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ABSTRACT

The development of Information and Communications Technologies (ICT) has affected various fields
such as big data, mobile, wearable, and so on. In addition, the automotive field has been affected by
ICT, and Electronic Control Units (ECU) have been introduced to control vehicles efficiently. A network
for communication between ECUs was necessary, because each ECU cannot operate alone, necessitating
data exchange. As a result, vehicle network protocols have been introduced such as Controller Area
Network (CAN), Local Interconnect Network (LIN), and FlexRay. Due to this, ECUs can efficiently
transfer data to other ECUs making vehicle control more efficient.

Among these, CAN is a standard vehicle network protocol, and almost all vehicles use CAN as
their vehicle network protocol. Although CAN has been widely used, its security is very vulnerable,
because of its characteristics such as the broadcast environment and arbitration process in CAN. By
using vulnerable characteristics, spoofing and denial of service (DoS) attacks can be easily performed in
CAN. To solve this vulnerability of CAN, many ideas have been suggested such as intrusion detection
systems (IDS), hashed message authentication codes, AES, which is a type of cryptography algorithm,
and so on. However, the suggested security solutions in CAN have some problems such as the increase of
traffic, effect of existing systems, adoption costs, etc. In addition, because some ideas were not properly
verified due to the characteristics of vehicles, these ideas cannot guarantee its efficiency or effectiveness.

In this paper, a security gateway that modifies the existing gateway in CAN is suggested for its
improved defense against spoofing and DoS attack. In case of spoofing attack, it defends using a sequence
of messages based on the driver’s behavior. By making a table that stores a sequence of messages based
on the driver’s behavior, spoofing attacks can be detected and whether a message is an attack can be
determined through a verification process using SipHash. Furthermore, a temporary ID using a seed and
SipHash can be used to defend against DoS attacks.

To verify our proposed idea, OMNeT++, which is a network simulator, is used. The suggested
idea shows a high detection rate and low traffic increase. In addition, in the case of a DoS attack, the

suggested idea shows that a DoS attack has no effect by analyzing the frame drop rate.

Keywords: CAN, IDS, Security gateway, spoofing attack, DoS attack.
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Chapter 1. Introduction

1.1 Overview

The development of ICT has affected various fields. Among these, automotive field has also been
affected due to combining ICT. A vehicle that is considered as mechanical changed all of parts in vehicle to
electronic. Introduction of ECU that controls engine, break, and transmission in vehicle much contributed
to digitalization of vehicle. Through ECU, a control of vehicle can be easily convenience and controlled
outside of vehicle through short communication such as smartphone, table pc, WiFi, and bluetooth and
so on. As you can see figure ECU occupies all of parts in vehicle. Now, ECU in vehicle is up to 70
and importance of ECU will increase as developing vehicle. There will be 100 ECUs in vehicle. Although
control of vehicle was convenience due to ECU, vehicle network protocol was needed to communicate
with other ECUs. To solve this problem, vehicle network protocol which are CAN, LIN, FlexRay was
developed. Among these, CAN is a typical vehicle network protocol and used in almost vehicles as a
standard of network protocol. As introducing CAN, ECUs could efficiently communicate with each other

and the control of vehicle was more convenience.

1 Adaptive Cruise Control

2 Electronic Brake System MK&0OE

3 Sensor Cluster

4 Gateway Data Transmitter

5 Force Feedback
Accelerator Pedal

6 Door Control Unit

7 Sunroof

Control Unit

8 Reversible Seatbelt
Pretensioner

9 Seat Control Unit
10 Brakes
11 Closing Velocity Sensor
12 Side Satellites
13 Upfront Sensor
14 Airbag Control Unit

Figure 1.1: ECUs in vehicle

Although the introduction of ECU made vehicle control more efficient and convenient, security



research in CAN was rarely studied and many problems occurred due to a low awareness of vehicle security
issues. Vehicle security research has gained importance due to recent hacking incidents involving GM
and Chrysler vehicles. Because CAN has certain vulnerable characteristics, it is easy to hack vehicles
employing such a system. For example, an ECU in the same network can receive messages without
restriction, because CAN is a broadcasting environment. In such a situation, if a malicious attacker can
seize control of or install an ECU into a CAN due to this characteristic, the attacker can learn about
internal information and send fake messages by manipulating original messages. In addition, an attacker
could make controlling a hacked vehicle difficult by making a DoS attack upon the CAN arbitration
process. These attempts proved through many recent research [I][2][8][4] [5] [6] [7] and countermeasures
about security in vehicle was important. To solve this problem, various research [8] [9] [I0] studies have
been undertaken. However, because it is difficult to build an experimental environment due to the high
cost involved and accessibility issues, some ideas remain unproven or have inherent problems such as the
volume of traffic, adoption costs, etc

Therefore, we propose an idea that can solve the problems of other ideas such as traffic and verifi-
cation. By introducing a security gateway that modifies the existing gateway that CAN uses, we want
to defend against spoofing and DoS attacks. Furthermore, by proposing an experiment result using
OMNeT++, the proposed idea can effectively defend against spoofing and DoS attacks and demonstrate

effectiveness by showing only a low increase of traffic.

1.2 Organization

The rest of this paper is organized as follows: Chapter 2] describes the background basic information
about CAN, vulnerabilities in CAN, and related works about defense against attacks in CAN. In chapter
some assumptions are defined and ideas for systems that can defend against spoofing and DoS attacks
through a security gateway are proposed. OMNeT++, which is used in experiments and experimental
environments are also described in this chapter Chapter [p| details the results and discusses the

limitations. Finally, the conclusion and future work are discussed in Chapter [7}



Chapter 2. Background

2.1 CAN

CAN, which is a standard vehicle network, was proposed by Robert Bosch, which is a German
company, at a 1982 conference of the Society of Automotive Engineers (SAE). Robert Bosch started
developing new vehicle network protocols in 1983, because there was no network protocol that satisfied
the demands of vehicle company engineers in the early 1980s. Mercedes Benz Engineers participated in
the development stage. Bosch released CAN 2.0, which is a current specification, in 1991 and submitted
it to the International Organization for Standardization (ISO). “ISO 11989” was released as a standard
in 1991 and the maximum speed of the physical layer was defined as up to 1 Mbps. In addition, when an
amendment was submitted to ISO, ISO 11989 was extended and a CAN that had a 29 bit ID field was
introduced called “CAN 2.0B.” However, because the released CAN specifications had some problems
and imperfect parts, it caused a misunderstanding. To solve this, Bosch offered a CAN reference model
and performed suitability tests on CAN controller chips. Benz released a vehicle that was equipped with
CAN in 1992. The control of an engine system was performed using CAN at an initial step and the
body system used CAN at the next step. After that, these two systems were connected to a gateway.
European vehicle companies chose CAN as a vehicle network protocol and most vehicles used CAN,
increasing vehicles” dependence on CAN. Figure shows the share of the market that uses CAN. As
you can see, CAN is not only used in the automotive field, but also medical and industrial fields, although

usage of CAN is focused on the automotive field.

2.1.1 Characteristics

2.1.2 CAN Frame

The unit of data used in CAN is a frame. The CAN frame consists of four frames, which are
data frame, remote frame, error frame, and overload frame. Among these, the data frame is important.

Therefore, the data frame is described in detail and the others are only briefly explained.



CAN Market Distribution

100%

80%

60% -

40% -

20% -+

B

Automotive Medical / Industrial

Markets

0%

Figure 2.1: CAN market distribution

1) Data frame
- The data frame is used to send and receive data. The data frame consists of seven fields. Figure

shows the entire structure of the data frame.

e Start of Frame (SOF): This is the start of a frame.

Arbitration Field (ID): This is used to identify messages and designate the order of priority. There
are two formats, one is a standard format (CAN 2.0A), which uses an 11-bit ID field, the other is
an extended format that uses a 29-bit ID field.

=3 1| 11@9 |1 6 g;fs 15 111 7 =3

End of Frame
ACK Delimiter
ACK Slot
CRC Delimiter
CRC Sequence

Data
Control Field
Field

RTR Bit

Arbitration Field (ID) Abbreviations :

Start of Frame RTR Remote Transmission Recquest
CRC Cyclic Redundancy Code
ACK Acknowledge

Figure 2.2: Structure of data frame

e Remote Transmission Request (RTR): This is used to distinguish the data frame from the remote

frame. When the RTR bit is 0, the frame is a data frame. When the RTR bit is 1, the frame

—4 -



becomes a remote frame.

Control Field: This consists of a Data Length Code (DLC) field that shows the byte length and

reserved bits, which are RB1 and RB2.
Data Field: This is a field that sends data. It can have length of zero—eight bytes.

CRC Field (CRC Sequence + CRC Delimiter): This consists of 15 bits of overlap check code and

a delimiter bit. The CRC field is used to detect errors.

ACK Field (ACK Slot + ACK Delimiter): All CAN controllers that accurately receive messages
send an ACK bit at the end of messages. A sending node in bus checks whether the ACK bit exists

in the bus and if there is no ACK bit, a node retries its messages.
End of Frame (EOF): This represents the end of the frame.

Interframe Field: This is positioned between frames. It allows frames to be distinguished.

2) Remote frame

- When one node in bus requires a data frame, this is used. At this time, The ID of the data frame
and the ID of the remote frame are the same. The interframe space is placed between the data fra
me and the remote frame to distinguish two frames. Figure[2.3|represents the structure of the remote
frame. The difference between the data frame and the remote frame is that the RTR bit is 1 and

there is no data field.

3) Error frame

- This is used to notify of an error in the bus. It consists of error flags and an error delimiter. The
re are two error flags: One is the active error flag, the other is the passive error flag, and which fla
g is received is determined according to the state of the node. The active error flag is six consecut
ive dominant bits (0 of 6 bits) and the passive error flag is six consecutive recessive bits (1 of 6 bits).

The error delimiter consists of eight consecutive recessive bits (1 of 8 bits).

4) Overload frame

- This is used to introduce delays between consecutive data frames or remote frames. The overload
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Figure 2.3: Structure of remote frame

frame consists of 15 bits and has an overload flag field and an overload delimiter field. Below are

two cases in which the overload frame is sent to the bus.

e The internal state of the receiving node requires a delay in the next data frame or the remote

frame.

e The dominant bit is detected in the inter-frame space.

2.2 Vulnerabilities in CAN

We examine characteristics and frames of the CAN in 2.1, as there are vulnerabilities in CAN caused
by these characteristics. Below are the vulnerabilities of CAN and some possible attacks that use these

vulnerabilities.

2.2.1 Broadcasting Nature

CAN uses broadcast, which means that all nodes in CAN receive messages without restriction.
Therefore, it is easy to use a sniffing attack. Basically, a node can receive all messages from the bus, but
does not handle messages that are sent to itself. However, if the attacker maliciously installs an ECU
or seizes control of the ECU in CAN, attacker can then monitor messages in the CAN bus. In addition,
using the On-Board Diagnostics-1T (OBD-II), which is used for diagnosing the vehicle, it is easy to get

messages from the CAN due to the broadcasting environment. An attacker can determine the meaning
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of messages by collecting and analyzing such messages. Figure shows a sniffing attack in the CAN.
If the attacker installs a malicious ECU in the CAN bus, he can receive messages without restriction.
Furthermore, it becomes possible to enact a spoofing attack. Because there is no sender information,
nodes in CAN cannot know whether messages are from valid nodes. Therefore, after an attacker collects
messages using sniffing and analyzes them, he can send malicious messages that include the ID used in
the CAN bus. Because nodes cannot verify whether messages came from valid nodes, this attack will

succeed.

I Message
I : Fake message

Figure 2.4: Sniffing attack in CAN

Figure shows a spoofing attack in CAN. It shows how the attacker sends modified messages to
the CAN bus through a malicious ECU that has been installed by the attacker. It is easy to use sniffing

and spoofing attacks in such a broadcasting environment.

I : Message
I : Fake message
l .o I

=

Figure 2.5: Spoofing attack in CAN

2.2.2 DoS

Next, CAN offers an autonomous arbitration process for avoiding collisions between messages when
sending a message. Currently, the arbitration process is performed using an arbitration field in the
data frame and two levels. As mentioned above, there are two levels (dominant and recessive), and the

dominant(0) has a higher priority than the recessive(1). Due to this characteristic, a low ID has high
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priority in the CAN. Figure [2.6]is an example of the arbitration process in CAN.

g | R
f le lal= |l Copdrol
ofofa|s]7|e s [a]3 ]2 rFr’l e R
[ T 1
ECU 1 Loses arbitration
ECU 2 ===
ECU 3 Loses arbitration
CAN BUS -

Figure 2.6: Arbitration process in CAN

There are three ECUs; once three ECUs start to send messages, each ECU monitors the variation
of the arbitration field in the bus. Because ECU 1 is in the recessive state at the fifth and ECUs 2 and
3 are in the dominant state, ECU 1 loses its arbitration. Next, ECU 3 is in the recessive state at the
zeroth and ECU 2 is in the dominant state. Therefore, ECU 3 loses priority and ECU 2 can finally send
a message to the bus.

Using this characteristic, the attacker finds what ID has the highest priority in the CAN and creates
messages that have the highest priority in the CAN. Then the attacker continuously sends such messages
to the CAN bus. Because the attacker’s messages have higher priority than the other nodes in the CAN,
these nodes cannot send messages to the CAN bus. As a result, the vehicle cannot be operated, because
messages cannot be sent. Figure [2.7] shows one such example.

As you can see, the attacker’s messages and normal ECU’s messages are together in the CAN bus.
Because the attacker’s messages have higher priority, normal ECU messages cannot be transferred due
to the arbitration process in the CAN. This is termed a DoS attack, in which the attacker continuously

sends fake messages to the CAN bus.

2.2.3 No Authentication

Finally, the biggest vulnerability in CAN is that there is no message authentication. Basically, the
ID in the CAN frame is used for the transmission and arbitration processes. The problem that arises is
that this ID does not represent the sender. Because this ID is used for whether messages are received

at the receiver, nodes in the CAN cannot know where messages in the CAN originated. Therefore, even
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I : Message
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Figure 2.7: DoS attack in CAN

though an attacker sends fake messages that use message IDs obtained through sniffing, a receiver does
not doubt the authenticity of any messages, because the attacker’s message ID is valid. Thus, spoofing

and DoS attacks are easily performed.

2.3 Related work

Many ideas have been suggested to defend against such security threats in the CAN. Among these,
representatively ideas such as Intrusion Detection System (IDS), broadcast environment, Message Au-
thentication code (MAC), and cryptography are typical methods for defending against security threats
in the CAN. Below is an explanation of IDS, broadcast environment, MAC, cryptography, and driver

behavior based.

2.3.1 IDS Based Methods

The IDS method has been suggested to detect spoofing and DoS attacks in the CAN. Two methods
have been proposed that are similar to the existing IDS that is used in the network. One method uses
the signature technique, the other uses the anomaly technique. In the case of the signature technique,
the method using transfer characteristics in CAN is typical, unlike the existing method that examines
the content of messages. Representatively, messages in the CAN are transferred periodically. Thus, a
method using the periodicity of messages has been proposed. Some research [I8][19][2I][22] detected
attacks using the periodicity of messages. In addition, a detection technique that uses a white-list has
been suggested. The white-list technique[l5] makes a table that stores the messages that are used in the

CAN, detecting attacks by checking each ID in the table. This method is used in each ECU or gateway



in the CAN bus. Next, by combining the proposed methods[16][21][22] mentioned above, a method that
checks the periodicity of messages, the ID, and so on has been suggested. Finally, there is a method[23]
that has a monitor mode and a verification mode; messages are monitored using IDs in monitor mode. If
there are suspect messages, the mode is changed to verification mode, and verification is processed using
MAC. Although methods using a signature technique have been suggested, there is a problem that the
existing ECU must be greatly modified. This lays a burden on the ECU and that becomes a problem,
because lightweight is an essential factor in defending against attacks in the CAN. In addition, there is
a verification problem. Some ideas could not be implemented and demonstrate efficiency or effectiveness
through experimentation. Therefore, ideas cannot be proved good or bad.

Next, IDS using an anomaly technique has been suggested, but there are a few methods of achieving
this. The method[I9] set specific criteria such as a standard for messages, domain, etc., and if messages
deviate from the predefined standard, it detects an attack. There is also the method[27] that uses
message entropy. However, method using anomaly techniques are suggested less often because it is
difficult to define anomalous behavior. In a vehicle environment, the driver’s behavior has a huge effect
on many things, and a driver may sometimes behave in an unexpected manner. Furthermore, the anomaly
technique basically uses machine learning, but it is difficult to develop this and apply it to the ECU due

to the ECU’s resource constraint.

2.3.2 Broadcast Environment Based Methods

The broadcast environment based is a method[I7] using the characteristic of broadcasting. It checks
whether a message has been made by itself using the message ID. If messages have not originated within
itself, it notifies the other ECUs in the CAN by sending error frames. In other words, if the attack ECU
creates messages using a specific ID, the ECU that has the corresponding ID can know that messages
that are broadcast in the CAN bus are invalid by checking the messages. When suspect messages are
detected, the corresponding ECU can defend the system by notifying other ECUs that there is an attack
message in the CAN bus by transmitting error frames. This method can detect spoofing attacks, but it
cannot defend against a DoS attack. In addition, it has not been verified through experimentation, so

its efficiency remains unproven.
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2.3.3 MAC Based Methods

Using MAC to check message integrity has been applied to CAN. Various ideas|[I1][13] [14][24] [27][28]
that use MAC have been proposed, and many methods use an existing hash-based MAC algorithm, CBC-
MAC, or autonomously developed MAC algorithm. However, they encounter similar problems, in that
they increase traffic. In case of the ideas suggested above, any length larger than 64 bits, which is the
maximum length of data in CAN, is used for defending against attack. Thus, additional messages are
created for the authentication of integrity. In the worst case, there will be four additional messages about
one message. Due to the additional messages, the traffic in CAN will increase, which has an effect in
real time, which is considered an important characteristic in a vehicle. In other words, there will be the

problem that real time transmission cannot be guaranteed, creating a huge hazard.

2.3.4 Cryptography Based Methods

Methods using cryptography algorithms have also been suggested. A method[20] using AES, which
is a type of cryptography algorithm, was suggested. In addition, there is method[I2] that shares a
pair-wise secret key beforehand between ECUs which is used to encrypt messages. In this situation,
forgery prevention and the authentication of messages are both performed by the MAC. The ideas
suggested above ensure confidentiality and integrity that CAN does not offer, but this approach has
weaknesses such as padding value and increasing traffic. The length of messages in CAN varies because
each manufacturer assigns the meaning of data differently. This means that data length can be less
than 64 bits; thus, padding values must be arbitrarily added to data when encrypting messages using
AES. When adding padding values to data, the padding value must be different. If the padding value is
always the same, an attacker can easily learn it and it becomes easy to use this knowledge to attack the
CAN. Another problem is the increase in traffic. For example, when messages are encrypted by AES,
the date length must be 128 bits. AES is a block cipher and requires that data length is a minimum
of 128bits. Because data length in frames is up to 64 bits in CAN, the length must be extended to use
AES. Therefore, one additional message will be created. As a result, it has an effect in real time on the
vehicle. If an important message cannot be transferred within a specific timeframe, this can affect the
driver and cause an accident. Finally, another serious problem is that there is insufficient defense against
a side-channel attack. Today, AES is considered a safe cryptography algorithm method. However, in

a side-channel attack, AES becomes unsafe. In other words, even though AES is used for encrypting
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messages in the CAN, confidentiality cannot be ensured.

2.3.5 Driver Behavior Based Methods

A method using driver behavior also suggested. The suggested method uses data based on driver
behaviors such as angle of handle, speed of vehicle revolution, and position of pedal and so on. These
data can give clue of driver behavior and it would be used for detecting attack. This method can be
used with machine learning or data mining algorithm. [29] is one of the method using driver behavior
and data mining. This method suggested framework that is tailored to vehicle. This method uses
Decision Support Engine (DSE) that is for dealing with large scale traffic and detecting quickly attack.
It consists of Device Status Analyzer, Device Status DB, Device Maintenance Manager, and Decision
Engine Core. Also, There is Security Monitor that collects information of devices in vehicle through
IDS. In this framework, Security Monitor send information of device state DSE, and then Device Status
Analyzer in DSE analyzes information of device state using data mining algorithm. It classifies normal
or abnormal based on analyzed information and these information are stored in Device Status DB. In
this situation, detection rule is made or updated by data mining. The Security Monitor detects system
event or abnormal traffic using updated detection rule. This idea can enhance detection performance in

vehicle, but it can revise vehicle to adapt this framework and it is not be proved.

2.3.6 Security Gateway

Because there are an increased number of ECUs in the CAN bus nowadays, a separate domain is
required to manage the corresponding increase in traffic. To do this, gateways were introduced in the
CAN, and there are some gateways in the CAN bus. One gateway manages one domain, and it enables
ECUs to exchange messages. Once ECUs send messages that have to head to another domain through
the gateway, the gateway finds the appropriate domain and sends these messages to the gateway that
manages the corresponding domain. In this manner, the gateways in the CAN bus are in charge of
managing one domain and communicating with other domains. Figure 2.8 shows some gateways and its
domain.

The security gateway adds security functions to the gateways. Normally, there are two things that
the security gateway performs. First is authenticating each ECU. In this situation, security gateway

authenticates whether ECU in CAN is valid or not. Second is detecting attacks in CAN. At this time,
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Figure 2.8: Gateway in CAN

security gateway detects attacks such as spoofing or DoS with specific algorithm. Figure [2.9] shows an

example of security gateway.

[Ecur]  [Ecu2]

[E-::.lual [ECIU4]

D High criticality
D Low criticality

Figure 2.9: Security Gateway in CAN
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Chapter 3. Approach

3.1 Assumption
Below are the required assumptions for the idea proposed in this paper.

1) The security gateway and the ECUs in the CAN bus already share a specific formula and key.

- Basically, the manufacturer can insert anything in the ECU and gateway; therefore, they can

insert a key into the ECU and gateway during the manufacturing process.

2) The IDs of the security gateway and the ECUs have already been determined.

- It is also possible that the manufacturer can determine the ID of the ECU and gateway during

the manufacturing process.

3) The security gateway stores the information about the ECU that exists in the domain.

- During the manufacturing process, ECU information can be inserted into the security gateway

by the manufacturer.

3.2 Attack Model

In this paper, attack model is defined as follow:

The attacker performs attacks using the On-Board Diagnostic-II (OBD-II) port. An OBD-II port
is installed in vehicles for diagnostic purposes, and it is connected to the CAN bus. Thus, an attacker
can attack the CAN bus by just connecting to the OBD-II port. Figure and [3.2] show examples of
vehicle attacks. Figure shows an initial method and is somewhat complicated, but Figure shows
another, more convenient attack method. This is called CANtact and it makes attacks easy; because it
is small, a driver cannot notice CANtact.

In this situation, the attacker can already know the ID of the ECUs in the CAN bus and the

meaning of these IDs. As mentioned above, because CAN is a broadcasting environment, it is easy to
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Figure 3.1: Example of attack method 1 Figure 3.2: Example of attack method 2

sniff messages. Therefore, the attacker can easily determine the IDs of ECUs. Furthermore, by analyzing
the collected IDs, an attacker can determine the role of each ID in the vehicle. However, The attacker
cannot know how the internal components of the vehicle are organized. As mentioned above, the attacker
can know the ID of the ECUs in the CAN bus using the OBD-II port. However, by using this method,
the attacker cannot know how the internal components of the vehicle are organized, because the attacker
can only collect messages in the CAN.

There is another method attacking a vehicle. The attacker can insert malicious ECU into internal
of vehicle. Although it is easy to install ECU in vehicle, the attacker can do it if he knows about the
vehicle or through mechanic.Also, it is harder to detect attack ECU by driver, because it does not be
shown to driver. In this situation, the attacker connects to malicious ECU using wireless device such as
smart phone, tablet, and laptop, and so on and can easily know various information in CAN bus such
as ID, messages, and so on. Based on this information, the attacker can do sniffing, spoofing, replay,
DoS attack like attacking using OBD-II port. Therefore, the attacker can more easily cause hazardous
situation than attacking using OBD-II. However, this attack method also cannot know all parts of vehicle
and information of values such as key, formula that are used in defense, because the attacker cannot have

information of structure of vehicle and ECU.

3.3 Defense

In this chapter, the security gateway that is the core of the idea will be described. Then, defending

against a spoofing attack using the sequence of messages based on the driver’s behavior will be explained.
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Finally, a method of defending against DoS attacks using temporary IDs will be presented.

3.3.1 Security Gateway

In this paper, the security gateway basically monitors its domain and defends against spoofing and
DoS attacks. Figure [3.3] shows the structure of the security gateway, which has four components. The

role of each component is as follows:

Detection Management Routing
Compaonent Component Component

CAN Component

Figure 3.3: Structure of security gateway

1) Detection component

- Component for detecting spoofing and DoS attacks.
2) Routing component

- Component for arranging transfers to other domains.
3) Management component

- Component for managing tables and creating messages and seeds
4) CAN component

- Component for CAN communication

Figure shows an example security gateway. As you can see, the security gateway manages its

domain; it monitors the CAN bus in its domain and detects attacks.
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3.3.2 Spoofing Defense

The sequence of messages based on the driver’s behavior is used to defend against spoofing attacks.
There are various ECUs in the CAN, and these are used for specific purposes. For example, different
ECUs are in charge of the door, lights, brakes, engine, and so on.

This, like all ECUs is used for a specific purpose. We can think how each ECU is associated with
the others. For example, if the driver turns left or right, the driver first uses the brakes, then the
steering wheel. Finally, the accelerator will be operated. Thus, the brake ECU, steering wheel ECU, and
acceleration ECU will be operated in a regular sequence, and messages related to these ECUs will flow
in the CAN bus in this order. This means that the sequence of messages is determined by the driver’s
behavior. Thus, if sequence of messages is monitored, a spoofing attack can be detected. Because an
attacker cannot know what ECUs exist in the CAN bus, the attacker cannot determine the flow of
messages. Thus, when the attacker tries to use a spoofing attack, it violates the sequence of messages,
which can be detected by monitoring the sequence of messages. Using this information, the table can be
made according to what ECUs represent the basic ECUs used in the vehicle. The table [3.I] represents
the basic ECUs that are used in vehicle. By using these ECUs, the driver can adopt various behaviors.
These ECUs are related to the engine, brakes, light, and so on.

The table shows driver behavior based on the basic ECU; there are 10 driver’s behaviors. For
example, if the driver stops his vehicle, the brakes, gears, and engine will operate in that order. Thus,
the Electronic Brake Control Module ECU, Transmission ECU, and Engine Control Module ECU will
operate in this order and the related messages will flow in the CAN bus. Using this characteristic, the

detection component in the security gateway monitors the CAN bus. When the first message in the
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Table 3.1: Basic ECUs
ECU

Electronic Stability Control ECU
Transmission ECU
Engine Control Module ECU
Electronic Break Control Module ECU
Electric Power Steering ECU
Throttle ECU
Instrument Cluster ECU
Electric Parking Break ECU
Light Control Module ECU
Adaptive Front Lighting ECU

SlICHSHSICISICHSHEIS)

table is detected, the next message in table will be monitored. If the expected message is not witnessed
and other message is discovered, it considers the possibility of a spoofing attack. However, because this
message may be sent by a normal ECU, a verification process must be performed. At this time, the
verification process will be performed through the management component and SipHash, which is one of
the hash algorithms used in this process. The SipHash is a key-based hash algorithm that uses a simple
operation such as Add-Rotate-Xor (ARX). It is also optimized about a short message, resulting in a

64-bit tag value. Therefore, it is suitable for constrained devices such as an ECU.

Table 3.2: Sequence of messages based on driver’s behavior

Driver’s behavior Sequence of messages
1) Usual O~ @~0
2) Left/Right turn, U-tern Ol indOlndClnd®)
3) Ignition ® -0 0
4) Stop @000
5) Acceleration @000
6) Deacceleration OdOindCind V)
7) Parking/stop CiadindOlndVind Olnd ¥
8) Light Olnd Vind0)
9) Backward movement OadOindOlnd Cind®)
10) Change of line OldVindOindOlnd®)

The security gateway requests the hashed value of the suspect message. Sending the ECU that
sent the suspect message calculates the hashed value and sends it to the security gateway. Then, the
management component in the security gateway calculates the hashed value of the suspect message and
compares it to the received hashed value. If the two hashed values are the same, verification succeeds,
and if the hashed values are different, verification fails. In other words, it can determine that there has
been an attack. At this time, a specific key is used in the verification process. As mentioned in the

assumption, this key has already been shared between the security gateway and the ECUs. Because a
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valid ECU can calculate a hashed value using its key, it can be verified. The attacker does not know this
key, and so cannot create a hashed value. Thus, the attacker cannot send a verification message and the

attack can be determined.

3.3.3 DoS Defense

Finally, a temporary ID for defending against DoS attacks is proposed. First, the security gateway
monitors frames in the CAN bus and detects a DoS attack. A DoS attack is detected using the existing
method that analyzes the frequency of messages. At this time, messages that have high priority are
monitored. If a monitored message is faster than its frequency, it may be a DoS attack. To defend
against this, the management component in the security gateway creates a seed for a temporary ID.
Then, the temporary ID used in each ECU is created using a seed in the management component before
it is sent and examined to determine whether they have the same ID. If the ID is the same, the seed
is created again and the process is repeated. In addition, once the temporary ID used in each ECU is
created, the table that corresponds to the existing ID will be created for smooth communication with
the other domains.

The created seed is transferred to each ECU. The ECUs that receive messages from the security
gateway make a temporary ID using the transferred seed. At this time, the already shared formula and
SipHash are used to create a temporary ID. First, the median value that is used in the SipHash input is

made using the seed. Below is the formula for determining the median value.

ID + seed

. (3.1)

N represents the total number of ECUs in a domain and seed is value from security gateway. ID
is ECU’s ID. Basically, because an attacker cannot know how many ECUs there are in a domain, the
attacker does not know n. Thus, this formula is appropriate. Next, below is the final temporary ID.

ID; + seed
n

Temporaryl D : Lowest 11bit of SipHash( ) mod IDy (3.2)

ID; is ECU’s ID and N is the total number of ECUs in domain. Seed is value from security gateway

and (IDs) is ID that has highest priority in domain. The median value is inserted into SipHash as

~19 —



input. Then, a 64-bit tag value is obtained and the 11 bit that is the lowest bit in the 64-bit tag value
is extracted. A modular operation is performed with this value and the highest ID. Through modular
operation, the value that is lower than highest ID will be obtained, and it means that this value has a
higher priority than the highest ID in the CAN bus. Therefore, if ECUs use the replaced temporary 1D
instead of the original ID, there is no communication problem because the temporary ID has a higher
priority than the attacker’s ID. This enables ECUs to communicate with each other regardless of any
DoS attack. At this time, the attacker stops their DoS attack because he knows the attack is having
no effect on the CAN bus. If so, the security gateway detects this and sends messages that notify other
components that the DoS attack has ended. Then, the table for communicating with other domains is
abolished. At this time, an attacker can use the temporary ID when trying to perform a DoS attack.
However, because the temporary ID is randomly created, the attacker cannot use the previous temporary
ID. Therefore, there is no problem.

For example, if there is a DoS attack such as in figure the security gateway detects the DoS

attack and creates a seed, which is then transferred to each ECU.

CAN ! CAN CAN

CAN CAN CAN .
el i i Other domain

Figure 3.5: Example of DoS attack in CAN

The ECUs that receive messages from the security gateway make a temporary ID using the seed
and exchange the original ID for the temporary ID. Figure [3.6] shows such a situation where because the
attacker’s ID has a lower priority than the temporary IDs, the DoS attack is ineffective. In this situation,
attacker cannot know temporary ID and make it, because attacker does not have key that is used in
SipHash. Thus, the attacker stops their DoS attack, which the security gateway detects. The security
gateway then sends messages that notify other components that the DoS attack has finished, and the

ECUs return to their original IDs. If DoS attack occurs again, defense against it will be performed. At
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this time, temporary ID is new because seed is new. Therefore, DoS attack will be ineffective.

CAN CAN CAN
i | 1
A il AN
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Figure 3.6: Defense using temporary ID
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Chapter 4. Implemetation

4.1 OMNeT+H+

OMNeT++, which is a network simulator, was used to verify proposed idea. Briefly, we want to
introduce OMNeT++. OMNeT++ is an open source program that can test networks and is used for
testing various network environments such as Ethernet, wireless, mobile, and p2p. Because OMNeT++
is based on C++, anyone who uses C++ can easily organize an experimental environment by modifying
and testing code in OMNeT++. In addition, OMNeT++ is a module-based program, and there are
various modules in OMNeT++. Normally, one module is used by combining it with other modules and
calling it a component. Such components can then be used in a simulation. For example, if someone
wants to test a simulation of wireless devices, modules that can do wireless communication, application
modules, and other ancillary modules are required to test the simulation. By combining these modules,
wireless components can be made and used in a wireless simulation. Figure shows the IPv6 model

that OMNeT++ offers as a basic example.

MClientsEth

5 IPv6 nodes
0 non-IP nodes

configurator

Figure 4.1: IPv6 model in OMNeT++
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4.2 Experiment Environment

As mentioned above, OMNeT++ offers various basic models for network simulation. However,
CAN models are not offered in OMNeT++. Therefore, Keigo Keigo et al [31] developed a CAN model
based on the basic model in OMNeT++ and offered it to people. Figure shows two simple examples

implemented using the CAN model.

CanBus CanBus2

| | bus bus |

9 @ O §© @

Sender  Receiver Senderl  Sender2  Receiver

Figure 4.2: Examples of CAN model

However, the CAN basic model that is offered by [31] cannot simultaneously send and receive mes-
sages, because sender and receiver are separated. Thus, it is different to actual ECUs that can send and
receive messages simultaneously. In addition, because there is only the data frame, additional imple-
mentation is required to test ideas fully. Accordingly, the CAN basic model was modified. Furthermore,
the security gateway proposed in this paper was added to this CAN basic model along with some minor
parts, which were added or modified.

Next, the basic topology was implemented based on the structure of the vehicle used in this exper-
iment. Before explaining the basic topology, the structure of the vehicle requires explication. Figure

shows the structure of vehicle.

Body Chassis

Figure 4.3: Structure of vehicle

The vehicle can be divided into the body and the chassis. The body is used when a driver and
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passengers are onboard or cargo is carried and the chassis is needed when driving. Between the body
and chassis, the chassis is an important part that makes up the interior of the vehicle. The chassis also
consists of various parts. Figure [£.4] shows how chassis is composed.

e Engine part — Engine system

— Power train system

Chassis — Steering system

Break part — Break system

\. Assistance part — others

Figure 4.4: Configuration of chassis

As you can see, the chassis can be divided into the engine, brakes, and assistance parts, and there
are various systems in each part.

A basic topology was created based on three parts. Each part was made up of ECUs in table, which
is presented in chapter 3. The position of the ECUs could be determined based on figure [£.4] Figure
shows the basic topology, and as you can see, each of the three parts is made of the ECUs mentioned
above. In addition, there are three security gateways and each security gateway manages its domain.
For example, security gateway 1 monitors the engine part and detects spoofing and DoS attacks and
both sends and receives messages from other domains.

Below is ID of basic ECUs that was used in experiment.

1) Engine part

Throttle ECU: 0x61

Engine Control Module ECU: 0x31

Electric Power Steering ECU: 0x51

e Transmission ECU:0x21

2) Break part

e Electronic Break Control Module ECU:0x41

e FElectric Parking Break ECU:0x81
3) Assistance part
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Figure 4.5: Basic topology

Electronic Stability Control ECU:0x11

Light Control Module ECU:0x91

Adaptive Front Lighting ECU:0x101

o Instrument Cluster ECU:0x71

Two experiments were performed based on the basic topology. One simulated a defense against
spoofing attacks, the other simulated a defense against a DoS attack. Additional ECUs were added to
the basic topology in each experiment, 20 to the first experiment and 30 to the second. At this time, the
IDs of the additional ECUs were randomly determined, and these IDs were larger than the basic ECUs

so that their priorities were low.
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Chapter 5. Result

5.1 Spoofing Defense

In this chapter, the result of defense against spoofing and DoS attacks is presented when the proposed
idea was tested in an experimental environment in chapter 4. The attack ECU is in one of the basic
topologies for the spoofing defense and the attack frame is transferred to the CAN bus at an arbitrary
time. Two parts were measured in the spoofing attack. One is the detection rate, the other is the increase
in traffic. The detection rate was measured by changing the number of attack frames, when there were

30 or 40 ECUs. The table [5.1] shows the detection rate for 30 and 40 ECUs.

Table 5.1: Detection rate
Number of ECUs

30 ECUs | 40 ECUs
10 99.3% 99.0%
Number of attack frames | 20 99.1% 98.6%
30 98.7% 98.3%

Examining the table the detection rate is approximately 99%, 98.8%, and 98.5% when there
were 10, 20, and 30 attack frames; it generally shows a high detection rate. However, the detection rate
becomes low as the number of ECUs and attack frames increases, because the lower detection rate is a
false positive that detects normal frames as attack frames. In the proposed spoofing defense idea, there
is a verification process and false positives occur in this process. If a frame that needs verification is
sent to a security gateway, this frame may be considered a verified. Thus, it will fail the verification
process and a false positive will occur despite it being a valid frame. The possibility of this phenomenon
increases as the number of ECUs increases. Because the ECUs increase, the total number of frames in
the CAN bus also increases and the possibility of a false positive will increase. Although false positives
occur, the entire detection rate is about 98.8%, demonstrating a high detection rate.

Next, how much traffic increased was measured in the proposed idea. Table [5.2] and [5.3] show how
much traffic increases when the total number of ECUs is 30 and 40.

The number of attack frames is 30 in this experiment. The rate represents the rate of valid frames

in the total frames, and it means an increased number of frames. Examining each table, the increase was
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Table 5.2: Increase of traffic (30 ECUs)

Driver’s behavior Number of total frames | Number of valid frames Rate
(A) (B) (B/A * 100 %)

1) Usual 4,060 14 0.34%
2) Left/Right turn, U-tern 13,522 20 0.41%
3) Ignition 20,143 19 0.09%
4) Stop 15,423 16 0.10%
5) Acceleration 13,696 19 0.13%
6) Deacceleration 11,776 13 0.11%
7) Parking/stop 27,748 24 0.08%
8) Light 5,611 17 0.30%
9) Backward movement 22,949 18 0.10%
10) Change of line 20,424 21 0.10%

at most 0.41% and at least 0.08%, when there were 30 ECUs. It shows an average increase of 0.11%.
This is quite low considering the rate of total frames. When there were 40 ECUs, the increase was at
most 0.37% and at least 0.11%. The average increase was 0.19%, thus it was somewhat increased. As
the number of ECUs increased, the total frames similarly increased. According to this, the number of
frames that required verification was relatively increased. Therefore, it is determined that the traffic
increased slightly. However, the average increase was 0.11%, which accounted for a relatively small extra

portion of total frames.

Table 5.3: Increase of traffic (40 ECUs)

Driver’s behavior Number of total frames | Number of valid frames Rate
(A) (B) (B/A * 100 %)

1) Usual 9,053 34 0.37%
2) Left/Right turn, U-tern 18,570 39 0.21%
3) Ignition 27,336 42 0.17%
1) Stop 22,554 38 0.16%
5) Acceleration 20,139 36 0.17%
6) Deacceleration 17,664 40 0.22%
7) Parking/stop 43,044 55 0.12%
8) Light 12,572 42 0.33%
9) Backward movement 44,457 50 0.11%
10) Change of line 39,028 47 0.12%

5.2 DoS Defense

Next is result of the defense against DoS attacks. The attack ECU tried to attack the CAN bus at
an arbitrary time. The DoS attack was maintained during regular time and then stopped. This was one
period of a DoS attack, and it occurred randomly. In addition, the attack times and last attack time

were random.

Figure and show the frame drop rate at the ECU. Basically, because the priority of the
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attack frames is higher than the other frames during a DoS attack, other frames cannot be transferred.
Therefore, the ECU’s frame drop rate is very large. Figure shows this situation. Initially, we can
see that the frame drop rate gradually becomes large in Figure because the ECU cannot send
frames to the CAN bus. After that, once a temporary ID was created through the proposed idea, the
communication between ECUs became possible, because the temporary ID had a higher priority than
the one used in the DoS attack. This meant that the frame drop rate became low, as shown in figure [5.1]
After that, the DoS attack stops and the original ECU ID is recovered. Therefore, ECU communication
is possible and there is only a small frame drop rate. Finally, once the DoS attack starts again, defense
against DoS attacks was initiated. As a result, the frame drop rate increased and decreased in a similar
pattern to before.

The increased frame drop rate due to two attempted DoS attacks is shown in figure[5.1]and the frame
drop rate is decreased by the implementation of temporary IDs. In other words, the defense against DoS
attacks is effective. However, there is a delay in the defense, when the DoS attack is detected and action
is taken against it. This delay is because of time required to make a seed and temporary ID at each
ECU. In addition, the security gateway must check whether it holds the same temporary ID. If there is
the same temporary ID, a seed must be created again to avoid collisions between ECUs. Furthermore,
because the ECU makes a temporary ID using the received seed, it takes some time. Due to these, there

is a small delay. Thus, it is determined that the delay is not a problem.

Time (5)

Figure 5.1: Frame drop rate 1

Figure [5.2] also shows that the defense against DoS attack was well performed. There are two DoS

attacks and each trigger defenses. As in figure [5.1] the defense against DoS attack was effective. As
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mentioned above, there is a difference in the attack time, because DoS attacks occur randomly. However,

we can see a similar result to Figure 5.1

Drop
Rate s
(36)

L1 [1] a0 a1 00 o ox [+ 1 LE ) o4 0% ass s oS on ars 080 ass s 0%
Time (5)

Figure 5.2: Frame drop rate 2
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Chapter 6. Discussion

In this paper, the proposed defenses against spoofing and DoS attacks show some advantages.
First, they present with a low traffic increase when defending against spoofing attack. The MAC- and
cryptography-based methods had a problem of increased traffic. A small traffic increase will slightly
affects the CAN, but a huge increase of traffic can be big problem for it. As mentioned above, the real
time characteristic in vehicles is very important. If messages cannot be sent to a specific ECU at the
proper time, it may effect the driver. Light and door messages have little effect on the driver; however,
because engine and brake messages are vital to the driver’s safety, these messages can have a huge effect
on a driver. Considering that, any traffic increase is an important criterion when evaluating defense
methods. In that part, the suggested idea shows a low increase of traffic and has little effect on the CAN
bus.

Next, when defending against DoS attack, it shows that ECUs can communicate with each other
during a DoS attack. Basically, ECUs have trouble communicating with each other during a DoS attack.
Therefore, messages in the CAN bus cannot be handled at the proper time, which may harm the driver.
As mentioned above, real time is very important when operating a vehicle. In a DoS attack, the CAN
bus will be filled with the attacker’s message, because the attacker’s message has highest priority in the
CAN bus. Due to this, other ECU messages cannot be sent to the CAN bus, causing a serious problem.
By introducing a temporary ID, the effect of a DoS attack was mitigated. Through experimentation, the
frame drop rate was decreased, meaning the ECUs could communicate with each other despite the DoS
attack. However, there was a small delay time in the defense against DoS attack. The frame drop rate
was considerably increased due to the delay time. Thus, reducing the delay time is required to decrease
the effect of a DoS attack.

Finally, suggested idea in this paper has similarities in [29]. However, [29] is detection using anomaly
behavior based on data that are collected in vehicle. In this situation, detection rule is always updated
and it used for detect attack. It may be burden to vehicle. Although vehicle has been developed, it is
not easy to dealing with large scale traffic in vehicle. To do this, vehicle must have more resource than

previous one and it would cause increasing cost of vehicle. Also, it does not prove its efficiency and
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effectiveness. On the other hand, suggested idea is detection based on signature using driver behavior.
Because it stores table that is used for detecting attack in advance, it can not be burden of vehicle.
Also, suggested idea proved its efficiency and effectiveness through experiment. Although experiment

was performed using software, it is enough to show its efficiency and effectiveness.
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Chapter 7. Conclusion

In this paper, defense against spoofing and DoS attack through a security gateway is proposed.
In the case of defense against a spoofing attack, the sequence of messages is determined based on the
driver’s behavior, creating a table. Whether a spoofing attack occurs in the CAN bus is monitored using
this table. In addition, via a verification process, valid frames are verified and malicious frames can be
detected. In the case of a DoS attack, a temporary ID is created based on a seed. At this time, SipHash
is used for calculating a temporary ID that has higher priority than an attack frame’s priority. This
enables ECUs to smoothly communicate with each other regardless of any DoS attack.

Through OMNeT++, experiments into defending against spoofing and DoS attacks were performed.
Based on basic topology, the detection rate in defending against spoofing attack was approximately 98.8%,
and the traffic increase was at most 0.19%. This demonstrates that the proposed idea is efficient. In
defense against a DoS attack, the proposed idea demonstrated that it could effectively defend against
DoS attack by analyzing the frame drop rate.

Table is a comparison of existing ideas with the proposed idea. By examining this table, the
proposed idea solves problems that the existing ideas could not solve, such as increases in traffic volume,
the simultaneous detection of spoofing and DoS attacks, etc.

There are some future works, the first of which is the enhancement of the detection rate. It may be
possible to extend the table that is used in defending against spoofing attacks. By adding new items,
the table will be more detailed, which will improve the detection rate. In addition, there will be more
ECUs than in the current model. Thus, it is necessary to extend items in the table to use this idea in an
environment in which more ECUs exist. Second, the verification process must be improved, to reduce the
number of false positives. This can be solved by adding another verification process. Finally, reducing
the defense time during the initial period of a DoS attack is necessary. The suggested idea takes time to
begin defending against a DoS attack, causing the frame drop rate to reach approximately 100%. This
can be reduced by applying a new algorithm that can detect a DoS attack more rapidly or by improving

the process of generating a temporary ID.
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Appendices

A Source Code

Security Gateway Code

#include <stdio.h>

#include ” CanSecurityGateway .h”
#include ”siphash.h”

#include <time.h>

#include <exception>
Define_Module (CanSecurityGateway );

simsignal_t CanSecurityGateway :: DetectionSignal = SIMSIGNAL_NULL;

simsignal_t CanSecurityGateway :: ValidSignal = SIMSIGNAL_NULL;

static cEnvir& operator<<(cEnvir& out, cMessage *xmsg)

{
out.printf(”(%s)%s”, msg—>getClassName (), msg—>getFullName ());

return out;

CanSecurityGateway :: CanSecurityGateway ()

{

CanSecurityGateway :: ~ CanSecurityGateway ()

CanComponent : : CanComponent ()

{

CanComponent :: ~ CanComponent ()
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CanRouting :: CanRouting ()
{

CanRouting:: ~ CanRouting ()

CanManagement : : CanManagement ()

{

CanManagement :: ~ CanManagement ()

CanDetection :: CanDetection ()

{

CanDetection::” CanDetection ()

void CanSecurityGateway :: initialize ()

{

numGates = gateSize (”in”);

inputGateBaseld = gateBaseld (”in”);

outputGateBaseld = gateBaseld (”out”);

CanCominMes = new CanComponent ();

CanCominMes—>initialize ();

CanDetinMes = new CanDetection ();

CanDetinMes—>initialize (this);

CanManinMes = new CanManagement () ;

CanManinMes—>initialize ();

CanRouinMes = new CanRouting ();
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for (int i = 0; i < MAX.CAN.MESSAGEID; i-++)

isIn[i] = false;

createRoutingTable (CanDetinMes ) ;

DetectionSignal = registerSignal (” Detection”);
ValidSignal = registerSignal (”Valid”);

packetsReceived = 0;

WATCH( packetsReceived );

void CanDetection:: initialize (CanSecurityGateway* hope)

{

CanManinDet = new CanManagement () ;
CanMesinDet = new CanSecurityGateway ();

CanRouinDet = new CanRouting ();
happy = true;

isDetection = false;

isDoS = false;

DoSFirst = true;

index = 0;

CanManinDet—>setMessageIDCollection ();

tagNode*x temps = new tagNode;

#*root = new tagNode [5];
root [0] = temps—>CreateNode (0x41);
root [1] = temps—>CreateNode (0x11);
root [2] = temps—>CreateNode (0x61);
root [3] = temps—>CreateNode (0x21);
root [4] = temps—>CreateNode (0x91);
tagNodex B = temps—>CreateNode (0x21);
tagNodex C = temps—>CreateNode (0x61);
tagNodex D = temps—>CreateNode (0x31);
tagNodex E = temps—>CreateNode (0x51);
tagNodex G = temps—>CreateNode (0x61);
tagNodex H = temps—>CreateNode (0x61);
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tagNodex I =

tagNodex O =

tagNodex
tagNodex
tagNodex*
tagNodex
tagNodex*

tagNodex*

o
Il

z 2 - 9 =
Il

temps—>CreateNode (0x71);
temps—>CreateNode (0x71);
temps—>CreateNode (
temps—>CreateNode (0x31);
temps—>CreateNode (
temps—>CreateNode (0x81);
temps—>CreateNode (0x21);

temps—>CreateNode (0x71);

temps—>AddChildNode (root [0] , B);

temps—>AddChildNode (root [0], C);

temps—>AddChildNode (B, E);

temps—>AddChildNode (B, G);

temps—>AddChildNode (C, D);

temps—>AddChildNode (E, H);

temps—>AddChildNode (E, I);

temps—>AddChildNode (D, J);

temps—>AddChildNode (D, O);

temps—>AddChildNode (G, K);

tagNodex BB

tagNodex BC

temps—>AddChildNode (H, P);
temps—>AddChildNode (K, L);

temps—>AddChildNode (I, M);

temps—>AddChildNode (L, N);

= temps—>CreateNode (0x21);

= temps—>CreateNode (0x31);

temps—>AddChildNode(root [1], BB);

temps—>AddChildNode (BB, BC);

tagNodex CB
tagNodex CC

tagNodex CD

= temps—>CreateNode (0x31);
= temps—>CreateNode (0x21);

= temps—>CreateNode (0x71);

temps—>AddChildNode (root [2], CB);

temps—>AddChildNode (CB, CC);

tagNodex DB
tagNodex DC

tagNodex DD

temps—>AddChildNode (CC, CD);

= temps—>CreateNode (0x61);
= temps—>CreateNode (0x31);

= temps—>CreateNode (0x71);

temps—>AddChildNode (root [3] , DB);

temps—>AddChildNode (DB, DC);
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temps—>AddChildNode (DC, DD);

tagNodex EB = temps—>CreateNode (0x101);
tagNodex EC = temps—>CreateNode (0x71);
tagNodex ED = temps—>CreateNode (0x71);
tagNodex EF = temps—>CreateNode (0x51);
tagNode* EG = temps—>CreateNode (0x61);
(

tagNodex EH = temps—>CreateNode (0x31);

temps—>AddChildNode (root [4] , EB);
temps—>AddChildNode (root [4], EC);
temps—>AddChildNode (EB, ED);
temps—>AddChildNode (EC, EF);
temps—>AddChildNode (EF, EG);

temps—>AddChildNode (EG, EH);

}

void CanComponent:: initialize ()

{
CanDetinCom = new CanDetection ();
CanRouinCom = new CanRouting ();
CanManinCom = new CanManagement ();
CanDetinCom—>setPeriodic (0);

}

void CanManagement:: initialize ()

{
msbackup = NULL;
CanCominMan = new CanComponent ();
already = false;
AlreadyCheck = new CanFrame ();
AlreadyCheck—>setMessagelD (0);
numDetected = 0;

}

void CanSecurityGateway :: printId ()

{
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void CanSecurityGateway :: handleMessage (cMessage *msg)

{

CanCominMes—>handleMessage (msg, this);

void CanSecurityGateway :: record (bool happy,CanFramex Check)

{
if (!happy)
emit ( ValidSignal , Check);
else
emit (DetectionSignal , Check);
¥

void CanComponent:: handleMessage (cMessage xmsg,CanSecurityGateway* hope)

{

EV << 7CanComponent: _message.” << msg << ”_received\n”;

if (!msg—>isSelfMessage ()) {
CanTraffic sxcan_.msg = check_and_cast<CanTraffic *>(msg);
switch (can_msg—>getType()) {

case CAN_MESSAGE:

if ((hope—>CanManinMes—>AlreadyCheck—>getMessagelID () != 0) &&

check_and_cast <CanFramex>(msg)—>getMessagelD () == hope—>CanManinMes—>msbackup—>getMessagelID ()) {

CanManinCom—>VerifyMessage (check_and_cast <CanFramex*>(msg) ,hope);

} else if((hope—>CanManinMes—>AlreadyCheck—>getMessagelID () != 0) &&
check_and_cast <CanFramex>(msg)—>getMessagelD () != hope—>CanManinMes—>msbackup—>getMessagelD ()) {
}

else{

if (hope—>CanDetinMes—>isDoS && !hope—>CanDetinMes—>isDetection){
CanDetinCom—>DoSDetection (check_and_cast <CanFrame*>(msg) ,hope);
CanDetinCom—>SpoofingDetection (check_and_cast <CanFrame*>(msg) , hope);
}else if (hope—>CanDetinMes—>isDoS && !hope—>CanDetinMes—>isDetection){
CanDetinCom—>DoSDetection (check_and_cast <CanFramex>(msg) ,hope);
}else if (!hope—>CanDetinMes—>isDoS && hope—>CanDetinMes—>isDetection){

CanDetinCom—>SpoofingDetection (check_and_cast <CanFrame*>(msg) ,hope);

break;
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case CANREMOTE:
handleRometeMessage (check_and_cast <CanRemoteFramex>(msg), hope);
break;

default :

error (" Message_with_unexpected_message_type %d” , can_msg—>getType ());

} else {

EV << 7”CanSecurityGateway:_Self —message.” << msg << ”._received\n”;

void CanComponent:: handleRometeMessage (CanRemoteFrame smsg, CanSecurityGateway* hope)

{
uint messageid ;
messageid = check_and_cast <CanRemoteFramex> (msg)—>getMessagelD ();
EV<<” Remote_ID: _."<<messageid <<endl;
if (hope—>isIn [messageid]){
cGate*x ogate;
if (hope—>messagelDs == 1){
ogate = hope—>gate (hope—>outputGateBaseld + 1);
send_message (hope, ogate, msg);
}else if (hope—>messagelDs == 2){
ogate = hope—>gate (hope—>outputGateBaseld + 0);
send._message (hope, ogate, msg);
}else if(hope—>messagelDs == 3){
ogate = hope—>gate (hope—>outputGateBaseld + 0);
send_message (hope, ogate, msg);
}
}
delete msg;
}

void CanComponent:: send_message (CanSecurityGateways* hope, cGatex ogate, CanRemoteFrame sxmsg)
{
if (ogate —>isConnected () && !hope—>CanManinMes—>already) {
cMessage xmsg2 = msg—>dup ();

hope—>send (msg2, ogate);
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void CanRouting :: handleCanMessageFromBus (CanFrame smsg, CanSecurityGateways* hope)
{

int i;

EV << 7”CanRouting: _Received .CAN_Frame.” << msg—>getName () << 7\n”;

uint messageid;

CanFramex Newframe = new CanFrame ();

bool find = false;

if (! hope—>CanDetinMes—>isDoS ) {
messageid = msg—>getMessagelD ();
for (i = 0; i < hope—>numGates; i++) {
if (hope—>routingTable[messageid][i]) {
EV<<” RoutingTable: . ”<<hope—>routingTable [ messageid ][ i]<<endl;

cGatex ogate = hope—>gate (hope—>outputGateBaseld + i);

if (ogate —>isConnected ()) {
cMessage xmsg2 = msg—>dup ();

hope—>send (msg2, ogate);

}
EV << 7”CanRouting:_-Sent .CAN_Message. ‘" << msg—>getName() << ”’\n”;

delete msg;
} else if(hope—>CanDetinMes—>isDoS){

uint tempmessageid = msg—>getMessagelD ();

std ::map<int ,int >::iterator itr;

itr = hope—>CanManinMes—>IDtranslation . find (tempmessageid);

if(itr != hope—>CanManinMes—>IDtranslation.end()){
messageid = itr —>second;
find = true;

}

for (i = 0; i < hope—>numGates; i++) {
if (msg—>getArrivalGateld () != (hope—>inputGateBaseld + i) && find){
EV<<”I_am_Here!!!”<<endl;
if (hope—>routingTable[messageid][i]) {
cGatex ogate = hope—>gate (hope—>outputGateBaseld + i);
Newframe = msg—>dup ();

Newframe—>setMessagelID (messageid );

if (ogate —>isConnected ()) {
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cMessage *msg2 = Newframe—>dup ();

hope—>send (msg2, ogate);

¥
}
} else {
cGatex ogate = hope—>gate (hope—>outputGateBaseld + i);
if (ogate —>isConnected ()) {
cMessage *msg2 = msg—>dup ();
hope—>send (msg2, ogate);
}
}
}
EV << 7”CanRouting:_Sent .CAN_Message_ ‘" << msg—>getName() << 7 ’\n”;

delete msg;

void CanSecurityGateway :: createRoutingTable (CanDetection* CaninDet)

{

int i, j;

routingTable = new bool*x[MAX_CAN.MESSAGE.ID];
for (i = 0; i < MAX.CANMESSAGEID; i++) {

routingTable[i] = new bool[numGates];

root = (par(”routingmap”).xmlValue());
const char xids = root—>getAttribute (”ID”);

messagelDs = ToDec(ids);

EV<<”ID: . "<<messagelDs<<endl;

cXMLElementList MessageIlnfoElements = root—>getChildrenByTagName (” Messagelnfo”);

EV << ”Elements.:.” << (int)MessagelnfoElements.size () << endl;
cXMLElementList DetectionID = root—>getChildrenByTagName (” DetectionInfo”);
cXMLElement xmessage = DetectionID [0];

CaninDet—>DetectionID = ToDec(message—>getAttribute ("ID”));

int CGWApps = par (?numCGWApps” ) ;

int CanBuses = par(”numCanBuses” );
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int EthernetBuses = par(”numEthernetBuses” );

for (i

for (i

for (i

= 0; i < CGWApps; i++) {

NGTable. insert ( std::map<std::string , int>::value_type( "OGW’, i ) ); /

= 0; i < CanBuses ; i++) {
char CanBusName [32];
sprintf (CanBusName, "CAN%d”, i+1);

NGTable. insert (std :: map<std :: string , int >::value_type (CanBusName, CGWApps + i));

= 0; i < EthernetBuses ; i++4) {
char EtherBusName [32];
sprintf (EtherBusName, ”"Ethernet”);

NGTable. insert ( std::map<std::string , int>::value_type( EtherBusName, CGWApps + CanBuses + i

std ::map<std ::string ,int >::iterator it = NGTable.begin ();

while (it != NGTable.end ()) {
EV << (®it). first << 7:”7 << (it ).second << endl;
++it;

}

for (i = 0; i < MAX.CANMESSAGEID; i++) {

for (i

for (j = 0; j < numGates; j++) {

routingTable[i][j] = false;

= 0; i < (int)MessageInfoElements.size (); i++) {
const char xid = MessagelnfoElements[i]—>getAttribute (”ID”);

unsigned long messagelD = ToDec(id);

cXMLElementList MessageInfo = MessageIlnfoElements[i]—>getChildren ();
for (j = 0; j < numGates; j++) {
cXMLElement *MessageIlnfoChild = Messagelnfo[]];
if (atoi(MessagelnfoChild—>getAttribute (”Send”)) == 1) {
int value;

const char xname = MessagelnfoChild—>getAttribute (”Name” );

std ::map<std ::string , int >::iterator itr;

itr = NGTable. find (name);

if (itr != NGTable.end()) {
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value = itr —>second;
} else {

EV << 7cannot_find._value_corresponding_to.” << name << endl;
}

routingTable [messageID ][ value] = true;

char id [32];
BV Q7 skoskok sk stk sk sk sk sk sk ok sk ok sk sk sk sk ok sk sk sk sk ok skok sk sk ok sk ok skok sk ok skok skokokokok \
for (i = 0; i < MAX_.CANMESSAGEID; i++) {
sprintf (id,” -0x%04x.” ,i);
EV << "MessagelD: .7 << i << 7 (7 << id << 7)o
for (j = 0; j < numGates; j++) {
EV << routingTable[i][j] << 7.7}
}
EV << endl;

}

EV << ”********************************************\n” ;

void CanDetection:: SpoofingDetection (CanFrame sxmsg, CanSecurityGateway* hope)
{
tagNode* test = new tagNode;

bool tests, isEnd = false;

if (lhope—>CanDetinMes—>isDetection){
for (; hope—>CanDetinMes—>index < 5; hope—>CanDetinMes—>index++){
if (test —>Search (hope—>CanDetinMes—>root [index],
&hope—>CanDetinMes—>temp , msg—>getMessagelD () ,&isEnd))
{
hope—>CanDetinMes—>isDetection = true;

CanRouinDet—>handleCanMessageFromBus (msg, hope ) ;
break;
if (hope—>CanDetinMes—>index == 5)
hope—>CanDetinMes—>index = 0;
}  else if(hope—>CanDetinMes—>isDetection && !hope—>CanManinMes—>already ){

tagNode* temps = hope—>CanDetinMes—>temp ;

tests = test —>Search (temps,&hope—>CanDetinMes—>temp , msg—>getMessagelID (),&isEnd);
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if(tests && hope—>CanDetinMes—>happy)

{
CanRouinDet—>handleCanMessageFromBus (msg, hope );
}
else if (!tests && hope—>CanDetinMes—>happy)
{
if (! hope—>CanManinMes—>already )
{
hope—>CanManinMes—>CheckMessage (hope ,msg);
hope—>CanDetinMes—>happy = false;
}
}
if (isEnd)

{

hope—>CanDetinMes—>index = 0;

if ('hope—>CanDetinMes—>isDetection && !'hope—>CanDetinMes—>isDoS) {

CanRouinDet—>handleCanMessageFromBus (msg, hope ) ;

delete test;

void CanDetection:: DoSDetection (CanFrame smsg, CanSecurityGateways* hope)

{
SimTime Diff = 0;

if (hope—>CanDetinMes—>DoSFirst && msg—>getMessagelD () == hope—>CanDetinMes—>DetectionID ){
Highmsbackup = msg—>dup ();
hope—>CanDetinMes—>DoSFirst = false;
start = 0;

}else if (!hope—>CanDetinMes—>DoSFirst && msg—>getMessagelD () == hope—>CanDetinMes—>DetectionID ){
Diff = msg—>getCreationTime () — Highmsbackup—>getCreationTime ();
Highmsbackup = msg—>dup ();
if (Periodic > Diff && !hope—>CanDetinMes—>isDoS){

hope—>CanDetinMes—>isDoS = true;
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check = 0;
hope—>CanDetinMes—>CanManinDet—>CreateTemperallD (msg, hope);
}else if(Periodic < Diff && !hope—>CanDetinMes—>isDoS){

EV<<” Normal”’<<endl;

void CanManagement :: CheckMessage (CanSecurityGatewayx* hope, CanFramex backup)
{
int temp;

CanRemoteFramex CheckMessage = new CanRemoteFrame ();

CheckMessage—>setType (0x05);
CheckMessage—>setIsSent (false);
CheckMessage—>setMessagelD (backup—>getMessagelD () );
CheckMessage—>setControl_field ((1](0x1<<6)));

CheckMessage—>setFrameByteLength (0);

hope—>CanManinMes—>msbackup = backup—>dup ();

hope—>CanManinMes—>AlreadyCheck—>setMessagelD (backup—>getMessagelD () );

EV<<” Check.ID: .”<<backup—>getMessageID()<<endl;

for (int i = 0; i < hope—>numGates; i++) {

if (backup—>getArrivalGateld () != (hope—>inputGateBaseld + i))

continue;

temp = i;

cGatex ogate = hope—>gate (hope—>outputGateBaseld + temp);

if (ogate—>isConnected () && !'hope—>CanManinMes—>already) {
EV<<”Remote_Connected” ;
cMessage *msg2 = CheckMessage—>dup ();
hope—>send (msg2, ogate);

hope—>CanManinMes—>already = true;

delete CheckMessage;

— 50 —



void CanManagement :: VerifyMessage (CanFramex Check, CanSecurityGateways* hope)

{
uint8_t coml[8], key[16], i[1] ={0,};

for(int i = 0; i < 16; i++)

key[i] = i;
siphash (coml, i, 1, key);
bool test = false;

if (!memcmp(coml, Check—>getData (),8)){

hope—>record (test ,Check);

packetsReceived++;

}

else

{
test = true;
hope—>record (test ,Check);
packetsReceived++;
hope—>CanDetinMes—>happy = true;
hope—>CanDetinMes—>isDetection = false;
hope—>CanDetinMes—>index = 0;
hope—>CanManinMes—>already = false;
hope—>CanManinMes—>AlreadyCheck—>setMessagelID (0);
hope—>CanDetinMes—>temp = NULL;

}

void CanManagement :: CreateTemperallD (CanFrames msg, CanSecurityGateways* hope)

{
uint8_t coml1[8], id[8], key[16], midres[2];
int temp = 0, temp2 = 0, Mid[10], index, seed;

CanFramex CheckMessage = new CanFrame ();
srand ((unsigned int)time (NULL));

if (hope—>CanDetinMes—>isDoS){

bool isSame;

int messageIlD[10];

getMessageIDCollection (messagelD );

for (index = 0; index < 16; index++)

key[index] = index;
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isSame = false;

do{
seed = (rand()%65534)+1;

for(int i = 0; i < 8; i++)
coml[i] = 0;

isSame = false;

for (index = 0; index < 10; index++){

Mid[index] = (int)(seed+messagelD [index])/10;

for (index = 0; index < 2; index++)

midres [index] = 0;

for (index = 0; index < 10; index++){
midres [1] |= (Mid[index]&255);
midres [0] |= ((Mid[index]>>8)&255);
siphash (coml, midres, 2, key);
temp |=coml [7];

temp2 |=(coml[6]&7);

temp |=(temp2<<8);
TemperalMessageIDCollection [index] = temp%33;
temp = O0;

temp2 = 0;

midres [1] = 0;

midres [0] = 0;

for (index = 0; index < 10; index++){

if (TemperalMessageIDCollection [index] == 0){
isSame = true;
}
}
}while (isSame );
do{
isSame = false;

for(index = 0; index < 9; index++){

for (int j = index+1; j < 10; j++){
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if (TemperalMessageIDCollection [index] ==
TemperalMessageIDCollection[j]){
isSame = true;

TemperalMessageIDCollection[j] += 1;

}while (isSame ) ;

for (index = 0; index < 10; index++){

hope—>CanManinMes—>IDtranslation . insert (std :: map<int, int >::

value_type (TemperalMessageIDCollection [index ], messagelD [index]));

do{
isSame = false;
tempSGWID = 0;

for(int i = 0; i < 8; i++)

coml[i] = 0;
coml [7] |= (seed&255);
coml[6] |= ((seed>>8)&255);
coml[5] = 1;

tempSGWID = seed + 0x01;

midres [1] |= (tempSGWID&255);

midres [0]

= ((tempSGWID> >8)&255);

siphash (id, midres, 2, key);
temp |=id [7];

temp2 |=(id [6]&T);

temp |=(temp2<<8);

tempSGWID = temp%33;

if (tempSGWID == 0)

isSame = true;

}while (isSame);

CheckMessage—>setType (0x00);
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CheckMessage—>setIsSent (false);
CheckMessage—>set MessagelD (tempSGWID ) ;
CheckMessage—>setData (coml);

CheckMessage—>setFrameByteLength (8);

for (int i = 0; i < hope—>numGates; i++) {
if (msg—>getArrivalGateld () != (hope—>inputGateBaseld + i))

continue;

cGatex ogate = hope—>gate (hope—>outputGateBaseld + i);
setOutputGateID (hope—>outputGateBaseld + i);
if (ogate—>isConnected ()) {

cMessage xmsg2 = CheckMessage—>dup ();

hope—>send (msg2, ogate);

} else if (!hope—>CanDetinMes—>isDoS) {

coml[5] = 0;

CheckMessage—>setType (0x00);
CheckMessage—>setIsSent (false);
CheckMessage—>setMessagelD (tempSGWID ) ;
CheckMessage—>setData (coml);

CheckMessage—>setFrameByteLength (8);

cGatex ogate = hope—>gate (getOutputGatelD ());
if (ogate—>isConnected ()) {
cMessage xmsg2 = CheckMessage—>dup ();

hope—>send (msg2, ogate);

delete CheckMessage;

void CanManagement :: setMessageIDCollection ()

{

MessageIDCollection [0] 0x21;

MessageIDCollection [1]

0x71;
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MessageIDCollection [2] = 0x41;

MessageIDCollection [3] = 0x171;
MessageIDCollection [4] = 0x181;
MessageIDCollection [5] = 0x191;
MessageIDCollection [6] = 0x44;
MessageIDCollection [7] = 0x55;
MessageIDCollection [8] = 0x66;
MessagelDCollection [9] = 0x77;

void CanManagement :: getMessageIDCollection (int* message)

{
for(int i = 0; i < 10; i++4)

message [i] = MessageIDCollection [i];

void CanManagement :: setOutputGatelID (int Out)

{

outputGatelD = Out;

}

int CanManagement :: getOutputGatelID ()

{

return outputGatelD ;

void CanSecurityGateway :: finish ()

{

simtime_t t = simTime ();

recordScalar (”simulated _time”, t);
}
unsigned long CanSecurityGateway :: ToDec(const char str|[ |)
{

short i = 0;

short n;

unsigned long x = 0;

char c;

while (str[i] != ’"\0’) {

if (°0° <= str[i] && str[i] <= ’97) {

n = str[i] — ’07;

} else if (’a’ <= (¢ = tolower(str[i])) && c <= ") {
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)

n=c¢c— ’a’ + 10;
} else {

printf ("%s” ,str);

exit (0);

return (x);

int CanSecurityGateway :: getnumGates () const

{

return numGates;

void CanSecurityGateway :: setnumGates (int Gate)

{

numGates = Gate;

int CanSecurityGateway :: getinputGateBaseId () const

{

return inputGateBaseld;

void CanSecurityGateway :: setinputGateBaseld (int Input)

{

inputGateBaseld = Input;

int CanSecurityGateway :: getoutputGateBaseld () const

{

return outputGateBaseld;

void CanSecurityGateway :: setoutputGateBaseld (int Output)

{

outputGateBaseld = Output;

void CanDetection:: setPeriodic (SimTime Pe)

{

Periodic = Pe;
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SimTime CanDetection:: getPeriodic ()

{

return Periodic;

tagNodex tagNode:: CreateNode(int newData)

{
tagNode* newNode = new tagNode ();
newNode—>index = newData;
newNode—>leftChild = NULL;
newNode—>rightSibling = NULL;
return newNode;

}

void tagNode:: DestroyNode (tagNodex node)

{

delete node;

void tagNode:: DestroyTree (tagNodex root)

{
if (root—>rightSibling != NULL)

DestroyTree (root—>rightSibling );

if (root—>leftChild != NULL)

DestroyTree(root—>leftChild );

root—>rightSibling = NULL;

root—>leftChild = NULL;

DestroyNode(root );

void tagNode:: AddChildNode(tagNode* parent, tagNodex child)

{
if (parent—>leftChild == NULL)

parent—>leftChild = child;
else

{
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tagNode* tempNode = parent—>leftChild;
while (tempNode—>rightSibling != NULL)

tempNode = tempNode—>rightSibling ;

tempNode—>rightSibling = child;

void tagNode:: PrintLevel (tagNode* node, int level)

{
int depth = 0;
tagNodex tempChild = node;

tagNode*x tempParent = node;

while (depth <= level)

{
if (depth == level)
{
while (tempChild != NULL)
{
EV<<”’ID: .”<<tempChild—>index ;
tempChild = tempChild—>rightSibling;
¥
if (tempParent—>rightSibling != NULL)
{
tempParent = tempParent—>rightSibling;
tempChild = tempParent—>leftChild ;
}
else
break;
}
else
{
tempParent = tempChild;
tempChild = tempChild—>leftChild ;
depth++;
}
}
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EV<<endl;

void tagNode:: PrintTree (tagNode* node, int depth)

{
int i = 0;
for(i = 0; i < depth; i++)
EV<<? 7 ;
if (node—>leftChild != NULL)
PrintTree (node—>leftChild , depth + 1);
if (node—>rightSibling != NULL)
PrintTree (node—>rightSibling , depth);
}

bool tagNode:: Search(tagNodex Parentnode, tagNodexx temp, int ID, boolx isEnd)

{

tagNodex* tempParent = Parentnode;

bool find = false;
while (tempParent != NULL)
{

if (tempParent—>index == ID){

if (tempParent—>left Child!=NULL)

{
stemp = tempParent—>leftChild;
find = true;

}else

{
xisEnd = true;

}

break;

}

tempParent = tempParent—>rightSibling;

return find;

— 59 —



ECU Code

#include <stdio.h>

#include <string.h>
#include <stdlib .h>

#include <math.h>

#include 7CanECU_Base.h”
#include ”CanApp_m.h”
#include ”CanFrame_-m.h”
#include ”siphash.h”
#include <time.h>

Define_Module (CanECU_Base ) ;

simsignal_t
simsignal_t
simsignal_t
simsignal_t

simsignal_t

CanECU _Base : :
CanECU _Base : :
CanECU _Base : :
CanECU _Base : :

CanECU_Base ::

sentPkSignal = SIMSIGNAL_NULL;

rcvdPkSignal = SIMSIGNAL_NULL;
messagelDSignal = SIMSIGNAL_NULL;
DataSignal = SIMSIGNAL_NULL;

sendermessagelDSignal = SIMSIGNAL_NULL;

simsignal_t CanECU_Base::

simsignal_t CanECU_Base::
simsignal_t CanECU_Base::

CanECU_Base

{

:: CanECU_Base ()

sendReqMsg = NULL;

CanECU_Base:: ~ CanECU_Base ()

{
cancelAndDelete (sendReqMsg);

void CanECU_Base:: initialize ()

{
Userlnput = 2;
Srv_initialize ();
Cli_initialize ();
isDoSs = false;
TempID = false;
}

void CanECU_Base

{

:: Cli_initialize ()
packetsReceived =

03
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sendertempmessagelDSignall = SIMSIGNAL_NULL;
sendertempmessagelDSignal2 = SIMSIGNAL_NULL;
sendertempmessagelDSignal3 = SIMSIGNAL_NULL;



rcvdPkSignal = registerSignal ("rcvdPk”);

messagelDSignal = registerSignal (”messageID”);

DataSignal = registerSignal (”Data”);

sendermessagelDSignal = registerSignal (”"sendermessagelD” );
sendertempmessagelDSignall = registerSignal (?sendertempmessagelD1”);
sendertempmessagelDSignal2 = registerSignal (?sendertempmessagelD2”);
sendertempmessagelDSignal3 = registerSignal (?sendertempmessagelD3”);
num = 0;

WATCH( packetsReceived );

void CanECU_Base:: handleMessage (cMessage *msg)

{

if (msg—>getKind () != 0){

std ::map<int , BasicMessagelnfo >::iterator itr;
itr = BasicMessagelnfoList.find (msg—>getKind ());
BasicMessagelnfo value;

value = itr—>second;

if(itr != BasicMessageInfoList.end()){
handleSrvMessage (msg ) ;

} else if(itr == BasicMessagelnfoList.end()) {

}

} else {

handleCliMessage (msg);

void CanECU_Base:: handleCliMessage (cMessage *msg)

{

cMessage *copy = new cMessage;

copy = msg;

CanTraffic *scan_traffic = check_and_cast<CanTraffic x>(copy);

if(can_traffic —>getType () == CANMESSAGE)
receiveCanFrame (check_and_cast <CanFramex>(msg));
else

receiveCanRemoteFrame (check_and_cast <CanRemoteFramex>(msg));
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void CanECU_Base:: receiveCanFrame (CanFrame *msg)

{
EV << 7 Received .CAN_Frame. ‘”? << msg—>getName () << ”’\n”;
EV << "msg—>getCreationTime:_.” << msg—>getCreationTime () << endl;
packetsReceived++;

cPacket *xpacket = PK(msg);

uint8_t* temp = msg—>getData ();

uint8_t coml[8], key[16], midres[2], id[8];
int tem = 0, tem2 = 0, Mid = 0, index;

std : :map<int , BasicMessagelnfo >::iterator itr;

BasicMessagelnfo value;

for (index = 0; index < 16; index++)

key [index] = index;

for (index = 0; index < 2; index++)

midres [index] = 0;

if (lisDoSs){
int temps = 0, temps2 = 0;
tem |=temp [7];
tem2 |=temp [6];

tem |= (tem2<<8);

TempSGWID = tem+0x01;

midres [1] |= (TempSGWID&255);
midres [0] |= ((TempSGWID> >8)&255);

siphash (id, midres, 2, key);

temps |=id [7];
temps2 |=(id [6]&7T);
temps |=(temps2<<8);

TempSGWID = temps%33;

if (TempSGWID == msg—>getMessagelD () && temp[5] == 1){

EV<<”DoS_attack._detected”<<endl;

isDoSs = true;

if (isDoSs && !TempID){

int ha = 0, ha2 = 0;
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for (index = 0; index < 2; index++)

midres [index] = 0;

for (index = 0; index < 8; index++)

coml[index] = 0;

for(itr = BasicMessagelnfoList.begin (); itr != BasicMessagelnfoList.end (); ++itr){
tem = 0, tem2 = 0;
value = itr —>second;
temp = msg—>getData ();
tem |=temp [7];
tem2 |=temp [6];
tem |= (tem2<<8);

Mid = (tem+value.ID)/10;

midres [1] |= (Mid&255);
midres [0] |= ((Mid>>8)&255);
siphash (coml, midres, 2, key);
ha |=coml|[7];

ha2 |=(coml[6]&7);

ha |=(ha2<<8);

TemperallD= ha%33;

EV<<”TemplD: .”<<TemperallD<<” _OriginallD : .”<<value .ID<<endl;

}
TempID = true;
}
if (isDoSs && TempID && TempSGWID == msg—>getMessagelD () && temp[5] == 0)
{
isDoSs = false;

TempID = false;

num-+-+;
}
if (msg—>getMessagelD () == PreviousID && !isDoSs)
{
handleSelfSendRequest (MyID);
}

emit (rcvdPkSignal , packet);

emit (messagelDSignal ,msg—>getMessagelD ());
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delete msg;

void CanECU_Base::receiveCanRemoteFrame (CanRemoteFrame *msg)

{
EV << ”Received .-CAN_Remote_Frame. ‘"<< msg—>getCreationTime ()<< 7 ’\n”;
EV << "msg—>getCreationTime:.” << msg—>getCreationTime () << endl;

EV << ?msg—>MessagelD:.” << msg—>getMessagelD () << endl;

if ((msg—>getControl_field ()& (0x1<<6)) && BackUp != NULL &&

msg—>getMessagelD () == BackUp—>getMessagelD ()) {
handleSelfHashSendRequest (BackUp—>getMessagelD () );

}

else if (!(msg—>getControl_field ()& (0x1<<6))){

handleSelfSendRequest (msg—>getMessagelD () );
delete msg;

void CanECU_Base:: Srv_initialize ()
{

packetsSent = packetsReceived = 0;

9

sendermessagelDSignal = registerSignal (”"sendermessagelD” );

3

sentPkSignal = registerSignal (”sentPk”

)

(

)
rcvdPkSignal = registerSignal ("rcvdPk”);

)

sendInterval = &par(”sendInterval”);

drift = par(7drift”);
simtime_t startTime = par(”startTime”);

BackUp = NULL;
WATCH( packetsSent );
WATCH( packetsReceived );

WATCH( drift );

cXMLElementList messages = ((par(”message” ).xmlValue())—>getChildrenByTagName (” SendMessage” ));

cXMLElement *message;

cXMLElementList RemoteMessages = ((par(”message” ).xmlValue())—>getChildrenByTagName (” RemoteMessage” ));

cXMLElement *Remotemessage;
BasicMessagelnfo bmlInfo;

for (int i = 0; i < (int)messages.size (); i++) {
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message = messages|[i];

SendMessagelnfo smlInfo;

smInfo.ID = ToDec(message—>getAttribute (”ID”));
MyID = smlInfo.ID;
bmlInfo.ID = ToDec(message—>getAttribute ("ID”));
smInfo .DLC = atoi(message—>getAttribute ("DLC”));
smInfo.SendInterval = atof(message—>getAttribute(” SendInterval”)) / 1000;

smInfo.Offset = atof(message—>getAttribute (” Offset”)) / 1000000;

EV << 7ID_:.” << smlInfo.ID << "DLC.:.” << smlInfo.DLC << ”_SendInterval_:.” << smlInfo.SendInterval;

const char *SendTimes = message—>getAttribute (”SendTime” );
smInfo.SendTime = cStringTokenizer (SendTimes).asDoubleVector ();

cStringTokenizer tokenizer (SendTimes);

numsendTime = 0;

const char xtoken;

while ((token = tokenizer.nextToken()) != NULL) {

numsendTime++;

EV << ”_SendTime.:.";

for (int j = 0; j < numsendTime; j++) {
smInfo.SendTime[j] = smInfo.SendTime[j] / 1000;
EV << smlInfo.SendTime[j] << 7.7}

}
EV << endl;

SendMessageInfoList.insert (std:: map<int ,SendMessagelnfo >::value_type (smInfo.ID,smInfo));

BasicMessagelnfoList.insert (std:: map<int, BasicMessageInfo >::value_type (bmlInfo.ID,bmInfo));

if (smlInfo.SendInterval = 0) {
sendReqMsg = new cMessage (” SendRequestl” , bmInfo.ID);
for (int j = 0; j < numsendTime; j++) {
EV << 7"timel:” << (14+drift) << endl;
EV << 7time2:” << startTime << endl;
EV << ”time3:” << (static_cast<double>(smInfo.SendTime[j])*(1+drift)) << endl;
scheduleAt (startTime + (double)((smInfo.SendTime[j])*(14+drift)), sendRegMsg—>dup ());
}
} else {
sendReqMsg = new cMessage (” SendRequest2” , bmlInfo.ID);

scheduleAt (startTime+(smInfo. Offset)*(14+drift ), sendReqMsg);
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for (int i = 0; i < (int)RemoteMessages.size (); i++) {

Remotemessage = RemoteMessages|[i];

RemoteMessagelnfo rmlInfo;

rmInfo.ID = ToDec(Remotemessage—>getAttribute (?ID”));
bmInfo.ID = ToDec(Remotemessage—>getAttribute (?ID”));
rmInfo.Control = (0[(0x1<<6));
rmInfo.RTR = atoi(Remotemessage—>getAttribute ("RTR”));
rmInfo.SendInterval = atof(Remotemessage—>getAttribute (” SendInterval”)) / 1000;

rmInfo. Offset = atof (Remotemessage—>getAttribute (” Offset”)) / 1000000;

rmInfo.isSent = false;

bmInfo.isSent = false;

EV << 7ID.:.” << rmlnfo.ID<<” _RM_SendInterval_:.” << rmlInfo.SendInterval;
const char xSendTimes = Remotemessage—>getAttribute (?SendTime” );

rmInfo.SendTime = cStringTokenizer (SendTimes).asDoubleVector ();

cStringTokenizer tokenizer (SendTimes);

numsendTime = 0;
const char =xtoken;
while ((token = tokenizer.nextToken()) != NULL) {

numsendTime++;

EV << 7 _SendTime._: .7 ;

for (int j = 0; j < numsendTime; j+4) {
rmInfo.SendTime[j] = rmInfo.SendTime[j] / 1000;
EV << rmlInfo.SendTime[]j] << ".7;

}
EV << endl;

RemoteMessagelnfoList.insert (std :: map<int , RemoteMessageInfo >::value_type (rmInfo.ID,rmInfo));

std :: pair< std ::map<int, BasicMessagelnfo >::iterator , bool > Result;

Result = BasicMessagelnfoList.insert (std::map<int, BasicMessagelnfo >::value_type (bmInfo.ID,bmlInfo));

if (Result.second == false){

BasicMessagelnfoList.insert (std:: map<int, BasicMessageInfo >::value_type (bmlInfo.ID+1,bmInfo));

EV << ”"Here\n”;
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if (rmInfo.SendInterval == 0 && Result.second != false) {
sendReqMsg = new cMessage (” SendRequest5”, bmlInfo.ID);
for (int j = 0; j < numsendTime; j++) {
EV << "timel:” << (14+drift) << endl;
EV << 7time2:” << startTime << endl;
EV << ”"time3:” << (static_cast<double>(rmInfo.SendTime[j])*(1+drift)) << endl;
scheduleAt (startTime 4+ (double)((rmInfo.SendTime[j])*(14+drift)), sendReqMsg—>dup());
}
} else if(rmInfo.SendInterval == 0 && Result.second == false){
EV << 7"HereHEre”’<<bmlInfo.ID+1<<”\n” ;
sendReqMsg = new cMessage (” SendRequest5” , bmInfo.ID+1);
for (int j = 0; j < numsendTime; j++) {
EV << "timel:” << (14+drift) << endl;
EV << 7time2:” << startTime << endl;
EV << 7time3:” << (static_cast<double>(rmlInfo.SendTime[j])*(1+drift)) << endl;

scheduleAt (startTime 4+ (double)((rmlInfo.SendTime[j])*(14+drift)), sendReqMsg—>dup());

}
} else {
sendReqMsg = new cMessage (” SendRequest6” , bmInfo.ID);
scheduleAt (startTime+(rmInfo. Offset)*(14+drift ), sendReqMsg);
}

}

case_Sequence ();

WATCH(numsendTime ) ;
WATCH( sendIntervaldouble );

WATCH( messagelD );

void CanECU_Base:: case_Sequence ()

{

cXMLElementList case_Sequence = ((par(”Case_Sequence”).xmlValue())—>getChildrenByTagName (” Case”));
cXMLElementList case_-Sequence2 = case_Sequence [UserInput]—>getChildren ();
cXMLElement xcase_id ;

int temp;

for(int i =0; i < (int)case_Sequence2.size (); i++){

case_id = case_Sequence2[i];
temp = ToDec(case.id —>getAttribute (?ID”));

if (MyID == temp)

PreviousID = ToDec(case_id —>getAttribute (” PreviousECU_ID” ));
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void CanECU_Base:: handleSrvMessage (cMessage *msg)
{
if (!msg—>isSelfMessage()) {
CanTraffic scan_traffic = check_and_cast<CanTraffic *>(msg);
switch (can_traffic —>getType()) {
case CAN_MESSAGE:
{
break;
}
case CANREMOTE:
{
break;
}
default:

error (" Message_with_unexpected_message_type %d”, can_traffic —>getType());

else {
EV << "ECU_CanAppSrv:._Self —message.” << msg << ”_received\n”;
generateMessage (msg—>getKind ());

}

delete msg;

void CanECU_Base:: generateMessage (int MessagelD)

{

std ::map<int , BasicMessagelnfo >::iterator itr;
std ::map<int , BasicMessagelnfo >::iterator itr2;
itr = BasicMessagelnfoList.find (MessagelD);
BasicMessageInfo value;

value = itr —>second;

if (itr != BasicMessagelnfoList.end() && value.type == CANMESSAGE) {
handleSelfSendRequest (MessagelD );
} else if(itr = BasicMessagelnfoList.end()) {

EV << ”MessagelD._” << MessagelD <<”is_not_included._in_-SendMessagelnfoList.” << endl;

if(itr != BasicMessagelnfoList.end () && value.type == CANREMOTE) {

handleSelfRemoteRequest (MessagelD );
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void CanECU_Base:: handleSelfSendRequest (int MessagelD)
{
std ::map<int , SendMessagelnfo >::iterator itr;
itr = SendMessagelnfoList . find (MessagelD );
CanFrame xmsg = new CanFrame(” hoge” );
SendMessagelnfo value;

uint8_t test [8];

for(int i = 0; i < 8; i++){

test [1] = (rand()%255)+1;
}
if (itr !'= SendMessagelnfoList.end()) {
value = itr —>second;
if (lisDoSs)
msg—>setMessagelD (value.ID);
else
msg—>setMessagelD (TemperallD );
msg—>setData(test );
msg—>setFrameByteLength (value .DLC);
msg—>setType (0);
msg—>setIsSent (! ( value.isSent));
char msgName[32];
sprintf (msgName,” 0x%04x” ,msg—>getMessagelD ());
msg—>setName (msgName ) ;
BackUp = msg—>dup ();
} else {
EV << ”MessagelD.” << MessagelD <<”is._not.included._in_.SendMessagelnfoList.” << endl;
}
EV << 7CanAppSrv:._Generating .CAN_Message. ‘" << msg—>getName () <<” (”<< msg—>getMessagelD () << 7)’\n”;

sendMessage (msg) ;

EV << ”CanAppSrv:_Sent CAN_Message.‘’ << msg—>getName () << 7 ’\n”;
if (value.SendInterval != 0) {

sendReqMsg = new cMessage (” SendRequest3”, value.ID);

scheduleAt (simTime () + (value.SendInterval)x(14+drift), sendReqMsg);
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void CanECU_Base:: handleSelfHashSendRequest (int MessagelID)

{
std : :map<int , SendMessagelnfo >::iterator itr;
itr = SendMessagelnfoList.find (MessagelD );
CanFrame #msg = new CanFrame(”hoge”);
SendMessagelnfo value;
uint8_t key[16], i[1] ={0,}, xtest;
for(int i = 0; i < 16; i++)
key[1] = i;
test = BackUp—>getData ();
if (itr !'= SendMessagelnfoList.end()) {
value = itr —>second;
siphash (test, i, 1, key);
msg—>setMessagelD (value .ID);
msg—>setData (BackUp—>getData ());
msg—>setFrameByteLength (value .DLC);
msg—>setType (0);
msg—>setIsSent (! (value.isSent ));
char msgName[32];
sprintf (msgName,” 0x%04x” ,msg—>get MessagelD ());
msg—>setName (msgName ) ;
} else {
EV << ”MessagelD.” << MessagelD <<”is_not_included_in_.SendMessagelnfoList.” << endl;
}
EV << 7CanAppSrv:_Generating .CAN_Hash_Message.‘” << msg—>getName ()
<< ("<< msg—>getMessagelD () << 7)’\n”;
sendMessage (msg ) ;
EV << 7CanAppSrv:._Sent_CAN_Hash._Message_‘” << msg—>getName () << 7 ’\n”;
if (value.SendInterval != 0) {
sendReqMsg = new cMessage(” SendRequest3”, value.ID);
scheduleAt (simTime () + (value.SendInterval)x(14+drift), sendReqMsg);
}
}
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void CanECU_Base:: handleSelfRemoteRequest (int MessagelD)

{
std ::map<int , RemoteMessagelnfo >::iterator Remoteitr;
Remoteitr = RemoteMessagelnfoList. find (MessagelD );
if (Remoteitr = RemoteMessagelnfoList.end ()){
Remoteitr = RemoteMessagelnfoList. find (MessagelD —1);
if (Remoteitr == RemoteMessagelnfoList.end ()){
EV<<” Remote_Frame_creation _Error_\n";
}
}
CanRemoteFrame xRemotemsg = new CanRemoteFrame(” hoge”);
RemoteMessageInfo Remotevalue;
if (Remoteitr != RemoteMessagelnfoList.end()) {
Remotevalue = Remoteitr—>second;
Remotemsg—>setMessagelID (Remotevalue .ID);
Remotemsg—>setControl_field (Remotevalue. Control);
Remotemsg—>setType (5);
Remotemsg—>setIsSent (! ( Remotevalue.isSent ));
char RemotemsgName [32];
sprintf (RemotemsgName,” 0x%04x” ,Remotemsg—>getMessagelD () );
Remotemsg—>setName (RemotemsgName ) ;
} else {
EV << ”"MessagelD._.” << MessagelD <<”is_not_included._in_.SendMessagelnfoList.” << endl;
}
EV << 7CanAppSrv:_Generating .CAN_Remote_Message.‘” << Remotemsg—>getName ()
<<” ("<< Remotemsg—>getMessagelD () << 7 )’\n”;
sendRemoteMessage (Remotemsg ) ;
EV << ”CanAppSrv:._Sent .CAN_Remote_Message.‘” << Remotemsg—>getName() << ”’\n”;
if (Remotevalue.SendInterval != 0) {
sendReqMsg = new cMessage (” SendRequest4” , Remotevalue.ID);
scheduleAt (simTime () + (Remotevalue.SendInterval)*(1+drift), sendReqMsg);
}
}

void CanECU_Base:: handleCanMessage (cMessage *msg)

{

cMessage *copy = new cMessage;

copy = msg;
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CanFrame *can_traffic = check_and_cast<CanFrame *>(copy);

if (can_traffic —>getType() == CANMESSAGE) {

EV << 7CanAppSrv:_Received_packet._‘” << msg—>getName() << ”’\n”;
CanFrame xreq = check_and_cast<CanFrame =x>(msg);
packetsReceived++;

emit (rcvdPkSignal, req);

long MessagelD = req—>getMessagelD () + 1;
uint8_t=* Data;

Data = req—>getData ();

char msgname [30];

strcpy (msgname, msg—>getName ());

delete msg;

EV << 7CanAppSrv:._Generating_packet.‘” << msgname << ”’\n”;

CanFrame snew_msg = new CanFrame(msgname);
if (isDoSs)
new_msg—>setMessagelD ( MessagelD );
else
new._msg—>setMessagelD (TemperallD );
new_msg—>setData (Data);
new_msg—>setFrameByteLength (2);
new_msg—>setIsSent (true);
BackUp = new_msg—>dup ();
sendMessage (new_msg ) ;
} else {
CanRemoteFrame *xreq = check_and_cast <CanRemoteFrame x>(msg);
long MessagelD = req—>getMessagelD () + 1;
char Control = req—>getControl_field ();
char Remotemsgname [30];
strcpy (Remotemsgname, msg—>getName ());

delete msg;

CanRemoteFrame snew_Remotemsg = new CanRemoteFrame(Remotemsgname ) ;
new_Remotemsg—>setMessagelD (MessagelD );
new_Remotemsg—>setControl_field (Control);
new_Remotemsg—>setFrameByteLength (2);

new_Remotemsg—>setIsSent (true);

sendRemoteMessage (new_Remotemsg ) ;

void CanECU_Base:: sendMessage (CanFramex msg)
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emit (sentPkSignal , msg);
if (isDoSs && num ==0)
{
emit (sendertempmessageIDSignall , TemperallD );
}else if(isDoSs && num ==1)
{
emit (sendertempmessagelDSignal2 , TemperallD );

}else if(isDoSs && num ==2)

{
emit (sendertempmessagelDSignal3 , TemperallD );
}
else
{
emit (sendermessagelDSignal ,msg—>getMessagelD ());
}
send (msg, “out”);
packetsSent++;

void CanECU_Base:: sendRemoteMessage (CanRemoteFrame #xmsg)

{

send (msg, 7out”);

void CanECU_Base:: finish ()

unsigned long CanECU_Base:: ToDec(const char str| |)

{

short i = 0;

short n;

unsigned long x = 0;
char c;

while (str[i] != "\0") {

if (707 <= str[i] && str[i] <= ’97) {
n = str[i] — 07;
} else if (’a’ <= (¢ = tolower(str[i])) && c <= "f’) {
n=c¢c— ’a’ + 10;
} else {
printf ("%s” ,str);

printf(”invalid_charactor_\n”);
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exit (0);
}
i+
Xx = x *x 16 4+ n;
}

return (x);

Attacker ECU Code

#include <stdio.h>
#include <string.h>

#include <math.h>

#include ” Attacker_CanECU .h”
#include ”CanApp-m.h”
#include ”CanFrame_m.h”
#include ”siphash.h”

#include <time.h>

Define_Module (Attacker_.CanECU );

simsignal_t Attacker.CanECU ::sentPkSignal = SIMSIGNAL_NULL;
simsignal_t Attacker-CanECU ::rcvdPkSignal = SIMSIGNAL_NULL;
simsignal_t Attacker-CanECU :: messagelDSignal = SIMSIGNAL_NULL;
simsignal_t Attacker.CanECU :: DataSignal = SIMSIGNAL_NULL;

simsignal_t Attacker-CanECU ::sendermessagelDSignal = SIMSIGNAL_NULL;

Attacker_CanECU :: Attacker_CanECU ()

{
sendReqMsg = NULL;

Attacker_.CanECU ::~ Attacker_CanECU ()

{
cancelAndDelete (sendReqMsg);

void Attacker.CanECU:: initialize ()

{
srand ((unsigned) time (NULL) ) ;
Srv_initialize ();
Cli_initialize ();
isDoSs = false;
TempID = false;

}
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void Attacker_.CanECU:: Cli_initialize ()

{
packetsReceived = 0;
rcvdPkSignal = registerSignal ("rcvdPk”);
messagelDSignal = registerSignal (”messagelD”);
DataSignal = registerSignal (”Data”);
sendermessagelDSignal = registerSignal (”"sendermessagelD” );
WATCH( packetsReceived );
}

void Attacker-CanECU :: handleMessage (cMessage #*msg)

{
if (msg—>getKind () != 0){
std ::map<int , BasicMessagelnfo >::iterator itr;
itr = BasicMessagelnfoList.find (msg—>getKind ());
BasicMessagelnfo value;
value = itr—>second;
if(itr != BasicMessageInfoList.end()){
handleSrvMessage (msg ) ;
} else if(itr == BasicMessagelnfoList.end()) {
}
} else {
handleCliMessage (msg);
}
}

void Attacker-CanECU :: handleCliMessage (cMessage *msg)
{

cMessage *copy = new cMessage;

copy = msg;

CanTraffic *scan_traffic = check_and_cast<CanTraffic x>(copy);

if(can_traffic —>getType () == CANMESSAGE)
receiveCanFrame (check_and_cast <CanFramex>(msg));
else

receiveCanRemoteFrame (check_and_cast <CanRemoteFramex>(msg));
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void Attacker.CanECU ::receiveCanFrame (CanFrame xmsg)
{
EV << 7 Received .CAN_Frame. ‘”? << msg—>getName () << ”’\n”;
EV << "msg—>getCreationTime:_.” << msg—>getCreationTime () << endl;
packetsReceived++;

cPacket *xpacket = PK(msg);

emit (rcvdPkSignal , packet);

emit (messagelDSignal ,msg—>getMessagelID ());

delete msg;

void Attacker-CanECU ::receiveCanRemoteFrame (CanRemoteFrame smsg)

{

EV << 7 Received .CAN_Remote_Frame. ‘"<< msg—>getCreationTime ()<< 7 ’\n”;

EV << "msg—>getCreationTime:.” << msg—>getCreationTime () << endl;

EV << "msg—>MessagelD:._.” << msg—>getMessagelD () << endl;

if (MyID == msg—>getMessagelD ())
handleSelfSendRequest (msg—>getMessagelD ());
delete msg;

¥

void Attacker-CanECU:: Srv_initialize ()
{
packetsSent = packetsReceived = 0;
sendermessagelDSignal = registerSignal (”"sendermessagelD” );
sentPkSignal = registerSignal ("sentPk”);
rcvdPkSignal = registerSignal (?rcvdPk”);
sendInterval = &par(”sendInterval”);
drift = par(”drift”);
simtime_t startTime = par(”startTime”);

BackUp = NULL;
WATCH( packetsSent );
WATCH( packetsReceived );

WATCH( drift );

cXMLElementList messages = ((par(”message” ).xmlValue())—>getChildrenByTagName (” SendMessage” ));

cXMLElement *message;

cXMLElementList RemoteMessages = ((par(”message” ).xmlValue())—>getChildrenByTagName (” RemoteMessage” ));

cXMLElement *Remotemessage;
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BasicMessagelnfo bmlInfo;

for (int i =

0; i < (int)messages.size (); i++) {

message = messages|[i];

SendMess

agelnfo smlInfo;

smInfo.ID = ToDec(message—>getAttribute ("ID”));

MyID = smlInfo.ID;

bmInfo.ID = ToDec(message—>getAttribute (?ID”));

smInfo.DLC = atoi(message—>getAttribute ("DLC”));

smInfo.SendInterval = atof(message—>getAttribute (” SendInterval”)) / 1000;

smInfo. Offset = atof(message—>getAttribute (” Offset”)) / 1000000;

EV << 7"ID.:.” << smlInfo.ID << "DLC.:.” << smlInfo.DLC << ”_SendInterval_.:.” << smlInfo.SendInterval;

const char *SendTimes = message—>getAttribute (”SendTime” );

smInfo.SendTime = cStringTokenizer (SendTimes).asDoubleVector ();

cStringTokenizer tokenizer (SendTimes);

numsendTime = 0;

const char xtokenj;

while ((token = tokenizer.nextToken()) != NULL) {

numsendTime++;

EV << ”_.SendTime.:.";

j = 0; j < numsendTime; j++) {

smInfo.SendTime[j] = smInfo.SendTime[j] / 1000;

EV << smlInfo.SendTime[j] << 7.7}

for (int
}
EV << en

dl;

SendMessageInfoList.insert (std:: map<int ,SendMessagelnfo >::value_type (smInfo.ID,smInfo));

BasicMessagelnfoList.insert (std:: map<int, BasicMessageInfo >::value_type (bmlInfo.ID,bmInfo));

if (smInfo.SendInterval == 0) {

} else {

sendReqMsg = new cMessage (” SendRequestl” , bmInfo.ID);

for (int j = 0; j < numsendTime; j++) {
EV << 7timel:” << (14drift) << endl;
EV << 7time2:” << startTime << endl;

EV << 7"time3:” << (static_cast<double>(smlInfo.SendTime[j])*(1+drift)) << endl;

scheduleAt (startTime 4+ (double) ((smlInfo.SendTime[j])*(1+drift)), sendReqMsg—>dup());

sendReqMsg = new cMessage (” SendRequest2” , bmInfo.ID);

scheduleAt (startTime+(smInfo. Offset)*(14+drift ), sendReqMsg);
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for (int i = 0; i < (int)RemoteMessages.size (); i++) {

Remotemessage = RemoteMessages[i];

RemoteMessagelnfo rmlInfo;
rmInfo.ID = ToDec(Remotemessage—>getAttribute (7ID”));
bmInfo.ID = ToDec(Remotemessage—>getAttribute (?ID”));
rmInfo.Control = (0[(0x1<<6));
rmInfo .RTR = atoi(Remotemessage—>getAttribute ("RTR” ));
rmInfo.SendInterval = atof(Remotemessage—>getAttribute (” SendInterval”)) / 1000;

rmInfo. Offset = atof (Remotemessage—>getAttribute (” Offset”)) / 1000000;

rmInfo.isSent = false;

bmInfo.isSent = false;

EV << 7ID.:.” << rmlInfo.ID<<” RM_SendInterval_:.” << rmInfo.SendInterval;
const char *SendTimes = Remotemessage—>getAttribute (”SendTime” );
rmInfo.SendTime = cStringTokenizer (SendTimes).asDoubleVector ();

cStringTokenizer tokenizer (SendTimes);

numsendTime = 0;
const char xtoken;
while ((token = tokenizer.nextToken ()) != NULL) {

numsendTime++;

EV << 7 _SendTime.:.";

for (int j = 0; j < numsendTime; j++) {
rmInfo.SendTime[j] = rmInfo.SendTime[]j] / 1000;
EV << rmlInfo.SendTime[j] << 7.7

}

EV << endl;

RemoteMessageInfoList.insert (std::map<int , RemoteMessagelnfo >::value_type (rmInfo.ID,rmInfo));

std :: pair< std ::map<int, BasicMessagelnfo >::iterator , bool > Result;

Result = BasicMessagelnfoList.insert (std::map<int,BasicMessagelnfo >::value_type (bmlInfo.ID,bmlInfo));

if (Result.second == false){

BasicMessagelnfoList.insert (std:: map<int, BasicMessageInfo >::value_type (bmInfo.ID+1,bmInfo));

if (rmInfo.SendInterval == 0 && Result.second != false) {
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sendReqMsg = new cMessage (” SendRequest5” , bmInfo.ID);
for (int j = 0; j < numsendTime; j++) {
EV << 7timel:” << (1+drift) << endl;
EV << 7time2:” << startTime << endl;
EV << 7time3:” << (static_cast<double>(rmInfo.SendTime[j])*(1+drift)) << endl;
scheduleAt (startTime + (double)((rmInfo.SendTime[j])*(1+drift)), sendReqMsg—>dup ());
}
} else if(rmlInfo.SendInterval = 0 && Result.second == false){
EV << "HereHEre”<<bmlInfo.ID+1<<” \n" ;
sendReqMsg = new cMessage (” SendRequest5” , bmlInfo.ID+1);
for (int j = 0; j < numsendTime; j++) {
EV << 7timel:” << (1+drift) << endl;
EV << 7time2:” << startTime << endl;
EV << 7time3:” << (static_cast<double>(rmInfo.SendTime[j])*(1+drift)) << endl;

scheduleAt (startTime + (double)((rmInfo.SendTime[j])*(1+drift)), sendReqMsg—>dup());

}
} else {
sendReqMsg = new cMessage (” SendRequest6” , bmInfo.ID);
scheduleAt (startTime+(rmInfo. Offset)*(14+drift ), sendReqMsg);
}
}
WATCH( numsendTime ) ;

WATCH( sendIntervaldouble );

WATCH( messagelD ) ;

void Attacker.CanECU :: handleSrvMessage (cMessage *msg)
{
if (!msg—>isSelfMessage ()) {
CanTraffic xcan_traffic = check_and_cast<CanTraffic *>(msg);
switch (can_traffic —>getType()) {

case CAN_MESSAGE:

{
break;
}
case CANREMOTE:
{
break;
}
default:
error (" Message_with_unexpected_message_type - %d”, can_traffic —>getType());
}
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else {

EV << "ECU_CanAppSrv:._Self —message.” << msg << ”_received\n”;

generateMessage (msg—>getKind ());

}

delete msg;

void Attacker_.CanECU :: generateMessage (int MessagelD)

{
std ::map<int , BasicMessagelnfo >::iterator itr;
std ::map<int , BasicMessagelnfo >::iterator itr2;
itr = BasicMessagelnfoList.find (MessagelD);
BasicMessageInfo value;
value = itr —>second;
if (itr != BasicMessagelnfoList.end() && value.type == CANMESSAGE) {
handleSelfSendRequest (MessagelD );
} else if(itr == BasicMessagelnfoList.end()) {
EV << ”MessagelD.” << MessagelD <<”is._not_included._in_.SendMessagelnfoList.” << endl;
}
if(itr != BasicMessagelnfoList.end () && value.type == CANREMOTE){
handleSelfRemoteRequest (MessagelD );
}
}

void Attacker_.CanECU :: handleSelfSendRequest (int MessagelD)
{
std ::map<int , SendMessagelnfo >::iterator itr;
itr = SendMessagelInfoList. find (MessagelD );
CanFrame smsg = new CanFrame(” hoge”);
SendMessagelnfo value;
uint8_t test[8] = {0,1,3,4,5,6,7};
int ID[10] = {11, 21, 31, 41, 51, 61, 71, 91, 101};

int IDs = rand()%9+1;

if (itr != SendMessagelnfoList.end()) {

value = itr —>second;
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msg—>setMessagelD (ID [IDs]);
msg—>setData(test );
msg—>setFrameByteLength (4);
msg—>setType (0);
msg—>setIsSent (! (value.isSent ));
char msgName[32];
sprintf (msgName,” 0x%04x” ,msg—>getMessagelD ());
msg—>setName (msgName ) ;
BackUp = msg—>dup ();
} else {

EV << ”MessagelD.” << MessagelD <<”is_not_included._in_.SendMessagelnfoList.” << endl;

EV << 7CanAppSrv:._Generating .-CAN_Message. ‘" << msg—>getName () <<” (”<< msg—>getMessagelD () << 7)’\n”;
sendMessage (msg ) ;

EV << 7CanAppSrv:._Sent_CAN_Message._‘” << msg—>getName () << 7 ’\n”;

if (value.SendInterval != 0) {
sendReqMsg = new cMessage (” SendRequest3”, value.ID);

scheduleAt (simTime () + (value.SendInterval)*x(14+drift), sendReqMsg);

if (isDoSs)

emit (sendermessageIlDSignal , TemperallD );

void Attacker.CanECU :: handleSelfHashSendRequest (int MessagelD)
{

std :: map<int , SendMessagelnfo >::iterator itr;

itr = SendMessagelnfoList.find (MessagelD );

CanFrame smsg = new CanFrame(”hoge”);

SendMessagelnfo value;

uint8_t test[8], key[16], i[1] ={0,};

for(int i = 0; i < 16; i++)

key[i] = i;
if (itr != SendMessagelnfoList.end()) {
value = itr —>second;

msg—>setMessagelD (value .ID);
msg—>setData (test );
msg—>setFrameByteLength (value .DLC);
msg—>setType (0);

msg—>setIsSent (! (value.isSent));
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char msgName[32];

sprintf (msgName,” 0x%04x” ,msg—>getMessagelD ());
msg—>setName (msgName ) ;

BackUp = msg—>dup ();

} else {
EV << ”MessagelD._.” << MessagelD <<”is._not_included._in_.SendMessagelnfoList.” << endl;

EV << ”CanAppSrv:._Generating .CAN_Hash_Message_ ‘"
<< msg—>getName () <<” (”<< msg—>getMessagelD () << 7)’\n”;
sendMessage (msg);

EV << 7CanAppSrv:._Sent _CAN_Hash_Message._‘” << msg—>getName () << ”’\n”;

if (value.SendInterval != 0) {
sendReqMsg = new cMessage (” SendRequest3”, value.ID);

scheduleAt (simTime () + (value.SendInterval)*(14+drift), sendReqMsg);

void Attacker_.CanECU :: handleSelfRemoteRequest (int MessagelD)
{
std ::map<int , RemoteMessagelnfo >::iterator Remoteitr;

Remoteitr = RemoteMessagelnfoList. find (MessagelD );

if (Remoteitr = RemoteMessagelnfoList.end ()){
Remoteitr = RemoteMessagelnfoList.find (MessageID —1);
if (Remoteitr == RemoteMessagelnfoList.end ()){

EV<<” Remote_Frame_creation _Error_\n";

CanRemoteFrame xRemotemsg = new CanRemoteFrame(” hoge”);

RemoteMessageInfo Remotevalue;

if (Remoteitr != RemoteMessagelnfoList.end()) {
Remotevalue = Remoteitr—>second;
Remotemsg—>setMessagelID (Remotevalue.ID);
Remotemsg—>setControl_field (Remotevalue. Control);
Remotemsg—>setType (5);
Remotemsg—>setIsSent (! ( Remotevalue.isSent ));

char RemotemsgName [32];
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sprintf (RemotemsgName,” 0x%04x” ,Remotemsg—>getMessagelD ());
Remotemsg—>setName (RemotemsgName ) ;
} else {

EV << ”MessagelD.” << MessagelD <<”is._not-included_-in_.SendMessagelnfoList.” << endl;

EV << 7”CanAppSrv:._Generating .CAN_Remote_Message. ‘”
<< Remotemsg—>getName () <<” (’<< Remotemsg—>getMessagelD () << 7)’\n”;
sendRemoteMessage (Remotemsg ) ;

EV << 7CanAppSrv:._Sent _CAN_Remote_Message.‘” << Remotemsg—>getName () << 7 ’\n”;

if (Remotevalue.SendInterval != 0) {
sendReqMsg = new cMessage (” SendRequest4” , Remotevalue.ID);

scheduleAt (simTime () + (Remotevalue.SendInterval)*(1+drift), sendReqMsg);

void Attacker.CanECU :: handleCanMessage (cMessage *msg)

{

cMessage *xcopy = new cMessage;

COpy = msg;

CanFrame *can_traffic = check_and_cast<CanFrame *>(copy);

if (can_traffic —>getType() == CANMESSAGE) {

EV << 7CanAppSrv:_Received_packet.‘” << msg—>getName() << 7 ’\n”;
CanFrame *req = check_and_cast<CanFrame *>(msg);
packetsReceived++;

emit (rcvdPkSignal , req);

long MessagelD = req—>getMessagelD () + 1;
uint8_t=* Data;

Data = req—>getData ();

char msgname [30];

strcpy (msgname, msg—>getName ());

delete msg;

EV << 7CanAppSrv:._Generating_packet._‘” << msgname << ”’\n”;

CanFrame xnew_msg = new CanFrame (msgname);
new_msg—>setMessagelID ( MessagelD );
new_msg—>setData (Data);
new_msg—>setFrameByteLength (2);
new_msg—>setIsSent (true);

BackUp = new_msg—>dup ();
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sendMessage (new_msg ) ;
} else {
CanRemoteFrame *req = check_and_cast <CanRemoteFrame *>(msg);
long MessagelD = req—>getMessagelD () + 1;
char Control = req—>getControl_field ();
char Remotemsgname[30];
strcpy (Remotemsgname, msg—>getName ());

delete msg;

CanRemoteFrame xnew_Remotemsg = new CanRemoteFrame(Remotemsgname);
new_Remotemsg—>setMessagelD (MessagelD );
new_Remotemsg—>setControl_field (Control);
new_Remotemsg—>setFrameByteLength (2);

new_Remotemsg—>setIsSent (true);

sendRemoteMessage (new_Remotemsg ) ;

if (isDoSs)

emit (sendermessagelDSignal , TemperallD);

void Attacker.CanECU :: sendMessage (CanFrame* msg)
{

emit (sentPkSignal , msg);
emit (sendermessagelDSignal ,msg—>getMessagelD ());
send (msg, “out”);

packetsSent++;

void Attacker_.CanECU :: sendRemoteMessage (CanRemoteFrame s#xmsg)

{

send (msg, “out”);

void Attacker_.CanECU :: finish ()

unsigned long Attacker_.CanECU :: ToDec(const char str[ |)

{
short i = 0;
short n;

unsigned long x = 0;
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char c;

while (str[i] != "\0’) {
if (707 <= str[i] && str[i] <= ’97) {
n = str[i] — '07;
} else if (’a’ <= (¢ = tolower(str[i])) && c <= ") {
n=c— ’a’ 4+ 10;
} else {
printf ("%s” ,str);

printf(”invalid_charactor.\n”);

exit (0);
}
i+
b'e x *x 16 4+ n;

}

return (x);
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Summary

A Countermeasure against Spoofing and DoS Attacks based on

Message Sequence and Temporary ID in CAN
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