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ABSTRACT

Intrusion Detection System (IDS) monitors network traffic and detects users’ malicious activities.

IDS can be divided by its detection type as Signature-based IDS and Anomaly-based IDS. IDS can be

divided as a Network IDS and a Host IDS.

As internet of things era is coming, the amount of network traffic increases explosively. Labeling

a traffic manually whether attack or not is difficult under this condition. Also new unknown-attacks

are appearing constantly, the detection of unknown-attacks has become the essential part of IDS as

well as the detection of known-attacks. Unknown-attack detection is a research area about detecting

attacks without any specific prior knowledge of attacks. IDS should have capability to determine an

input whether attack or not based on the unlabeled dataset since unknown-attacks are not known to

IDS. To solve these difficulties, we need to find a way to learn about normal traffic and attack traffic on

the unlabeled dataset.

This paper proposes a novel IDS scheme for unknown-attacks based on the clustering model. The

proposed IDS combines two machine learning algorithms, Ant Clustering Algorithm (ACA) and Decision

Tree(DT). The IDS learns on the unlabeled dataset by itself and constructs the profile of normal behavior.

After construction of the profile, the IDS can detect unknown-attacks. The IDS consists of two main

engines: the ACA engine and the DT engine. The IDS builds clusters on unlabeled dataset by using

ACA. Based on the clustering result, the ACA engine classifies normal traffic and attack traffic. The DT

engine trains detectors based on the result of the ACA engine.

The proposed IDS was experimented on the KDD Cup 1999 Dataset. Evaluation criteria for

performance of the proposed IDS are detection rate, false positive rate, and accuracy. The IDS has much

higher detection rate and accuracy than Hosseinpour et al. [1] which has similar approach with ours.

Keywords : IDS, Unknown-attack Detection, Bio-inspired, Swarm Intelligence
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Chapter 1. Introduction

1.1 Intrusion Detection System

Intrusion Detection System (IDS) monitors network traffic and detects users’ abnormal or mali-

cious activities[2]. Two main detection types are exist in IDS: Signature-based IDS and Anomaly-based

IDS. Signature-based IDS uses some signatures of known-attacks to detect malicious behaviors. Anomaly-

based IDS builds a profile of normal behavior and detects violation of the profile as malicious behavior.

IDS can be divided as a Network IDS (NIDS) and a Host IDS (HIDS) by location of IDS sensors. A

HIDS is installed on certain host or device and detects attacks from outside of the host or device. A

NIDS is installed over a target network. Sensors of the NIDS are installed where a lot of traffic is passed,

like gateway or router. Although the term IDS means both of HIDS and NIDS, in this paper, IDS refers

to a NIDS.

Firewall looks similar to IDS in detection of attacks. However, IDS and firewall has a big difference.

Firewall analyzes packet header and only capable to detect attacks using pre-installed policies or rules

based on protocol type, source address, destination address, source port, and destination port. A Packet

is rejected if it doesn’t match any policy. On the other hand, IDS analyzes the traffic information such as

packet payload to determine whether intrusion or not. Therefore, IDS can make a network more secure

than firewall.

IDS is composed of the IDS server and the IDS sensor. The IDS server decides whether an attack

has occurred or not based on collected information by the IDS sensor. The IDS sensor collects traffic

information over a target network. The IDS sensor is installed on a place which large amount of network

traffic is passed such as near a gateway or router. The IDS sensor collects many information. For

example, the network payload or network flow. After collecting traffic information, the sensor sends the

information to the IDS server. An example of IDS is illustrated in figure 1.1.

Generally, datasets and real network traffic data are used to evaluate performance of IDS. Re-

searchers can train their IDS based on the training dataset and test by using the test dataset. They

compare prediction results of detection algorithm and analyze the results of actual value of test dataset.
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Figure 1.1: Example of IDS architecture

Four categories are exist to evaluate detection result: true positive, true negative, false positive, false

negative. In IDS case, true positive is a case that a malicious traffic referred as an attack by IDS. True

negative is a case that a normal traffic referred as a normal by IDS. False positive is a case that a normal

traffic referred as an attack and false negative is a case that a malicious traffic referred as a normal

traffic. Based on these four categories, three important criteria for evaluation performance of IDS can be

calculated. First one is detection rate (DR). DR is defined as the number of intrusion instances detected

by IDS, same as true positive, divided by the total number of intrusion instances in the test dataset.

DR is a criteria which indicates how well IDS detects attacks. High DR means that IDS can detect

attacks more than IDS which has low DR. Second one is false positive rate (FPR). FPR is defined as

the number of normal instances classified as attack, same as false positive, divided by the total number

of normal instances in the test dataset. High FPR means that IDS can misclassify a normal traffic as

an attack more frequently than IDS which has low FPR. Final one is accuracy (ACC). ACC is defined

as the number of corrected classified instances by IDS, same as sum of true positive and false negative,
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divided by the total number of instances in the test dataset. ACC is related to how well IDS classify

normal and attacks correctly. Equations for calculation DR, FPR, and ACC are presented in below:

DR =
TruePositive

TruePositive + FalseNegative
(1.1)

FPR =
FalsePositive

F lasePositive + TrueNegative
(1.2)

ACC =
TruePositive + FalseNegative

TruePositive + FlasePositive + TrueNegative + FalseNegative
(1.3)

1.2 Motivation

As internet of things era is coming, many devices are connected on network. We must deal with

enormous volumes of network data. Making labels of these enormous data manually whether attack or

not is difficult and expensive task. Because of this difficulty, we don’t have enough labeled data available.

Also, we get labeled dataset only by simulating intrusions. This method has a limitation that we can get

just known-attacks and don’t reflect unknown-attacks which occurs in near future in the dataset. New

unknown-attacks are appearing constantly. The unknown-attacks can give us serious damage. Therefore,

we should detects unknown-attacks as soon as possible. However, we cannot get a labeled dataset which

contains label of unknown-attacks.

To solve these problems, we need a method for detecting attacks on the unlabeled dataset. The

method should not use the supervised learning model, since the supervised learning model have to know

about labels of the dataset. The method which uses the unsupervised model doesn’t need to know

labels. Because the method can learn on the unlabeled dataset by itself, it doesn’t need to have any

prior knowledge of certain attack. In this paper, we propose a novel IDS which can learn on the unlabeled

dataset by itself. We combine two machine learning algorithms to detect unknown-attacks: ant clustering

algorithm and decision tree. As combining these two algorithms, the proposed IDS doesn’t need any

prior knowledge about attacks and can detect unknown-attacks effectively.
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1.3 Organization

The rest of this paper is organized as follows: Chapter 2 describes relate work and background

about detection types of IDS, unknown-attack detection, dataset for evaluation, clustering algorithms,

and decision tree. The methodology of the proposed IDS is described in Chapter 3. Description about

the architecture of the proposed IDS is in Chapter 4. Experimental result and some discussion are

described in Chapter 5. Finally, the conclusion and future work are discussed in Chapter 6.
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Chapter 2. Related Work and Background

2.1 Detection Types of IDS

2.1.1 Signature-based IDS

Signature-based IDS has some signatures of known-attacks and makes rules for detection of known-

attacks. When the traffic from the network comes into IDS, signature-based IDS extracts some signatures

from the traffic. After extraction, signature-based IDS compares extracted signatures with the signatures

which it already has. If some signatures are matched, signature-based IDS decides the traffic as an attack

traffic. Signature-based IDS can detect known-attacks well since the IDS is a black-list model. The IDS

compares the traffic with black-list. If the traffic contains some signatures in black-list, the IDS must

detect an attack.

However, signature-based IDS cannot detect any unknown-attack since signature-based IDS doesn’t

have any signature of unknown-attacks. Therefore, signature-based IDS classifies an unknown-attack

traffic as a normal traffic. Signature-based IDS doesn’t capable to detect unknown-attacks.

2.1.2 Anomaly-based IDS

Unlike signature-based IDS, anomaly-based IDS doesn’t focus on maintaining black-list of signa-

tures. Anomaly-based IDS choose a white-list model. Anomaly-based IDS makes a profile of normal

behavior and detect violation of the profile. Any activity which causes abnormal state of a network is

detected by anomaly-based IDS. Therefore, anomaly-based IDS can detect unknown-attacks since any

attacks will cause abnormal state of a network even if unknown-attacks.

2.2 Unknown-attack Detection

Unknown-attack detection is a research area about detecting an attack without any specific pre-

liminary knowledge of the attack. Because signature-based IDS needs some signatures of known-attacks,

signature-based cannot detect unknown-attacks. On the other hand, anomaly-based IDS can detect

unknown-attacks because anomaly-based IDS concentrates on violation of normal behavior profile. Any
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form of activities which violates normal behavior profile is detected by anomaly-based IDS even if IDS

doesn’t have specific knowledge of activities. Therefore, anomaly-based IDS is mainly used to detect

unknown-attacks.

Robust modeling of normal behavior profile directly affects to performance of anomaly-based IDS.

Many researches about anomaly-based IDS utilize some machine learning and data mining algorithms

to accomplish robustness of building normal behavior profile. For example, Support Vector Machine

(SVM) and Artificial Immune System (AIS) in supervised learning algorithms and k-Means clustering,

DBSCAN, and Ant Cluster Algorithm (ACA) in unsupervised algorithms are used.

2.3 KDD Cup 1999 Dataset

KDD Cup 1999 Dataset is a dataset of DARPA 1998 Intrusion Detection Evaluation Program.

The datasets is used in the 1999 KDD intrusion detection contest[3]. The dataset contains normal traffic

and four types of attack traffic; DoS, U2R, R2L, Probe. The types of the dataset are described as below.

- Normal : not attack

- DoS : denial-of-service (e.g., syn flood attack)

- U2R : unauthorized access to local superuser/root privileges (e.g., buffer overflow attacks)

- R2L : unauthorized access from a remote machine (e.g., guessing password)

- Probe : surveillance and other probing (e.g., port scanning)

The dataset has 4,898,431 traffic data instances. Each data instances in the dataset has 41 features

and its label of traffic type. The traffic distribution of KDD Cup 1999 Dataset is presented in Table 2.1

as below.

Table 2.1: Traffic distribution of KDD Cup 1999 Dataset
Type # of traffic Proportion (%)

Normal 972,781 19.86
DoS 3,883,370 79.28
U2R 52 0.00
R2L 1,126 0.02

Probe 41,102 0.84
Total 4,898,431 100
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2.4 Clustering Algorithms

Clustering is one of the unsupervised machine learning algorithms. Clustering algorithms don’t

need labels of dataset. Clustering algorithms collect similar instances and make some clusters on the

unlabeled dataset. Some clustering algorithms are used in anomaly-based IDS.

(1) k-Means clustering algorithm partitions the dataset into k clusters. Every data instances are

assigned to exactly one cluster which the nearest cluster center. The Euclidean distance is mainly

used to calculate distance between a data instance and a cluster center[1]. k-Means clustering

requires one parameter: the number of clusters. k-Means clustering is very sensitive to initialization

state of the cluster centroids.

(2) Density-Based Spatial Clustering of Applications with Noise (DBSCAN) finds clusters based on

the estimated density distribution of the dataset. DBSCAN requires two parameters: maximum

radius of the neighborhood and minimum number of samples to form a cluster[1]. DBSCAN is

insensitive to initialization state. But DBSCAN is sensitive to data density and data dimension[5].

(3) Ant Clustering Algorithm (ACA) is a heuristic algorithm and one of the swarm intelligence algo-

rithms. The swarm intelligence algorithms are one area of the bio-inspired algorithms. ACA is

based on the brood sorting activities of ants. ACA was modeled by Deneubourg et al.[6]. Their

model is referred as basic model (BM)[7]. In ACA, each data instances of the dataset is randomly

scattered in a 2D space. And each ant moves randomly the 2D space and picks up or drops down

the data instances based on calculation of probability. Equations for calculation probability of

picking up and dropping down are presented in below:

Ppick = (
k1

k1 + f
)2 (2.1)

where f is the perceived fraction of items in the neighborhood of the ant and k1 is a threshold item.

Pdrop = (
f

k2 + f
)2 (2.2)
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where k2 is another threshold constant.

ACA has self-organizing characteristic. Self-organization means that accomplish overall process by

coordination out of the local interactions between smaller components. Therefore, ACA can makes

clusters on the initially disordered dataset by itself. Unlike k-Means clustering, ACA doesn’t require

predefined number of clusters because of self-organizing characteristic. ACA is not sensitive to

initialization state, data density, and data dimension. ACA requires four parameters: the number

of ants, size of the 2D space, local area of the ant, and threshold used in picking or dropping

decision. High-level description of the ACA is presented in Figure 2.1 [8].

Figure 2.1: High-level Decription of ACA

Comparison of features between k-Means, DBSCAN, and ACA is presented in Table 2.2 [5].

Table 2.2: Comparison of features between k-Means, DBSCAN, and ACA
k-Means DBSCAN ACA

# of parameters 1 2 4
Insensitivity of initialization X O O
Insensitivity of data density O X O

Insensitivity of data dimension X X O
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2.5 Decision Tree

Decision Tree (DT) is one of the supervised machine learning algorithms. DT is a predictive

model which using tree-like graph. DT can be trained as a rule-based structure. DT makes a tree based

on the training set. DT extracts some rules to classify the training set correctly. Each branch of DT

represents a decision rule. Each leaf node represent a set of data instances has same class. DT makes

decision rules until every data instances are classified correctly. The goal of DT is to create a model

that predicts the value of a target output based on several inputs. Two main types are exist in DT:

classification tree and regression tree. When the predicted output is a finite set of classes, classification

tree is used. When the predicted output is continuous value, regression tree is used.

DT has some advantages than other supervised machine learning algorithms. First, DT can

allow the addition of new possible scenarios. It is appropriate advantage for unknown-attack detection.

Second, DT is a white-box model algorithm. Therefore, unlike black-box model, we can analyze why

the algorithm predicts a certain output. When using DT as detection algorithm, a security expert can

analyze a certain attack and extract some rules after detection of the attack to detect the attack next

time.
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Chapter 3. Methodology

3.1 Assumption

KDD Cup 1999 Dataset has a drawback in distribution of traffic. Over 80% of data instances

is attack traffic in the dataset. This proportion doesn’t reflect general network traffic environment. In

general network, normal traffic overwhelms attack traffic. The proposed IDS is based on a major as-

sumption to reflect general network environment. The assumption is that there is overwhelmingly much

normal traffic than attack traffic in target network. Based on the assumption, we filtered and construct

the dataset as 98% of normal traffic and 2% of attack traffic.

3.2 Normalization

The KDD Cup 1999 Dataset has 41 features. The range of variables is diverse feature by feature.

This will affects clustering result. As an example, consider two sets of two 2-feature vectors. Let assume

that the range of the first feature is from 0 to 10 and the range of the second feature is from 10 to 100.

- {(1,10),(8,10)}

- {(1,10),(1,80)}

Under a Euclidean distance metric, the squared distance between feature vectors in the first set will be

49, while it will be 4,900 for the second set. If cluster width is fixed, the first set will be included in same

cluster. But second set will be included in different cluster. Difference between two vectors in each set

is same as 7 times from smaller feature to larger feature.

As a possible solution, we converted the data instances to a same distribution. That is, we make

same range of every features in the dataset. Then, we can normalize all data instances to a fixed range

of our choosing.
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3.3 Clustering

To make clusters from the unlabeled dataset, we used ACA. Due to self-organizing characteristic,

ACA can makes clusters by itself. Initially, we assigns a cluster to each data instances. In main loop

of ACA, when an ant drops down a data instance, the ant looks around and assigns cluster of the data

instance as majority cluster around his neighbor. After certain iterations, some clusters are remained

with more members than initial state and other clusters are disappeared. Based on the clustering result,

we can make labels to each data instances.

3.4 Cluster labeling

Since we are considering to learn on the unlabeled data, we don’t have access to labels during

training. Therefore, we need to find some other way to decide which clusters contain normal instances

and which contain attack instances. Under our assumption about normal traffic constituting an over-

whelmingly large portion, over 98%, it is highly probable that clusters containing normal data will have a

much larger number of instances associated with them then would clusters containing attacks. Therefore,

we label some percentage of the clusters containing the largest number of instances associated with them

as ’normal’. The rest of the clusters are labeled as ’attack’[4].

3.5 Detection

After all labels of data instances made by ACA, we can use the dataset as a labeled dataset with

the labels by ACA. Therefore, we can train intrusion detector using supervised learning method based

on the dataset and labels made by ACA to detect unknown-attacks. Among many supervised machine

learning algorithms, we choose DT algorithm to train intrusion detector. The trained detector monitors

a network and can detect unknown-attacks.

– 11 –



Chapter 4. Proposed IDS Scheme

The proposed IDS combines an unsupervised machine learning algorithm and a supervised machine

learning algorithm to detect unknown-attacks. We use ACA as an unsupervised learning algorithm and

DT as a supervised algorithm. As we choose this architecture, the proposed IDS can learn on the

unlabeled dataset. Figure 4.1 illustrates the architecture of the proposed IDS.

Figure 4.1: Architecture of the proposed IDS

The proposed IDS is composed of two main engines: the ACA engine and the DT engine. The ACA

engine plays a role to make clusters on unlabeled dataset and labels to each instances. After making

labels, the ACA engine passes the dataset and labels made by the ACA engine to the DT engine. The

DT engine receives the dataset with labels from the ACA engine and trains intrusion detector using

supervised learning method based on the received dataset with labels. After training done, the trained

intrusion detector monitors a network and can detect unknown-attacks.
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4.1 ACA Engine

The ACA engine makes clusters based on the unlabeled dataset. Due to self-organizing char-

acteristic of the ACA, the ACA engine can builds clusters by itself. We don’t need to consider about

the number of clusters. After making clusters, the ACA engine sorts clusters by the number of cluster

members. And the ACA engine makes labels to certain percentage of large clusters as ’normal’. Other

clusters and outliers are labeled as ’attack’ by the ACA engine. The ACA engine passes the dataset and

labels made by the engine to DT engine. Figure 4.2 illustrates the process of the ACA engine.

Figure 4.2: Process of the ACA engine

4.2 DT Engine

The DT engine receives the dataset with labels by the ACA engine. In the DT engine’s view,

the engine has a labeled dataset. Therefore, the DT engine can train the intrusion detector by using

supervised learning method. We can analyze certain unknown-attack by security experts to extract some

signatures of certain unknown-attack because DT is a white-box model. DT engine can show us reasons

– 13 –



of decisions. Figure 4.3 illustrates the architecture of the DT engine. The trained intrusion detector

monitors a network and can detect unknown-attacks.

Figure 4.3: Architecture of the DT engine
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Chapter 5. Evaluation

5.1 Dataset Decription

Under the our major assumption about the proportion of normal traffic overwhelms attack traffic,

we construct the training set and the test set as 98% of normal traffic and 2% of attack traffic. To make

2% of attack traffic, we filtered attack traffic of KDD Cup 1999 Dataset. When we filtered attack traffic,

we tried to include all of attack types to prevent biased training result. Also we used 10% version of

KDD Cup 1999 Dataset in the experiment.

We partitioned the 10% version KDD dataset into five 20% subsets, each containing approximately

98,000 intances. Some subsets contained instances of biased traffic types. For example, 3rd subset

contained only 98,805 DoS traffic instances and 4th subset didn’t contain R2L traffic type. We didn’t

use these subsets as a test dataset because they didn’t contained all types of the KDD Cup 1999 Dataset.

We use only three of the five subsets, 1st subset, 2nd subset, and 5th subset, as a test dataset which

contain all types of the KDD Cup 1999 Dataset. Therefore, we performed three experimental cases.

When a subset was selected as a test set, we had selected rest instances of the 10% version of

KDD Cup 1999 Dataset as a training set. And we filtered the training set and the test set to meet our

assumption. Our proposed IDS was trained on the filtered training set and evaluated on the filtered test

set. Table 5.1, 5.2, and 5.3 show the traffic distributions of three experimental cases.

Table 5.1: Traffic distribution for case 1
Training set Test set

Type # of traffic Proportion (%) # of traffic Proportion (%)
Normal 41,041 98.00 56,237 98.00

DoS 375 0.90 750 1.30
U2R 43 0.10 9 0.02
R2L 210 0.50 102 0.18

Probe 210 0.50 287 0.50
Total 41,879 100.00 57,385 100.00
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Table 5.2: Traffic distribution for case 2
Training set Test set

Type # of traffic Proportion (%) # of traffic Proportion (%)
Normal 82,290 98.00 14,988 98.00

DoS 1,124 1.34 132 0.87
U2R 32 0.04 20 0.13
R2L 103 0.12 77 0.50

Probe 420 0.50 77 0.50
Total 83,969 100.00 15,294 100.00

Table 5.3: Traffic distribution for case 3
Training set Test set

Type # of traffic Proportion (%) # of traffic Proportion (%)
Normal 78,010 98.00 19,268 98.00

DoS 761 0.96 277 1.41
U2R 35 0.04 17 0.09
R2L 398 0.50 1 0.00

Probe 398 0.50 98 0.50
Total 79,602 100.00 57,385 100.00

5.2 Evaluation Criteria

Many criteria are used for evaluation performance of IDS such as DR, FPR, ACC, latency, through-

put, and etc. Since this paper focus on capability of unknown-attacks, we concentrates on the detection

capability. Among them, DR, FPR, and ACC is directly related to detecting capability of IDS. Therefore,

we evaluate performance of our proposed IDS by comparing DR, FPR, and ACC.

Also, Hosseinpour et al.[1] proposed similar approach with our approach to detect unknown-

attacks. They proposed two combinations of unsupervised machine learning algorithm and supervised

machine learning algorithm. One combination is k-Means clustering and Artificial Immune System (AIS).

The other is a combination of DBSCAN and AIS. Since their approach is similar with us, we compared

performance of our proposed IDS and their IDS.

5.3 Experimental Result

5.3.1 Clustering Result

Since ACA needs more parameters than k-Means clustering and DBSCAN, we did many experi-

ments in diverse parameter setting. Among them, the best parameter setting case is 1000 ants, 600 X

600 size of 2D grid, 500,000 iterations, 3 X 3 of local area of an ant, and 15 of constant for calculating

probability. In this parameters, the ACA engine made 795 clusters based on the training set. Figure 5.1
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illustrates initial state of the 2D grid and Figure 5.2 illustrates final state of the 2D grid.

Figure 5.1: Initial state of the 2D grid

Figure 5.2: Final state of the 2D grid

5.3.2 IDS Performance

Because we performed three experimental cases, we calculated and evaluated performance of our

proposed IDS in each experimental cases. Table 5.4 shows the performance of our proposed IDS in three

experimental cases and average performance of three cases.
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Table 5.4: Performance of our proposed IDS in three experimental cases
Case 1 Case 2 Case 3 Average

DR(%) 72.65 81.05 95.42 83.04
FPR(%) 0.43 10.29 3.46 4.73
ACC(%) 99.04 89.54 96.52 95.03

Also as Hosseinpour et al.[1] proposed similar approach with our approach, we compared perfor-

mance of our proposed IDS with the IDS of Hosseinpour et al.[1]. As we mentioned, compared criteria

are DR, FPR, and ACC. Table 5.5 shows comparison of performance between Hosseinpour et al.[1] and

our proposed IDS.

Table 5.5: Comparison of performance between Hosseinpour et al.[1] and the proposed IDS
[1] [1] Proposed IDS

Algorithm k-Means + AIS DBSCAN + AIS ACA + DT
DR(%) 43.1 58.9 83.0

FPR(%) 15.6 0.8 4.7
ACC(%) 60.7 77.1 95.0

As table shows, the proposed IDS has much higher DR than Hosseinpour et al.[1]. The proposed

IDS has much higher ACC and has low FPR at the same time. This means that the proposed IDS

builds more robust profile of normal behavior than the others. Also it means that ACA performed better

clustering result than k-Means clustering and DBSCAN.

5.4 Discussion

In this section, we discuss some considerable points. Although the proposed has much higher DR

and ACC, FPR still higher than Hosseinpour et al. [1]. This means that the ACA engine assigned same

cluster to normal traffic and attack traffic sometimes. The reason for this problem is thought since each

ant in the ACA engine only look around within their local area, not global area. Because ACA is a

heuristic algorithm and has self-organizing characteristic, overall task is done by sum of smaller tasks.

Therefore ACA has a local optima problem. Making larger local area of each ant will be a possible

solution to mitigate this problem.

Our experimental result is based on the 10% version of KDD Cup 1999 Dataset. It can be thought

that the experimental result is biased to the 10% version of KDD Cup 1999 Dataset. Therefore, more

experimental cases on various datasets are needed to generalize the proposed IDS. Similarly, KDD Cup

1999 Dataset was announced at 1998. As many things were changed on network environment since
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1998, KDD Cup 1999 Dataset no longer contains attack traffic enoughly. Therefore, we need to perform

experiments on the latest dataset to reflect contemporary network environment. Kyoto 2006+ Dataset

can be a considerable candidate for solution of this problem. Kyoto 2006+ Dataset built on the 3 years

of real traffic data from November 2006 to August 2009. It consist of total 24 features [9].
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Chapter 6. Conclusion

This paper proposes a novel IDS scheme that can detect unknown-attacks by combining ACA

and DT. The proposed IDS can learn on the unlabeled dataset in unsupervised manner. The capability

of learning on the unlabeled dataset is appropriate to enormous amount of network traffic environment

such as internet of things. The capability can let we be free from making labels whether attack or not

manually.

A major assumption is exist in this paper. We assumed that normal traffic overwhelms attacks

traffic to reflect general network environment. Therefore, we make the training dataset and the test

dataset be composed of 98% of normal traffic and 2% of attack traffic. Based on the assumption, we

propose our IDS which choose clustering model.

The proposed IDS combines ACA and DT to detect unknown-attacks. The proposed IDS is

composed of two main engine: the ACA engine and the DT engine. Overall flow of the proposed IDS

is as follows: firstly, the ACA engine builds clusters on the unlabeled training dataset by self-organizing

characteristic. After clustering phase, the ACA engine attaches labels certain percentage of large clusters

as ’normal’ label and the others as ’attack’ label. Thirdly, the ACA engine passes the training dataset

with labels made by the ACA engine to the DT engine. Fourthly, the DT engine trains intrusion detector

based on the received dataset with labels by supervised manner. Finally, the trained intrusion detector

monitors a network and can detect unknown-attacks without any specific knowledge.

Under the major assumption, the proposed IDS has much better performance than Hosseinpour

et al. [1] which has a similar approach with ours. The proposed IDS has 83.04% of DR, 4.7% of FPR,

and 95.03% of ACC. It means that our proposed IDS can builds more robust profile of normal behavior

than Hosseinpour et al. [1].

However, future research also remained. First, more diverse experiments on various datasets are

needed. We just performed experiments on the same dataset. To generalize our proposed IDS, we need to

perform more diverse experiments on various datasets. Similarly, the latest dataset is needed since KDD
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Cup 1999 Dataset is too old dataset. KDD Cup 1999 Dataset doesn’t include contemporary traffic types

of a network. Therefore, we need to do experiments on the other dataset which contains contemporary

traffic types. Finally, the proposed IDS has better DR and ACC than Hosseinpour et al. [1]. But, our

proposed IDS still has higher FPR than the combination of DBSCAN and AIS in [1]. Therefore, we need

to find some methods to reduce FPR.
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Appendices

A Source Code of ACA Engine

import os

import math

import time

import numpy

import pandas

import random

import matp lo t l i b

import numpy . random as nrand

import matp lo t l i b

matp lo t l i b . use ( ’Agg ’ )

import matp lo t l i b . pylab as p l t

from s k l e a rn . p r ep ro c e s s i ng import normal ize

import csv

import copy

c l u s t e r l a b e l s = [ ]

def wr i t e c l u s t e r ( fn , datas , p lane ) :

f = open ( fn , ’w ’ )

for i in range ( plane . dim [ 0 ] ) :

for j in range ( plane . dim [ 1 ] ) :

i f plane . g e t g r i d ( ) [ i ] [ j ] != −1:
tmp = ”%d,%d\n”%(i , j )

f . wr i t e (tmp)

f . c l o s e ( )

def draw f i gu r e ( fn ) :

f i g = p l t . f i g u r e ( )

ax = f i g . add subplot ( 1 , 1 , 1 )

x = [ ]

y = [ ]

f = open ( fn )

reader = csv . r eader ( f )

for row in r eader :

x . append ( i n t ( row [ 0 ] ) )

y . append ( i n t ( row [ 1 ] ) )

ax . s c a t t e r (x , y )

t = fn + ” . png”

p l t . s a v e f i g ( t )

p l t . c l o s e ( f i g )
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def s a v e f i g u r e ( fn , datas , p lane ) :

f i g = p l t . f i g u r e ( f i g s i z e = (10 ,10) )

ax = f i g . add subplot ( 1 , 1 , 1 )

x = [ ]

y = [ ]

for i in range ( plane . dim [ 0 ] ) :

for j in range ( plane . dim [ 1 ] ) :

i f plane . g e t g r i d ( ) [ i ] [ j ] != −1:
x . append ( i )

y . append ( j )

ax . s c a t t e r (x , y , s =0.01 , c o l o r=’ black ’ )

p l t . s a v e f i g ( fn )

p l t . c l o s e ( f i g )

class AntColonyOptimization :

def i n i t ( s e l f ) :

pass

class dataLoader :

def i n i t ( s e l f , DIR) :

s e l f . f = open (DIR+” t r a i n i n g f i l t e r e d . out” , ” r ” )

s e l f . datas = [ ]

def readData ( s e l f ) :

print ”Read ! ”

s e l f . r eader = csv . r eader ( s e l f . f )

s e l f . data cnt = 0

pr type = [ ]

s e r v i c e s = [ ]

f l a g = [ ]

cnt = 0

for row in s e l f . r eader :

rID = f l o a t ( row [−1])#ID

row = row [ : 4 1 ]

s e l f . data cnt += 1

for i in range ( l en ( row ) ) :

row [ i ] = f l o a t ( row [ i ] )

row . append ( rID )

c l u s t e r l a b e l s . append (1)

row . append ( cnt ) #c l u s t e r l a b e l

s e l f . datas . append ( row )

cnt += 1

s e l f . datas nparray = numpy . array ( s e l f . datas )

print ”Read Fin i sh ! %d”%( s e l f . data cnt )

class Grid :

def i n i t ( s e l f , he ight , width , path , loader , r and t e s t=Fal se ) :

s e l f . path = path

# Store the dimensions o f the g r i d

s e l f . dim = numpy . array ( [ he ight , width ] )
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s e l f . g r i d = numpy . f u l l ( ( height , width ) , −1, dtype=numpy . i n t )

s e l f . l oade r = loade r

i f r and t e s t :

s e l f . r and gr id ( 0 . 2 5 )

else :

s e l f . p l a c e i n s t a n c e s ( s e l f . l oade r . data cnt )

w r i t e c l u s t e r ( ” c l u s t e r b e f o r e . csv ” , s e l f . l oade r . datas , s e l f )

print ”random place f i n i s h ! ”

p l t . ion ( )

s e l f . max d = 0.001

def rand gr id ( s e l f , spa r s e ) :

for y in range ( s e l f . dim [ 0 ] ) :

for x in range ( s e l f . dim [ 1 ] ) :

i f random . random ( ) <= spar s e :

r = random . randint (0 , 1)

i f r == 0 :

s e l f . g r i d [ y ] [ x ] = Datum( nrand . normal (5 , 0 . 25 , 10) )

e l i f r == 1 :

s e l f . g r i d [ y ] [ x ] = Datum( nrand . normal (−5 , 0 . 25 , 10) )

def p l a c e i n s t a n c e s ( s e l f , data n ) :

for i in range ( data n ) :

while 1 :

r = random . randrange (0 , s e l f . dim [ 0 ] )

c = random . randrange (0 , s e l f . dim [ 1 ] )

i f s e l f . g r i d [ r ] [ c ] == −1: #empty c e l l

s e l f . g r i d [ r ] [ c ] = i

break

def matr ix gr id two ( s e l f ) :

matrix = numpy . empty ( ( s e l f . dim [ 0 ] , s e l f . dim [ 1 ] ) )

matrix . f i l l ( 0 )

for y in range ( s e l f . dim [ 0 ] ) :

for x in range ( s e l f . dim [ 1 ] ) :

i f s e l f . g r i d [ y ] [ x ] != −1:
matrix [ y ] [ x ] = s e l f . g e t g r i d ( ) [ y ] [ x ] . condense two ( )

return matrix

def p l o t g r i d ( s e l f , name=”” , s a v e f i g u r e=True ) :

p l t . matshow( s e l f . mat r i x g r id ( ) , cmap=”RdBu” , fignum=0)

# Option to save images

i f s a v e f i g u r e :

p l t . s a v e f i g ( s e l f . path + name + ’ . png ’ )

def p l o t g r i d two ( s e l f , name=”” , s a v e f i g u r e=True ) :

p l t . matshow( s e l f . matr ix gr id two ( ) , cmap=”RdBu” , fignum=0)

i f s a v e f i g u r e :

p l t . s a v e f i g ( s e l f . path + name + ’ . png ’ )
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def g e t g r i d ( s e l f ) :

return s e l f . g r i d

def g e t d i f f ( s e l f , ta rget , ne ighbor ) :

d i f f = numpy . abs ( s e l f . l oade r . datas nparray [ t a r g e t ] [ : 4 1 ] − s e l f . l oade r . datas nparray [

ne ighbor ] [ : 4 1 ] )

return numpy . sum( d i f f ∗∗2)

def get condense ( s e l f , t a r g e t ) :

return numpy .mean( s e l f . l oade r . datas nparray [ t a r g e t ] [ : 4 1 ] )

def g e t p r o b ab i l i t y ( s e l f , d , y , x , n , c ) :

# Sta r t i n g x and y l o c a t i on s

y s = y − n

x s = x − n

t o t a l = 0 .0

# For each neighbour

for i in range ( ( n∗2)+1) :

x i = ( x s + i ) % s e l f . dim [ 0 ]

for j in range ( ( n∗2)+1) :

i f j != x and i != y :

y j = ( y s + j ) % s e l f . dim [ 1 ]

# Get the neighbour , o

o = s e l f . g r i d [ x i ] [ y j ]

# Get the s im i l a r i t y o f o to x

i f o != −1:
s = s e l f . g e t d i f f (d , o )

t o t a l += s

# Normalize the dens i t y by the max seen d i s t ance to date

md = to t a l / (math . pow( ( n∗2)+1, 2) − 1)

i f md > s e l f . max d :

s e l f . max d = md

dens i ty = t o t a l / ( s e l f . max d ∗ (math . pow( ( n∗2)+1, 2) − 1) )

dens i ty = max(min ( dens i ty , 1) , 0)

t = math . exp(−c ∗ dens i ty )

p r obab i l i t y = (1− t ) /(1+ t )

return p r obab i l i t y

def a s s i g n c l u s t e r ( s e l f , d , y , x , n , c ) :

y s = y − n

x s = x − n

major = −1
c l u s t e r c o n = [ ]

# For each neighbor

for i in range ( ( n∗2)+1) :

x i = ( x s + i ) % s e l f . dim [ 0 ]

for j in range ( ( n∗2)+1) :

# I f we are l ook ing at a neighbor

i f j != x and i != y :

y j = ( y s + j ) % s e l f . dim [ 1 ]

# Get the neighbor , o

o = s e l f . g r i d [ x i ] [ y j ]

# I f o i s not empty c e l l

i f o != −1:
c l u s t e r c o n . append ( s e l f . l oade r . datas [ o ] [ 4 2 ] )
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for i in c l u s t e r c o n :

i f c l u s t e r c o n . count (major ) < c l u s t e r c o n . count ( i ) :

major = i

c l u s t e r l a b e l s [ s e l f . l oade r . datas [ d ] [ 4 2 ] ] −= 1

s e l f . l oade r . datas [ d ] [ 4 2 ] = major

c l u s t e r l a b e l s [ major ] += 1

class Ant :

def i n i t ( s e l f , y , x , g r i d ) :

s e l f . l o c = numpy . array ( [ y , x ] )

s e l f . c a r ry ing = gr id . g e t g r i d ( ) [ y ] [ x ]

i f s e l f . c a r ry ing != −1:
g r i d . g e t g r i d ( ) [ y ] [ x ] = −1

s e l f . g r i d = gr id

def move( s e l f , n , c ) :

s t e p s i z e = random . randint (1 , 25)

# Add some vec tor (−1,+1) ∗ s t e p s i z e to the ants l o c a t i on

s e l f . l o c += nrand . rand int (−1 ∗ s t e p s i z e , 1 ∗ s t e p s i z e , 2)

# Mod the new l o ca t i on by the g r i d s i z e to prevent over f l ow

s e l f . l o c = numpy .mod( s e l f . loc , s e l f . g r i d . dim)

# Get the o b j e c t at t ha t l o c a t i on on the g r i d

o = s e l f . g r i d . g e t g r i d ( ) [ s e l f . l o c [ 0 ] ] [ s e l f . l o c [ 1 ] ]

# I f the c e l l i s occupied , move again

i f o != −1:
# I f the ant i s not carry ing an o b j e c t

i f s e l f . c a r ry ing == −1:
# Check i f the ant p i c k s up the o b j e c t

i f s e l f . p p ick up (n , c ) >= random . random ( ) :

# Pick up the o b j e c t and rem from gr id

s e l f . c a r ry ing = o

s e l f . g r i d . g e t g r i d ( ) [ s e l f . l o c [ 0 ] ] [ s e l f . l o c [ 1 ] ] = −1
# I f not then move

else :

s e l f . move(n , c )

# I f carry ing an o b j e c t then j u s t move

else :

s e l f . move(n , c )

# I f on an empty c e l l

else :

i f s e l f . c a r ry ing != −1:
# Check i f the ant drops the o b j e c t

i f s e l f . p drop (n , c ) >= random . random ( ) :

# Drop the o b j e c t at the empty l o c a t i on

s e l f . g r i d . a s s i g n c l u s t e r ( s e l f . car ry ing , s e l f . l o c [ 0 ] , s e l f . l o c [ 1 ] , n , c )

s e l f . g r i d . g e t g r i d ( ) [ s e l f . l o c [ 0 ] ] [ s e l f . l o c [ 1 ] ] = s e l f . c a r ry ing

s e l f . c a r ry ing = −1

def p pick up ( s e l f , n , c ) :

ant = s e l f . g r i d . g e t g r i d ( ) [ s e l f . l o c [ 0 ] ] [ s e l f . l o c [ 1 ] ]

return 1 − s e l f . g r i d . g e t p r o b ab i l i t y ( ant , s e l f . l o c [ 0 ] , s e l f . l o c [ 1 ] , n , c )

def p drop ( s e l f , n , c ) :
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ant = s e l f . c a r ry ing

return s e l f . g r i d . g e t p r o b ab i l i t y ( ant , s e l f . l o c [ 0 ] , s e l f . l o c [ 1 ] , n , c )

def make labe l s ( loader , n c l u s t e r , percent , f i l e d i r ) :

n l a r g e c l u s t e r s = n c l u s t e r ∗ percent

n l a r g e c l u s t e r s = in t ( n l a r g e c l u s t e r s )

l a r g e c l u s t e r s = [ ]

c c l u s t e r l a b e l s = copy . deepcopy ( c l u s t e r l a b e l s )

for i in range ( n l a r g e c l u s t e r s ) :

M = −1
for j in range ( l en ( c c l u s t e r l a b e l s ) ) :

i f c c l u s t e r l a b e l s [ j ] > M:

M = j

l a r g e c l u s t e r s . append (M)

c c l u s t e r l a b e l s [M] = −1

n normal = 0

n abnormal = 0

n t o t a l = 0

c data s = copy . deepcopy ( l oade r . datas )

for item in c data s :

i f item [ 4 2 ] in l a r g e c l u s t e r s :

item [ 4 2 ] = 0 #normal

tmp = item [ 4 1 ]

item [ 4 1 ] = item [ 4 2 ]

item [ 4 2 ] = tmp

n normal += 1

else :

item [ 4 2 ] = 1 #abnormal

tmp = item [ 4 1 ]

item [ 4 1 ] = item [ 4 2 ]

item [ 4 2 ] = tmp

n abnormal += 1

n t o t a l += 1

print ”n normal = %d , n abnormal = %d , n t o t a l = %d”%(n normal , n abnormal , n t o t a l )

fn = f i l e d i r + ” a c a r e s u l t ”

fn = fn + s t r ( percent )

f = open ( fn , ’w ’ )

c = csv . wr i t e r ( f )

for i in c data s :

c . writerow ( i )

f . c l o s e ( )
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def opt imize ( height , width , ants , sims , n , c , outd i r , c l u s t e r p rop f rom , c l u s t e r p r op t o

, f r e q =500 , path=”image” ) :

”””

Main method fo r running the a lgor i thm

”””

# Load data

l oade r = dataLoader ( ” . . / da ta s e t s /kdd99/0/” )

l oade r . readData ( )

# I n i t i a l i z e the g r i d

g r id = Grid ( height , width , path , l oade r )

# Create the ants

ant agent s = [ ]

for i in range ( ants ) :

ant = Ant( random . randint (0 , he ight − 1) , random . rand int (0 , width − 1) , g r i d )

ant agent s . append ( ant )

for i in range ( sims+1) :

for ant in ant agent s :

ant . move(n , c )

i f i % f r e q == 0 :

s = outd i r + ”img/img”

s = s + s t r ( i ) . z f i l l ( 6 )

s = s + ” . png”

s a v e f i g u r e ( s , l oade r . datas , g r i d )

sc = outd i r + ”datas /data”

sc = sc + s t r ( i ) . z f i l l ( 6 )

sc = sc + ” . out”

f = open ( sc , ”w” )

c f = csv . wr i t e r ( f )

for item in l oade r . datas :

c f . writerow ( item )

f . c l o s e ( )

sc = outd i r + ”datas / c l u s t e r d a t a ”

sc = sc+s t r ( i ) . z f i l l ( 6 )

sc = sc + ” . out”

f = open ( sc , ”w” )

c f = csv . wr i t e r ( f )

c f . writerow ( c l u s t e r l a b e l s )

f . c l o s e ( )

print s+” wrote ! ”

n c l u s t e r = 0

for i in c l u s t e r l a b e l s :

i f i > 0 :

n c l u s t e r += 1

print ” n c l u s t e r s = %d”%(n c l u s t e r )

cur prop = c lu s t e r p r op f r om

while 1 :

make labe l s ( loader , n c l u s t e r , cur prop , outd i r )

cur prop += 0.01
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i f cur prop > c l u s t e r p r o p t o :

break

print ”make labe l s done ! ”

i f name == ’ ma in ’ :

global c l u t e r l a b e l s

c l u s t e r l a b e l s = [ ]

opt imize (600 ,600 ,1000 ,500000 ,6 ,15 , ” . /4 1 600 1000 1 15 /” , 0 . 0 , 1 . 0 , f r e q =25000 , path=”

Video 8/” )

ACA Engine Code - /aca/real aca.py
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B Source Code of DT Engine

from s k l e a rn import data s e t s

from s k l e a rn import t r e e

import numpy as np

import matp lo t l i b . pyplot as p l

import csv

class SK DT:

def i n i t ( s e l f , f i l e t r n , f i l e t s t , f i l e o u t ) :

s e l f . f t r n = f i l e t r n

s e l f . f t s t = f i l e t s t

s e l f . f out = f i l e o u t

def load ( s e l f ) :

f = open ( s e l f . f t rn , ’ r ’ )

c = csv . r eader ( f )

s e l f . da ta s t rn = [ ]

s e l f . l a b e l s t r n = [ ]

cnt = 0

cnt = 0

for row in c :

row = row [ : −1 ]

for i in range ( l en ( row ) ) :

row [ i ] = f l o a t ( row [ i ] )

row [−1] = in t ( row [−1])

tmp = [ ]

tmp . append ( row [−1])

row = row [ : −1 ]

s e l f . da ta s t rn . append ( row )

s e l f . l a b e l s t r n . append (tmp)

cnt += 1

f . c l o s e ( )

#for t e s t i n g

cnt = 0

f t = open ( s e l f . f t s t , ’ r ’ )

c t = csv . r eader ( f t )

s e l f . d a t a s t s t = [ ]

s e l f . l a b e l s t s t = [ ]

for row in ct :

row = row [ : −1 ]

for i in range ( l en ( row ) ) :
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row [ i ] = f l o a t ( row [ i ] )

row [−1] = in t ( row [−1])

tmp = [ ]

tmp . append ( row [−1])

row = row [ : −1 ]

s e l f . d a t a s t s t . append ( row )

s e l f . l a b e l s t s t . append (tmp)

cnt += 1

f t . c l o s e ( )

def t r a i n ( s e l f ) :

#dt

s e l f . c l f = t r e e . D e c i s i o nT r e eC l a s s i f i e r ( )

s e l f . c l f = s e l f . c l f . f i t ( s e l f . datas t rn , s e l f . l a b e l s t r n )

s e l f . out = s e l f . c l f . p r ed i c t ( s e l f . d a t a s t s t )

#pr in t i n g r e s u l t

fw = open ( s e l f . fout , ’w ’ )

cw = csv . wr i t e r ( fw )

cw . writerow ( s e l f . out )

fw . c l o s e ( )

def demo( f in , f in2 , fo , f r , to ) :

t = f r

while 1 :

i f t >= 1 . 0 :

break

tmp = s t r ( t )

tmp tr = f i n + tmp

tmp out = fo + ” d t r e s ”

tmp out = tmp out + tmp

dt = SK DT( tmp tr , f in2 , tmp out )

dt . load ( )

dt . t r a i n ( )

t += 0.01

i f name == ’ ma in ’ :

demo( ” ./4 2 600 1000 1 15 / a c a r e s / a c a r e s ” , ” . . / da ta s e t s /kdd99/4/ t e s t i n g f i l t e r e d . out”

, ” . /4 2 600 1000 1 15 / a c a r e s / d t r e s /” , 0 . 0 , 1 . 0 )

DT Engine Code - /aca/sklearn dt.py
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C Source Code of Traffic Filter

import csv

n o rma l l i s t = [ ’ normal . ’ ]

d o s l i s t = [ ’ back . ’ , ’ land . ’ , ’ neptune . ’ , ’ pod . ’ , ’ smurf . ’ , ’ t eardrop . ’ ]

p r o b e l i s t = [ ’ ipsweep . ’ , ’nmap . ’ , ’ portsweep . ’ , ’ satan . ’ ]

u 2 r l i s t = [ ’ b u f f e r o v e r f l ow . ’ , ’ loadmodule . ’ , ’ p e r l . ’ , ’ r o o t k i t . ’ ]

r 2 l l i s t = [ ’ f t p w r i t e . ’ , ’ guess passwd . ’ , ’ imap . ’ , ’ multihop . ’ , ’ phf . ’ , ’ spy . ’ , ’ wa r e z c l i e n t .

’ , ’ warezmaster . ’ ]

class d a t a s e t f i l t e r :

def i n i t ( s e l f , fn , f o ) :

s e l f . fn = fn

s e l f . fon = fo

s e l f . f = open ( fn , ’ r ’ )

s e l f . cnt n = 0

s e l f . cnt d = 0

s e l f . cnt p = 0

s e l f . cnt u = 0

s e l f . c n t r = 0

s e l f . cnt a = 0

s e l f . datas n = [ ]

s e l f . datas d = [ ]

s e l f . datas p = [ ]

s e l f . datas u = [ ]

s e l f . d a t a s r = [ ]

def count ing ( s e l f ) :

r eader = csv . r eader ( s e l f . f )

for row in r eader :

#row [ 41 ] = row [41 ] [ : −1 ]

i f row [−2] in no rma l l i s t :

s e l f . datas n . append ( row )

s e l f . cnt n += 1

e l i f row [−2] in d o s l i s t :

s e l f . datas d . append ( row )

s e l f . cnt d += 1

e l i f row [−2] in p r o b e l i s t :

s e l f . datas p . append ( row )

s e l f . cnt p += 1

e l i f row [−2] in u 2 r l i s t :

s e l f . datas u . append ( row )

s e l f . cnt u += 1

e l i f row [−2] in r 2 l l i s t :

s e l f . d a t a s r . append ( row )

s e l f . c n t r += 1

s e l f . cnt a = s e l f . cnt d + s e l f . cnt p + s e l f . cnt u + s e l f . c n t r + 0 .0

print ” s e l f cnt n = %d , cnt d = %d , cnt p = %d , cnt u = %d , cn t r = %d”%( s e l f . cnt n ,

s e l f . cnt d , s e l f . cnt p , s e l f . cnt u , s e l f . c n t r )

s e l f . t o t a l = s e l f . cnt n ∗ ( 1 . 0 / 0 . 9 8 )
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s e l f . t o t a l anoma l i e s = s e l f . t o t a l − s e l f . cnt n

s e l f . t o t a l anoma l i e s = in t ( round ( s e l f . t o t a l anoma l i e s ) )

def calc atnum ( s e l f ) :

s e l f . to d = in t ( round ( s e l f . t o t a l anoma l i e s / 4 . 0 ) )

s e l f . to p = in t ( round ( s e l f . t o t a l anoma l i e s / 4 . 0 ) )

s e l f . t o r = in t ( round ( s e l f . t o t a l anoma l i e s / 4 . 0 ) )

s e l f . to u = s e l f . t o t a l anoma l i e s − ( s e l f . to d + s e l f . to p + s e l f . t o r )

spare = 0

i f s e l f . t o r >= s e l f . c n t r :

spare = s e l f . t o r − s e l f . c n t r

s e l f . t o r = s e l f . c n t r

i f s e l f . to u >= s e l f . cnt u :

spare += s e l f . to u − s e l f . cnt u

s e l f . to u = s e l f . cnt u

i f s e l f . to p >= s e l f . cnt p :

spare += s e l f . to p − s e l f . cnt p

s e l f . to p = s e l f . cnt p

s e l f . to d += spare

def f i l t e r i n g ( s e l f ) :

fw = open ( s e l f . fon , ”w” )

cw = csv . wr i t e r ( fw )

for i in range ( l en ( s e l f . datas n ) ) :#normal t r a f f i c

cw . writerow ( s e l f . datas n [ i ] )

cnt a = 0

cnt u = 0

cnt p = 0

cnt d = 0

cn t r = 0

for i in range ( s e l f . to p ) :#probe

cw . writerow ( s e l f . datas p [ i ] )

cnt a += 1

cnt p += 1

for i in range ( s e l f . to u ) :#u2r

cw . writerow ( s e l f . datas u [ i ] )

cnt a += 1

cnt u += 1

for i in range ( s e l f . t o r ) :#r2 l

cw . writerow ( s e l f . da t a s r [ i ] )

cnt a += 1

cn t r += 1

for i in range ( s e l f . to d ) :#dos

cw . writerow ( s e l f . datas d [ i ] )

– 35 –



cnt d += 1

print ” cnt n = %d , cnt d = %d , cnt p = %d , cnt u = %d , cn t r = %d”%( s e l f . cnt n , cnt d

, cnt p , cnt u , cn t r )

print ” t o t a l = %f , tota l anomal = %d”%( s e l f . t o ta l , s e l f . t o t a l anoma l i e s )

fw . c l o s e ( )

def d o f i l t e r ( fn , f o ) :

df = d a t a s e t f i l t e r ( fn , f o )

df . count ing ( )

df . calc atnum ( )

df . f i l t e r i n g ( )

i f name == ’ ma in ’ :

d o f i l t e r ( ” ./0/ t r a i n i n g b e f o r e . out” , ” ./0/ t r a i n i n g f i l t e r e d . out” )

d o f i l t e r ( ” ./1/ t r a i n i n g b e f o r e . out” , ” ./1/ t r a i n i n g f i l t e r e d . out” )

d o f i l t e r ( ” ./2/ t r a i n i n g b e f o r e . out” , ” ./2/ t r a i n i n g f i l t e r e d . out” )

d o f i l t e r ( ” ./3/ t r a i n i n g b e f o r e . out” , ” ./3/ t r a i n i n g f i l t e r e d . out” )

d o f i l t e r ( ” ./4/ t r a i n i n g b e f o r e . out” , ” ./4/ t r a i n i n g f i l t e r e d . out” )

Traffic Filter Code - /dataset/kdd99/df.py
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D Source Code of Normalizer

import csv

import math

f = open ( ’ . . / da ta s e t s /kdd99/kddcup . da t a 10 p e r c en t c o r r e c t ed t r an s ed ’ , ’ r ’ )

c = csv . r eader ( f )

fw = open ( ’ . . / da ta s e t s /kdd99/kddcup . da t a 10 pe r c en t c o r r e c t ed t r an s ed no rma l i z ed ’ , ’w ’ )

cw = csv . wr i t e r ( fw )

sum = [ 0 . 0 ] ∗ 4 2
datas = [ ]

for row in c :

for i in range ( l en ( row )−1) :
row [ i ] = f l o a t ( row [ i ] )

datas . append ( row )

f . c l o s e ( )

print l en ( datas [ 0 ] )

print l en ( datas )

for i in range ( l en ( datas [ 0 ] ) −1) :
ttmp = [ ]

for j in range ( l en ( datas ) ) :

ttmp . append ( datas [ j ] [ i ] )

m = min( ttmp )

M = max( ttmp )

for j in range ( l en ( datas ) ) :

i f (M−m) != 0 :

datas [ j ] [ i ] = ( datas [ j ] [ i ] − m) / (M − m)

for i in range ( l en ( datas ) ) :

cw . writerow ( datas [ i ] )

fw . c l o s e ( )

Normalizer Code - /dataset/kdd99/normalizer.py
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Summary

A Bio-inspired Intrusion Detection System for Unknown-attacks

combining Ant Clustering Algorithm and Decision Tree

침입 탐지 시스템(Intrusion Detection System, IDS)는 특정 네트워크 혹은 시스템을 감시하며

사용자의 악의적인 행동을 탐지하는 시스템이다. IDS는 탐지 방식에 따라 Signature-based IDS와

Anomaly-based IDS로 나눌 수 있다.

사물인터넷시대가다가오며많은기기가네트워크에연결됨에따라네트워크트래픽이폭증하

고 있다. IDS를 훈련시키기 위한 Dataset을 만들기 위해 사람이 수동적으로 일일히 공격 여부에 관한

Label 만드는 작업은 매우 어려운 작업이다. 한편 현재 지속적으로 새로운 알려지지 않은 미지 공격이

출현하고있다. 이에 IDS에있어서미지공격을사전에탐지하는능력은필수적인기능이되었다. 미지

공격 탐지란 IDS가 사전에 어떠한 정보도 가지고있지 않은 공격을 탐지하는 연구 분야이다. IDS가 사

전 정보를 가지고 있지 않은 공격을 탐지하기 위해서는 공격 여부에 대한 Label이 없는 Dataset에서도

스스로정상트래픽과공격트래픽을구분할능력이있어야한다. 이러한문제들을해결하기위해 Label

이 없는 Dataset에서 스스로 학습할 수 있는 방법을 도출해내야 한다.

본논문에서는 Clustering-based모델의알려지지않은공격탐지를위한새로운 IDS를제안한다.

제안하는 IDS는 개미군집 알고리즘(Ant Clustering Algorithm, ACA)과 의사결정트리(Decision Tree,

DT)를 조합하였다. 제안하는 IDS는 Label이 없는 Dataset에서 스스로 학습이 가능하여 정상 트래픽과

공격트래픽을구분하기위한프로필을생성하고그에기반하여미지공격을탐지할수있다. 제안하는

IDS는 ACA엔진과 DT엔진으로이루어져있다. ACA를이용하여 Label이없는 Dataset상에서군집을

형성한다. 형성된 군집화 결과를 바탕으로 ACA 엔진은 각 Data instance들의 공격 여부를 구분한다.

그 후 ACA 엔진의 결과를 바탕으로 DT 엔진은 침입 탐지기를 훈련한다.

제안하는 IDS의 성능 평가를 위해 KDD Cup 1999 Dataset을 이용하였다. 성능 비교를 위한

지표로 탐지율(Detection Rate, DR), 오탐율(False Positive Rate, FPR), 정확도(Accuracy, ACC)가 이

용되었다. 제안하는 IDS는 본 논문과 유사한 방식을 제안한 Hosseinpour 등의 방식[1]에 비해 월등히

높은 탐지율과 정확도를 보여주었다.

핵심어 : IDS, 미지 공격 탐지, 생체모방, 군집지능
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