitary operations). Thus, it is similar to the case when

we query on a classical message, Case 2. Therefore, we have P jB = O(
j3

2t
).

Altogether(case 1,2 and 3), we have P jB ∈ O(
q3

2t
). Hence we have, PB ≤ O(

q3

2t
) by the definition of PB . Be-

cause the probability of collision in measure is negligible, O2H lemma implies that Enci,HIGE is indistinguishable

from Enci+1,H
IGE . Therefore, we have :

ε(t) ≤ q
√
PB ≤ q

√
O(
q3

2t
) = O(

q3

2t
)

�

The lemma 6 using O2H lemma show that the quantum adversaryA only get negligible advantage when replacing

one block with randomness. And by iterating this, we can replace the whole challenge ciphertext by randomness.

And then the adversary has only
1

2
probability of guessing which challenge plaintext was encrypted in IND-qCPA

as proved in below theorem.

Theorem 7. If the function E is a quantum-secure PRF then ΠIGE is IND-qCPA secure.

Proof.

For any efficient quantum adversary A making qA encryption queries to H , the advantage of adversary is

calculated using Lemma 6 and triangle inequality;
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∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnc0,H

; b′ ← AEnc0,H

(Enc0,H(Mb))]

−Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnc0,H

; b′ ← AEnc0,H

(Encp(t),H(Mb))]
∣∣∣

≤ nO(p(t)
3qA

3

2t )

Note that Encp(t),H(Mb) outputs completely random string. Hence, the output b′ by adversary is independent

of b. Therefore,

∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnc0,H

; b′ ← AEnc0,H

(Enc0,H(Mb))]−
1

2

∣∣∣
≤ p(t) ·O(p(t)

3qA
3

2t )

One can see that Enc0,H is indistinguishable from Enc function of Π by definition of qPRF. Thus we could

replace Enc0,H by Enc function of scheme ΠIGE . Therefore,

∣∣∣Pr[PrivKqCPA
A,ΠIGE

(t) = 1]− 1

2

∣∣∣ ≤ O(p(t)
3qA

3

2t ) + negl(t).

Since qA is polynomial in t, we deduce;

∣∣∣Pr[PrivKqCPA
A,ΠIGE

(t) = 1]− 1

2

∣∣∣ ≤ negl(t).
�
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Chapter 6. Concluding Remark

This thesis validate the IGE mode of block cipher from quantum adversaries. IGE mode is used in secret chat

of Telegram which in very popular IM services. Telegram provide secret chat for protecting personal message

and the security of secret chat is claimed to be secure. However this block cipher also need to be verified for

security against the quantum computers. Quantum computers can perform quantum computation using quantum-

mechanics happened in quantum states like superposition and entanglement different to the classical computers.

Since modern cryptosystem can be broken within polynomial time by quantum computers, every cryptosystem

need to be evaluated for their security against quantum adversary.

Quantum security of the IGE mode in block cipher against the quantum adversary A are different depending

on the function in the block cipher. When assuming sPRF, the IGE mode block cipher does not satisfy IND-qCPA.

But assuming qPRF, the IGE mode block cipher is proven to be IND-qCPA. When we assume the sPRF, especially

periodic, we even can recover the secret key k in polynomial time using Simon’s algorithm. By making query

to oracle, we can get easily information about the secret key. Assuming qPRF, however, the block cipher of IGE

mode is proven secure thus the quantum adversary A can not distinguish the block cipher from truly random

function efficiently.

Furthermore, future research is still remaining. Firstly, other modes of operations except IGE mode need

to be evaluated their security against quantum adversaries. Secondly the attack used for proving the IND-qCPA

assuming sPRF should be implemented when the quantum computers are developed. Lastly, the countermeasure

against this attack need to be devised.
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