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초 록

최근 모바일 기술의 발전으로 인해 IoT 지원 장치가 보급되고 일상 생활에 통합되었습니다. 연결된 장치는

유비쿼터스이며 거대하고 고차원적이고 복잡한 데이터를 생성합니다. 이러한 거대한 데이터에서 정상적인

동작과 다른 악의적 인 활동을 관찰하는 것은 어려운 작업입니다. 그러나 기능 학습은이 작업을 해결하는

하나의 솔루션이 될 수 있습니다. 따라서이 논문은 딥 피쳐 추출 및 선택 (D-FES)과 완전히 감독되지 않

는 방법을 사용하여 새로운 피쳐 학습 기법을 제안한다. D-FES는 스택 피쳐 추출과 가중치 피쳐 선택을

결합합니다. 누적 자동 인코딩은 원시 입력에서 관련 정보를 재구성하여보다 의미있는 표현을 제공 할 수

있습니다. 표현은 클러스터링 방법으로 활용 될 수도 있습니다. 그런 다음이를 기존의 얕은 구조화 된 기계

학습에서영감을얻은수정된가중치적용선택과결합합니다. 우리는마침내기계학습모델의편향과교육

및 테스트의 계산 복잡성을 줄이기 위해 응축 된 기능 세트의 기능을 입증합니다. 우리는 Aegean Wi-Fi

Intrusion Dataset (AWID)이라 불리는Wi-Fi 네트워크 데이터 세트에서 우리의 제안 된 계획이 99.918%의

가장 검출 정확도와 false를 달성함으로써 D-FES의 유용성과 유용성을 입증하는지 검증합니다 알람 비율

0.012%. D-FES는 모든 종류의 공격 탐지 중에 99.910%의 정확도를 달성했습니다.

핵 심 낱 말 중첩된 오토 인코더, 심층 추상화, 추출, 선택, 클러스터링, 침입 탐지, 위장 공격

Abstract

The recent advances in mobile technologies have resulted in IoT-enabled devices becoming more perva-

sive and integrated into our daily lives. The connected devices are ubiquitous, generating huge, high-

dimensional and complex data. Observing malicious activities, which deviate from normal behavior, in

such colossal data is a challenging task. Feature learning, however, can be one solution to solve this task.

This dissertation thus proposes novel feature-learning schemes using Deep-Feature Extraction and Selec-

tion (D-FES) and fully unsupervised method. D-FES combines stacked feature extraction and weighted

feature selection. The stacked auto-encoding is capable of providing abstractions (representations) that

are more meaningful by reconstructing the relevant information from its raw inputs. The representations

could also be leveraged as a clustering method. We then combine this with modified weighted feature

selection inspired by an existing shallow-structured machine learning. We finally demonstrate the ability

of the condensed set of features to reduce the bias of a machine learning model and the computational

complexity of training and testing. We verify our proposed schemes on a Wi-Fi network dataset, called,

the Aegean Wi-Fi Intrusion Dataset (AWID), prove the usefulness and the usability of the D-FES by

achieving an impersonation detection accuracy of 99.918% and a false alarm rate of 0.012%. D-FES also

achieved 99.910% of accuracy during all class of attacks detection.

Keywords Stacked auto encoder, Deep abstraction, Extraction, selection, clustering, Intrusion detec-

tion, Wireless networks, Impersonation attack
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Chapter 1. Introduction

1.1 Research Background

The rapid growth of the Internet has led to a significant increase in wireless network traffic in recent

years. According to a worldwide telecommunication consortium, Mobile and Wireless Communications

Enablers for the Twenty-Twenty Information Society (METIS) [11], a proliferation of 5G and Wi-Fi

networks is expected to occur in the next decades. They believe that avalanche of mobile and wireless

traffic volume will occur due to the development of society needs to be fulfilled. Applications such as

e-learning, e-banking, and e-health would spread and become more mobile. By 2020 1 wireless network

traffic is anticipated to account for two-thirds of total Internet traffic — with 66% of IP traffic expected

to be generated by Wi-Fi and cellular devices only as shown in Fig. 1.1. Cyber-attacks have become an

immense growing rate as Internet of Things (IoT) are widely used these days [12].

IBM [1] reported an enormous account hijacked during 2016 and spam emails are four times higher

than the previous year. Common attacks noticed in the same report including brute-force, malvertising,

phishing, SQL injection, DDoS, malware, etc as depicted in Fig. 1.2. Majority of malwares are accounted

as a ransomware (85% of malwares existed in a year are a ransomware). These attacks might leak sensitive

data or disrupt normal operations which leads to an enormous financial loss. The most popular companies

impacted by security incidents are financial services-related companies. Followed by information and

communications, manufacture, retail, and healthcare [1]. Wireless networks such as IEEE 802.11 have

been widely deployed to provide users with mobility and flexibility in the form of high-speed local area

connectivity. However, other issues such as privacy and security have raised. The rapid spread of

IoT-enabled devices has resulted in wireless networks becoming to both passive and active attacks, the

number of which has grown dramatically [12]. Examples of these attacks are impersonation, flooding,

and injection attacks. The wide and rapid spread of computing devices using Wi-Fi networks creates

complex, large, and high-dimensional data, which cause confusion when capturing attack properties and

force us to strengthen our security measures in our system.

An Intrusion Detection System (IDS) is one of the most common components of every network

security infrastructure [13] including wireless networks [14]. Machine-learning techniques have been well

adopted as the primary detection algorithm in IDS owing to their model-free properties and learnability

[15]. Leveraging the recent development of machine-learning techniques such as deep learning [16] can

be expected to bring significant benefits concerning improving existing IDSs particularly for detecting

impersonation attacks in large-scale networks. Based on the detection method, IDS can be classified into

three types; misuse, anomaly, and specification-based IDS. A misuse-based IDS also known as a signature-

based IDS [17] detects any attack by checking whether the attack characteristics match previously stored

signatures or patterns of attacks. This type of IDS is suitable for detecting known attacks; however, new

or unknown attacks are difficult to detect.

The vast and rapid spread of computing devices using Wi-Fi networks creates complex, large, and

high-dimensional data, which confuse when capturing attack properties. Feature learning acts as an

1Cisco Visual Networking Index: Forecast and Methodology 2015—2020, published at

www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-

481360.html
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Figure 1.1: Forecast of Internet Data Traffic by CISCO

Figure 1.2: Sampling by Security Incidents by IBM [1]
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essential tool for improving the learning process of a machine-learning model. It consists of feature con-

struction, extraction, and selection. Feature construction expands the original features to enhance their

expressiveness, whereas feature extraction transforms the original features into a new form and feature

selection eliminates unnecessary features [18]. Feature learning is a key to improve the performance of

existing machine-learning-based IDSs. Therefore, we leverage deep abstraction by building a stacked

autoencoder network to improve feature selection and clustering tasks.

1.2 Our Contribution

Large-scale Wi-Fi network leads to a huge, complex and high-dimensional data. In [2], impersonation

attack is claimed to be the most difficult to detect as shown by low detection rate in Fig. 1.3 which

is 4,419 out of 20,079 (22%) impersonation instances only can be detected. Therefore, we focus on the

following problem:

• How to improve impersonation detector in Wi-Fi network dataset?

• How to develop a fully unsupervised IDS using deep learning approach?

• How to achieve compact and efficient feature representation for complex and high-dimensional data

like AWID dataset, to achieve highest detection rate and lowest false alarm rate?

• How to develop a general model that can detect not only impersonation attack, but also other

attacks?

To answer above questions, we propose enhanced feature extraction (as a deep abstraction), feature

selection and clustering schemes for reducing the data complexity and learning hidden meaning from

massive data. We verify our scheme by detecting impersonation attacks in a large wi-fi networks dataset,

AWID dataset. Owing to the scale and complexity of recent data, building a machine-learning-based

IDS has become a daunting task. One of the critical contributions of this study is the introduction

of novel Deep-Feature Extraction and Selection (D-FES), which improves its feature learning process

by combining stacked feature extraction with weighted feature selection. The feature extraction of

Stacked Auto Encoder (SAE) is capable of transforming the original features into a more meaningful

representation by reconstructing its input and providing a way to check that the relevant information

in the data has been captured. SAE can be efficiently used for unsupervised learning on a complex

dataset. Unlike supervised learning, unsupervised learning does not require a labeled dataset for training.

Unsupervised learning capability is of critical importance as it allows a model to be built to detect new

attacks without creating costly labels or dependent variables. SAE is constructed by stacking additional

unsupervised feature learning layers and can be trained by using greedy methods for each extra layer.

We train a new hidden layer by training a standard supervised neural network with one hidden layer.

The output of the previously trained layer is taken as pre-training initialization for the next layer and

as the extracted features.

In summary, the main contributions of this study are as follows:

• Design of an impersonation attack detector using a short set of features without modifying any

protocol and without using any additional measurement.
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Figure 1.3: The best detection performance for impersonation attack [2]

• Abstraction of raw features using a deep learning technique. The extracted features are measured

once more using weighted feature selection techniques such that a measure-in-depth technique is

proposed.

• Design of the proposed D-FES, which can be implemented in a real wireless network setup because

an unbalanced dataset is used for testing purposes.

• Design of the generalized of D-FES that can detect any attack classes.

• Design of an enhanced clustering method using a stacked autoencoder that improves a classical

clustering method, k-means clustering significantly.

1.3 Dissertation Structure

The remainder of this dissertation is organized as follows. In Chapter 2, we briefly explain IDS ter-

minology and classification. We investigates various deep learning techniques in Chapter3. We describe

our proposed feature extraction and selection and fully unsupervised IDS in Chapter 4. In Chapter 5, we

evaluate our proposed methods. Chapter 6 introduces previous work which related to our work. Chapter

7 concludes this dissertation along future research direction of this work.
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Chapter 2. Intrusion Detection Systems

2.1 Definition

Intrusion Detection System (IDS) becomes a standard security measure in computer networks. Un-

like a firewall, IDS usually located inside the network to monitor all internal traffics as shown in Fig. 2.1.

One may consider having both a firewall and IDS to protect the network. IDS is defined as automation

of intrusion detection process which is a process of finding events of violation of security policies or stan-

dard security practices in computer networks [19]. Besides identifying the security incidents, IDS also

has other functions: documenting existing threats and deterring adversaries [19]. IDS requires particular

properties which acts as a passive countermeasure, monitors whole or part of networks only and aims

high attack detection rate and low false alarm rate.

2.2 Classification

We can divide IDSs based on their placement in the network and methodology used. By the

positioning of the IDS module in the network, we might distinguish IDSs to 3 classes: network-based,

host-based, and hybrid-based IDSs. The first IDS, network-based IDS as shown in Fig. 2.2 puts the

IDS module in the network which can monitor whole the network traffics. This IDS has a big picture

of the network makes it has a better understanding the network in overall. On the other hand, Fig.

2.3 shows the host-based IDS which places the IDS module on each client of the network. The module

can only see the ingoing or outgoing traffics of the corresponding client leads to detail monitoring of the

particular client. Two types of IDSs have specific drawbacks– the network-based IDS might burden of

the workload then misses some malicious activities, while the host-based IDS does not have the overview

of the whole network but having less workload than the network-based IDS. Therefore, the hybrid-based

IDS as shown in Fig. 2.4 places IDS modules in the network as well as clients to monitor both specific

clients and network overview at the same time.

In the latter case, based on the detection method, IDSs can be divided into three different types:

misuse, anomaly, and specification-based IDSs. A misuse-based IDS, known as a signature-based IDS

[17], looks for any malicious activities by matching the known signatures or patterns of attacks with the

monitored traffics. This IDS suits a known attack detection; however, new or unknown attacks (also

Figure 2.1: IDS vs Firewall
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Figure 2.2: Network-based IDS

Figure 2.3: Host-based IDS

Figure 2.4: Hybrid-based IDS
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Table 2.1: Comparison of IDS Types based on the Methodology

Misuse-based Anomaly-based Specification-based

Method Identify known attack

patterns

Identify unusual activ-

ity patterns

Identify violation of

pre-defined rules

Detection Rate High Low High

False Alarm

Rate

Low High Low

Unknown At-

tack Detection

Incapable Capable Incapable

Drawback Updating signatures is

burdensome

Computing any ma-

chine learning is heavy

Relying on expert

knowledge during

defining rules is un-

desirable

called as a zero-day exploit) are difficult to be detected. An anomaly-based IDS detects an attack by

profiling normal behavior and then triggers an alarm if there is any deviation from it. The strength of

this IDS is its ability for unknown attack detection. However, misuse-based IDS usually achieves higher

detection performance for known attacks than anomaly-based IDS. A specification-based IDS manually

defines a set of rules and constraints to express the normal operations. Any deviation from the rules and

constraints during execution is flagged as malicious [20]. Table 2.1 summarizes the comparison of IDS

types based on the methodology.

An IDS that leverages machine-learning method is an example of an anomaly-based IDS [21]. There

are two types of learning namely supervised and unsupervised learning. The unsupervised learning does

not require a labeled dataset for training which is crucial for large network traffics recently, while the

supervised learning requires a labeled dataset. Unsupervised learning capability is of critical significance

as it allows a model to be built to detect new attacks without creating costly labels or dependent variables.

Table 2.2 outlines the comparison between supervised and unsupervised learning.

2.3 Machine-learning based IDS

A combination of two typical methods is commonly used to build an IDS such as learning or training

and classification as shown in Fig. 2.5. It is difficult and costly to obtain the bulk of labeled network

connection records for supervised training in the first stage. Then feature learning or clustering might

become the solution in the first place. The clustering analysis has emerged as an anomaly detection

recently [22]. Clustering is an unsupervised data exploratory technique that partitions a set of unlabeled

data patterns into groups or clusters such that patterns within a cluster are similar to each other but

dissimilar to other clusters’ pattern [22]. Meanwhile, feature learning is a tool for improving the learning

process of a machine-learning algorithm. It commonly consists of feature construction, extraction, and

selection. Feature construction expands the original features to enhance their expressiveness, whereas

feature extraction transforms the original features into a new form and feature selection eliminates

unnecessary features [18]. The classification task is a supervised method to distinguish benign and

7



Table 2.2: Comparison Between Supervised and Unsupervised Learning

Supervised Unsupervised

Definition The dataset are labeled

with pre-defined classes

The dataset are labeled

without pre-defined

classes

Method Classification Clustering

Example Support Vector Machine

(SVM), Decision Tree

(DT)

K-means clustering, Ant

Clustering Algorithm

(ACA)

Known Attack Detection High Low

Unknown Attack Detec-

tion

Low High

Figure 2.5: IDS Typical Scheme

malicious traffics based on provided data which usually comes from the previous step as shown in Fig.

2.5.

We can see in the Fig. 2.5 that the pre-processing step is required before entering the IDS module.

The pre-processing module commonly consists of normalization and balancing steps. Data normalization

is a process to output all value ranges of each attribute are equal, which is essential for proper learning

by any machine learning algorithm [23]. Meanwhile, the nature of the real-world network is having

benign traffics much larger than malicious traffics. This property could make it difficult for the IDS

module to learn the underlying patterns correctly [24]. Therefore, a balancing process which creates

the dataset with an equal ratio for both benign and malicious instances is a required step for training.

However, we should use original ratio, which is unbalanced, for testing purposes to validate the IDS can

be implemented in the real-world networks.

As mentioned, we explored several common IDSs with a combination of learning and classification

as shown in Table 2.3.

Ant Clustering Algorithm (ACA) is one of the most widely used clustering approaches which is

originated from swarm intelligence. ACA is an unsupervised learning algorithm that can find near-

8



Table 2.3: Common IDSs with a Combination of Learning and Classification

Publication Learning Classification

AKKK17 [25] ACA FIS

HKY14 [26] ATTA-C ATTA-C + label

KKK15 [27] ACA AIS

KHKY16 [28] ACA DT, ANN

optimal clustering solution without a predefined number of clusters needed [22]. However, ACA is rarely

used in intrusion detection as the exclusive method for classification. Instead, ACA is combined with

other supervised algorithms such as Self Organizing Map (SOM) and Support Vector Machine (SVM) to

provide better classification result [13]. In AKKK17 [25], we proposed a novel hybrid IDS scheme based

on ACA and Fuzzy Inference System (FIS). We applied ACA for training phase and FIS for classification

phase. We chose FIS as classification phase because fuzzy approach can reduce the false alarm with

higher reliability in determining intrusion activities [29]. Meanwhile, we also examined the same ACA

with different classifiers in KKK15 [27] and KHKY16 [28] by using Artificial Immune System (AIS) and

Decision Tree (DT) as well as Artificial Neural Network (ANN), respectively. AIS is designed for the

computational system and inspired by Human Inference System (HIS). AIS can differentiate between

the “self” (cells that are owned by the system) and “non-self” (foreign entities to the system). We show

that ANN can learn more complex structure of certain unknown-attacks due to a characteristic of ANN.

Besides, we also investigated an improved ACA which is Adaptive Time-Dependent Transporter Ants

Clustering (ATTA-C) in HKY14 [26], which is one of the few algorithms that have been benchmarked

on various datasets and is now publicly available under GNU agreement [26]. In addition to above-

mentioned common IDSs, we further examined other IDS models taking benefits of Hadoop framework

[30] and Software Defined Networking (SDN) environment [31]. In [30], we proposed a method utilizes

the advantages of Hadoop as well as behavioral flow analysis. This framework is particularly useful in the

case of P2P traffic analysis due to inherent flow characteristics of this type of applications. Meanwhile,

we proposed a novel IDS scheme that operates lightweight intrusion detection that keeps a detailed

analysis of attacks [31]. In this scheme, a flow-based IDS detects intrusions, but with low operating cost.

When an attack is detected, the IDS requests the forwarding of attack traffic to packet-based detection

so the detailed results obtained by packet-based detection can be analyzed later by security experts.

2.4 Fuzzy Unknown Attack Detection

2.4.1 ACA

ACA simulates random ant walks on a two-dimensional grid which is all data objects are spread

randomly [32]. Unlike the dimension of the input data, each data instance is randomly projected onto a

cell of the grid. A grid cell can indicate the relative position of the data instance in the two-dimensional

grid. The general idea of ACA is to keep similar items in their original N-dimensional space. Vizine

et al. [32] assumed that each site or cell on the grid can be resided by at most one object, and one of

the two following situations may occur: (i) one ant holds an object i and evaluates the probability of

dropping it in its current position; (ii) an unloaded ant assesses the likelihood of picking up an object.

An ant is selected randomly and can either pick up or drop an object at its current location [32].
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The probability of picking up an object increases by disparity among objects in the surrounding area

and vice versa. In contrast, the probability of dropping an object increases by high similarity among

objects in the surrounding area. Vizine et al. [32] defined d(i,j) in Eq. (2.1) as the Euclidean distance

between objects i and j in their N-dimensional space. The density distribution function for object i, at

a particular grid location, is defined by Eq. (2.1) as follows:

f(i) =

 1
s2

∑
j(1− d(i, j)/α) f(i) > 0

0 Otherwise,
(2.1)

where s2 is the number of cells in the surrounding area of i, and α is a constant that depicts the disparity

among objects. The f(i) might reach a maximum value when similar or even equal objects occupy all

the sites in the surrounding area. Eqs (2.2) and (2.3), respectively, give the probability of picking up

and dropping an object i :

Ppick(i) = (
kp

kp + f(i)
)2, (2.2)

Pdrop(i) =

2f(i) f(i) < kd

1 Otherwise,
(2.3)

where the parameters kp and kd are threshold constants of the probability of picking up and dropping

an object, respectively. A loaded ant considers the first empty cell in its local area to drop the object,

since the current position of the ant may be pre-occupied by another object [32].

Tsang et al. [22] define two variables: intra-cluster and inter-cluster distance in order to measure

ACA performance. High intra-cluster distance means better compactness. Meanwhile, large inter-cluster

distance means better separateness. A good ACA should provide minimum intra-cluster distance and

maximum inter-cluster distance to presents the internal structures and knowledge from data patterns.

2.4.2 Fuzzy Approach

The fuzzy approach is a method of representing the ambiguity and imprecision of a logic that is

usually only 1 and 0 in digital form. This property of the fuzzy set is appropriate to be exploited as

anomaly detector for two main reasons [33]:

1. The anomaly detection problem usually includes several numeric attributes in collected data and

various derived statistical measurements. Constructing models directly on numeric data might

cause many errors in detection.

2. The security term itself involves fuzziness because the boundary between normal and abnormal is

not well-defined [29].

Fuzzy logic is usually occupied together with other famous data mining techniques to detect outlier.

Malicious behavior is naturally different from normal behavior, and then abnormal behavior might be

considered as an outlier. Fuzzy logic can help to construct more abstract and flexible pattern for intrusion

detection and thus substantially increase the adaption ability of the detection system [29]. Therefore,

the fuzzy approach can achieve reliable intrusive activities detection with a quite low FPR, since we

can classify adequately any data instance based on the distance to other clusters. The distance of any

data instance to clusters represents a similarity, the nearer the distance means that the data instance is

similar to that cluster.
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Table 2.4: Packet Distribution of KDD Cup’99 Dataset

Type # of Packets Proportion (%)

Normal 972,781 19.86

Probe 41,102 0.84

DoS 3,883,370 79.28

U2R 52 0.00

R2L 1,126 0.02

Total 4,898,431 100

2.4.3 KDD Cup’99 Dataset

KDD Cup’99 dataset has been the most widely used dataset for the evaluation of anomaly detection

methods [34]. The dataset is based on the data captured in DARPA’98 IDS evaluation program. KDD

Cup’99 dataset consists approximately 4,900,000 single connection instances. Table 2.4 shows the packet

distribution of KDD Cup 99 dataset [35]. Each instance contains 41 features and is labeled as either

normal or attack instance. The dataset provides four distinct attack types as follows:

1. Probing Attack: an attacker attempts to collect information about computer networks to bypass

the security controls. An example of probing attack is port scanning.

2. Denial of Service (DoS) Attack: an attack in which the attacker prevents legitimate users

from accessing authorized data. The attacker made computing resources too exhausted to handle

legitimate requests by flooding the network with unnecessary packet requests. An example of DoS

attack is syn flood attack.

3. User to Root (U2R) Attack: an attacker starts the attack by accessing to a normal user account

on the system. Then, the attacker exploits the vulnerability to gain root access to the system. An

example of U2R attack is xterm exploitation.

4. Remote to Local (R2L) Attack: This kind of attack is executed by an attacker who can send

packets to a machine over a network but does not have an account on that machine. The attacker

exploits some vulnerabilities to gain local access as a user of that machine remotely. An example

of R2L attack is ftp write exploitation.

2.4.4 Proposed Approach

This section describes the details of our approach. Our approach consists of two main phases,

training and classification. Similar to other approaches, our scheme is illustrated in Fig. 2.6. Each phase

is also described as follows:

Training Phase

The training phase implements ACA to clusters the network traffic. ACA incorporates several

initialization steps. Thus, it needs several input parameters such as the size of grid area, the number

of ants, the size of a local area, and threshold constant. After the clustering phase finished, we refer to

Kim et al. [36] for labeling each data instance according to resulted clusters. The training phase passes

this labeled dataset to the Fuzzy Inference System (FIS) in the classification phase.
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Figure 2.6: Fuzzy unknown attack detection scheme

Classification Phase

The labeled dataset from the training phase is sent to the second phase for anomaly detection when

new data arrives. In the classification phase, a fuzzy decision approach is applied to detect attacks. We

calculate Euclidean distance of each test data to all clusters as an input to the FIS. Eq. (2.4) shows

the Euclidean distance between two points x and y, where xi and yi represent features of each test data

instance and training data instance within the cluster, respectively. In this case, N represents total

features in KDD Cup’99 dataset [37] which has 41 features on each data instances.

Distance(x, y) =

√√√√ N∑
i=1

(xi − yi)2. (2.4)

We deploy a combination of two distance-based [29] methods, i.e., nearest to normal and abnormal:

1. Nearest to Normal: The distance between a test data instance and each cluster is calculated

using average linkage of Euclidean distance. Average linkage approach considers small variances

[29] because the approach considers all members in the cluster rather than just a single member.

Also, the average linkage approach tends to be less influenced by the extreme values than other

distance methods [38]. A test data instance is classified as nearest to normal when it has minimum

average Euclidean distance among clusters labeled as a normal cluster and vice versa. This distance-

based classification allows us to detect whether normal or abnormal traffic by comparing features

similarity that is listed in the training dataset.

2. Nearest to Abnormal: Similar as before, we also calculate average linkage of Euclidean distance

to find the minimum distance to the abnormal cluster. A test data instance is classified as nearest to

abnormal when the data instance has minimum average Euclidean distance among clusters labeled

as the abnormal cluster and vice versa.

The proposed fuzzy detection method consists of two inputs (nearest to normal and abnormal),

one output, and four main parts: fuzzification, rules, inference engine, and defuzzification [29]. In

fuzzification step, a crisp set of input data is converted to a fuzzy set using fuzzy linguistic terms and

membership functions. Next, we construct rule base. Afterward, an inference is made and combined

based on the set of rules. In defuzzification step, the results of fuzzy inference are mapped to a crisp
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Table 2.5: Our Training Dataset

Type # of Packets Proportion (%)

Normal 78,101 98.00

Probe 398 0.50

DoS 761 0.96

U2R 35 0.04

R2L 398 0.50

Total 79,602 100

(non-fuzzy) output using the output membership functions. Finally, if the crisp output is bigger than a

predefined threshold, a test data instance is considered as an abnormal instance; otherwise, it is a normal

instance.

2.4.5 Evaluation

Performance Measurement

To evaluate the performance of our proposed approach, we use DR, FPR and False Negative Rate

(FNR). We calculate DR by a number of attack instances detected as attacks divided by a total of attack

instances included in the test dataset. We have 393 data of attack instances. FPR is legitimate packet

identified as a malicious packet. FPR is calculated by a number of legitimate instances detected as attack

instances divided by total normal (legitimate) instances included in the data test. We are incorporating

19,268 legitimate instances. Lastly, FNR represents a number of attacks that unable to be detected by

our proposed approach. The FNR value can be calculated by one minus DR.

Clustering Phase

We need to extract the KDD Cup’99 dataset to get appropriate traffic data that reflects real network

traffic. Also, we need to prepare two sets of data: training and test dataset. Table 2.5 shows the training

dataset that we used as an input to ACA in clustering phase. As mentioned in Sec.2.4.4, ACA needs

several input parameters, we define the parameters as follows:

• Size of grid area: 600 X 600 size of 2D plane,

• Number of ants: 1000 ants,

• size of local area: 3 X 3 local area,

• Threshold constant: 15.

ACA provides clusters that consolidate similar feature data instances. We label big and small size

clusters as normal and attack clusters, respectively. Fig. 2.7 shows the clustering result. The big colony

is assumed as benign instances. We prepare the test dataset as shown in Table 2.6. The dataset is

processed by measuring the Euclidean distance between each data instance in the test dataset and all

data instances in the training dataset. Then, we define two values: closest to normal and abnormal, as

an input parameter to the Fuzzy Inference System (FIS).
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Figure 2.7: Clustering Result

Table 2.6: Our Test Dataset

Type # of Packets Proportion (%)

Normal 19,268 98.00

Probe 98 0.50

DoS 277 1.41

U2R 17 0.09

R2L 1 0.00

Total 19,661 100

Classification Phase

We use MATLAB fuzzy logic toolbox for FIS-based intrusion detection. Following components

structure the classification phase:

1. Two fuzzy sets of input variables: nearest to normal and abnormal; nearest to normal membership

are: Very Close, Close, Average, Far, Very Far; nearest to abnormal membership are: Far, Average,

Close.

2. A fuzzy set of output variable: Alarm; alarm membership function: Normal, Less Prone, High

Prone, Abnormal.

3. Fuzzy Membership Functions (MF): Figs. 2.8, 2.9 and 2.10 show fuzzy membership function for

nearest to normal input, abnormal input and alarm output, respectively.

4. Fuzzy rules: Table 2.7 shows complete fuzzy rules while Table 2.13 shows more detailed fuzzy rules.

5. Inference: We use Mamdani fuzzy inference by the fuzzy set operation as max and min for OR and

AND, respectively [29]. Fig. 2.12 shows fuzzy inference rule in 3D form.

6. Defuzzifier: We use Center of Gravity algorithm as shown by Eq.(2.5).

CenterOfGravity =

∫max
min

u ∗ µ(u)d(u)∫max
min

µ(u)d(u)
, (2.5)

where u represents the output variable, µ denotes the membership function after accumulation, and min

and max are lower and upper limits for defuzzification, respectively.
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Figure 2.8: Membership Function for Nearest to Normal Input

Figure 2.9: Membership Function for Nearest to Abnormal Input

Experiment Result

This section shows our experimental results. To get the best classification phase result, we conduct

four different experiments: varying MF positions, MF types, inference rules, and defuzzifier methods.

First, we did experiment with three different MF inputs. Fig. 2.11 shows the three different inputs.

Table 2.8 shows that MF input (a,b) is the best choice among three different MF inputs.

Second, we use four different MF types: trapmf, trimmf, gauss2mf, and gbellmf. Trapmf represents

trapezoidal distribution function. Trimmf represents triangle distribution function. Meanwhile, both

gauss2mf and gbellmf represent gaussian distribution function with different parameters. The selection

of those four functions are based on Karami et al. [29] experiments. We cannot compare directly with

Karami et al. [29] as the dataset is different, and thus the metrics are different which forms the core of the

experimentation. In Karami et al. [29] paper, they use Content Centric Network (CCN) dataset which

has a different type with KDD dataset. However, we can compare our works with Karami et al. [29]

in term of Fuzzy parameter usage. According to Table 2.9, trapezoidal and triangle distributions gave

the best result while in Karami et al. [29], trapezoidal and Gaussian distribution outperformed other

Figure 2.10: Membership Function for Alarm Output
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Table 2.7: Fuzzy Rules

Nearest to Abnormal
Nearest to Normal

VeryClose Close Average Far VeryFar

Close HighProne HighProne Abnormal Abnormal Abnormal

Average LowProne LowProne HighProne HighProne HighProne

Far Normal Normal Normal HighProne HighProne

Figure 2.11: Three Different Membership Functions. (a)(c)(e) represent different nearest to normal.

Meanwhile, (b)(d)(f) represent different nearest to abnormal.

distributions. Table 2.9 shows the effect of different MF types to FPR and DR. Trapezoidal distribution

function is the best function among four functions.

Third, we accommodate different inference rules. The first inference rule is shown in Table 2.7.

There are two rules which are not following intuition in Table 2.7, when nearest to normal far and very

far to nearest to abnormal far. Both of them are supposed to be low prone as shown in Table 2.10. Table

2.11 shows the effect of different inference rules. Unfortunately, the second rule shown by Table 2.10

results pretty low DR. The result makes sense since once an instance located far or very far from benign

instances, the instance has a high probability of being an attack.

Last, we occupy different defuzzifier methods. There are five different defuzzifer methods: Center

of Gravity (CoG), bisector, Mean of Max (MoM), Largest of Max (LoM), and Smallest of Max (SoM).

Table 2.8: Performance with Different MF Inputs

Method FPR (%) DR (%)

a,b 10.03 92.11

c,d 66.74 95.67

e,f 2.55 0.00
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Table 2.9: Performance with Different MF Types

Method FPR (%) DR (%)

Trapmf 10.03 92.11

Trimmf 9.37 91.86

Gauss2mf 12.96 92.11

Gbellmf 10.18 93.38

Table 2.10: Another Fuzzy Rules

Nearest to Abnormal
Nearest to Normal

VeryClose Close Average Far VeryFar

Close HighProne HighProne Abnormal Abnormal Abnormal

Average LowProne LowProne HighProne HighProne HighProne

Far Normal Normal Normal LowProne LowProne

Table 2.12 shows that CoG is the best defuzzifier method in this case.

Recall in the defuzzification step, the results of fuzzy inference are mapped to a crisp (non-fuzzy)

output using the output membership functions. If the crisp output is bigger than a predefined thresh-

old (from now on called fuzzy threshold), a test data instance is considered as an abnormal instance;

otherwise, it is a normal instance. Table 2.14 shows the performance of our approach using different

fuzzy thresholds. We can see that the bigger the fuzzy threshold, the lower the DR. Unfortunately, we

also have bigger FPR as a trade-off. We note that 0.65 as fuzzy threshold provide best performance

among others with DR = 92.11% and FPR = 10.03%. It means that there are 1,936 legitimate instances

detected as an attack. Also, 31 out of 393 attack data instances aren’t identified as attacks. Thus, we

conclude that 0.65 is the optimal value for the fuzzy threshold.

To provide the proper measurement, we compare our scheme with other similar schemes as men-

tioned by Hosseinpour et al. [39]. They proposed a hybrid scheme of IS and DBSCAN. Similar to our

approach, their approach exploits two phases: clustering and detection phase. Also, they also provide the

performance result of another IDS scheme based on AIS and K-means clustering. Table 5.19 shows the

comparison of three different schemes. ACA is a proper algorithm for high density and high dimensional

data. Also, ACA is insensitive to initialization step. These properties satisfy the needs of real traffic

network, which has high density and high dimensional data. Although ACA needs many input param-

eters, by combining it with FIS, our proposed scheme can achieve significantly higher DR compared to

other two schemes. However, our proposed scheme provides quite high FPR which is 10.03%. We can

vary the parameters and cut it down a little bit. But, if we want the DR to be high, with our scheme,

the FPR remains a bottleneck. This fact remains a trade-off whether using less FPR or higher DR is of

greater value to the user.However, we give a comparison with AIS+K-means and AIS+DBSCAN [39] on

Table 2.11: Performance with Different Inference Rules

Method FPR (%) DR (%)

Table 2.7 10.03 92.11

Table 2.10 66.74 29.26
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Table 2.12: Performance with Different Defuzzifier Methods

Method FPR (%) DR (%)

CoG 10.03 92.11

Bisector 15.4 92.37

MoM 55.08 94.91

LoM 0.00 0.00

SoM 0.00 0.00

Table 2.13: Some Fuzzy Rules in Proposed System

IF Normal=Average and Abnormal=Far THEN Alarm=Normal

IF Normal=Close and Abnormal=Average THEN Alarm=LowProne

IF Normal=Far and Abnormal=Average THEN Alarm=HighProne

IF Normal=VeryFar and Abnormal=Close THEN Alarm=Abnormal

Table 5.19. Our scheme is efficiently detecting attacks both known and unknown.

Figure 2.12: Fuzzy inference rule in 3D form
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Table 2.14: Performance of Our Proposed Scheme

Fuzzy Threshold FPR (%) DR (%) FNR (%)

0.70 9.40 0.00 100.00

0.65 10.03 92.11 7.89

0.60 20.81 94.91 5.09

0.55 32.35 94.91 5.09

0.30 97.25 98.73 1.27

Table 2.15: Results Comparison

Method DR (%) FPR (%)

AIS+K-means [39] 43.1 15.6

AIS+DBSCAN [39] 58.9 0.8

Our Proposed Scheme 92.11 10.03
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Chapter 3. Deep Learning

Deep learning originally comes from the advancements of Neural Network (NN) algorithm. Vari-

ous methods have been applied in order to overcome the limitations of one hidden layer only in NN.

Those methods employ consecutive hidden layers which are hierarchically cascaded. Due to vast of

methods belong to deep learning, we classify several deep learning methods based on their approach

[3]. Deng [40] differentiates deep learning into three sub-groups, generative, discriminative and hybrid.

The classification is based on the intention of architectures and techniques, e.g., synthesis/generation or

recognition/classification. The classification of the deep learning methods is shown in Fig. 3.1.

3.1 Unsupervised Learning

Unsupervised learning or so-called generative architectures use unlabeled data. The central concept

of applying generative designs to pattern recognition is unsupervised learning or pre-training [40]. Since

learning the lower levels of subsequent networks are difficult, deep generative structures are needed.

Thus, with limited training data, learning each lower layer in layer-by-layer approach without relying on

all the layers above is essential.

Some methods classified as unsupervised learning as follows:

3.1.1 Auto Encoder (AE)-Stacked Auto Encoder (SAE)

AE is an ordinary Artificial Neural Network (ANN) with the same neuron number of both input

and output layers. Meanwhile, the nodes in the hidden layer are representing new feature set which is

low-dimensional. This architecture leads to an ability that can reconstruct the data after complicated

computations. AE aims to learn a compact set of data efficiently and can be stacked to build a deep

network. Training results of each hidden layer are cascaded. This structure is called Stacked Auto-

Encoder (SAE) which can provide new transformed features by different depths. To train more precisely,

we can append an additional layer with labels once we have a large amount of tagged samples [41].

Besides, a Denoising Auto Encoder (DAE) is trained to reconstruct a clear correction input from a

corrupted by noise input [42]. The DAE may also be stacked to build deep networks as well.

3.1.2 Boltzman Machine (BM)

BM is a network of binary units that symmetrically paired [43]. BM has a structure of neuron units

that make stochastic decisions about whether active or not [44]. If one BM result is cascaded into multiple

BMs, called Deep BM (DBM). Meanwhile, Restricted Boltzmann machine (RBM) is a customized BM

without connections among the hidden units [43]. RBM consists of visible and invisible variables such

that their relations can be figured out. If multiple layers are stacked, a layer-by-layer scheme called

Deep Belief Network (DBN). DBN could be used as a feature extraction method for dimensionality

reduction when unlabeled dataset and back-propagation are used (which means unsupervised training).

In contrast, DBN is used for classification when appropriately labeled dataset with feature vectors are

used (which means supervised training) [45].
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Figure 3.1: Classification of Deep Learning Methods [3]

3.1.3 Sum-Product Networks (SPN)

Other deep generative model is Sum-Product Networks (SPN). SPN is a directed acyclic graph with

variables as leaves, sum and product operations as internal nodes, and weighted edges [4]. The sum

nodes provide mixture models while the product nodes express the feature hierarchy [44]. Therefore, we

can consider SPN as a combination of mixture models and feature hierarchies. Fig. 3.2.

3.1.4 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) is an extension of neural networks with cyclic links to process

sequential information. This cyclic links placed between higher and lower layer neurons which enable

RNN to propagate data from previous to current events. This property makes RNN having a memory

of time series events [46]. Fig. 3.3 shows a single loop of RNN on the left which is comparable to the

right topology when the cyclic link unrolled.

One advantage of RNN is the ability connect previous information to present task; however, it cannot

reach ”far” previous memory. This problem is commonly known as long-term dependencies. Long-Short

Term Memory Networks (LSTM) introduced by Hochreiter and Schmidhuber [47] to overcome this

problem. LSTMs are an extension of RNN with four neural networks in a single layer, where RNN have

one only as shown in Fig. 3.4.

The main advantage of LSTM is the existence of state cell which is the line passing through in the

top of every layer. The cell accounts for propagating information from previous to next layer. Then,

”gates” in LSTM would manage which information will be passed or dropped. There are three gates to

control the information flow, namely input, forget and output gates [48]. These gates are composed of a

sigmoid neural network and an operator as shown in Fig. 3.4.
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Figure 3.2: One example SPN form with uniform distribution of five variables [4]

Figure 3.3: RNN with it’s unrolled topology [5]
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Figure 3.4: RNN topology (Top) vs LSTM topology (Bottom) [5]

3.2 Supervised Learning

Supervised learning or discriminative model is intended to distinguish some parts of data for pattern

classification with labeled data [40]. An example of the discriminative architecture is Convolutional

Neural Network (CNN) which employs a special architecture particularly suitable for image recognition.

The main advantage of CNN is hand-crafted feature extraction is never necessary. CNN can train

multilayer networks with gradient descent to learn complex, high-dimensional, nonlinear mappings from

large collections of data [6]. CNN uses three basic concepts: local receptive fields, shared weights, and

pooling [49]. Fig. 3.5 shows one of typical CNN architectures, LeNet-5 [6]. One extensive research that

successfully deployed using CNN is AlphaGo by Google [50]. Other examples of discriminative models

are linear and logistic regressions [10].

RNN can also be considered as a discriminative model when the output of RNN used as label

Figure 3.5: Architecture of LeNet-5 [6], one of typical CNN architectures
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sequences for the input [44]. One example of this network was proposed by Graves [51]. He leveraged

RNNs to build a probabilistic sequence transduction system, which can transform any input sequence

into any finite, discrete output sequence.

3.3 Hybrid

The hybrid deep architecture combines both generative and discriminative architectures. The hybrid

structure aims to distinguish data as well as discriminative approach. However, in the early step, it has

assisted in a significant way with the generative architectures results. An example of hybrid architecture

is Deep Neural Network (DNN). However, some confusion terms between DNN and DBN happens. In

the open literature, DBN also uses back-propagation discriminative training as a “fine-tuning.” This

concept of DBN is similar to Deep Neural Network (DNN) [40]. According to Deng [44], DNN is defined

as a multilayer network with cascaded fully connected hidden layers and is often use stacked RBM as

a pre-training phase. Many other generative models that can be considered as discriminative or hybrid

models when classification task added with class labels.

3.3.1 Generative Adversarial Networks (GAN)

Goodfellow [52] introduced a novel framework which trains both generative and discriminative mod-

els at the same time, which the generative model G captures the data distribution and the discriminative

model D distinguishes the original input data and the data coming from the model G. It is a zero-sum

game of G and D models [10] which model G aims to counterfeit the original input data while model

D aims to discriminate the original input and output of model G. According to Dimokranitou [10], the

advantage of GAN are consistent after equilibrium is achieved, no approximate inference or Markov

chains are needed, and can be trained with missing or limited data. On the other hand, the disadvantage

of applying GAN is to find the equilibrium between G and D models. A typical architecture of GAN is

shown in Fig. 3.6.
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Figure 3.6: Typical architecture of GAN
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Chapter 4. Our Methodology

We proposed two methodologies in this book, which are feature extraction and selection and fully

unsupervised IDS. Further details are explained as follows.

4.1 Feature Extraction and Selection

Feature learning could be defined as a technique that models the behavior of data from a subset

of attributes only. It could also show the correlation between detection performance and traffic model

quality effectively [53]. However, feature extraction and feature selection are different. Feature extraction

algorithms derive new features from the original features to (i) reduce the cost of feature measurement, (ii)

increase classifier efficiency, and (iii) improve classification accuracy, whereas feature selection algorithms

select no more than m features from a total of M input features, where m is smaller than M . Thus,

the newly generated features are simply selected from the original features without any transformation.

However, their goal is to derive or select a characteristic feature vector with a lower dimensionality which

is used for the classification task.

We adopt both feature extraction and selection techniques in D-FES. Fig.4.1 shows the stepwise

procedure of D-FES with two target classes. A pre-processing process, which comprises the normalization

and balancing steps, is necessary. The method is explained in Section 5 in detail. As illustrated in

Algorithm 1, we start D-FES by constructing SAE-based feature extractor with two consecutive hidden

layers to optimize the learning capability and the execution time [54]. The SAE outputs 50 extracted

features, which are then combined with the 154 original features existing in the AWID dataset [2].

Weighted feature selection methods are then utilized using well-referenced machine learners including

SVM, ANN, and C4.5 to construct the candidate models, namely D-FES-SVM, D-FES-ANN, and D-

FES-C4.5, respectively. SVM separates the classes using a support vector (hyperplane). Then, ANN

optimizes the parameters related to hidden layers that minimize the classifying error concerning the

training data, whereas C4.5 adopts a hierarchical decision scheme such as a tree to distinguish each

feature [55]. The final step of the detection task involves learning an ANN classifier with 12–22 trained

features only.

Figure 4.1: Stepwise procedure of D-FES with two target classes: normal and impersonation attack
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Algorithm 1 Pseudocode of D-FES

1: procedure D-FES

2: function Dataset Pre-processing(Raw Dataset)

3: function (Dataset Normalization)Raw Dataset

4: return NormalizedDataset

5: end function

6: function (Dataset Balancing)Normalized Dataset

7: return BalancedDataset

8: end function

9: return InputDataset

10: end function

11: function Deep Abstraction(InputDataset)

12: for i=1 to h do . h=2; number of hidden layers

13: for each data instance do

14: Compute yi (Eq. (4.1))

15: Compute zi (Eq. (4.2))

16: Minimize Ei (Eq. (4.6))

17: θi = {Wi, Vi, bfi , bgi}
18: end for

19: W ←W2 . 2nd layer, 50 extracted features

20: end for

21: InputFeatures←W + InputDataset

22: return InputFeatures

23: end function

24: function Feature Selection(InputFeatures)

25: switch D-FES do

26: case D-FES-ANN(InputFeatures)

27: return SelectedFeatures

28: case D-FES-SVM(InputFeatures)

29: return SelectedFeatures

30: case D-FES-C4.5(InputFeatures)

31: return SelectedFeatures

32: end function

33: procedure Classification(SelectedFeatures)

34: Training ANN

35: Minimize E (Eq. (4.7))

36: end procedure

37: end procedure
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4.1.1 Feature Extraction

(Sparse) Auto Encoder

An Auto Encoder (AE) is a symmetric neural network model, which uses an unsupervised approach

to build a model with non-labeled data, as shown in Fig. 4.2. AE extracts new features by using an

encoder-decoder paradigm by running from inputs through the hidden layer only. This paradigm en-

hances its computational performance and validates that the code has captured the relevant information

from the data. The encoder is a function that maps an input x to a hidden representation as expressed

by Eq. (4.1).

y = sf (W · x+ bf ) , (4.1)

where sf is a nonlinear activation function which is a decision-making function to determine the necessity

of any feature. Mostly, a logistic sigmoid, sig(t) =
1

1 + e−t
is used as an activation function because

of its continuity and differentiability properties [56]. The decoder function expressed in Eq. (4.2) maps

hidden representation y back to a reconstruction.

z = sg (V · y + bg) , (4.2)

where sg is the activation function of the decoder which commonly uses either the identity function,

sg(t) = t, or a sigmoid function such as an encoder. We use W and V acts as a weight matrix for the

features. bf and bg acts as a bias vector for encoding and decoding, respectively. Its training phase finds

optimal parameters θ = {W,V, bf , bg} which minimize the reconstruction error between the input data

and its reconstruction output on a training set.

This study uses a modified form of AE, i.e. sparse AE [57]. This is based on the experiments of Eskin

et al. [58], in which anomalies usually form small clusters in sparse areas of feature space. Moreover,

dense and large clusters usually contain benign data [59]. For the sparsity of AE, we first observe the

average output activation value of a neuron i, as expressed by Eq. (4.3).

ρ̂i =
1

N

N∑
j=1

sf
(
wTi xj + bf,i

)
, (4.3)

where N is the total number of training data, xj is the j-th training data, wTi is the i-th row of a weight

matrix W , and bf,i is the i-th row of a bias vector for encoding bf . By lowering the value of ρ̂i, a neuron

i in the hidden layer shows the specific feature presented in a smaller number of training data.

The task of machine-learning is to fit a model to the given training data. However, the model

often fits the particular training data but is incapable of classifying other data, and this is known as the

overfitting problem. In this case, we can use a regularization technique to reduce the overfitting problem.

The sparsity regularization Ωsparsity evaluates how close the average output activation value ρ̂i and the

desired value ρ are, typically with Kullback-Leibler (KL) divergence to determine the difference between

the two distributions, as expressed in Eq. (4.4).

Ωsparsity =

h∑
i=1

KL(ρ‖ρ̂i)

=

h∑
i=1

[
ρ log

(
ρ

ρ̂i

)
+ (1− ρ) log

(
1− ρ
1− ρ̂i

)]
,

(4.4)
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Figure 4.2: AE network with symmetric input-output layers and three neurons in one hidden layer

where h is the number of neurons in the hidden layer.

We may increase the value of the entries of the weight matrix W to reduce the value of sparsity

regularization. To avoid this situation, we also add regularization for the weight matrix, known as L2

regularization as stated in Eq. (4.5).

Ωweights =
1

2

h∑
i=1

N∑
j=1

K∑
k=1

(wji)
2
, (4.5)

where N and K are the number of training data and the number of variables for each data, respectively.

The goal of training sparse AE is to find the optimal parameters, θ = {W,V, bf , bg}, to minimize

the cost function shown in Eq. (4.6).

E =
1

N

N∑
n=1

K∑
k=1

(zkn − xkn)
2

+ λ · Ωweights + β · Ωsparsity, (4.6)

which is a regulated mean square error with L2 regularization and sparsity regularization. The coefficient

of the L2 regularization term λ and the coefficient of sparsity regularization term β are specified while

training the AE.

Stacked (Sparse) AE

(Sparse) AE can be used as deep learning technique by an unsupervised greedy layer-wise pre-

training algorithm known as Stacked (Sparse) Auto Encoder (SAE). Here, pre-training refers to the

training of a single AE using a single hidden layer. Each AE is trained separately before being cascaded
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Figure 4.3: SAE network with two hidden layers and two target classes

afterward. This pre-training phase is required to construct a stacked AE. In this algorithm, all layers

except the output layer are initialized in a multi-layer neural network. Each layer is then trained in an

unsupervised manner as an AE, which constructs new representations of the input.

The performance of the unsupervised greedy layer-wise pre-training algorithm can be significantly

more accurate than the supervised one. This is because the greedy supervised procedure may behave too

greedy as it extracts less information and considers one layer only [60] [61]. A neural network containing

only one hidden layer, it may discard some of the information about the input data as more information

could be exploited by composing additional hidden layers.

Fig. 4.3 shows the SAE network with two hidden layers and two target classes. The final layer

implements the softmax function for the classification in the deep neural network. Softmax function

is a generalized term of the logistic function that suppresses the K-dimensional vector v ∈ RK into

K-dimensional vector v∗ ∈ (0, 1)
K

, which adds up to 1. In this function, it is defined T and C as the

number of training instances and the number of classes, respectively. The softmax layer minimizes the

loss function, which is either the cross-entropy function as in Eq. (4.7),

E =
1

T

T∑
j=1

C∑
i=1

[zij log yij + (1− zij) log (1− yij)] , (4.7)

or the mean-squared error. However, the cross-entropy function is used in this study.

The features from the pre-training phase, which is greedy layer-wise, can be used either as an input

to a standard supervised machine-learning algorithm or as initialization for a deep supervised neural

network.

4.1.2 Feature Selection

The supervised feature selection block in Fig.4.1 consists of three different feature selection tech-

niques. These techniques are similar in that they consider their resulting weights to select the subset of
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Figure 4.4: ANN network with one hidden layer only

essential features. The following subsections contain further details of each feature selection technique.

D-FES-ANN

ANN is used as a weighted feature selection method. The ANN is trained with two target classes

only (normal and impersonation attack classes). Fig. 4.4 shows an ANN network with one hidden layer

only where b1 and b2 represent the bias values for the corresponding hidden and output layer, respectively.

Algorithm 2 D-FES-ANN Function

1: function D-FES-ANN(InputFeatures)

2: Training ANN

3: Wij

4: for each input feature do

5: Compute Vj (Eq. (4.8))

6: end for

7: Sort descending

8: SelectedFeatures← Vj > threshold

9: return SelectedFeatures

10: end function

To select the critical features, we consider the weight values between the first two layers. The weight

represents the contribution from the input features to the first hidden layer. A wij value close to zero

means that the corresponding input feature xj is meaningless for further propagation, thus having one

hidden layer is sufficient for this particular task. We define the important value of each input feature as

expressed by Eq. (4.8).

Vj =

h∑
i=1

|wij |, (4.8)
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where h is the number of neurons in the first hidden layer. As described in Algorithm 2, the feature

selection process involves selecting the features of which the Vj values are higher than the threshold value

after the input features are sorted according to their Vj values in descending order.

Following the weighted feature selection, ANN is also used as a classifier. When learning with

ANN, a minimum global error function is executed. It has two learning approaches, supervised and

unsupervised. This study uses a supervised approach since knowing the class label may increase the

classifier performance [62]. Also, a scaled conjugate gradient optimizer, which is suitable for a large scale

problem, is used [63].

D-FES-SVM

A supervised SVM is usually used for classification or regression tasks. If n is the number of input

features, the SVM plots each feature value as a coordinate point in n-dimensional space. Subsequently,

a classification process is executed by finding the hyperplane that distinguishes two classes. Although

SVM can handle a nonlinear decision border of arbitrary complexity, we use a linear SVM since the

nature of the dataset can be investigated by linear discriminant classifiers. The decision boundary for

linear SVM is a straight line in two-dimensional space. The main computational property of SVM is

the support vectors which are the data points that lie closest to the decision boundary. The decision

function of input vector x as expressed by Eq. (4.9), heavily depends on the support vectors.

D(x) = w~x+ b (4.9)

w =
∑
k

αkykxk (4.10)

b = (yk − wxk) (4.11)

Eqs. (4.10) and (4.11) show the corresponding value of w and b, respectively. From Eq. (4.9), we

can see that decision function D(x) of input vector ~x is defined as the sum of the multiplication of a

weight vector and input vector ~x and a bias value. A weight vector w is a linear combination of training

patterns. The training patterns with non-zero weights are support vectors. The bias value is the average

of the marginal support vectors.

SVM-Recursive Feature Elimination (SVM-RFE) is an application of RFE using the magnitude of

the weight to perform rank clustering [64]. The RFE ranks the feature set and eliminates the low-ranked

features which contribute less than the other features for classification task [65]. We use the SVM-RFE

by using the linear case [64] described in Algorithm 3. The inputs are training instances and class labels.

First, we initialize a feature ranked list that is filled by a subset of essential features that is used for

selecting training instances. We then train the classifier and compute the weight vector of the dimension

length. After the value of the weight vector is obtained, we compute the ranking criteria and find the

feature with the smallest ranking criterion. Using that feature, the feature ranking list is updated and

the feature with the lowest ranking criterion is eliminated. A feature ranked list is finally created as its

output.

D-FES-DT

C4.5 is robust to noise data and able to learn disjunctive expressions [66]. It has a k-ary tree

structure, which can represent a test of attributes from the input data by each node. Every branch of
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Algorithm 3 D-FES-SVM Function

1: function D-FES-SVM(InputFeatures)

2: Training SVM

3: Compute w (Eq. (4.10))

4: Compute the ranking criteria

5: ci = wi
2

6: Find the smallest ranking criterion

7: f = argmin(c)

8: Update feature ranked list

9: r = [s(f), r]

10: Eliminate the smallest ranking criterion

11: s = s(1 : f − 1, f + 1 : length(s))

12: SelectedFeatures← s

13: return SelectedFeatures

14: end function

the tree shows potentially selected important features as the values of nodes and different test results.

C4.5 uses a greedy algorithm to construct a tree in a top-down recursive divide-and-conquer approach

[66]. The algorithm begins by selecting the attributes that yield the best classification result. This is

followed by generating a test node for the corresponding attributes. The data are then divided based

on the information gain value of the nodes according to the test attributes that reside in the parent

node. The algorithm terminates when all data are grouped in the same class, or the process of adding

additional separations produces a similar classification result, based on its predefined threshold. The

feature selection process begins by selecting the top-three level nodes as explained in Algorithm 4. It

then removes the equal nodes and updates the list of selected features.

Algorithm 4 D-FES-C4.5 Function

1: function D-FES-C4.5(InputFeatures)

2: Training C4.5

3: SelectedFeatures ← top-three level nodes

4: for i=1 to n do . n = size of SelectedFeatures

5: for j=1 to n do

6: if SelectedFeatures[i]=SelectedFeatures[j] then Remove SelectedFeatures[j]

7: end if

8: end for

9: end for

10: return SelectedFeatures

11: end function
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Figure 4.5: Our proposed scheme contains feature extraction and clustering tasks

4.2 Fully Unsupervised IDS

4.2.1 K-means Clustering

K-means clustering algorithm groups all observations data into k clusters iteratively until conver-

gence will be reached. In the end, one cluster contains similar data since each data enters to the nearest

cluster. K-means algorithm assigns a mean value of the cluster members as a cluster centroid. In every

iteration, it calculates the shortest Euclidean distance from an observation data into any cluster centroid.

Besides that, the intra-variances inside the cluster are also minimized by updating the cluster centroid

iteratively. The algorithm would terminate when convergence is achieved, which the new clusters are the

same as the previous iteration clusters [67].

4.2.2 Fully Unsupervised Method

In this subsection, we describe our novel fully unsupervised deep learning-based IDS for detecting

impersonation attacks. There are two main tasks, feature extraction, and clustering tasks. Fig.4.5 shows

our proposed scheme which contains two main functions in cascade. We use a real Wi-Fi networks-

trace, AWID dataset [2], which contains 154 original features. Before the scheme starts, normalizing

and balancing process should be done to achieve best training performance. Algorithm 1 explains the

procedure of the proposed scheme in detail.

The scheme starts with two cascading encoders, and the output features from the second layer then

forwarded to the clustering algorithm. The first encoder has 100 neurons as the first hidden layer while

the second encoder comes with 50 neurons only. We follow a standard rule for choosing the number of

neurons in a hidden layer by using 70% to 90% of the previous layer. In this paper, we define k=2 since

we consider two classes only. The scheme ends by two clusters formed by k-means clustering algorithm.

These clusters represent benign and malicious data.
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Algorithm 5 Pseudocode of Fully Unsupervised Deep Learning

1: procedure START

2: function Dataset Preparation(Raw Dataset)

3: for each data instance do

4: Convert into integer value

5: Normalization zi = xi−min(x)
max(x)−min(x)

6: end for

7: Balance the normalized dataset

8: return InputDataset

9: end function

10: function SAE(InputDataset)

11: for i=1 to h do . h=2; number of hidden layers

12: for each data instance do

13: Compute H = sf (WX + bf )

14: Compute X ′ = sg (V H + bg)

15: Minimize E = 1
N

∑N
n=1

∑K
k=1

(
X′

kn −Xkn

)2 + λ · Ωweights + β · Ωsparsity

16: θi = {Wi, Vi, bfi , bgi}
17: end for

18: InputFeatures←W2 . 2nd layer, 50 extracted features

19: end for

20: return InputFeatures

21: end function

22: Initialize clusters and k=2 . two clusters: benign and malicious

23: function k-means Clustering(InputFeatures)

24: return Clusters

25: end function

26: Plot confusion between Clusters and target classes

27: end procedure
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Chapter 5. Evaluation

A set of experiments was conducted to evaluate the performance of the proposed D-FES method in

Wi-Fi impersonation detection. Choosing a proper dataset is an essential step in the IDS research field

[68]. We employed the AWID Dataset [2] which comprises of Wi-Fi network data collected from real

network environments. We achieved fair model comparison and evaluation by performing the experiments

on the same testing sets as in [2]. We then implement the proposed methodology using MATLAB R2016a

and Java code extracted and modified from WEKA packages [69] running on an Intel Xeon E-3-1230v3

CPU @3.30 GHz with 32 GB RAM.

5.1 Dataset Pre-processing

There are two types of AWID dataset. The first type named “CLS”, has four target classes, whereas

the second, named “ATK”, has 16 target classes. The 16 classes of the “ATK” dataset belong to the four

attack categories in the “CLS” dataset. As an example, the Caffe-Latte, Hirte, Honeypot and EvilTwin

attack types listed in the “ATK” dataset, are categorized as an impersonation attack in the “CLS”

dataset. Based on the size of the data instances included, the AWID dataset comprises both full and

reduced versions. In this study, we use the reduced “CLS” for simplicity.

The data contained in the AWID dataset are diverse in value, discrete, continuous, and symbolic,

with a flexible value range. These data characteristics could make it difficult for the classifiers to learn

the underlying patterns correctly [24]. The pre-processing phase thus includes mapping symbolic val-

ued attributes to numeric values, according to the normalization steps and dataset-balancing process

described in Algorithm 5. The target classes are mapped to one of these integer-valued classes: 1 for

normal instances, 2 for an impersonation, 3 for flooding, and 4 for an injection attack. Meanwhile, sym-

bolic attributes such as a receiver, destination, transmitter, and source address are mapped to integer

values with a minimum value of 1 and a maximum value, which is the number of all symbols. Some

dataset attributes such as the WEP Initialization Vector (IV) and Integrity Check Value (ICV) are hex-

adecimal data, which need to be transformed into integer values as well. The continuous data such as

Table 5.1: Distribution of each class for both balanced and unbalanced dataset

Class Training Test

Normal
Unbalanced 1,633,190 530,785

Balanced 163,319 53,078

Attack

Impersonation 48,522 20,079

Flooding 48,484 8,097

Injection 65,379 16,682

Total 162,385 44,858

AWID dataset mimics the natural unbalanced network distribution between normal and attack instances. ”Balanced” means to

make equal distribution between the number of normal instances (163,319) and thereof total attack instances (162,385). 15% of

training data were withdrawn for validation data.
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Algorithm 6 Dataset Pre-processing Function

1: function Dataset Pre-processing(Raw Dataset)

2: function Dataset Normalization(Raw Dataset)

3: for each data instance do

4: cast into integer value

5: normalize (Eq. (5.1))

6: NormalizedDataset

7: end for

8: end function

9: function Dataset Balancing(NormalizedDataset)

10: Pick 10% of normal instances randomly

11: BalancedDataset

12: end function

13: InputDataset← BalancedDataset

14: return InputDataset

15: end function

the timestamps were also left for the normalization step. Some of the attributes have question marks,

?, to indicate unavailable values. We use one alternative in which the question mark is assigned to a

constant zero value [70]. After all data are transformed into numerical values, attribute normalization

is needed [23]. Data normalization is a process; hence, all value ranges of each attribute are equal. We

adopt the mean range method [71] in which each data item is linearly normalized between zero and one

to avoid the undue influence of different scales [70]. Eq. (5.1) shows the normalizing formula.

zi =
xi −min(x)

max(x)−min(x)
, (5.1)

where zi denotes the normalized value, xi refers to the corresponding attribute value and min(x) and

max(x) are the minimum and maximum values of the attribute, respectively.

The reduced “CLS” data are a good representation of a real network, in which normal instances

significantly outnumber attack instances. The ratio between the normal and attack instances is 10:1 for

both unbalanced training and the test dataset as shown in Table 5.1. This property might be biased to

the training model and affect the model performance [59] [72]. To alleviate this, we balance the dataset

by selecting 10% of the normal instances randomly. However, we set particular value as the seed of the

random number generator for reproducibility purposes. The ratio between normal and attack instances

became 1:1, which is an appropriate proportion for the training phase [72]. D-FES is trained using the

balanced dataset and then verified on the unbalanced dataset.

5.2 Evaluation Metrics

We ensured that the evaluation of the performance of D-FES was fair by adopting the most well-

referenced model-performance measures [73]: accuracy (Acc), Detection Rate (DR), False Alarm Rate

(FAR), Mcc, Precision, F1 score, CPU time to build model (TBM), and CPU time to test the model

(TT). Acc shows the overall effectiveness of an algorithm [74]. DR, also known as Recall, refers to the

number of impersonation attacks detected divided by the total number of impersonation attack instances

in the test dataset. Unlike Recall, Precision counts the number of impersonation attacks detected
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among the total number of instances classified as an attack. The F1 score measures the harmonic mean

of Precision and Recall. FAR is the number of normal instances classified as an attack divided by the

total number of normal instances in the test dataset while FNR shows the number of attack instances

that are unable to be detected. Mcc represents the correlation coefficient between the detected and

observed data [75]. Intuitively, our goal is to achieve a high Acc, DR, Precision, Mcc, and F1 score and

at the same time, maintaining low FAR, TBM, and TT. The above measures can be defined by Eqs.

(5.2), (5.3), (5.4), (5.5), (5.6), (5.7), and (5.8):

Acc =
TP + TN

TP + TN + FP + FN
, (5.2)

DR(Recall) =
TP

TP + FN
, (5.3)

Precision =
TP

TP + FP
, (5.4)

FAR =
FP

TN + FP
, (5.5)

FNR =
FN

FN + TP
, (5.6)

F1 =
2TP

2TP + FP + FN
, (5.7)

Mcc =
(TP × TN) − (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (5.8)

where True Positive (TP) is the number of intrusions correctly classified as an attack, True Negative

(TN) is the number of normal instances correctly classified as a benign packet, False Negative (FN) is

the number of intrusions incorrectly classified as a benign packet, and False Positive (FP) is the number

of normal instances incorrectly classified as an attack.

5.3 Experimental Result

The proposed D-FES is evaluated on a set of experiments. First, we implement and verify different

architectures of the feature extractor, SAE. Second, we verify two feature selection approaches: filter-

based and wrapper-based methods. We finally validate the usefulness and the utility of D-FES on a

realistic unbalanced test dataset.

5.3.1 D-FES

Feature Extraction

We vary the SAE architectures to optimize the SAEs implementation with two hidden layers. The

features generated from the first encoder layer are employed as the training data in the second encoder

layer. Meanwhile, the size of each hidden layer is decreased accordingly such that the encoder in the

second encoder layer learns an even smaller representation of the input data. The regression layer with

the softmax activation function is then implemented in the final step. The four schemes are examined

to determine the SAE learning characteristics. The first scheme, Imbalance 40, has two hidden layers

with 40 and 10 hidden neurons in each layer. The second scheme, Imbalance 100, also has two hidden

layers; however, it employs 100 and 50 hidden neurons in each layer. Although there is no strict rule

for determining the number of hidden neurons, we consider a universal rule of thumb [76], which ranges

from 70% to 90% from inputs. The third and fourth schemes, named Balance 40 and Balance 100, have
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Table 5.2: The Evaluation of SAE’s Schemes

SAE Scheme DR (%) FAR (%) Acc (%) F1 (%)

Imbalance 40 (154:40:10:4) 64.65 1.03 96.30 73.13

Imbalance 100 (154:100:50:4) 85.30 1.98 97.03 81.75

Balance 40 (154:40:10:4) 72.58 18.87 77.21 74.48

Balance 100 (154:100:50:4) 95.35 18.90 87.63 87.59

Figure 5.1: Evaluation of SAE’s Scheme on Acc and F1 Score. The red bar represents F1 score while

the blue bar represents Acc rate.

the same hidden layer architecture with the first and second schemes, respectively; however, in this case,

we use the balanced dataset, because the common assumption is that a classifier model built by a highly

unbalanced data distribution performs poorly on minority class detection [77]. For our testing purpose,

we leverage all four classes contained in the AWID dataset.

Table 5.2 shows the evaluation of the SAE schemes. Each model uses either balanced or unbalanced

data for the SAE algorithm with following parameters: (input features: number of features in 1st hidden

layer: number of features in 2nd hidden layer: target classes. The SAE architectures with 100 hidden

neurons have higher DR than those with 40 hidden neurons. On the other hand, the SAE architec-

tures with 40 hidden neurons have lower FAR than those with 100 hidden neurons. To draw a proper

conclusion, other performance metrics that consider whole classes are needed as the DR checks for the

attack class only and the FAR measures for the normal class only. The Acc metric would be affected

by the distribution of data, for which different balanced and unbalanced distributions may result in an

incorrect conclusion. If we consider the Acc metric only as in Fig. 5.1, we may incorrectly select the

Imbalance 100 with 97.03% accuracy, whereas the Balance 100 only achieved 87.63% accuracy. In fact,

the Imbalance 100 achieved the highest accuracy rate because of the unbalanced proportion of normal

class to attack class. We obtain the best performance by checking F1 score, for which the Balance 100 has

achieved the highest F1 score among all schemes with 87.59%. Therefore, we choose the SAE architecture

with 154:100:50:4 topology.
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Table 5.3: Feature Set Comparisons Between Feature Selection and D-FES

Method Selected Features D-FES

CFS 5, 38, 70, 71, 154 38, 71, 154, 197

Corr 47, 50, 51, 67, 68, 71, 73, 82 71, 155, 156, 159, 161, 165, 166, 179, 181, 191,

193, 197

ANN 4, 7, 38, 77, 82, 94, 107, 118 4, 7, 38, 67, 73, 82, 94, 107, 108, 111, 112, 122,

138, 140, 142, 154, 161, 166, 192, 193, 201, 204

SVM 47, 64, 82, 94, 107, 108, 122, 154 4, 7, 47, 64, 68, 70, 73, 78, 82, 90, 94, 98, 107,

108, 111, 112, 122, 130, 141, 154, 159

C4.5 11, 38, 61, 66, 68, 71, 76, 77, 107, 119, 140 61, 76, 77, 82, 107, 108, 109, 111, 112, 119, 158,

160

Feature Selection

To show the effectiveness of D-FES, we compare the following feature selection methods:

• CfsSubsetEval [78] (CFS) considers the predictive ability of each feature individually and the degree

of redundancy between them, to evaluate the importance of a subset of features. This approach

selects subsets of features that are highly correlated with the class while having low inter-correlation.

• Correlation (Corr) measures the correlation between the feature and the class to evaluate the

importance of a subset of features.

• The weight from a trained ANN model mimics the importance of the correspondence input. By

selecting the important features only, the training process becomes lighter and faster than before

[41].

• SVM measures the importance of each feature based on the weight of the SVM classification results.

• C4.5 is one of the decision tree approaches. It can select a subset of features that are not highly

correlated. Correlated features should be in the same split; hence, features that belong to different

splits are not highly correlated [66].

A filter-based method usually measures the correlation and redundancy of each attribute without

executing a learning algorithm. Therefore, the filter-based method is lightweight and fast. On the other

hand, the wrapper-based method examines the results of any learning algorithm that outputs a subset

of features [79]. CFS and Corr belong to the filter-based techniques, whereas ANN, SVM, and C4.5 are

wrapper-based methods.

We select a subset of features using the wrapper-based method for considering each feature weight.

For ANN, we first set a threshold weight value, and if the weight of a feature is higher than the threshold,

then the feature is selected. The SVM attribute selection function ranks the features based on their weight

values. The subset of features with a higher weight value than the predefined threshold value is then

selected. Similarly, C4.5 produces a deep binary tree. We select the features that belong to the top-three

levels in the tree. CFS produces a fixed number of selected features and Corr provides a correlated

feature list.

During ANN training for both feature selection and classification, we optimize the trained model

using a separate validation dataset; that is, we separate the dataset into three parts: training data,

validation data and testing data in the following proportions: 70%, 15%, and 15%, respectively. The

training data are used as input into the ANN during training, and the weights of neurons are adjusted
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Figure 5.2: Cross entropy error of ANN. The best validation performance is achieved at the epoch of

163.

during the training according to its classification error. The validation data are used to measure model

generalization providing useful information on when to terminate the training process. The testing data

is used for an independent measure of the model performance after training. The model is said to be

optimized when it reaches the smallest average square error on the validation dataset. Fig. 5.2 shows

an example of ANN performance for the cross-entropy error during ANN training. At the epoch of

163, the cross-entropy error, a logarithmic-based error measurement comparing the output values and

desired values, starts increasing, meaning that at the epoch of 163, the model is optimized. Although

the training data output decreasing error values after the epoch point of 163, the performance of the

model no longer continues to improve, as the decreasing cross-entropy error may indicate the possibility

of overfitting.

Table 5.3 contains all the feature lists selected from the various feature selection methods. Different

methods output various selected features, which demonstrated the advantage of automatic learning of

underlying data done by machine learning models. By leveraging this advantage, we can avoid to rely on

expert knowledge to select the most suitable features for detecting an impersonation attack. In Table 5.3,

some features are essential for detecting an impersonation attack, which can be the key for classifying

impersonation instances. These are the 4th and the 7th, which are selected by the ANN and SVM and

the 71st, which is selected by CFS and Corr. However, relying to these features solely might become a

vulnerability. Pei et al. [80] demonstrated adversaries can add or modify particular features in order to

make the trained model of IDS incorrectly classify an attack as benign. D-FES can reduce the probability

of this vulnerability to be exploited by incorporating new-transformed features from SAE. These new

features contain more high-level abstractions to make classification decision.

The characteristics of sample of selected features are shown in Fig. 5.3. The blue line indicates

normal instances, and at the same time, the red line depicts the characteristics of an impersonation

attack. We can distinguish between normal and attack instances based on the attribute value of data

instances. For example, once a data instance has an attribute value of 0.33 in the 166th feature, the data

instance has a high probability of being classified as an attack. This could be applied to the 38th and
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(a)

(b)

Figure 5.3: Characteristics of (a) 38th and (b) 166th features. The

blue line represents normal instances while the red line represents attack

instances.
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Table 5.4: Model Comparisons on Selected Features

Model DR (%) FAR (%) Acc (%) F1 (%) Mcc (%) TBM (s)

CFS 94.85 3.31 96.27 92.04 89.67 80

Corr 92.08 0.39 97.88 95.22 93.96 2

ANN 99.79 0.47 97.88 99.10 98.84 150

SVM 99.86 0.39 99.67 99.28 99.07 10,789

C4.5 99.43 0.23 99.61 99.33 99.13 1,294

Table 5.5: Model Comparisons on D-FES Feature Set

Model DR (%) FAR (%) Acc (%) F1 (%) Mcc (%) TBM (s)

CFS 96.34 0.46 98.80 97.37 96.61 1,343

Corr 95.91 1.04 98.26 96.17 95.05 1,264

ANN 99.88 0.02 99.95 99.90 99.87 1,444

SVM 99.92 0.01 99.97 99.94 99.92 12,073

C4.5 99.55 0.38 99.60 99.12 98.86 2,595

other features as well.

Table 5.4 lists the performance of each algorithm on the selected feature set only. SVM achieved the

highest DR (99.86%) and Mcc (99.07%). However, it requires CPU time of 10,789s to build a model,

the longest time among the models observed. As expected, the filter-based methods (CFS and Corr)

built their models quickly; however, they attained the lowest Mcc for CFS (89.67%).

Table 5.5 compares the performances of the candidate models on the feature sets that are produced

by D-FES. SVM again achieved the highest DR (99.92%) and Mcc (99.92%). It also achieved the highest

FAR with a value of only 0.01%. Similarly, the lowest Mcc is achieved by Corr (95.05%). This enables

us to conclude that wrapper-based feature selections outperform filter-based feature selections. As SVM

showed the best performance, we may consider the properties of selected features by SVM as described

in Table 5.6.

We observe the following patterns from Tables 5.4 and 5.5: Only two out of five methods (Corr and

Table 5.6: Feature Set Selected by D-FES-SVM

Index Feature Name Description

47 radiotap.datarate Data rate (Mb/s)

64 wlan.fc.type subtype Type or Subtype

82 wlan.seq Sequence number

94 wlan mgt.fixed.capabilities.preamble Short Preamble

107 wlan mgt.fixed.timestamp Timestamp

108 wlan mgt.fixed.beacon Beacon Interval

122 wlan mgt.tim.dtim period DTIM period

154 data.len Length
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C4.5) showed lower FAR without D-FES, which we expect to minimize the FAR value of the proposed

IDS. This phenomenon might exist because the original and extracted features are not correlated because

Corr and C4.5 measure the correlation between each feature. Filter-based feature selection methods

require much shorter CPU time compared to the CPU time taken by D-FES. However, D-FES improves

the filter-based feature selections performance significantly.

Similar patterns are captured by Fig. ??, which depicts the performance of different models in terms

of Acc, Precision and F1 score, respectively. D-FES-SVM achieved the highest Acc, Precision and F1

score of 99.97%, 99.96% and 99.94%, respectively. By D-FES, all methods achieve Precision of more

than 96%, shows that D-FES can reduce the number of incorrect classification of normal instances as an

attack. We can also observe that D-FES improves the Acc of filter-based feature selections significantly.

Except for the C4.5, all feature selection methods are improved both the Acc and F1 score by using

D-FES. This makes the proposed D-FES a good candidate for an intrusion detector.
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(a)

(b)

(c)

Figure 5.4: Models performance comparisons in terms of (a) Acc, (b)

Precision and (c) F1 score. The blue bar represents performances by

feature selection only while the red bar represents performances by D-

FES.

45



(a)

(b)

(c)

(d)

Figure 5.5: Model performance comparisons between D-

FES and random method in terms of: (a) DR (b) FAR

(c) FNR (d) TT
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Table 5.7:

Single Attack: Impersonation Attack

Dataset DR (%) FAR (%) F1 (%) Acc (%)

Train 99.911 0.031 99.903 99.955

Validation 99.904 0.033 99.898 99.953

Test 99.932 0.016 99.939 99.972

All 99.913 0.029 99.907 99.958

Table 5.8:

Single Attack: Flooding Attack

Dataset DR (%) FAR (%) F1 (%) Acc (%)

Train 99.985 0.035 99.934 99.970

Validation 99.918 0.045 99.884 99.946

Test 99.959 0.029 99.932 99.969

All 99.971 0.036 99.926 99.966

D-FES on All Attacks in AWID

In this section, we generalized D-FES to all attacks existed in AWID dataset. By doing so, we show

that D-FES achieved good performance not only for impersonation attack but also for other attacks.

For experiment purposes, we distinguish train, validation and test dataset which comprises of 75%, 15%

and 15% of original dataset and chosen randomly. Test dataset was not shown during training. The last

row shows accumulation of all three previous datasets. We experimented with following schemes:

• Binary class: single attack and benign classes for each of injection, impersonation and flooding

attacks

• Multiclass: a combination of 2 attacks, and all attacks

Table 5.7 shows experimental results on detecting single attack class only, which is impersonation

attack. We can see that D-FES achieved 99.972% of accuracy during the test. While Tables 5.8 and

5.9 show experimental results on detecting flooding and injection attacks, respectively. The accuracy

of flooding attack detection is lesser 0.003% of impersonation attack, which can be considerably same.

Injection attack achieved the best result among others with 99.991% of accuracy during the test. We

can also see in Table 5.9 that D-FES achieved 100% detection rate of injection attacks. However, this

100% of DR might be caused by overfitting due to statistical property of the dataset since the original

author also faced a similar problem with injection attack detection.

Tables 5.10, 5.11 and 5.12 show experimental results on combination of attacks existed in AWID

dataset which are impersonation and flooding, impersonation and injection and flooding and injection,

respectively. Again, detection of injection attacks leads to overfitting shown by 100% of DR in Table

5.12. Table 5.13 shows D-FES performance tested to detect all attacks simultaneously. We can see in

Table 5.13 that D-FES achieved 99.908% of detection rate and 0.115% of false alarm rate during the test

with all attacks. These results outperform Usha and Kavitha [81], which achieved 99.20% and about 1%
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Table 5.9:

Single Attack: Injection Attack

Dataset DR (%) FAR (%) F1 (%) Acc (%)

Train 100.000 0.009 99.985 99.993

Validation 100.000 0.008 99.986 99.994

Test 100.000 0.012 99.980 99.991

All 100.000 0.009 99.985 99.993

Table 5.10:

Multiclass, Two Attacks:Impersonation and Flooding Attacks

Dataset DR (%) FAR (%) F1 (%) Acc (%)

Train 99.959 0.365 99.672 99.755

Validation 99.952 0.360 99.676 99.757

Test 99.986 0.339 99.709 99.782

All 99.962 0.361 99.678 99.760

of detection accuracy and false alarm rate, respectively. This shows that D-FES can be generalized to

detect any attacks.

We can observe in Table 5.14 each attack detection rate for every previous scheme. As expected,

injection attack always causes overfitting. In overall, all attack types can be detected almost 100%.

Figure 5.6 shows DR comparison between each previous scheme and original work by Kolias et al.

[2]. While Figure 5.7 also shows the DR comparison, however, excluding the Kolias work to see the

difference of D-FES performances in more detail.

Figure 5.8 shows FAR comparison between each previous scheme and original work by Kolias et al.

[2]. While Figure 5.9 also shows the FAR comparison, however, excluding the Kolias work to see the

difference of D-FES performances in more detail.

In Table 5.15, we can observed important features for each attack class detection. These subset of

features are important for who wants to detect particular attack only.

Table 5.11:

Multiclass, Two Attacks:Impersonation and Injection Attacks

Dataset DR (%) FAR (%) F1 (%) Acc (%)

Train 99.951 0.024 99.958 99.965

Validate 99.924 0.020 99.948 99.957

Test 99.941 0.016 99.959 99.966

All 99.946 0.023 99.957 99.964
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Table 5.12:

Multiclass, Two Attacks:Flooding and Injection Attacks

Dataset DR (%) FAR (%) F1 (%) Acc (%)

Train 100.000 0.329 99.764 99.806

Validate 100.000 0.332 99.765 99.805

Test 100.000 0.396 99.717 99.767

All 100.000 0.340 99.757 99.800

Table 5.13:

Multiclass, Three Attacks:Impersonation, Flooding and Injection Attacks

Dataset DR (%) FAR (%) F1 (%) Acc (%)

Train 99.943 0.109 99.917 99.917

Validate 99.897 0.145 99.829 99.871

Test 99.945 0.115 99.877 99.908

All 99.939 0.115 99.904 99.910

Table 5.14:

Detection Rate as per Scheme (in %)

Dataset Impersonation Flooding Impersonation

Impersonation and Flooding 99.972 100.000 -

Impersonation and Injection 99.863 - 100.000

Injection and Flooding - 100.000 100.000

All 99.850 99.808 100.000

Figure 5.6: DR with Kolias

Figure 5.7: DR without Kolias
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Figure 5.8: FAR with Kolias

Figure 5.9: FAR without Kolias

Table 5.15:

Feature Sets Among All Schemes

Method Feature Sets

Single Attack: Impersonation 4,7,38,61,66,67,71,73,77,82,93,94,107,108,118,12,142,154,181,193

Single Attack: Flooding 64,90,77,67,66,70,75,38,118,4,82,7,112,73,108,176,128,177,98

Single Attack: Injection 191, 199, 190, 7, 131,73,140,67,68

Two Attacks: Im-F 67,73,130,90,64,78,70,111,98,75,66,118,38,82,112,107,7,4

Two Attacks: Im-In 93,108,122,203,94,66,140,142,82,38,67,68,107,47

Two Attacks: F-In 191, 199, 190, 7, 131,73,140,67,68

Three Attacks 183,142,73,130,90,140,64,98,75,77,94,70,66,38,82,67,118,68,112,107,4,7
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Table 5.16: The evaluation of our proposed scheme

Input DR(%) FAR(%) Acc(%) Precision(%) F1(%)

Original data 100.00 57.17 55.93 34.20 50.97

1st hidden layer 100.00 57.48 55.68 34.08 50.83

2nd hidden layer 92.18 4.40 94.81 86.15 89.06

5.3.2 Fully Unsupervised IDS

There are two hidden layers in the SAE network with 100 and 50 neurons accordingly. The encoder

in the second layer fed with features formed by the first layer of the encoder. The softmax activation

function is implemented in the final stage of the SAE to optimize the SAE training. The 50 features

obtained from the SAE are then forwarded to k-means clustering algorithm as input. We use random

initialization for k-means clustering algorithm. However, we set particular value as a random number

seed for reproducibility purpose. We compare clustering results from three inputs: original data, features

from the first hidden layer of the SAE and features from the second hidden layer of the SAE as shown

in Table 5.16.

We observe the limitation of a traditional k-means algorithm, which unable to clusters complex

and high dimensional data of AWID dataset, as expressed by 55.93% of accuracy only. Although 100

features coming from the 1st hidden layer achieved 100% of detection rate, the false alarm rate is still

unacceptable with 57.48%. The k-means algorithm fed by 50 features from the 2nd hidden layer achieved

the best performance among all as shown by the highest F1 score (89.06%) and Acc (94.81%), also the

lowest FAR (4.40%). Despite a bit lower detection rate, our proposed scheme improves the traditional

k-means algorithm in overall by almost twice F1 score and accuracy.

Fig. 7.5 shows cluster assignment result in Euclidean space, by our proposed scheme. Black dots

represent attack instances, while gray dots represent benign instances. The location of cluster centroid

for each cluster is expressed by X mark.

We also compare the performance of our proposed scheme against two previous related work by

Kolias et al.[2] and Aminanto and Kim [82] as shown in Table 5.17. Our proposed scheme can classify

impersonation attack instances with a detection rate of 92.18% while maintaining low FAR, 4.40%. Kolias

et al. [2] tested various classification algorithms such as Random Tree, Random Forest, J48, Naive Bayes,

etc., on AWID dataset. Among all methods, Naive Bayes algorithm showed the best performance by

correctly classifying 4,419 out of 20,079 impersonation instances. It achieved approximately 22% DR

only, which is unsatisfactory. Aminanto and Kim [83] proposed another impersonation detector by

combining Artificial Neural Network (ANN) with SAE. They successfully improved the IDS model for

impersonation attack detection task by achieving a DR of 65.18% and a FAR of 0.14%. In this study, we

leverage SAE for assisting traditional k-means clustering with extracted features. We still have a high

false alarm rate, which leads to a severe impact of IDS [15]. However, we can accept false alarm rate

value about 4% since we use fully unsupervised approach here. We can adjust the parameters and cut

the FAR down, but, less FAR or high DR remains a tradeoff for users and will be discussed in further

work. We observe the advantage of SAE for abstracting a complex and high dimensional data to assist

traditional clustering algorithm which is shown by reliable DR and F1 score achieved by our proposed

scheme.
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Figure 5.10: Cluster assignment result in Euclidean space by our proposed scheme

Table 5.17: Comparison with previous work

Method DR(%) FAR(%) Acc(%) Precision(%) F1(%)

Kolias et al.[2] 22.01 0.02 97.14 97.57 35.92

Aminanto and Kim [82] 65.18 0.14 98.59 94.53 77.16

Our proposed scheme [84] 92.18 4.40 94.81 86.15 89.06
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Table 5.18: IDSs Leveraging SAE

Publication Role of SAE Combined with

AK16a [82] Classifier ANN

AK16b [86] Feature Extractor Softmax Regression

AK17 [84] Clustering K-means Clustering

ACTYK17 [87] Feature Extractor SVM, DT, ANN

5.4 Comparison

The goal of deep learning method is learning feature hierarchies from the lower level to higher level

features [85]. The technique can learn features independently at multiple levels of abstraction, and thus

discover complicated functions mapping between the input to the output directly from raw data without

depending on customized features by the experts. In higher-level abstractions, humans often have no

idea to see the relation and connection from the raw sensory input. Therefore, the ability to learn

sophisticated features, also called as feature extraction, will become necessarily needed as the amount

of data increased sharply [85]. SAE is one good instance of feature extractors. Therefore, we discuss

several previous works which implement SAE as the feature extractor and other roles as well, in the IDS

module as shown in Table 5.18.

Feature extraction by SAE can reduce the complexity of original features of the dataset. However,

besides as a feature extractor, we validated that SAE can also be used for classifying and clustering tasks

as shown in Table 5.18. In AK16b [86], we used semi-supervised approach for our IDS which contains

feature extractor (unsupervised learning) and classifier (supervised learning). We leveraged SAE for

feature extraction and regression layer with softmax activation function for a classifier. We implemented

SAE as feature extractor as well in ACTYK17 [87], but we leveraged ANN, DT, and SVM as a feature

selection. In other words, we combine stacked feature extraction and weighted feature selections. By our

experiments [87], we improved our feature learning process by combining stacked feature extraction with

weighted feature selection. The feature extraction of SAE is capable of transforming the original features

into a more meaningful representation by reconstructing its input and providing a way to check that

the relevant information in the data has been captured. SAE can be efficiently used for unsupervised

learning on a complex dataset.

Unlike two previous approaches, we use SAE for other roles than a feature extractor, namely classi-

fying and clustering methods in AK16a [82] and AK17 [84], respectively. We adopted ANN as a feature

selection since the weight from trained models mimics the significance of the corresponding input [82].

By selecting the essential features only, the training process becomes lighter and faster than before. In

AK16a [82], we exploited SAE as a classifier, since this employs consecutive layers of processing stages in

hierarchical manners for pattern classification and feature or representation learning. On the other hand,

we proposed a novel fully unsupervised method [84] which can detect attacks without prior information

on data label. An unsupervised SAE equips our method for extracting features and a K-means clustering

algorithm for clustering task.

Kolias et al. [2] tested some existing machine learning models on the dataset in a heuristic manner.

The lowest detection rate is observed particularly on impersonation attack reaching an accuracy of 22%

only. Therefore, we focus on improving impersonation detection and hence comparing our approaches

on impersonation detection as summarized in Table 5.19. Detection Rate (DR) refers to the number of
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Table 5.19: Comparison on Impersonation Detection

Method Detection Rate (%) False Alarm Rate (%)

AK16a [82] 65.178 0.143

AK16b [86] 92.674 2.500

AK17 [84] 92.180 4.400

ACTYK17 [87] 99.918 0.012

KKSG15 [2] 22.008 0.021

attacks detected divided by the total number of attack instances in the test dataset while False Alarm

Rate (FAR) is the number of normal instances classified as an attack divided by the total number of

normal instances in the test dataset.

From Table 5.19, we can observe that SAE can improve the performance of our IDS compared

to KKSG15 [2]. We verified that SAE achieved high-level abstraction of complex and massive Wi-Fi

network data. The SAE’s model free properties and learnability on complex and large-scale data fit into

the open nature of Wi-Fi networks. Among all IDSs, the one using SAE as a classifier achieved the lowest

impersonation attack detection rate with 65.178% only. It shows that SAE can be a classifier but not

excellent as the original role of SAE is a feature extractor. The usability of SAE as a feature extractor

validated by AK16b [86] and ACTYK17 [87] which achieved highest DR. Even more, by a combination

of SAE extractor and weighted selection [87], we delivered the best performance of DR and FAR among

other. Besides that, we found an interesting fact that SAE can assist K-means clustering algorithm to

achieve better performance with DR of 92.180% [84]. However, we need to analyze further to reduce the

FAR since it reached the highest FAR which is undesirable in IDS.
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Chapter 6. Related Work

An IDS has been studied for decades especially on anomaly-based IDSs. Fragkiadakis et al. [14]

proposed an anomaly-based IDS using Dempster-Shafer’s rule for measurement. Shah et al. [88] also

developed an evidence theory for combining anomaly-based and misuse-based IDSs. Bostani et al. [23]

proposed an anomaly-based IDS by modifying an optimum path forest combined with k-means clustering.

A distributed anomaly-based IDS, called TermID, proposed by Kolias et al. [89] incorporating ant

colony optimization and rule induction in a reduced data operation to achieve data parallelism and

reduce privacy risks.

Feature selection techniques are useful for reducing model complexity, which leads to faster learning

and real-time processes. Kayacik et al. [90] investigated the relevance of each feature in the KDD’99

Dataset with a list of the most relevant features for each class label and provided useful discussions

on the roles of information gain theories. Their work confirmed the importance and the role of feature

selection for building an accurate IDS model. Puthran et al. [91] also worked on relevant features in

the KDD’99 Dataset and improved the decision tree by using binary and quad splits. Almusallam et

al. [59] leveraged a filter-based feature selection method. Zaman and Karray [92] categorized IDSs

based on the Transmission Control Protocol/Internet Protocol (TCP/IP) network model using a feature

selection method known as the Enhanced Support Vector Decision Function (ESVDF). Louvieris et al.

[93] proposed an effect-based feature identification IDS using näıve Bayes as a feature selection method.

Zhu et al. [94] also proposed a feature selection method using a multi-objective approach.

On the other hand, Manekar and Waghmare [95] leveraged Particle Swarm Optimization (PSO) and

SVM. PSO performs feature optimization to obtain an optimized feature, after which SVM conducts

the classification task. A similar approach was introduced by Saxena and Richariya [96], although

Schaffernicht and Gross [97] introduced the concept of weighted feature selection. Exploiting SVM-based

algorithms as a feature selection method was proposed by Guyon et al. [64]. This method leveraged

the weights adjusted during support vector learning and resulted in ranking the importance of input

features. Another related approach was proposed by Wang [41] who ranked input features based on

weights learned by an ANN. This method showed the ability of deep neural networks to find useful

features among the raw data. Aljawarneh et al. [98] proposed a hybrid model of feature selection and

an ensemble of classifiers which tend to be computationally demanding.

We have examined several feature selection methods for IDS. Huseynov et al. [26] inspected ant

colony clustering method to find feature clusters of botnet traffic. The selected features in [26] are

independent of traffic payload and represent the communication patterns of botnet traffic. However,

this botnet detection does not scale for large and noisy dataset due to the absence of control mechanism

for clustering threshold. Kim et al. [27] tested artificial immune system and swarm intelligence-based

clustering to detect unknown attacks. Furthermore, Aminanto et al. [99] discussed the utility of ant

clustering algorithm and fuzzy inference system for IDS. We can claim that their bio-inspired clustering

methods need to be scrutinized further.

Not only feature selection but also feature extraction has been proposed to improve classification

performance. Shin et al. [100] leveraged SAE for unsupervised feature learning in the field of medical

imaging. This method showed that SAE, which is a type of deep learning techniques, can be efficiently

used for unsupervised feature learning on a complex dataset. Unsupervised learning by SAE can be used
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to learn hierarchical features that are useful for limited instances on a dataset.

Roy et al. [101] proposed an IDS leveraging deep learning models. They validated that a deep

learning approach can improve IDS performance. Deep Neural Network (DNN) is selected comprising

of multilayer feedforward neural network with 400 hidden layers. Shallow models, rectifier and softmax

activation functions, were used in the output layer. The advantage of the feedforward neural network is

the ability to provide a precise approximation for complex multivariate nonlinear function directly from

input values and strong modeling capabilities for large classes. Besides that, the authors claimed that

DNN is better than DBN since the discriminating ability for pattern classification by characterizing the

posterior distributions of classes conditioned on the data [101].

For validation purposes, KDD Cup’99 dataset was used. This dataset has 41 features that become

the input to the network. The authors divided training data into 75% of training data and 25% of

validation data. They also compared the performance of a shallow classifier, SVM. Based on their

experimental result, DNN outperforms SVM by the accuracy of 99.994%, while SVM achieved 84.635%

only. This result showed the effectiveness of DNN for IDS purposes.

Another DNN but the different architecture was proposed by Potluri and Diedrich [102] in 2016.

This paper mainly focuses on improving DNN implementation for IDS by using multi-core CPUs and

GPUs. This is important since DNN requires large computation for training [103]. In the beginning,

the authors [102] review some IDSs using a hardware enhancement: GPU, multicores CPU, memory

management, and FPGA. Also, load balancing and splitting or parallel processing were discussed. For

the proposed approach, a deep learning model, SAE was chosen to construct the DNN in this work. The

architecture of this network has 41 input features from NSL-KDD dataset, 20 neurons in the first hidden

layer by first AE, ten neurons in the second hidden layer by second AE and five neurons in the output

layer containing softmax activation function. In the training phase, each AE is trained separately but

in sequence since the hidden layer of first AE becomes the input of second AE. There are two times

of fine-tuning processes, first done by softmax activation function and second done by backpropagation

through the entire network.

NSL KDD dataset was selected for testing the approach. This dataset is a revised version of KDD

Cup’99 dataset. It has the same number of features which is 41 but with more rational distributions and

without redundant instances as exist in KDD Cup’99 dataset. The authors firstly tested the network

with different attack class combinations from 2 classes to 4 classes. The lesser number of attack classes

performs better than the higher number of attack classes as expected since imbalance class distribution

leads to a good result for fewer attack types. For the accelerated purpose, the authors used two different

CPUs and a GPU. They also experimented using serial and parallel CPUs. Their experimental result

shows that training using parallel CPU achieved three times faster than serial CPU. Training using GPU

delivered similar performance to parallel CPU as well. An interesting point here is the training using

parallel of the second CPU was more rapid than GPU. The authors explained that this case happened due

to the clock speed of modern CPU is too high. Unfortunately, the authors do not provide performance

comparison regarding detection accuracy or false alarm rate.

Self Taught Learning (STL) was proposed as a deep learning model for IDS by Niyaz et al. [7]. The

authors mentioned two challenges to develop an efficient IDS. The first challenge is feature selection task

since selected features for a particular attack might different for other attack types. The second challenge

is limited amounts of a labeled dataset for training purpose. Therefore, a generative deep learning model

was chosen to deal with this unlabeled dataset. The proposed approach is STL which comprises of two

stages, Unsupervised Feature Learning (UFL) and Supervised Feature Learning (SFL). For UFL, the
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Figure 6.1: The two stage of STL [7]

authors leveraged sparse AE while softmax regression for SFL. Fig. 6.1 shows the two-stage process of

STL used in this paper. The UFL accounts for feature extraction with unlabeled dataset while the SFL

accounts for classification task with labeled data.

The authors verified their approach using NSL KDD dataset. Before the training process, the

authors defined a pre-processing step for the dataset which contains 1-to-N encoding and min-max

normalization. After 1-to-N encoding process, 121 features were ready for normalization step and input

features for the UFL. For testing purposes, 10-fold cross validation selected for training data and test

dataset from NSL KDD dataset chosen for test data. The authors also evaluated the STL for three

different attack combinations, 2-class, 5-class, and 23-class. In general, their STL achieved higher than

98% of classification accuracy for all combinations during the training phase. In the testing phase, the

STL attained an accuracy of 88.39% and 79.10% for 2-class and 5-class classifications, respectively. At

the end of this paper, the authors mentioned the future work are to develop real-time IDS using deep

learning models and an IDS with on-the-go feature learning on raw network traffic.

Yu et al. [104] introduced a session based IDS using a deep learning architecture. They came up with

common IDS shortcomings: high false positive and false negative, most attack features in common dataset

are heavily structured and have special semantics involved in specific expert knowledge, and the heavily

hand-crafted dataset is closely related to particular attack classes. Therefore, a deep learning model was

leveraged since unsupervised deep learning can learn essential features automatically from large data.

The proposed approach is comprised of extracting features from raw data and applying unsupervised

Stacked Denoising AE (SDAE). Session-based data were extracted from raw network data, which drawn

from UNB ISCX 2012 and CTU-13 for benign and botnet instances, respectively. Since the data are

extracted from raw data, a pre-processing step is necessary. Data pre-processing procedure consists of

session construction, record construction, and normalization. Session construction distinguishes three

different sessions namely TCP, UDP, and ICMP. Record construction draws first 17 features from packet

headers and the rest 983 features from the payload. While normalization uses the min-max function.

The SDAE itself contains two hidden layers and a softmax regression layer for the classification task.

For the denoising purpose, the authors randomly set input features using zero value for 10%, 20% and
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30% of input features. The authors mentioned that the advantage of using SDAE is three-fold: able

to learn important features from unlabeled instances automatically, denoising strategy makes it robust

from missing and noisy input, and good dimensionality reduction when the hidden layer is non-linear.

As mentioned earlier, the authors extracted data from raw network data from UNB ISCX 2012 and

CTU-13. They also measured accuracy, precision, recall, F-score and ROC curve as the performance

metrics. Binary and multi-class classifications were used along with 43% of the dataset and whole dataset

combinations to verify the SDAE performance. The SDAE also compared to other deep learning models,

namely SAE, DBN and AE-CNN models. In overall, the SDA achieved the best performance with the

highest accuracy rate of 98.11% of multi-class classification using the whole dataset.

Kim et al. [48] adopted the generative approach of LSTM-RNN for an IDS purpose. They leveraged

softmax regression layer as the output layer. While other hyper-parameters are 100, 50 and 500 of the

time step, batch size, and epoch, respectively. Also, Stochastic Gradient Descent (SGD) and Mean

Square Error (MSE) were used as the optimizer and loss function, respectively. 41 input features drawn

from KDD Cup’99 dataset. Experimental results show the best learning rate is 0.01 and hidden layer

size is 80 with 98.88% of detection rate and 10.04% of false alarm rate. Similar network topology also

proposed by Liu et al. [105] with different hyper-parameters: time step, batch size, and age are 50, 100

and 500, respectively. Tested using KDD Cup’99 dataset, 98.3% of detection rate and 5.58% of false

alarm rate were achieved.

Software Defined Networks (SDN) is an emerging network technology of today’s applications since

it has a unique property that builds by controller plane and data plane. The controller plane decouples

the network control and forwarding functions. The centralized approach of controller plane makes SDN

controller suitable for IDS function due to complete network overview captured by the controller. Un-

fortunately, due to the separation of control and data plane, it leads to some critical threats. Therefore,

Tang et al. [8] proposed a DNN approach for IDS in SDN context. The DNN architecture is 6-12-6-3-2

which means six input features, three hidden layers with 12, 6 and three neurons for each layer and two

classes output as shown in Fig. 6.2.

In this paper, the authors used NSL KDD dataset to check their approach. Since the dataset has 41

features, the authors selected six features that are fundamental features in SDN based on their expertise.

They measured accuracy, precision, recall, F-score and ROC curve as the performance metrics. Based

on the experimental result, the learning rate of 0.001 is the best hyper-parameter since the learning rate

of 0.0001 already over-fitted. The proposed approach then compared to previous work that leverages

various machine learning models. The DNN achieved 75.75% of accuracy, which is lower than other

methods using whole 41 features but higher than other methods using six features only. From this fact,

the authors claimed that the proposed DNN could generalize and abstract the characteristics of network

traffic with limited of features alone.

Yin et al. [106] highlighted the shortcoming of traditional machine learning methodologies that

are unable to solve the massive intrusion data classification problem efficiently. They took advantages

of RNN implementation in IDS context. RNN contains forward and backward propagation, where the

latter is the same neural network which computes the residual of forward propagation. The proposed

RNN-IDS begins with data pre-processing step which comprises of numericalization and normalization.

Feature-ready data are propagated to training step of RNN. The output model from the training is used

to a testing phase using test dataset.

For experimental purposes, the authors used NSL KDD dataset, both training, and test dataset.

The original features are 41 features but became 122 features after numericalization which maps string
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Figure 6.2: Architecture of DNN used in [8]

to binary. Two types of classification were tested namely binary and multi-class classification. Based on

the experimental results, the best hyper-parameter during binary classification is learning rate of 0.1,

the epoch of 100 and hidden nodes of 80 with an accuracy of 83.28% (using KDDTest+). Meanwhile,

during multi-class classification, the best hyper-parameter is learning rate of 0.5 and hidden nodes of 80

with an accuracy of 81.29%. The RNN-IDS outperformed other machine learning methodologies tested

by the authors for both binary and multi-class classification.

Li et al. [107] experimented using CNN as the IDS’s feature extractor and classifier. CNN achieved

many successful implementations in image-related classification tasks, however, still a big challenge for

text classification. Therefore, the main challenge of implementing CNN in IDS context is the image

conversion step, which is proposed by Li et al. [107]. NSL KDD dataset was used for experimental

purposes. The image conversion step begins by mapping of 41 original features into 464 binary vectors.

The mapping step comprises of two types mapping, one hot encoding and one hot encoder with ten

binary vectors for symbolic and continuous features, respectively. The image conversion step continues

with converting 464 vectors into 8× 8 pixel images. These images are ready for training input of CNN.

The authors decided to experiment with learned CNN models, ResNet 50 and GoogLeNet. Experimen-

tal results on KDDTest+ show the accuracy of 79.14% and 77.14% using ResNet 50 and GoogLeNet,

respectively. Although this result does not improve the state of the art of IDS, this work demonstrated

how to apply CNN with image conversion in IDS context.

LSTM-RNN became more popular due to its successful applications in various research areas. The

ability to consider previous events can be applied for IDS’ objective which is learning from previous

attack behaviors. Some IDSs that were implementing LSTM-RNN described as follow. Staudemeyer [46]

experimented various network topologies of LSTM-RNN for network traffic modeling as a time series.
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Figure 6.3: GRU cell [9]

Training data were extracted from KDD Cup’99 dataset. The author also selected subset of salient

features by using decision tree algorithm and compared the whole and subset features performance in

the experiment. Experiments were run with different parameters and structures of an LSTM-RNN, such

as the number of memory blocks and the cells per memory block, the learning rate, and the number of

passes through the data. Besides that, experiments were also run with a layer of hidden neurons, with

peephole connections, with forget gates, and with LSTM shortcut connections. Based on the experimental

results, the best performance was achieved by four memory blocks containing two cells, with forget gates

and shortcut connections, 0.1 of learning rate and up to 1,000 epochs. The overall accuracy is 93.82%.

The author also mentioned in the conclusion that LSTM-RNN is suitable for classifying attacks with a

big number of records and poor for a limited number of attack instances.

Bontemps et al. [108] leveraged LSTM-RNN in IDS for two objectives: a time series anomaly

detector and collective anomaly detector by proposing a circular array. Collective anomaly itself is a

collection of related anomalous data instances concerning the whole dataset [108]. The authors used

KDD Cup’99 dataset for their experiment and explained the pre-processing steps needed to build a time

series dataset from KDD Cup’99 dataset. Putchala [9] implemented a simplified form LSTM, called

Gated Recurrent Unit (GRU) in IoT environments. GRU is suitable for IoT due to its simplicity which

caused by reducing some gates in the network. GRU merges both forget and input gate to an update

gate and combines the hidden and cell state to become a simple structure as shown in Fig. 6.3.

The author then adopted a multi-layer GRU, which is GRU cells used in each hidden layer of RNN

and feature selection also done by using random forest algorithm. Experiments were conducted using

KDD Cup’99 dataset and achieved 98.91% and 0.76% of accuracy and false alarm rate, respectively.

Bediako [109] proposed a Distributed Denial of Service (DDoS) detector using LSTM-RNN. The au-

thor experimented LSTM-RNN using both CPU and GPU. NSL KDD dataset was used for experiments.

The notable detection accuracy is 99.968%.

Dimokranitou et al. [10] proposed an abnormal events detector in images using an adversarial

networks. Although the detector, not an IDS, it has the same objective to detect anomalies. The

authors implemented an adversarial autoencoder which combines autoencoders and GAN as shown in

Fig. 6.4.
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Figure 6.4: Architecture of adversarial autoencoders [10]

Table 6.1: Model Comparisons on KDD Cup’99 Dataset

Model Feature Extractor Classifier Accuracy (%)

DNN [101] FF-NN Softmax 99.994

LSTM-RNN-K [48] LSTM-RNN Softmax 96.930

LSTM-RNN-L [105] LSTM-RNN Softmax 98.110

LSTM-RNN-S [46] LSTM-RNN LSTM-RNN 93.820

GRU [9] GRU GRU 98.920

The network attempts to match the aggregated posterior of the hidden code vector of AE, with an

arbitrary prior distribution. The reconstruction error of learned AE is low for normal events and high

for irregular events.

We compare and summarize all previous work mentioned earlier in this Chapter. We compare all

work based on the dataset used for experiments, which are KDD Cup’99 and NSL KDD datasets as

summarized in Table 6.1 and Table 6.2, respectively.

Performances of IDSs on KDD Cup’99 are promising, as expected, more than 90% of accuracy. Four

IDSs in Table 6.1 are using LSTM-RNN approach which means that a time series analysis is suitable

for distinguishing benign and anomalies in network traffic. Even more, GRU [9] demonstrated that a

lightweight deep learning model is possible to be implemented in IoT environments which is crucial these

days.

There is still a space for improvement when we are using NSL KDD dataset as shown in Table 6.2.

The most accurate model is RNN [106] with 81.29% of accuracy. Again, this fact infers that a time series

analysis may improve IDS performance. Although IDS using CNN achieved not the best performance,

it is noticed that by applying a proper text-to-image conversion, we may benefit full potential of CNN

as already shown in image recognition researches.

Owing to the scale and complexity of recent data, building a machine-learning-based IDS has become

a daunting task. As we aim to detect impersonation attacks in large-scale Wi-Fi networks, a large AWID
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Table 6.2: Model Comparisons on NSL KDD Dataset

Model Feature Extractor Classifier Accuracy (%)

STL [7] AE Softmax 79.10

DNN-SDN [8] NN NN 75.75

RNN [106] RNN RNN 81.29

CNN [107] CNN CNN 79.14

dataset was chosen for this study. Kolias et al. [2] created a comprehensive 802.11 networks dataset that

is publicly available and evaluated various machine-learning algorithms to validate their dataset in a

heuristic manner. The performance of the IDS was unsatisfactory, indicating that conventional machine-

learning methods are incapable of detecting attacks on large-scale Wi-Fi networks. Moreover, among all

the classification results obtained, an impersonation attack detection was the most unsatisfactory. One

of the primary goals of our study thus is to improve the detection of impersonation attacks by leveraging

the advancement of modern machine-learning techniques. Recently, Usha and Kavitha [81] proposed a

combination of modified normalized gain and PSO to select optimal features and successfully improved

the attack detection rate tested on the AWID dataset. However, they focus on detecting all attack classes

rather than impersonation attacks only, which is the problem raised by Kolias et al. in [2]. We leveraged

SAE for classification purposes and then improved our impersonation detector using weighted feature

learning from shallow machine learners [83][110]. Thus, this study extends our previous work [110] to a

novel IDS, which combines deep learning abstraction and a weighted feature selection technique.
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Chapter 7. Concluding Remark

7.1 Conclusion

We investigated various algorithms especially bio-inspired algorithms to bring significance in the

field of IDS research. We believe that by adopting what nature does, we can improve current methods.

We started with observing ant behavior and taking Ant Clustering Algorithm as our clustering algorithm

as shown in Table 2.3. However, we need other methods for improving the performance of our IDSs.

We believe that ACA is still limited to distinguish between benign and attack instances. Therefore, we

shifted to more recent bio-inspired algorithms, deep learning, which is the advance of a neural network.

Incorporating deep learning methods as a real-time classifier will be a challenging task. Majority of

previous work that leveraging deep learning methods in their IDS environment, they perform the feature

extraction or reducing feature dimensionalities only. However, we show that deep learning methods can

do clustering task as well.

In summary, we can conclude that SAE is very useful for following tasks:

• Feature extraction

• Clustering

• Classification

We presented two novel methods, D-FES and fully unsupervised IDS. Both methods incorporate SAE

as a deep abstraction to improve data learnability. The former combines stacked feature extraction and

weighted feature selection techniques to detect impersonation and other attacks in Wi-Fi networks. While

the latter improves traditional k-means clustering algorithm by proposing a novel fully unsupervised-

based intrusion detection system incorporating deep learning technique. SAE is implemented to achieve

high-level abstraction of complex and copious amounts of Wi-Fi network data. The model-free properties

in SAE and its learnability on complex and large-scale data take into account the open nature of Wi-

Fi networks, where an adversary can easily inject false data or modify data forwarded in the network.

The proposed methodologies achieved impressive results that the best results on impersonation attacks

reported in the literature.

7.2 Further Directions

Further challenges are left for improving IDS in the future. Based on our previous work, we recom-

mend the followings for future directions in IDS researches, but are not limited to:

1. Training load in deep learning methods are usually huge. One should combine deep neural network

with an asynchronous multi-threaded search that executes simulations on CPU, and compute policy

and value networks in parallel on GPUs. Therefore, how to apply these deep learning models in a

constrained-computation device is a challenging task. We should make it lighter to be suitable for

IoT environments such as CAN (Controller Area Network) used by Unmanned Vehicle.
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2. Incorporating deep learning models as a real-time classifier will be challenging. In the most previous

works that leverage deep learning methods in their IDS environment, they perform the feature

extraction or reducing feature dimensionalities. Even more, a complete dataset with class labels is

not easy to get. However, deep learning models still a suitable method to analyze massive data.

3. Improving unsupervised approach since huge labeled data are difficult to obtain. Therefore an IDS

leveraging unsupervised method is desirable.

4. Build an IDS that can detect zero-day attacks with high detection rate and low false alarm rate.

5. A comprehensive measure not only detection but also prevention is needed in the future. Therefore,

building an IDS with both detection and prevention capabilities (e.g. Intrusion Prevention System

(IPS)) is expected.

6. A time series analysis by using LSTM-networks promise a good anomaly detector. However, again,

the training workload still high for real-time analysis. Therefore, lightweight models of this network

are desirable as shown in [9].

7. CNN achieved outstanding results in many research areas, especially in image recognition fields.

However, in IDS researches, not many works benefited by using CNN. We expect that by applying

a proper text-to-image conversion, we may help full potential of CNN as already shown in image

recognition researches.
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Flowcharts of D-FES
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Figure 7.1: Flowchart of D-FES
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Figure 7.2: Flowchart of D-FES: sub-process 1
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Figure 7.3: Flowchart of D-FES: sub-process 2

Figure 7.4: Flowchart of D-FES: sub-process 6
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Figure 7.5: Flowchart of D-FES: sub-process 7
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Source Code of D-FES

%===========================================================%

%================ Beginning of Flowchart #1 ================%

%====== Import the dataset and normalization process =======%

%===========================================================%

fid = fopen (’1’,’r’); %import AWID dataset (both training and test dataset named "1")

data=textscan(fid,repmat(’%s ’,1,155), ’delimiter’,’,’); %read the dataset using delimiter

%=========== Beginning of Flowchart 1a covert String Boolean into Numeric type ==========%

i_att=[10,11,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,35,36,37,39,40,41,42,

43,44,45,46,49,50,51,52,53,54,55,56,57,58,59,60,63,69,70,71,72,73,74,84,85,86,89,90,91,93,

94,95,96,97,98,99,100,101,102,103,123,131,132,135,136,137,147,149,150,151,153];

size_att=size(i_att,2); %get the size of nuber of attributes

newM=zeros(i_end,155); %allocate new matrix

for a=1:size_att

index_att=i_att(a)

e=data{index_att};%grab target attribute

i_end=size(e,1);%get the last row index

for i=1:i_end

if e{i,1}==’?’%set ? as 0

newM(i,index_att)=0;

%cek=[i,index_att]

else

tmp9=e{i,1};

tmp10=num2cell(tmp9);%get each char

tmp7=cell2mat(tmp10);

tmp8=str2double(tmp7);%string to numeric

newM(i,index_att)=tmp8;

end %end if

end %end for

end %end for

%================ End of Flowchart 1a covert String Boolean into Numeric type ===========%

%================ Beginning of Flowchart 1b covert String Hex into Numeric type =========%

i_att=[1,2,3,4,5,6,7,8,9,12,13,14,34,38,47,48,61,62,64,65,66,67,68,75,81,82,83,87,92,104,

106,107,108,109,110,111,112,113,114,115,116,117,120,121,122,124,125,126,127,128,129,130,

133,134,138,139,140,141,142,145,146,148,152,154];

size_att=size(i_att,2);

e=data{1};%just for get #rows

i_end=size(e,1);%just for get #rows

%newM=zeros(i_end,155);%allocate new matrix
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for a=1:size_att

index_att=i_att(a)

e=data{index_att};%grab target attribute

i_end=size(e,1);%get the last row index

for i=1:i_end

if e{i,1}==’?’%set ? as 0

newM(i,index_att)=0;

else

tmp9=e{i,1};

tmp10=num2cell(tmp9);%get each char

if size(tmp10,2)>1

if strcmp(tmp10(2),’x’)%case hex

tmp3=tmp10(:,3:end);

tmp4=cell2mat(tmp3);

dec_val=hex2dec(tmp4);

newM(i,index_att)=dec_val;

else%case more than one digit int/float

tmp7=cell2mat(tmp10);

tmp8=str2double(tmp7);%string to numeric

newM(i,index_att)=tmp8;

end %end if

else %case one digit integer

tmp7=cell2mat(tmp10);

tmp8=str2double(tmp7);%string to numeric

newM(i,index_att)=tmp8;

end %end if

end %end if

end %end for

end %end for

%================ End of Flowchart 1b covert String Hex into Numeric type ==========%

%================ Beginning of Flowchart 1c covert String into Integer type ========%

i_att=[76,77,78,79,80,88,105,118,119,143,144];%

size_att=size(i_att,2);

%newM=zeros(i_end,155);%allocate new matrix

for a=1:size_att

uniqueM={’’,0};

index_att=i_att(a)

c=data{index_att};%grab target attribute

i_end=size(c,1);%get the last row index

incr=1;%initial increment var

for i=1:i_end%for loop all data instances

flag=’1’;

if c{i,1}==’?’%set ? as 0
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newM(i,index_att)=0;%

%flag=’0’;

else

%if i>1

size_uniqueM=size(uniqueM,1);

for j=1:size_uniqueM %for loop all values in unique matrix

if strcmp(c(i,1),uniqueM(j,1)) %check whether same values on unique matrix

newM(i,index_att)=uniqueM{j,2};%if same, assign same integer value

flag=’0’;

break; %get out of the loop immediately

end %end if

end %end for

if flag==’1’

newM(i,index_att)=incr; %if new, assign integer value with incr var

newR=[c(i,1),incr];%store unique string with associated assigned value

uniqueM=[uniqueM;newR];%append new row in unique Matrix

incr=incr+1; %incr++

end %end if

end %end if

end %end for

end %end for

%================ End of Flowchart 1c covert String into Integer type ===============%

%===== Beginning of Flowchart 1d covert String (class name) into Integer type =======%

target=data{155};%grab target class attribute

i_end=size(target,1);%get the last row index

%newM1=zeros(i_end,1);%allocate new matrix

for i=1:i_end

if strcmp(target{i,1},’normal’)

newM(i,155)=1;%set normal as 1

else if strcmp(target{i,1},’impersonation’)

newM(i,155)=2;%set impersonation as 2

else if strcmp(target{i,1},’flooding’)

newM(i,155)=3;%set flooding as 3

else if strcmp(target{i,1},’injection’)

newM(i,155)=4;%set injection as 4

else newM5(i,155)=5;%set undefined as 5, supposed to be not exist

end %end if

end %end if

end %end if

end %end if

end %end for

%======== End of Flowchart 1d covert String (class name) into Integer type ==========%
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%=============== Beginning of Flowchart 1e Normalization Procedure ==================%

i_end=size(newM,1);%get the last row index

normM=newM(:,1:154);%allocate new matrix

i_att=[1,2,3,4,5,6,7,8,9,12,13,14,34,38,47,48,61,62,64,65,66,67,68,75,81,82,83,87,92,104,

106,107,108,109,110,111,112,113,114,115,116,117,120,121,122,124,125,126,127,128,129,130,

133,134,138,139,140,141,142,145,146,148,152,154,76,77,78,79,80,88,105,118,119,143,144];%

size_att=size(i_att,2);

%newM=zeros(i_end,155);%allocate new matrix

for j=1:size_att

index_att=i_att(j)

maxV=max(newM(:,index_att));%max value

minV=min(newM(:,index_att));%min value

tmp=maxV-minV;%store max-min value

if tmp==0

normM(:,index_att)=0;%assign zero values for same coulmn value

else

for i=1:i_end

normM(i,index_att)=(newM(i,index_att)-minV)/tmp;%normalized value

end %end for

end %end if

end %end for

finalM=[normM, newM(:,155)]; % concat the normalized data with corresponding target class

csvwrite(’norm_AWID_train.txt’,finalM);%change to norm_AWID_test.txt for test dataset

%%%% norm_AWID_train.txt is the 154 Features normalized dataset %%%%%%%%%%%%%%%%%%%

%================== End of Flowchart 1e Normalization Procedure ==================%

%===========================================================%

%=================== End of Flowchart #1 ===================%

%====== Import the dataset and normalization process =======%

%===========================================================%

%===========================================================%

%=============== Beginning of Flowchart #2 =================%

%=============== Feature Extraction process ================%

%===========================================================%

%================== Beginning of Flowchart 2a Dataset Balancing ==================%

raw_train=importdata(’norm_AWID_train.txt’);%import raw train data

raw_test=importdata(’norm_AWID_test.txt’);%import raw test data

% pick two class only : normal and impersonation

tmpt1=raw_train(:,155)==1;%normal

tmpt3=raw_train(:,155)==2;%Impersonation Attack

tmpt2=raw_test(:,155)==1;%normal

tmpt4=raw_test(:,155)==2;%Impersonation Attack
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train_IA=raw_train(tmpt3,:); %get the impersonation data only

test_IA=raw_test(tmpt4,:);%get the impersonation data only

train_N=raw_train(tmpt1,:);%get the normal data only

test_N=raw_test(tmpt2,:);%get the normal data only

rng(1);%force the same seed value anytime

n_train = size(train_N,1);%get #rows

c_train = cvpartition(n_train,’Holdout’,1/10); % hold out 1/3 of the dataset

train_N_reduced=train_N(test(c_train),:); %training data

rng(1);

n_test = size(test_N,1);%get #rows

c_test = cvpartition(n_test,’Holdout’,1/10); % hold out 1/3 of the dataset

test_N_reduced=test_N(test(c_test),:); %test data

d_IA_train=cat(1,train_N_reduced,train_IA);%train dataset for IA

d_IA_test=cat(1,test_N_reduced,test_IA);%test for IA

csvwrite(’data_train_IA_reduced.txt’,d_IA_train);%write train dataset for IA

csvwrite(’data_test_IA_reduced.txt’,d_IA_test);%write test dataset for IA

%==================== End of Flowchart 2a Dataset Balancing =====================%

%================= Beginning of Flowchart 2b Preparation for SAE ================%

raw_train=importdata(’data_train_IA_reduced.txt’);%import balanced data for training

raw_test=importdata(’data_test_IA_reduced.txt’); %import balanced data for test

x_train_all=raw_train(:,1:154); %pick attributes only without class

x_train_all=x_train_all’; %transpose

y_train_all_int=raw_train(:,155); %pick target class only

y_train_all_int=y_train_all_int’;

y_train_all=dummyvar(y_train_all_int); %create as one hot vector

y_train_all=y_train_all’;

x_test_all=raw_test(:,1:154); %pick attributes only without class

x_test_all=x_test_all’;

y_test_all_int=raw_test(:,155); %pick target class only

y_test_all_int=y_test_all_int’;

y_test_all=dummyvar(y_test_all_int); %create as one hot vector

y_test_all=y_test_all’;

%==================== End of Flowchart 2b Preparation for SAE ==================%

%==================== Beginning of Flowchart 2c SAE procedure ==================%

rng(’default’);

hiddenSize1 = 100; %should be smaller than the input size = 155

%First AutoEncoder

autoenc_saya = trainAutoencoder(x_train_all,hiddenSize1, ...

’MaxEpochs’,200, ...

’L2WeightRegularization’,0.004, ...

’SparsityRegularization’,4, ...

’SparsityProportion’,0.15, ...
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’ScaleData’, false);%

%view(autoenc1); %view ae diagram

%plotWeights(autoenc_saya);%only for image input

feat1_saya = encode(autoenc_saya,x_train_all);%100 features

hiddenSize2 = 50;

%Second AutoEncoder

autoenc2_saya = trainAutoencoder(feat1_saya,hiddenSize2, ...

’MaxEpochs’,100, ...

’L2WeightRegularization’,0.002, ...

’SparsityRegularization’,4, ...

’SparsityProportion’,0.1, ...

’ScaleData’, false);

feat2_saya = encode(autoenc2_saya,feat1_saya);%%%% results 50 extracted Features

softnet_saya = trainSoftmaxLayer(feat2_saya,y_train_all,’MaxEpochs’,200);%train supervised

%view(autoenc1)

%view(autoenc2)

%view(softnet)

deepnet_saya = stack(autoenc_saya,autoenc2_saya,softnet_saya);%stacking AutoEncoder

%view(deepnet)

y = deepnet_saya(x_test_all); %training with input

plotconfusion(y_test_all,y); %cross check the results with corresponding target class

deepnet_fine_tune = train(deepnet_saya,x_train_all,y_train_all); %fine tuning the training

y_ft = deepnet_fine_tune(x_test_all);

plotconfusion(y_test_all,y_ft); %cross check the results with corresponding target class

%====================== End of Flowchart 2c SAE procedure =====================%

%===========================================================%

%================== End of Flowchart #2 ====================%

%=============== Feature Extraction process ================%

%===========================================================%

%===========================================================%

%============== Beginning of Flowchart #6 ==================%

%=============== Feature Selection process =================%

%===========================================================%

%====================== Beginning of Flowchart 6a Preparation for ANN ============%

d_IA_train=importdata(’data_train_IA_reduced.txt’);%import training data for IA

d_IA_test=importdata(’data_test_IA_reduced.txt’);%import test data for IA

%%%%%%data for training%%%%%%%

d_IA_train_WoT=d_IA_train(:,1:154);%get rid target class att

d_IA_train_T=d_IA_train(:,155);%get target class att only

d_IA_train_T_dummy=dummyvar(d_IA_train_T);%get the hot 1 vector of target class
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%===========================================================%

%============== Beginning of Flowchart #3 ==================%

%===========================================================%

d_IA_train_WoT = cat(1,d_IA_train_WoT, feat2_saya); %concatenation -> 204 Features

%===========================================================%

%================= End of Flowchart #3 =====================%

%===========================================================%

Xtrain=d_IA_train_WoT;%assign Xtrain

Xtrain=Xtrain’;%transpose input

Ytrain=d_IA_train_T_dummy;%assign Ytrain

Ytrain=Ytrain’;%transpose input target

%%%%%%%%data for test%%%%%%%%%

d_IA_test_WoT=d_IA_test(:,1:154);%get rid target class att

d_IA_test_T=d_IA_test(:,155);%get target class att only

d_IA_test_T_dummy=dummyvar(d_IA_test_T);%get the hot 1 vector of target class

Xtest=d_IA_test_WoT;%assign Xtest

Xtest=Xtest’;%transpose input test

Ytest=d_IA_test_T;%assign target class for testing

Ytest=Ytest’;%transpose target class for testing

Ytestd=d_IA_test_T_dummy;%assign Ytest with dummy

Ytestd=Ytestd’;%transpose target with dummy

%======================== End of Flowchart 6a Preparation for ANN =================%

%====================== Beginning of Flowchart 6b ANN Procedure ===================%

% >> nnstart

% >> Select Pattern Recognition App

% >> Select Xtrain for input and Ytrain for target data

% >> Set Hidden Neuron as 100

% >> TRAIN

% >> Save the output model

%========================= End of Flowchart 6b ANN Procedure ======================%

%=========================== Beginning of Flowchart 6c Import Weight =============%

berat=net.IW{1,1};%import output weight from the hidden layer

indeks=net.inputs{1}.range;%range yg tidak penting bernilai 0, kolom ke 1 kosong

for l=1:154 %check range (min and max) on each input attribute

range_indeks=indeks(l,2)-indeks(l,1);

if range_indeks==0

tmp(l,1)=0;%if range=0, it means this att is not important

else tmp(l,1)=1;

end %end if

end %end for

tmp=logical(tmp);
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indeks(:,1)=[1:154]; %fill first column with increment 1-41

%tmp=indeks(:,2)~=0;%get the index that != 0

indeks2=indeks(tmp,:);%select row != 0

indeks_aja=indeks2(:,1);%get the index only

indeks_aja=indeks_aja’;

berat=abs(berat);%absolute value of weight

%============================== End of Flowchart 6c Import Weight ==================%

%======================= Beginning of Flowchart 6d Summation of Weight ============%

sizenya = size(berat);%size of weight

col=sizenya(1,2);%column index

row=sizenya(1,1);%row index

berat_per_input=zeros(1,col);

berat_per_input(1,:)=indeks_aja;

for i=1:col %iteration column

berat_per_input(2,i)=0;

for j=1:row %iteration rows

berat_per_input(2,i)=berat_per_input(2,i)+berat(j,i);

end %end for

end %end for

%========================== End of Flowchart 6d Summation of Weight ===============%

%======================= Beginning of Flowchart 6e Sorting Weight =================%

berat_per_input=berat_per_input’; %transpose

berat_sort=sortrows(berat_per_input, 2); %sort descending

%========================== End of Flowchart 6e Sorting Weight ====================%

%===========================================================%

%============== Beginning of Flowchart #4 ==================%

%===========================================================%

%======================= Beginning of Flowchart 6f Compare Weight =================%

tmp2=berat_sort(:,2)>=15;%adjust the trehsold value

%===========================================================%

%======================= Beginning of Flowchart 6f Compare Weight ===============%

%================== End of Flowchart #4 ====================%

%===========================================================%

selected_features=berat_sort(tmp2,1); %%% 12-22 Selected Features %%%%

%===========================================================%

%================== End of Flowchart #6 ====================%

%=============== Feature Selection process =================%

%===========================================================%
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%===========================================================%

%=============== Beginning of Flowchart #7 =================%

%================= Classification process ==================%

%===========================================================%

%================== Beginning of Flowchart 7a Preparation for Classification ========%

d_IA_train_trans=d_IA_train’;

d_IA_test_trans=d_IA_test’;

ukuran_mat=size(selected_features);%get # features

jumlah_fitur=ukuran_mat(1,1);%get # row (# features)

indeks_fitur=[1:154];

for j=1:154%increment at feature index

for i=1:jumlah_fitur%increment at selected features

if indeks_fitur(1,j)==selected_features(i,1)%if equal, assign 1

indeks_fitur(2,j)=1;

break;%get out of if

else indeks_fitur(2,j)=0;

end %end if

end %end for

end %end for

%recover selected features within all features

indeks_fitur_aja=indeks_fitur(2,:);%get the boolean only

indeks_fitur_aja=indeks_fitur_aja’;

indeks_fitur_aja_kelas=indeks_fitur_aja;%add 155th index as class

indeks_fitur_aja_kelas(155,1)=1;%add 155th

indeks_fitur_aja_logical=logical(indeks_fitur_aja_kelas);%covert into logical

%training dataset with selected features

train_data=d_IA_train_trans;

train_data=train_data(indeks_fitur_aja_logical,:);

input_fitur=train_data(1:jumlah_fitur,:);%training without target class

target_train=train_data((jumlah_fitur+1),:);%training target class

target_train_final=dummyvar(target_train);

target_train_final=target_train_final’;

%test dataset with selected features

test_data=d_IA_test_trans;

test_data=test_data(indeks_fitur_aja_logical,:);

input_fitur_test=test_data(1:jumlah_fitur,:);%test without target class

target_test=test_data((jumlah_fitur+1),:);%test target class

target_test_final=dummyvar(target_test);

target_test_final=target_test_final’;

%final assignment

x_train = input_fitur; % the input for training

y_train = target_train_final; % the target for training

x_test = input_fitur_test; % the input for testing
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y_test = target_test_final; % the target for testing

%====================== End of Flowchart 7a Preparation for Classification =========%

%=========================== Beginning of Flowchart 7b ANN Procedure =============%

% >> nnstart

% >> Select Pattern Recognition App

% >> Select Xtrain for input and Ytrain for target data

% >> Set Hidden Neuron as 50

% >> TRAIN

% >> Get the confusion matrix ==> Flowchart #8 Compute IDS Metrics

% >> Save the output model

%========================= End of Flowchart 7b ANN Procedure ==================%

%===========================================================%

%================== End of Flowchart #7 ====================%

%================= Classification process ==================%

%===========================================================%

%====================== Beginning of Flowchart #9 Comparison ==============%

% Compare F score and F treshold

%========================= End of Flowchart #9 Comparison ================%

%====================== Beginning of Flowchart #10 Model ===============%

% Trained model complete

%========================= End of Flowchart #10 Model ===================%

%============ END of File =====================%
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