CRR DR

Master’s Thesis

A Bio-inspired Intrusion Detection System for Unknown-attacks

combining Ant Clustering Algorithm and Decision Tree

2 74 "9 (4 & Kim, Kyung-min)

A et

School of Computing

KAIST

2016

A Bio-inspired Intrusion Detection System for Unknown-attacks

combining Ant Clustering Algorithm and Decision Tree

A Bio-inspired Intrusion Detection System for Unknown-attacks

combining Ant Clustering Algorithm and Decision Tree

Advisor : Professor Kim, Kwangjo

by

Kim, Kyung-min
School of Computing
KAIST

A thesis submitted to the faculty of KAIST in partial fulfillment of
the requirements for the degree of Master of Science in Engineering in the

School of Computing . The study was conducted in accordance with Code

of Research Ethics!.

2015. 12. 14.
Approved by

Professor Kim, Kwangjo

[Advisor]

Declaration of Ethical Conduct in Research: I, as a graduate student of KAIST, hereby declare that
I have not committed any acts that may damage the credibility of my research. These include, but are
not limited to: falsification, thesis written by someone else, distortion of research findings or plagiarism.
I affirm that my thesis contains honest conclusions based on my own careful research under the guidance

of my thesis advisor.

RS A RO

o
SH = E AR Y3 oA AAF 53512

201549 129 149

o “

AA LR A 3

I
o

AR wE A (Q)

ANgR AW s ()

MSoC Zl 4 81, Kim, Kyung-min. A Bio-inspired Intrusion Detection System for Unknown-

attacks combining Ant Clustering Algorithm and Decision Tree. 7HO| 2 & 2 12|S 1T}
20143061 SINFEMEZIE 26t M ZE 0|X| 24 EIX| A|AH!l. School of Computing .

=2 O - o

2016. 23p. Advisor Prof. Kim, Kwangjo. Text in English.

ABSTRACT

Intrusion Detection System (IDS) monitors network traffic and detects users’ malicious activities.
IDS can be divided by its detection type as Signature-based IDS and Anomaly-based IDS. IDS can be
divided as a Network IDS and a Host IDS.

As internet of things era is coming, the amount of network traffic increases explosively. Labeling
a traffic manually whether attack or not is difficult under this condition. Also new unknown-attacks
are appearing constantly, the detection of unknown-attacks has become the essential part of IDS as
well as the detection of known-attacks. Unknown-attack detection is a research area about detecting
attacks without any specific prior knowledge of attacks. IDS should have capability to determine an
input whether attack or not based on the unlabeled dataset since unknown-attacks are not known to
IDS. To solve these difficulties, we need to find a way to learn about normal traffic and attack traffic on
the unlabeled dataset.

This paper proposes a novel IDS scheme for unknown-attacks based on the clustering model. The
proposed IDS combines two machine learning algorithms, Ant Clustering Algorithm (ACA) and Decision
Tree(DT). The IDS learns on the unlabeled dataset by itself and constructs the profile of normal behavior.
After construction of the profile, the IDS can detect unknown-attacks. The IDS consists of two main
engines: the ACA engine and the DT engine. The IDS builds clusters on unlabeled dataset by using
ACA. Based on the clustering result, the ACA engine classifies normal traffic and attack traffic. The DT
engine trains detectors based on the result of the ACA engine.

The proposed IDS was experimented on the KDD Cup 1999 Dataset. Evaluation criteria for
performance of the proposed IDS are detection rate, false positive rate, and accuracy. The IDS has much

higher detection rate and accuracy than Hosseinpour et al. [I] which has similar approach with ours.

Keywords : IDS, Unknown-attack Detection, Bio-inspired, Swarm Intelligence

Contents

[List of Figures | o o e e

[Chapter 1. Introduction |

(1.1 Intrusion Detection System|.

[Chapter 2. Related Work and Background |
2.1 Detection Typesof IDS|
2.1.1 Signature-based IDS|,
2.1.2 Anomaly-based IDS|.

2.3 KDD Cup 1999 Dataset|.
2.4 Clustering Algorithms|.

[Chapter 3. Methodology |
3.1 Assumption| L e e e e e

[Chapter 4. Proposed IDS Scheme |
4.1 ACA Engine|. e e e e e e
4.2 NEINE|. . . . v v i e

[Chapter 5. Evaluation |
(5.1 Dataset Decription| 00000,

(5.3 Experimental Result|.
(5.3.1 Clustering Result|

ii

i

v

=~ W e

© N O ot ot ot ot @A

10
10
10
11
11
11

12
13
13

[Chapter 6. Conclusion |

(A Source Code of ACA Engine|

(B Source Code of DT Engine|

I[Summary (in Korean)|

— i —

20

22

24
24
32
34
37

38

List of Tables

2.1 Traffic distribution of KDD Cup 1999 Dataset|. 6
2.2 Comparison of features between k-Means, DBSCAN, and ACA| 8
.1 Traffic distribution forcase I oo oo 15
0.2 Traffic distribution forcase 20 oo oo 16
.3 Traffic distribution forcase 3l oo 16
5.4 Performance of our proposed IDS in three experimental cases| 18
[5.5 Comparison of performance between Hosseinpour et al.[1| and the proposed IDS| 18

iv

List of Figures

[1.1 Example of IDS architecture|. o 2
2.1 High-level Decription of ACA| 8
4.1 Architecture of the proposed IDS|o 12
4.2 Process of the ACA engine| L 13
4.3 Architecture of the DT engine]. 14
p.1 Initial state of the 2D grid|. Lo 17
b.2 Final state of the 2D grid| o 17

Chapter 1. Introduction

1.1 Intrusion Detection System

Intrusion Detection System (IDS) monitors network traffic and detects users’ abnormal or mali-
cious activities[2]. Two main detection types are exist in IDS: Signature-based IDS and Anomaly-based
IDS. Signature-based IDS uses some signatures of known-attacks to detect malicious behaviors. Anomaly-
based IDS builds a profile of normal behavior and detects violation of the profile as malicious behavior.
IDS can be divided as a Network IDS (NIDS) and a Host IDS (HIDS) by location of IDS sensors. A
HIDS is installed on certain host or device and detects attacks from outside of the host or device. A
NIDS is installed over a target network. Sensors of the NIDS are installed where a lot of traffic is passed,
like gateway or router. Although the term IDS means both of HIDS and NIDS, in this paper, IDS refers
to a NIDS.

Firewall looks similar to IDS in detection of attacks. However, IDS and firewall has a big difference.
Firewall analyzes packet header and only capable to detect attacks using pre-installed policies or rules
based on protocol type, source address, destination address, source port, and destination port. A Packet
is rejected if it doesn’t match any policy. On the other hand, IDS analyzes the traffic information such as
packet payload to determine whether intrusion or not. Therefore, IDS can make a network more secure
than firewall.

IDS is composed of the IDS server and the IDS sensor. The IDS server decides whether an attack
has occurred or not based on collected information by the IDS sensor. The IDS sensor collects traffic
information over a target network. The IDS sensor is installed on a place which large amount of network
traffic is passed such as near a gateway or router. The IDS sensor collects many information. For
example, the network payload or network flow. After collecting traffic information, the sensor sends the
information to the IDS server. An example of IDS is illustrated in figure

Generally, datasets and real network traffic data are used to evaluate performance of IDS. Re-
searchers can train their IDS based on the training dataset and test by using the test dataset. They

compare prediction results of detection algorithm and analyze the results of actual value of test dataset.

.......

Internet

)
Router
Switch @

Firewall
. Noniin
Management
---------- interf
IDPS Sensor catan Management
Switch
Switch
Internal %\g
Network ¥, %
S ../-""’
IDPS IDPS
Management Console

Server

Figure 1.1: Example of IDS architecture

Four categories are exist to evaluate detection result: true positive, true negative, false positive, false
negative. In IDS case, true positive is a case that a malicious traffic referred as an attack by IDS. True
negative is a case that a normal traffic referred as a normal by IDS. False positive is a case that a normal
traffic referred as an attack and false negative is a case that a malicious traffic referred as a normal
traffic. Based on these four categories, three important criteria for evaluation performance of IDS can be
calculated. First one is detection rate (DR). DR is defined as the number of intrusion instances detected
by IDS, same as true positive, divided by the total number of intrusion instances in the test dataset.
DR is a criteria which indicates how well IDS detects attacks. High DR means that IDS can detect
attacks more than IDS which has low DR. Second one is false positive rate (FPR). FPR is defined as
the number of normal instances classified as attack, same as false positive, divided by the total number
of normal instances in the test dataset. High FPR means that IDS can misclassify a normal traffic as
an attack more frequently than IDS which has low FPR. Final one is accuracy (ACC). ACC is defined

as the number of corrected classified instances by IDS, same as sum of true positive and false negative,

divided by the total number of instances in the test dataset. ACC is related to how well IDS classify

normal and attacks correctly. Equations for calculation DR, FPR, and ACC are presented in below:

TruePositive
DR = 1.1
TruePositive + FalseNegative (1.1)
FalsePositive
FPR = 1.2
FlasePositive + TrueNegative (1.2)
ACC TruePositive + FalseNegative (1.3)

~ TruePositive + FlasePositive + TrueNegative + FalseNegative

1.2 Motivation

As internet of things era is coming, many devices are connected on network. We must deal with
enormous volumes of network data. Making labels of these enormous data manually whether attack or
not is difficult and expensive task. Because of this difficulty, we don’t have enough labeled data available.
Also, we get labeled dataset only by simulating intrusions. This method has a limitation that we can get
just known-attacks and don’t reflect unknown-attacks which occurs in near future in the dataset. New
unknown-attacks are appearing constantly. The unknown-attacks can give us serious damage. Therefore,
we should detects unknown-attacks as soon as possible. However, we cannot get a labeled dataset which
contains label of unknown-attacks.

To solve these problems, we need a method for detecting attacks on the unlabeled dataset. The
method should not use the supervised learning model, since the supervised learning model have to know
about labels of the dataset. The method which uses the unsupervised model doesn’t need to know
labels. Because the method can learn on the unlabeled dataset by itself, it doesn’t need to have any
prior knowledge of certain attack. In this paper, we propose a novel IDS which can learn on the unlabeled
dataset by itself. We combine two machine learning algorithms to detect unknown-attacks: ant clustering
algorithm and decision tree. As combining these two algorithms, the proposed IDS doesn’t need any

prior knowledge about attacks and can detect unknown-attacks effectively.

1.3 Organization

The rest of this paper is organized as follows: Chapter 2 describes relate work and background
about detection types of IDS, unknown-attack detection, dataset for evaluation, clustering algorithms,
and decision tree. The methodology of the proposed IDS is described in Chapter 3. Description about
the architecture of the proposed IDS is in Chapter 4. Experimental result and some discussion are

described in Chapter 5. Finally, the conclusion and future work are discussed in Chapter 6.

Chapter 2. Related Work and Background

2.1 Detection Types of IDS

2.1.1 Signature-based IDS

Signature-based IDS has some signatures of known-attacks and makes rules for detection of known-
attacks. When the traffic from the network comes into IDS, signature-based IDS extracts some signatures
from the traffic. After extraction, signature-based IDS compares extracted signatures with the signatures
which it already has. If some signatures are matched, signature-based IDS decides the traffic as an attack
traffic. Signature-based IDS can detect known-attacks well since the IDS is a black-list model. The IDS
compares the traffic with black-list. If the traffic contains some signatures in black-list, the IDS must
detect an attack.

However, signature-based IDS cannot detect any unknown-attack since signature-based IDS doesn’t
have any signature of unknown-attacks. Therefore, signature-based IDS classifies an unknown-attack

traffic as a normal traffic. Signature-based IDS doesn’t capable to detect unknown-attacks.

2.1.2 Anomaly-based IDS

Unlike signature-based IDS, anomaly-based IDS doesn’t focus on maintaining black-list of signa-
tures. Anomaly-based IDS choose a white-list model. Anomaly-based IDS makes a profile of normal
behavior and detect violation of the profile. Any activity which causes abnormal state of a network is
detected by anomaly-based IDS. Therefore, anomaly-based IDS can detect unknown-attacks since any

attacks will cause abnormal state of a network even if unknown-attacks.

2.2 Unknown-attack Detection

Unknown-attack detection is a research area about detecting an attack without any specific pre-
liminary knowledge of the attack. Because signature-based IDS needs some signatures of known-attacks,
signature-based cannot detect unknown-attacks. On the other hand, anomaly-based IDS can detect

unknown-attacks because anomaly-based IDS concentrates on violation of normal behavior profile. Any

form of activities which violates normal behavior profile is detected by anomaly-based IDS even if IDS

doesn’t have specific knowledge of activities. Therefore, anomaly-based IDS is mainly used to detect

unknown-attacks.

Robust modeling of normal behavior profile directly affects to performance of anomaly-based IDS.
Many researches about anomaly-based IDS utilize some machine learning and data mining algorithms
to accomplish robustness of building normal behavior profile. For example, Support Vector Machine
(SVM) and Artificial Immune System (AIS) in supervised learning algorithms and k-Means clustering,

DBSCAN, and Ant Cluster Algorithm (ACA) in unsupervised algorithms are used.

2.3 KDD Cup 1999 Dataset

KDD Cup 1999 Dataset is a dataset of DARPA 1998 Intrusion Detection Evaluation Program.
The datasets is used in the 1999 KDD intrusion detection contest[3]. The dataset contains normal traffic

and four types of attack traffic; DoS, U2R, R2L, Probe. The types of the dataset are described as below.
- Normal : not attack
- DoS : denial-of-service (e.g., syn flood attack)
- U2R : unauthorized access to local superuser/root privileges (e.g., buffer overflow attacks)
- R2L : unauthorized access from a remote machine (e.g., guessing password)

- Probe : surveillance and other probing (e.g., port scanning)

The dataset has 4,898,431 traffic data instances. Each data instances in the dataset has 41 features

and its label of traffic type. The traffic distribution of KDD Cup 1999 Dataset is presented in Table

as below.

Table 2.1: Traffic distribution of KDD Cup 1999 Dataset
Type # of traffic Proportion (%)

Normal 972,781 19.86
DoS 3,883,370 79.28
U2R 52 0.00
R2L 1,126 0.02

Probe 41,102 0.84
Total 4,898,431 100

2.4 Clustering Algorithms

Clustering is one of the unsupervised machine learning algorithms. Clustering algorithms don’t

need labels of dataset. Clustering algorithms collect similar instances and make some clusters on the

unlabeled dataset. Some clustering algorithms are used in anomaly-based IDS.

(1)

k-Means clustering algorithm partitions the dataset into k clusters. Every data instances are
assigned to exactly one cluster which the nearest cluster center. The Euclidean distance is mainly
used to calculate distance between a data instance and a cluster center[I]. k-Means clustering
requires one parameter: the number of clusters. k-Means clustering is very sensitive to initialization

state of the cluster centroids.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) finds clusters based on
the estimated density distribution of the dataset. DBSCAN requires two parameters: maximum
radius of the neighborhood and minimum number of samples to form a cluster[I]. DBSCAN is

insensitive to initialization state. But DBSCAN is sensitive to data density and data dimension[5].

Ant Clustering Algorithm (ACA) is a heuristic algorithm and one of the swarm intelligence algo-
rithms. The swarm intelligence algorithms are one area of the bio-inspired algorithms. ACA is
based on the brood sorting activities of ants. ACA was modeled by Deneubourg et al.[6]. Their
model is referred as basic model (BM)[7]. In ACA, each data instances of the dataset is randomly
scattered in a 2D space. And each ant moves randomly the 2D space and picks up or drops down
the data instances based on calculation of probability. Equations for calculation probability of

picking up and dropping down are presented in below:

Ppick = ()2 (21)

where f is the perceived fraction of items in the neighborhood of the ant and k; is a threshold item.

f

il (2.2)

Pdrop = (

where ko is another threshold constant.

ACA has self-organizing characteristic. Self-organization means that accomplish overall process by
coordination out of the local interactions between smaller components. Therefore, ACA can makes
clusters on the initially disordered dataset by itself. Unlike k-Means clustering, ACA doesn’t require
predefined number of clusters because of self-organizing characteristic. ACA is not sensitive to
initialization state, data density, and data dimension. ACA requires four parameters: the number
of ants, size of the 2D space, local area of the ant, and threshold used in picking or dropping

decision. High-level description of the ACA is presented in Figure [8].

//nitialization Phase
Randomly scatter o; object on the 2D grid
for each agent a; do
pandom_select_object (o;)
pick_up_object o;
place_agenct a; at randomly selected empty grid location

end for

//Main loop
fort=1to t,,, do
random_select_agent (a;)
move_agent a; to new location
i = carried_object(agent a;)
Compute (o;) and plyap(e:)
If drop = True then
While pick = False do
i = random_select object o
Compute £*(o;) and ph.ep(0;)
Pick_up_object o;

end while

end for

Figure 2.1: High-level Decription of ACA

Comparison of features between k-Means, DBSCAN, and ACA is presented in Table 5.

Table 2.2: Comparison of features between k-Means, DBSCAN, and ACA
k-Means DBSCAN ACA

of parameters
Insensitivity of initialization
Insensitivity of data density

Insensitivity of data dimension

O
Mo O
QO O~

2.5 Decision Tree

Decision Tree (DT) is one of the supervised machine learning algorithms. DT is a predictive
model which using tree-like graph. DT can be trained as a rule-based structure. DT makes a tree based
on the training set. DT extracts some rules to classify the training set correctly. Each branch of DT
represents a decision rule. Each leaf node represent a set of data instances has same class. DT makes
decision rules until every data instances are classified correctly. The goal of DT is to create a model
that predicts the value of a target output based on several inputs. Two main types are exist in DT:
classification tree and regression tree. When the predicted output is a finite set of classes, classification
tree is used. When the predicted output is continuous value, regression tree is used.

DT has some advantages than other supervised machine learning algorithms. First, DT can
allow the addition of new possible scenarios. It is appropriate advantage for unknown-attack detection.
Second, DT is a white-box model algorithm. Therefore, unlike black-box model, we can analyze why
the algorithm predicts a certain output. When using DT as detection algorithm, a security expert can
analyze a certain attack and extract some rules after detection of the attack to detect the attack next

time.

Chapter 3. Methodology

3.1 Assumption

KDD Cup 1999 Dataset has a drawback in distribution of traffic. Over 80% of data instances
is attack traffic in the dataset. This proportion doesn’t reflect general network traffic environment. In
general network, normal traffic overwhelms attack traffic. The proposed IDS is based on a major as-
sumption to reflect general network environment. The assumption is that there is overwhelmingly much
normal traffic than attack traffic in target network. Based on the assumption, we filtered and construct

the dataset as 98% of normal traffic and 2% of attack traffic.

3.2 Normalization

The KDD Cup 1999 Dataset has 41 features. The range of variables is diverse feature by feature.
This will affects clustering result. As an example, consider two sets of two 2-feature vectors. Let assume

that the range of the first feature is from 0 to 10 and the range of the second feature is from 10 to 100.
- {(1710)a(8710)}
- {(1710)a(1780)}

Under a Euclidean distance metric, the squared distance between feature vectors in the first set will be
49, while it will be 4,900 for the second set. If cluster width is fixed, the first set will be included in same
cluster. But second set will be included in different cluster. Difference between two vectors in each set
is same as 7 times from smaller feature to larger feature.

As a possible solution, we converted the data instances to a same distribution. That is, we make
same range of every features in the dataset. Then, we can normalize all data instances to a fixed range

of our choosing.

~10 -

3.3 Clustering

To make clusters from the unlabeled dataset, we used ACA. Due to self-organizing characteristic,
ACA can makes clusters by itself. Initially, we assigns a cluster to each data instances. In main loop
of ACA, when an ant drops down a data instance, the ant looks around and assigns cluster of the data
instance as majority cluster around his neighbor. After certain iterations, some clusters are remained
with more members than initial state and other clusters are disappeared. Based on the clustering result,

we can make labels to each data instances.

3.4 Cluster labeling

Since we are considering to learn on the unlabeled data, we don’t have access to labels during
training. Therefore, we need to find some other way to decide which clusters contain normal instances
and which contain attack instances. Under our assumption about normal traffic constituting an over-
whelmingly large portion, over 98%, it is highly probable that clusters containing normal data will have a
much larger number of instances associated with them then would clusters containing attacks. Therefore,
we label some percentage of the clusters containing the largest number of instances associated with them

as 'normal’. The rest of the clusters are labeled as ’attack’[4].

3.5 Detection

After all labels of data instances made by ACA, we can use the dataset as a labeled dataset with
the labels by ACA. Therefore, we can train intrusion detector using supervised learning method based
on the dataset and labels made by ACA to detect unknown-attacks. Among many supervised machine
learning algorithms, we choose DT algorithm to train intrusion detector. The trained detector monitors

a network and can detect unknown-attacks.

- 11 —

Chapter 4. Proposed IDS Scheme

The proposed IDS combines an unsupervised machine learning algorithm and a supervised machine
learning algorithm to detect unknown-attacks. We use ACA as an unsupervised learning algorithm and
DT as a supervised algorithm. As we choose this architecture, the proposed IDS can learn on the

unlabeled dataset. Figure illustrates the architecture of the proposed IDS.

ACA Engine DT Engine

IDS IDS
Sensor Sensor

Figure 4.1: Architecture of the proposed IDS

The proposed IDS is composed of two main engines: the ACA engine and the DT engine. The ACA
engine plays a role to make clusters on unlabeled dataset and labels to each instances. After making
labels, the ACA engine passes the dataset and labels made by the ACA engine to the DT engine. The
DT engine receives the dataset with labels from the ACA engine and trains intrusion detector using
supervised learning method based on the received dataset with labels. After training done, the trained

intrusion detector monitors a network and can detect unknown-attacks.

— 12 —

4.1 ACA Engine

The ACA engine makes clusters based on the unlabeled dataset. Due to self-organizing char-
acteristic of the ACA, the ACA engine can builds clusters by itself. We don’t need to consider about
the number of clusters. After making clusters, the ACA engine sorts clusters by the number of cluster
members. And the ACA engine makes labels to certain percentage of large clusters as 'normal’. Other
clusters and outliers are labeled as ’attack’ by the ACA engine. The ACA engine passes the dataset and

labels made by the engine to DT engine. Figure illustrates the process of the ACA engine.

ACA Engine

Before ACA After ACA

L] &0
504 L]
. PR g
- .{'. i: ‘:o:o. |I1) H‘r:l "':'
a0 .:.I.' . 1. ‘l‘l o D) ol '." a0
N - sy pe } L T
e | ™ 1 ' . 1s
" Y . o:. .:“i . ® 'h'it;" L r
0| ; L 5 :‘H.r.i. - "l: .:"' . =
P} s *
SR AT
@ O R A R T) “
L Rkl T 5‘ a : L l:' "'.l.t
wl :'4 .,,_"'!l i 1 L wl
thap s Taate Bogl® Tl 5 g % thele
.o. spped” l.' . g . " 0‘ ML ':o'.
o} “-':‘ ¢"“"""-’.‘ a'-"- i i}
=10 =10
=10 o 10 20 3a 40 50 &0 =10 o 10 20 kil a0 50 &0

O Labeled as a normal traffic

Figure 4.2: Process of the ACA engine

4.2 DT Engine

The DT engine receives the dataset with labels by the ACA engine. In the DT engine’s view,
the engine has a labeled dataset. Therefore, the DT engine can train the intrusion detector by using
supervised learning method. We can analyze certain unknown-attack by security experts to extract some

signatures of certain unknown-attack because DT is a white-box model. DT engine can show us reasons

— 13 —

of decisions. Figure illustrates the architecture of the DT engine. The trained intrusion detector

monitors a network and can detect unknown-attacks.

DT Engine

Decision 3

Decision 2

Decision 1

Decision n

Figure 4.3: Architecture of the DT engine

— 14 —

Chapter 5. Evaluation

5.1 Dataset Decription

Under the our major assumption about the proportion of normal traffic overwhelms attack traffic,
we construct the training set and the test set as 98% of normal traffic and 2% of attack traffic. To make
2% of attack traffic, we filtered attack traffic of KDD Cup 1999 Dataset. When we filtered attack traffic,
we tried to include all of attack types to prevent biased training result. Also we used 10% version of
KDD Cup 1999 Dataset in the experiment.

We partitioned the 10% version KDD dataset into five 20% subsets, each containing approximately
98,000 intances. Some subsets contained instances of biased traffic types. For example, 3rd subset
contained only 98,805 DoS traffic instances and 4th subset didn’t contain R2L traffic type. We didn’t
use these subsets as a test dataset because they didn’t contained all types of the KDD Cup 1999 Dataset.
We use only three of the five subsets, 1st subset, 2nd subset, and 5th subset, as a test dataset which
contain all types of the KDD Cup 1999 Dataset. Therefore, we performed three experimental cases.

When a subset was selected as a test set, we had selected rest instances of the 10% version of
KDD Cup 1999 Dataset as a training set. And we filtered the training set and the test set to meet our

assumption. Our proposed IDS was trained on the filtered training set and evaluated on the filtered test

set. Table and show the traffic distributions of three experimental cases.

Table 5.1: Traffic distribution for case 1

Training set Test set

Type | # of traffic | Proportion (%) | # of traffic | Proportion (%)
Normal 41,041 98.00 56,237 98.00

DoS 375 0.90 750 1.30

U2R 43 0.10 9 0.02

R2L 210 0.50 102 0.18
Probe 210 0.50 287 0.50
Total 41,879 100.00 57,385 100.00

— 15—

Table 5.2: Traffic distribt

1tion for case 2

Training set Test set
Type | # of traffic | Proportion (%) | # of traffic | Proportion (%)
Normal 82,290 98.00 14,988 98.00
DoS 1,124 1.34 132 0.87
U2R 32 0.04 20 0.13
R2L 103 0.12 77 0.50
Probe 420 0.50 7 0.50
Total 83,969 100.00 15,294 100.00
Table 5.3: Traffic distribution for case 3
Training set Test set
Type | # of traffic | Proportion (%) | # of traffic | Proportion (%)
Normal 78,010 98.00 19,268 98.00
DoS 761 0.96 277 1.41
U2R 35 0.04 17 0.09
R2L 398 0.50 1 0.00
Probe 398 0.50 98 0.50
Total 79,602 100.00 57,385 100.00

5.2 Evaluation Criteria

Many criteria are used for evaluation performance of IDS such as DR, FPR, ACC, latency, through-
put, and etc. Since this paper focus on capability of unknown-attacks, we concentrates on the detection
capability. Among them, DR, FPR, and ACC is directly related to detecting capability of IDS. Therefore,
we evaluate performance of our proposed IDS by comparing DR, FPR, and ACC.

Also, Hosseinpour et al.[I] proposed similar approach with our approach to detect unknown-
attacks. They proposed two combinations of unsupervised machine learning algorithm and supervised
machine learning algorithm. One combination is k-Means clustering and Artificial Immune System (AIS).
The other is a combination of DBSCAN and AIS. Since their approach is similar with us, we compared

performance of our proposed IDS and their IDS.

5.3 Experimental Result
5.3.1 Clustering Result

Since ACA needs more parameters than k-Means clustering and DBSCAN, we did many experi-
ments in diverse parameter setting. Among them, the best parameter setting case is 1000 ants, 600 X

600 size of 2D grid, 500,000 iterations, 3 X 3 of local area of an ant, and 15 of constant for calculating

probability. In this parameters, the ACA engine made 795 clusters based on the training set. Figure

—16 -

illustrates initial state of the 2D grid and Figure illustrates final state of the 2D grid.

600

300

100

-100
=100 0 100 200 300 200 500 600 700

Figure 5.1: Initial state of the 2D grid

500

200

100

Figure 5.2: Final state of the 2D grid

5.3.2 1IDS Performance

Because we performed three experimental cases, we calculated and evaluated performance of our
proposed IDS in each experimental cases. Table shows the performance of our proposed IDS in three

experimental cases and average performance of three cases.

- 17 —

Table 5.4: Performance of our proposed IDS in three experimental cases

Case 1 | Case 2 | Case 3 | Average
DR(%) 72.65 81.05 95.42 83.04
FPR(%) 0.43 10.29 3.46 4.73
ACC(%) | 99.04 89.54 96.52 95.03

Also as Hosseinpour et al.[1] proposed similar approach with our approach, we compared perfor-
mance of our proposed IDS with the IDS of Hosseinpour et al.[T]. As we mentioned, compared criteria
are DR, FPR, and ACC. Table shows comparison of performance between Hosseinpour et al.[I] and

our proposed IDS.

Table 5.5: Comparison of performance between Hosseinpour et al.[1] and the proposed IDS

1] 1] Proposed IDS

Algorithm | k-Means + AIS | DBSCAN + AIS | ACA + DT
DR(%) 43.1 58.9 83.0
FPR(%) 15.6 0.8 47
ACC(%) 60.7 77.1 95.0

As table shows, the proposed IDS has much higher DR than Hosseinpour et al.[I]. The proposed
IDS has much higher ACC and has low FPR at the same time. This means that the proposed IDS
builds more robust profile of normal behavior than the others. Also it means that ACA performed better

clustering result than k-Means clustering and DBSCAN.

5.4 Discussion

In this section, we discuss some considerable points. Although the proposed has much higher DR
and ACC, FPR still higher than Hosseinpour et al. [1]. This means that the ACA engine assigned same
cluster to normal traffic and attack traffic sometimes. The reason for this problem is thought since each
ant in the ACA engine only look around within their local area, not global area. Because ACA is a
heuristic algorithm and has self-organizing characteristic, overall task is done by sum of smaller tasks.
Therefore ACA has a local optima problem. Making larger local area of each ant will be a possible
solution to mitigate this problem.

Our experimental result is based on the 10% version of KDD Cup 1999 Dataset. It can be thought
that the experimental result is biased to the 10% version of KDD Cup 1999 Dataset. Therefore, more
experimental cases on various datasets are needed to generalize the proposed IDS. Similarly, KDD Cup

1999 Dataset was announced at 1998. As many things were changed on network environment since

~18 -

1998, KDD Cup 1999 Dataset no longer contains attack traffic enoughly. Therefore, we need to perform
experiments on the latest dataset to reflect contemporary network environment. Kyoto 2006+ Dataset
can be a considerable candidate for solution of this problem. Kyoto 2006+ Dataset built on the 3 years

of real traffic data from November 2006 to August 2009. It consist of total 24 features [9].

~19 —

Chapter 6. Conclusion

This paper proposes a novel IDS scheme that can detect unknown-attacks by combining ACA
and DT. The proposed IDS can learn on the unlabeled dataset in unsupervised manner. The capability
of learning on the unlabeled dataset is appropriate to enormous amount of network traffic environment
such as internet of things. The capability can let we be free from making labels whether attack or not
manually.

A major assumption is exist in this paper. We assumed that normal traffic overwhelms attacks
traffic to reflect general network environment. Therefore, we make the training dataset and the test
dataset be composed of 98% of normal traffic and 2% of attack traffic. Based on the assumption, we
propose our IDS which choose clustering model.

The proposed IDS combines ACA and DT to detect unknown-attacks. The proposed IDS is
composed of two main engine: the ACA engine and the DT engine. Overall flow of the proposed IDS
is as follows: firstly, the ACA engine builds clusters on the unlabeled training dataset by self-organizing
characteristic. After clustering phase, the ACA engine attaches labels certain percentage of large clusters
as 'normal’ label and the others as ’attack’ label. Thirdly, the ACA engine passes the training dataset
with labels made by the ACA engine to the DT engine. Fourthly, the DT engine trains intrusion detector
based on the received dataset with labels by supervised manner. Finally, the trained intrusion detector
monitors a network and can detect unknown-attacks without any specific knowledge.

Under the major assumption, the proposed IDS has much better performance than Hosseinpour
et al. [I] which has a similar approach with ours. The proposed IDS has 83.04% of DR, 4.7% of FPR,
and 95.03% of ACC. It means that our proposed IDS can builds more robust profile of normal behavior

than Hosseinpour et al. [1].
However, future research also remained. First, more diverse experiments on various datasets are
needed. We just performed experiments on the same dataset. To generalize our proposed IDS, we need to

perform more diverse experiments on various datasets. Similarly, the latest dataset is needed since KDD

—90 —

Cup 1999 Dataset is too old dataset. KDD Cup 1999 Dataset doesn’t include contemporary traffic types
of a network. Therefore, we need to do experiments on the other dataset which contains contemporary
traffic types. Finally, the proposed IDS has better DR and ACC than Hosseinpour et al. [I]. But, our
proposed IDS still has higher FPR than the combination of DBSCAN and AIS in [I]. Therefore, we need

to find some methods to reduce FPR.

—921 —

[1]

8]

References

Farhoud Hosseinpour, Payam Vahdani Amoli, Fahimeh Farahnakian, Juha Plosila, and Timo
Hémalédinen, “Artificial Immune System Based Intrusion Detection: Innate Immunity using an
Unsupervised Learning Approach”, International Journal of Digital Content Technology & its Ap-

plications 8.5, 2014.

Karen Scarfone and Peter Mell, “Guide to intrusion detection and prevention systems”, NIST Special

Publication 800, 2007.

Salvatore Stolfo, Wenke Lee, and Andreas Prodromidis, “Cost-based modeling for fraud and in-
trusion detection: Result from JAM project”, DARPA Information Survivability Conference and

Exposition (DISCEX 2000), 2000.

Leonid Portnoy, Eleazar Eskin, and Sal Stolfo, “Intrusion Detection with unlabeled data using
clustering”, Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001),

2001.

Kyung-min Kim, HakJu Kim, and Kwangjo Kim, “Design of an Intrusion Detection System for
Unknown-attacks based on Bio-inspired Algorithms”, Computer Security Symposium 2015 (CSS

2015), Nagasaki, Japan, Oct. 21 - 23, 2015.

Jean Louis Deneubourg, Simon Goss, N Franks, Ana Sendova-Franks, Claire Detrain, and L
Chrestien, “The Dynamics of Collective Sorting Robot-like Ants and Ants-like Robots”, Proceed-
ings of the First International Conference on Simulation of Adaptive Behavior: From Animals to

Animats, pp. 356-363, 1991.

O.A. Mohamed Jafar and R. Sivakumar, “Ant-based Clustering Algorithms: A Brief Survey”, In-

ternational Journal of Computer Theory and Engineering, Vol.2, No. 5, pp.787-796, 2010.

Urszula Boryczka, “Ant clustering algorithm”, Intelligent Information Systems, pp. 455-458, 1998.

— 292 —

[9] Jungsuk Song, Hiroki Takakura, Yasuo Okabe, Masashi Eto, Daisuke Inoue, and Koji Nakao, “Sta-
tistical analysis of honeypot data and building of Kyoto 2006+ dataset for NIDS evaluation”, Pro-
ceeding of the First Workshop on Building Analysis Datasets and Gathering Experience Return for

Security, pp. 29-36, 2011.

—923 —

Appendices

A Source Code of ACA Engine

import os

import math
import time
import numpy
import pandas
import random
import matplotlib

import numpy.random as nrand

import matplotlib
matplotlib.use(Agg’)

import matplotlib.pylab as plt

from sklearn.preprocessing import normalize

import csv

import copy

cluster_labels = []

def write_cluster (fn, datas, plane):

)

f = open(fn,’w’)
for i in range(plane.dim[0]) :
for j in range(plane.dim([1]):
if plane.get_grid()[i][]j] !'= —1:
tmp = "%d,%d\n”%(i,j)
f.write (tmp)
f.close ()

def draw_figure(fn):
fig = plt.figure()
ax = fig.add-subplot (1,1,1)
x =]
y =[]
f = open(fn)
reader = csv.reader (f)
for row in reader:
x.append (int (row [0]))
y.append (int (row[1]))
ax.scatter (x,y)
t = fn 4+ 7 .png”
plt.savefig(t)
plt.close(fig)

— 24 —

def save_figure(fn, datas, plane):
fig = plt.figure(figsize = (10,10))
ax = fig.add_subplot(1,1,1)
x =[]
y =1l

for i in range(plane.dim[0]) :
for j in range(plane.dim[1]):
if plane.get_grid()[i][]j] !'= —1:
x.append (1)
y.append(j)
ax.scatter (x,y,s=0.01,color="black’)
plt.savefig(fn)

plt.close(fig)

class AntColonyOptimization:
def __init__(self):

pass

class dataLoader:
def __init__(self, DIR):
self . f = open(DIR+” training_filtered .out” ,”r”)
self.datas []

def readData(self):
print ”Read!”

self.reader csv.reader (self.f)

=0

self.data_cnt

pr-type = []

services = []

flag = []

cnt = 0

for row in self.reader:
rID = float (row[—1])#ID
row = row [:41]

self .data_cnt +=1
for i in range(len(row)):
float (row[i])

row[i] =
row . append (rID)
cluster_labels.append (1)
row.append (cnt) #cluster_label
self .datas.append (row)

cnt += 1

self.datas_nparray = numpy.array (self.datas)
print "Read Finish! %d”%(self.data_cnt)

class Grid:
def __init__(self, height, width, path, loader,
self.path = path

Store the dimensions of the grid
self.dim = numpy.array ([height, width])

_ 95—

rand_test=False):

numpy . full ((height , width), —1, dtype=numpy.int)

self.grid

= loader

self.loader

if rand_test:
self .rand_grid (0.25)

else:
self.place_instances(self.loader.data_cnt)
write_cluster (" cluster_before.csv”,self.loader.datas,self)

print “random place finish!”

plt.ion ()

self .max_.d = 0.001

def rand_grid(self, sparse):
for y in range(self.dim[0]):
for x in range(self.dim[1])
if random.random () <= sparse:

r = random.randint (0, 1)
if r = 0:
self.grid [y][x] = Datum(nrand.normal(5, 0.25, 10))
elif r = 1:
self.grid [y][x] = Datum(nrand.normal(—5, 0.25, 10))
def place_instances(self, data.n):
for i in range(data_n):
while 1:
r = random.randrange (0, self.dim[0])
¢ = random.randrange (0, self.dim[1])
if self.grid[r]|[c] = —1: #empty cell
self.grid[r][c] = i
break
def matrix_grid_two(self):
matrix = numpy.empty ((self.dim[0], self.dim[1]))
matrix. fill (0)
for y in range(self.dim[0]):
for x in range(self.dim[1])
if self.grid[y][x] != —1:
matrix [y][x] = self.get_grid()[y][x].condense_-two ()
return matrix
def plot_grid(self, name="", save_figure=True)
plt .matshow(self . matrix_grid (), cmap="RdBu”, fignum=0)

Option to save images
if save_figure
plt .savefig(self.path + name + ’.png’)

def plot_grid_two (self , name="", save_figure=True):
plt .matshow(self.matrix_grid_-two (), cmap="RdBu”, fignum=0)
".png’)

if save_figure
plt.savefig(self.path 4+ name +

— 926 —

def get_grid (self):

return self.grid

def get_diff(self, target, neighbor):
diff = numpy.abs(self.loader.datas_nparray|[target][:41] — self.loader.datas_nparray |
neighbor][:41])

return numpy.sum(diff «%2)

def get_condense (self, target):

return numpy.mean(self.loader.datas_nparray [target][:41])

def get_probability (self, d, y, x, n, c):
Starting x and y locations
y-s =y —n
X_.$ = X — 1
total = 0.0
For each meighbour
for i in range((n*2)+41):
xi = (x-s + i) % self.dim[0]
for j in range((n*2)+1):
if j != xand i != y:
yi = (y-s 4+ j) % self.dim[1]
Get the neighbour, o
o = self.grid[xi][y]]
Get the similarity of o to x
if o l= —1:
s = self.get_diff(d,o)
total += s
Normalize the density by the max seen distance to date
md = total / (math.pow((nx2)+1, 2) — 1)
if md > self.max.d:
self . max.d = md
density = total / (self.max.d x (math.pow((n*2)+1, 2) — 1))
density = max(min(density, 1), 0)
t = math.exp(—c * density)
probability = (1—-t)/(14+¢t)
return probability

def assign_cluster(self, d, y, x, n, c¢):
y.s =y —n
X.8 =X —n
major = —1
cluster_con = []
For each neighbor
for i in range((n*2)+41):
xi = (x-s + i) % self.dim[0]
for j in range((n*2)+1):
If we are looking at a meighbor
if j != xand i !'= y:
vi = (y-s +j) % self.dim[1]
Get the neighbor, o
o = self.grid [xi][yj]
If o is not empty cell
if o = —1:

cluster_con .append(self.loader.datas[o][42])

_97 —

for i in cluster_con:

if cluster_con.count(major) < cluster_con.count(i):

major = i

cluster_labels [self.loader.datas[d][42]] —= 1
self.loader.datas [d][42]

cluster_labels [major] 4= 1

major

class Ant:
def __init__(self, y, x, grid):
self.loc = numpy.array ([y, x])
self.carrying = grid.get_grid () [y][x]
if self.carrying != —1:
grid.get_grid () [y][x] = -1
self.grid = grid

def move(self, n, c):
step-size = random.randint (1, 25)
Add some wvector (—1,4+1) % step_size to the ants location
self.loc += nrand.randint(—1 * step-size, 1 * step_size, 2)
Mod the new location by the grid size to prevent overflow
self.loc = numpy.mod(self.loc, self.grid.dim)
Get the object at that location on the grid
o self.grid.get_grid () [self.loc[0]][self.loc[1]]
If the cell is occupied, move again
if o = —1:

If the ant is not carrying an object
if self.carrying =— —1:
Check if the ant picks up the object
if self.p_pick_up(n, c) >= random.random{() :
Pick up the object and rem from grid
self.carrying = o
self.grid.get_grid () [self.loc[0]][self.loc[1]] = -1
If mot them move
else:
self .move(n, c)
If carrying an object then just mowve
else:
self .move(n, c)
If on an empty cell
else:
if self.carrying != —1:
Check if the ant drops the object
if self.p_drop(n, c¢) >= random.random¢():
Drop the object at the empty location
self.grid.assign_cluster (self.carrying, self.loc[0], self.loc[1l], n, c)
self.grid.get_grid () [self.loc[0]][self.loc[1]] = self.carrying
self.carrying = —1

def p_pick_up(self, n, c¢):
ant = self.grid.get_grid () [self.loc[0]][self.loc[1]]

return 1 — self.grid.get_probability (ant, self.loc[0], self.loc[1l], n, c¢)

def p_drop(self, n, c):

_ 98 —

ant = self.carrying

return self.grid.get_probability (ant, self.loc[0], self.loc[1l], n, c)

def make_labels(loader ,n_cluster ,percent , filedir):
n_large_clusters = n_cluster x percent

n_large_clusters = int(n_large_clusters)

(1

large_clusters =
c_cluster_labels = copy.deepcopy(cluster_labels)
for i in range(n_large_clusters):

M= -1

for j in range(len(c-cluster_labels)):

if c_cluster_labels[j] > M:

M= j
large_clusters.append (M)
c_cluster_labels [M] = —1

n_normal = 0

n_abnormal = 0

n_total = 0
c_datas = copy.deepcopy (loader.datas)

for item in c_datas:
if item[42] in large_clusters:
item [42] = 0 #normal

tmp = item [41]
item [41] = item [42]
item [42] = tmp
n_normal += 1
else:
item [42] = 1 #abnormal

tmp = item [41]
item [41] = item [42]
item [42] = tmp

n_abnormal += 1

n_total 4= 1

print "n_normal = %d, n_abnormal = %, n_total = %d”%(n_normal ,n_abnormal,n_total)
fn = filedir + ”aca_result.”
fn = fn + str(percent)
f = open(fn,’w’)
¢ = csv.writer (f)
for i in c_datas:
c.writerow (1)
f.close ()

—99 —

def optimize (height, width, ants, sims, n, ¢, outdir, cluster_prop_from , cluster_prop-to
, freq=500, path="image”):

993 33

Main method for running the algorithm

Load data

loader = dataLoader(”../datasets/kdd99/0/”)
loader .readData ()

Initialize the grid

grid = Grid(height, width, path, loader)

Create the ants
ant_agents = []
for i in range(ants):
ant = Ant(random.randint (0, height — 1), random.randint (0, width — 1), grid)
ant_agents.append (ant)
for i in range(sims+1):
for ant in ant_agents:
ant.move(n, c)
if i % freq — 0:
s = outdir + ”img/img”
s + str(i).zfill(6)

”

s
s = s + ”.png

save_figure (s,loader.datas,grid)

sc = outdir + ”datas/data”
sc = sc + str(i).zfill(6)

sc = sc + 7 .out”
f = open(sc,”w”)
cf = csv.writer (f)

for item in loader.datas:

cf.writerow (item)

f.close ()

sc = outdir + ”datas/cluster_data”
sc = sct+str(i).zfill (6)

sc = sc + ”.out”

f = open(sc,”w”

cf = csv.writer (f)

cf.writerow(cluster_labels)
f.close ()

print s+” wrote!”

n_cluster = 0
for i in cluster_labels:
if i >0

n_cluster +=1
print "n_clusters = %d”%(n_cluster)
cur_prop = cluster_prop_from
while 1:

make_labels (loader, n_cluster , cur_prop,outdir)

cur_prop += 0.01

— 30 —

if cur_prop > cluster_prop_to:
break

print "make_labels done!”

if __name_. = ’__main__":
global cluter_labels
cluster_labels = []
optimize (600,600,1000,500000,6,15,”./4_1.600-1000.1-15/” ,0.0,1.0, freq=25000,path="
Video 8/7)

ACA Engine Code - /aca/real_aca.py

~- 31—

B Source Code of DT Engine

from sklearn import datasets

from sklearn import tree

import numpy as np

import matplotlib.pyplot as pl

import csv

class SK.DT:

def __init__(self,file_trn ,file_tst ,file_out):
self.ftrn = file_trn
self. ftst file_tst

self . fout

file_out

def load(self):
f = open(self.ftrn,’r’)

¢ = csv.reader(f)

self.datas_trn = []
self.labels_trn = []

Il
o

cnt
cnt = 0
for row in c:

row = row|[: —1]

for i in range(len(row)):

row[i] = float (row[i])
row|[—1] = int (row[—1])
tmp = []

tmp . append (row [—1])

row = row[: —1]
self.datas_trn.append (row)
self.labels_trn.append (tmp)
cnt += 1

f.close ()

#for testing

cnt = 0
ft = open(self.ftst,’'r’)
ct = csv.reader (ft)

self.datas_tst = []
self.labels_tst = []

for row in ct:

row = row/[: —1]

for i in range(len(row)):

~ 32—

row[i] = float (row[i])

row[—1] = int (row[—1])
tmp =[]
tmp . append (row [—1])

row = row[: —1]

self.datas_tst.append(row)
self.labels_tst.append (tmp)
cnt 4= 1

ft .close ()

def train(self):
#dt
self.clf = tree.DecisionTreeClassifier ()
self.clf = self.clf.fit(self.datas_trn,self.labels_trn)

self.out self.clf.predict(self.datas_tst)

#printing result
fw = open(self.fout,’w’)
cw = csv.writer (fw)

cw.writerow (self.out)

fw. close ()

def demo(fin ,fin2 ,fo,fr ,to):
t = fr
while 1:
if t >= 1.0:
break
tmp = str(t)

tmp-tr = fin + tmp
tmp_out = fo + "dt_res.”

tmp-out = tmp-out + tmp

dt = SKDT(tmp_tr,fin2 ,tmp_out)

dt.load ()
dt.train ()
t += 0.01
if __name_. = ’__main__":
demo(”./4-2.600.1000_1_15/aca_res/aca.res_”,” ../ datasets/kdd99/4/testing_filtered .out”

,7./4-.2.600.1000-1_-15/aca_res/dt-res/” ,0.0,1.0)

DT Engine Code - /aca/sklearn_dt.py

— 33 —

C Source Code of Traftic Filter

import csv

normal_list = [’normal.]

dos_list = [’back.’,’land.’, ’neptune.’,’pod.’,’smurf.’, ’teardrop.’]

probe_list = [’ipsweep.’, ’nmap.’,’ ’portsweep.’,’satan.’]

u2r_list = [’buffer_overflow.’,’loadmodule.’, perl.’, ’rootkit.’]

r2l_list = [’ftp_write.’, ’guess_passwd.’,’imap.’, multihop.’, phf.’,’spy.’, warezclient.

', ’warezmaster. ']

class dataset_filter:
def __init__(self, fn,fo):
self.fn
self.fon = fo
self.f = open(fn,’r’)
self.cnt_.n =
self.cnt.d =

self.cnt_u =

self.cnt_r

(
0
0
self .cnt_p = 0
0
0
0

self.cnt_a =

self.datas.n = []
self.datas.d = []
self.datas_.p = []
self.datas.u = []
self.datas_r = []

def counting(self):
reader = csv.reader(self.f)
for row in reader:
#row[41] = row[41][:—1]
if row[—2] in normal_list:
self.datas_n.append (row)
self.cntn 4= 1
elif row[—2] in dos_list:
self.datas_d.append (row)
self.cnt.d +=1
elif row[—2] in probe_list:
self.datas_p.append (row)
self.cnt_p += 1
elif row[—2] in u2r_list:
self.datas_u.append (row)
self.cnt_u 4= 1
elif row[—2] in r2l_list:
self.datas_r.append (row)
self.cnt_.r +=1

self .cnt_a = self.cnt.d + self.cnt_p + self.cnt_u + self.cnt_r + 0.0

print "self cnt.n = %, cnt.d = %d, cnt.p = %, cnt.u = %, cnt.r = %d”%(self.cnt_n,
self .cnt.d,self.cnt_p,self.cnt_u,self.cnt_r)

self .total = self.cnt.n % (1.0/0.98)

— 34—

self.total_anomalies = self.total — self.cnt_n

self.total_anomalies = int (round(self.total_anomalies))

def calc_atnum(self):
self .to.d = int(round(self.total_anomalies / 4.0))
self.to_p

int (round(self.total_anomalies / 4.0))
int (round(self.total_anomalies / 4.0))

self.to_r

self.to_u = self.total_anomalies — (self.to_.d + self.to_p + self.to_r)

spare = 0
if self.to_r >= self.cnt_r:
spare = self.to_.r — self.cnt_r

self.to_r = self.cnt_r

if self.to_u >= self.cnt_u:
spare += self.to_u — self.cnt_u

self.to_u = self.cnt_u

if self.to_p >= self.cnt_p:
spare += self.to_p — self.cnt_p
self .to_.p = self.cnt_p

self.to_.d += spare

def filtering(self):

fw open(self.fon ,”w”)

cw = csv.writer (fw)

for i in range(len(self.datas_n)):#normal traffic

cw.writerow (self.datas_.n[i])

cnt_a =

Il
o o o o o

cnt_u
cnt_p
cnt.d =

cnt_r =

for i in range(self.to_p):#probe
cw.writerow (self.datas_p[i])
cnt_a 4= 1
cnt_p +=1

for i in range(self.to_u):#u2r
cw.writerow (self.datas_u[i])
cnt_a +=1
cnt_u +=1

for i in range(self.to_r):#r2i
cw.writerow (self.datas_r[i])
cnt_a +=1
cnt_r +=1

for i in range(self.to_d):#dos

cw.writerow (self.datas_d[i])

— 35 —

cnt.d 4= 1

print "cnt-n = %d, cnt-d = %d, cnt_.p = %d, cnt-u = %d, cnt-r = %d”%(self.cnt_n,cnt_d
,cnt_p ,cnt_u,cnt_r)
print "total = %f, total_anomal = %d”%(self.total ,self.total_anomalies)

fw. close ()

def dofilter (fn,fo):
df = dataset_filter (fn,fo)
df.counting ()
df.calc_atnum ()
df. filtering ()

if __name_. = ’__main__":
dofilter (”./0/training_before.out”,”./0/training_filtered .out”)
dofilter (”./1/training_before.out”,”./1/training_filtered .out”)
dofilter (”./2/training_before.out”,”./2/training_filtered .out”)
dofilter (”./3/training_before.out”,”./3/training_filtered .out”)
dofilter (”./4/training_before.out”,”./4/training_filtered .out”)

Traffic Filter Code - /dataset/kdd99/df.py

— 36 —

D Source Code of Normalizer

import csv

import math

f = open(’../datasets/kdd99/kddcup.data_10_percent_corrected_transed’,’r’)

¢ = csv.reader(f)

fw = open(’../datasets/kdd99/kddcup.data_10_percent_corrected_transed_normalized’,’w’)
cw = csv.writer (fw)

sum = [0.0]x42
datas = []
for row in c:
for i in range(len(row)—1):

row[i] = float (row[i])
datas .append (row)

f.close ()
print len (datas[0])
print len(datas)

for i in range(len(datas[0])—1):
ttmp = []
for j in range(len(datas)):
)

ttmp . append (datas[j][1]

B
I

= min(ttmp)
M = max(ttmp)

for j in range(len(datas)):
if (M) != 0:
datas[j][i] = (datas[j][i] —m) / (M — m)

for i in range(len(datas)):
cw.writerow (datas[i])

fw.close ()

Normalizer Code - /dataset/kdd99/normalizer.py

— 37 —

Summary

A Bio-inspired Intrusion Detection System for Unknown-attacks

combining Ant Clustering Algorithm and Decision Tree

A9 &R Al2"”(Intrusion Detection System, IDS)= £ W EH T Z2 A|a"E A5
N8RS ote A WES GRS Aadolt. IDSE 9A WAe] wel Signature-based DS
Anomaly-based IDSZ U= 4 T}

A AEY AT SEe s B 771k MES el A2 et =92 2R 225

A gk IDSE 87171 913 Datasete 7] H13] Abde] +5A o2 U3 4 o F9

A
r

Label ©t=& 22 w9 o2l Zolth g dA AHH s M2 YA A 42 1A 540

i
et
ol
k1
;O
:L
o
=2
5
w2
=2
30
2
>
=)
B

ok
hL

0
S
=
S
iU}
N
o
rlr
ofr
18
rlo
e
¥
)
rO
N,
ofr
i

2,
°

[>
[>
fru
oX,
o
m
R
i}
i)
o
)
|
R
i}
o
4
s
]
off
iy
o
30,
2
o
B
v
s
i}
o
M
Y
[t
fifo
:olg
iy
o
=)
-
oY

o
@,

=~

o] §li= Datasctol H 222 She 5 9 HEE 2o oF 2o,

=P o] At Clustering based 292} 2] 47 42 T4 DAL A3 A =2 IDSE A bt
A ¢tslE IDS+E Moy &g & (Ant Clustering Algorithm, ACA)3} 9] AF2 A E] (Decision Tree,
DT)E Z8ehelch. AlQehs IDSE: Labelo] 4= Datasetol A 2225 shiro] 7158ho] A4 =223}
27 2 9g TR AT 22 B AR 2o /0] U4 BAS BAT 5 Yok Adse
IDS:= ACA A7} DT 1710 2 o] 20l 4 Itk ACAS o]-83+a] Labelo] 1= Dataset 4] A 731
Ptk YA4E +AI 235 g e g ACA 1R 7 Data instances 9] 374 o H7& F+ &3t
9% ACA AQ9 ABE MFoz DT AAE A9 B/ 8 EADTh

A Qet= IDSY As H7HE 98 KDD Cup 1999 Dataset2 ©] 235tk As vas 93
A% 2 A& (Detection Rate, DR), 2 ¥& (False Positive Rate, FPR), &% (Accuracy, ACC)7} <]

S5tk AQBHE DSE & =83} GAS $4S A Hosscinpour 5 34 [I]o]]} 25 3]

R

xR

o oW Pow oS B
< o B! = oV

W %o T = w T T

el D_VL ‘aﬂ X = =0 ~ OT_

0 o}J H N g < X o ny

=~ ‘mw_m mﬂ E_ o_.u << O_E o7 = e ‘UI e 7

o oo Y e 7 | o B T T

zh Y o T % ~ o D

Rl X - 2R e 0 W [y !

B ol M_Al N o = U Ny < ﬂ% R e A
@M EL - X wml ﬂ _ L.D M 0 —_— n N

) T MT e o ol op M X oo W - lT =

M < Jl o g H i T R M 4k o <0 T =

G BT S by s = . BIC:

AoB g F o R 55 P E F sl

K- e Tl 7_% ofr N &+ = Nﬂ_u H w_ﬁ G Hrm N oom W,_ o

o ~ —

& M oy o] rom W o)/ 4 ol W) T % ﬂ po R oy
L m x B Ao % AN - L W
— 0 — ~ E [| _..U_.O = = . _ |
uF 5 3 R i EM_U ik A U > 5% =

o B T) L 2 T weor T N)
m L 5 w7 Eowox » T < Z w9 7o
— ! sl < el T+ e X Np o5 my Dl o .
R noH T ¥ T S o P 5w X = on R
< Mo o 5’ = wr g s B < T i "
gomﬁi_ﬁ O ufam_%x
MO g B 5B w B G =
a <7 W,_ e Y W._ o " wm P M W = s N o
HL” o o X Ll T A | B >) 0| KR R x B
o ‘HU 7.._ Z_l o ‘HU iy m wmo —_ ﬂU E_ 0 —_ ﬂ
< — ®° {Jz ~ o oF ~ = B K oy
& M 5 i R i VX w T Ao X wo R
iel . -~ — —_—
ToA o % z 5 ® % - m e = B~ o &
I S P T % Cow oF C i
™ T SR SO qu P N T o=~ R A <~ 9o
How = X h Box A ° P
< o wm 2 . M o RO 5z X n oo
o ® < e R W go NF] ~ & = o
Hc %) o ET‘ B/ Z_ﬂ_ 1 o o_.m E._ A_l E.._ "]
— A 2o I hooX b B N = Ak K
™ 0 i 1 N AT iy - 4 o| T 1A R n
o| = . T < 7 i < a ¥ Rl > oo
odJ ¥ I LD {n r < oo ooz & T 5 o
2 5 M T 5 7 Eox o4 % &K T T -~ P X "
ol - oy iok g W U4 = o X o ~ 9 =
o WoE X E R T T = I e b= o " ;
b R . ° + 5 ¥ o F P) o
X % om & < Z % s T P A g T a J
mON o @ = ° 5 T o o Sy p -
o o % o R o B o of
.A Er < =3 oju o’ 70 o 1 oo | v
J T o oS W 5 U o
= = o Y g 3 of ™
o) TR e ENEY TR
T T
= M 0 0
A ol
R X
NH

W

=2

=

-39 -

w57 230
ol v} o] =7)
7

o] & A

=t
T

—

N

fula

o

ANLEWA ZAT BF2LRE 410-42 2015

19914 49 254
sazal2345Q@kaist.ac.kr

=)
2| ol
a2

:'

—
E-mail & &

AH L=
S

o
ol
Hlo

\mno

O

-

2007. 3. —2010. 2.

2012. 3. - 2012. 6.

2010. 3. — 2014. 2.
2014. 3. - 2016. 2.

™
N

mo

|
O
=

Tor

=0

A7

2012. 9. - 2012. 12.

o
N

mo

ol
O

ST

3}
5)

A7

2012. 12. - 2013. 1.

A

2013. 3. - 2013. 6.

k!

N
N+

2015. 3. - 2015. 6.

2015. 7. - 2015. 8.

r
hd

N
NF

o

2015. 9. — 2015. 12.

—40 —

2014.

2014.

2015.

2015.

2015.

2015.

A 7 3)
4.-2016. 2. AA R 4318 Z(Bio-inspired Algorithm)S 883 SA7]& AF
7. —2015. 6. Intrusion Detection System for Critical Infrastructures Using Big Data Analytics
4.-2015. 8. ZAAGIAEAG B RAH LS BAHE 4 A A

4.-2015. 11. ZEAE 219435 A|AH QLAA EA7 e dF

5.-2016. 4. FAAFH FFol AT 2R AEx 7w A FF5H A A A 2
HHA HA
6. — 2016. 3. Authenticated Security for Smart-Grid Using Big-Data Analytics

A4 3
AAG, AAW, A, A, 5, o)lsg, HEE, AFR, UG, “AHF GEE o] &S T
Secure SNAIL ZE LA (1)7,2014 32 K K533 5784 3] (CISC-W'14), 3Hokol st

A A AR D AA 2 A FAol e HA A w2015 T
AH K583 3}A w3 (CISC-S'15), 3h=a 7<=, thA, 2015.06.25-26.

A7, ARz, AT LRAET ABAATE o8 0 AT A SAS Y, FRAREE
3t8) $3A% Ser)sl, AQvitE, A7, 20151016 - [$5=E].

Kyung-min Kim, HakJu Kim, Kwangjo Kim, “Design of an Intrusion Detection System for Un-
known attacks based on Bio-inspired Algorithms”, Computer Security Symposium 2015(CSS 2015),
Nagasaki, Japan, 2015.10.21-23.

AW, T4}, ARz, 2R FRET JABHENE BT QAR gL FA BA
A 28”2015 = H KW 5 83] 574 &3] (CISC-15'W), Ao A&+, A&, 2015.12.05.
Kyung-min Kim, Jina Hong, Kwangjo Kim, and Paul D. Yoo, “Evaluation of ACA-based Intru-

sion Detection Systems for Unknown-attacks”,2016 Symposium on Cryptography and Information

Security (SCIS 2016), Kumamoto, Japan, 2016.01.19-22.

—41 -

Muhamad FErza Aminanto, HakJu Kim, Kyung-min Kim, and Kwangjo Kim, “Another Fuzzy
Anomaly Detection System Based on Ant Clustering Algorithm”,2016 Symposium on Cryptography

and Information Security (SCIS 2016), Kumamoto, Japan, 2016.01.19-22.

ARz, AsE, A4, Hs, T2 2 A% AANE IRAEL o8 439 nA

— 42 —

