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ABSTRACT

Data outsourcing to a cloud storage brings forth new challenges for efficient utilization

of computing resources such as storage space and network bandwidth in the cloud computing

infrastructure. Data deduplication refers to a technique that eliminates the redundant data on

the storage and transmitting on the network, and is considered to be one of the the most-enabling

storage technologies that offers efficient resource utilization in the cloud computing. However,

applying data deduplication incurs security vulnerabilities in the cloud storage system so that

untrusted entities including a cloud server or unauthorized users may break data confidentiality,

privacy and integrity on the outsourced data. It is challenging to solve the problems of data

security and privacy with respect to data deduplication, but certainly necessary for offering a

mature and stable cloud storage service.

In the dissertation, we study the security implications of data deduplication in the cloud

computing environment. We analyze the issues of security and efficiency in various aspects, and

propose novel solutions for secure and efficient data deduplication in the cloud storage system.

First, we propose a secure and efficient file deduplication scheme that keeps data confiden-

tiality from a cloud server and unauthorized users. For implementing the deduplication scheme,

we construct two symmetric-key equality predicate encryption algorithms, which are crypto-

graphic primitives in the symmetric-key setting that allow to know only equivalence relations

among ciphertexts without leaking any other information about that plaintexts. By applying

the constructions, the cloud server is able to perform deduplication over encrypted files without

any knowledge of their content. This offers data confidentiality against the cloud server while

still preserving the desired storage efficiency. In addition, the proposed deduplication scheme

adopts randomized approach in hybrid manner. That is, deduplication will occur either of at

server side or at client side with some probability, which is dependent on a security parameter.

This randomized strategy greatly increases attack overhead of online-guessing adversaries, hence

reduces the risk of information leakage on the stored data. The constructed equality predicate

encryptions offer provable security, and the required data security of the proposed deduplication

scheme is also strongly enforced.

Second, we address a problem of information leakage through the side channel in client-

side data deduplication, and discuss inefficiency and security weakness of previously proposed

solutions. For satisfying the desired privacy requirements, we propose a differentially private

client-side data deduplication protocol. Differential privacy is a security notion that guarantees

enhanced privacy against an adversary who is capable of performing statistical analysis using
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sufficient computing resources. By exploiting a differential private approach, the proposed

protocol strongly guarantees that it is hard for the side channel adversaries to infer the existence

of individual data in the cloud storage. To implement the proposed scheme, we utilize a storage

gateway, which is a network appliance server that provides access to the remote cloud storage

over the Internet. In the proposed scheme, a storage gateway mainly handles user requests for

data uploads and performs data deduplication on them on behalf of users. This storage gateway

based approach prevents generating unnecessary network traffic, thus elevates the efficiency in

terms of network bandwidth utilization, while eliminating the side channel by weakening the link

between the deduplication event and the amount of actually transferred. In order to validate

the effectiveness of the proposed solution, we make the analysis of security and performance, as

well as some experiments.

Third, we address a problem of security in a proof of storage with deduplication, which is

an approach that combines proof of ownership protocol with reliable data auditing schemes in

a cloud storage system. We discuss a security weakness of a previous scheme under a newly

proposed attack model, in which users are allowed to manipulate their own keys. More con-

cretely, we show that the previous scheme fails to satisfy the desired security requirements if

malicious users initiate the protocol with dishonestly manipulated keys. We present a solution

that mitigates such an attack and improves security by modifying the original scheme such

that the user keys are blended with the random values contributed by the cloud storage server.

This approach weakens the adversary’s capability to manipulate their keys. We minimize the

modification, hence the proposed scheme preserves the efficiency while providing more robust

security.

All of the schemes that are proposed in the dissertation achieve high level of efficiency in

terms of utilizing the resources of storage space and network bandwidth. These schemes have

the advantage with regard to strong data security and privacy against an untrusted cloud server

and unauthorized users. The proposed schemes are expected to contribute to the advance of

secure deduplication techniques for cloud storage services.

– ii –
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Chapter 1. Introduction

Cloud computing is a promising technology that economically enables data outsourcing

as a service using Internet technologies with elastic provisioning and usage-based pricing [1].

Many cloud service vendors provide remote data outsourcing and backup services by utilizing

storage and network resources on cloud storage infrastructures. Since they promise to offer

users a convenient and efficient storage service that is available anywhere and anytime over the

Internet, cloud storage services such as DropBox, Mozy and Memopal are gaining popularity.

As the fast growth of data volumes increases demand for data outsourcing on cloud storage

services, pay-as-you-use cloud paradigm drives the need for cost-efficient storage, specifically

for reducing storage space and network bandwidth overhead, which is directly related to the

financial cost savings. In order to reduce the overheads on storage and network, commercial

cloud storage service providers utilize their resources efficiently through data deduplication,

which refers to a technique that finds redundant data units across users, eliminates duplicate

copies of them, and provides links to the remaining data instead of storing the copies. By

storing and transferring only a single copy of redundant data, deduplication provides savings

of both storage space and network bandwidth. Data deduplication technique is considered to

be one of the most-impactful storage technology, and it is estimated that the ratio of applying

deduplication will increase steadily among the storage service providers [2].

Data deduplication techniques can be classified according to some criteria. There are two

strategies of data deduplication based on the granularity of data units that they handle. In

file-level deduplication, a file is the basic data unit, and only a single copy of each file is stored

instead of storing duplicate copies of the file. In block-level deduplication, which segments a file

into multiple fixed-sized blocks (or variable-sized chunks), each block is compared to other blocks

to determine whether the both blocks are identical. Both strategies share the same redundancy

elimination method that calculates the hash value of the data unit, and find identical data by

comparing its hash value.

In terms of the deduplication architecture, there are two basic approaches. In the server-

side (i.e., target-based) deduplication, the cloud storage server mainly handles deduplication.

The process of removing duplicates of data is occurred on the server, hence data deduplication

is transparent to the client (the user). On the other hand, client-side (i.e., source-based)

deduplication occurs at the client before a file is transferred to the server. That is, in client-side

duplication, the client checks with the cloud server, usually by calculating the hash value of the

file and sending it to the server, whether a file has already been stored before uploading. Because

the client does not need to transfer the whole file over the network if the file already exists on the

storage, client-side deduplication improves not only storage space but also network bandwidth

– 1 –



utilization. As noted in [3], this data deduplication technique achieves disk and bandwidth

savings of more than 90%, and this brings huge financial cost savings to the cloud storage

service providers as well as their customers.

1.1 Security Issues on Cloud Storage with Data Deduplication

Although the data deduplication technique is considered to be effective and useful in storage

systems, there are several challenging issues of data security and privacy in the cloud storage

services where the data deduplication technique is applied. These issues of security and privacy

originate from the following facts:

• In the cloud computing environments, cloud servers are usually outside of the trust domain

of the data owners (i.e., users). In fact, a wide range of the users are more than willing

to put their data outsourcing task to a cloud storage provider.

• Cloud storage services are typically based on multi-tenant architecture, where there is no

trust relationship among users. Chasing efficiency in terms of utilizing resources such as

the storage space and the network bandwidth leads to applying client-side data dedupli-

cation across multiple (untrusted) users.

In the cloud storage system with data deduplication, untrusted entities including a cloud

server and users may cause security threats to the storage system. By exploiting some vul-

nerabilities in data deduplication, both an inside adversary, which act as a cloud server, and

an outside adversary, which act as an user, will attempt to break data confidentiality, privacy

and integrity on the outsourced data. More concretely, for cloud storage system with dedu-

plication, we are concerned with several security issues that are raised by the adversaries: 1)

sacrificing data security for deduplication, 2) information leakage through side channel, and 3)

unauthorized arbitrary data access.

1) Sacrificing Data Confidentiality for Deduplication

Many security solutions for data outsourcing on cloud storage were proposed to keep data

confidentiality and privacy from an untrusted cloud server, mainly focusing on access control

[4]-[8] and searchability over the encrypted data [9]-[13]. These proposed solutions are usually

attained through a sort of encryption techniques. Cloud storage service providers that are using

deduplication, however, are typically reluctant to apply encryption on the stored data, because

encrypting on data impedes executing data deduplication [3][14]. They may be unlikely to stop

using deduplication due to the high cost savings offered by the technique. This eventually incurs

the loss of confidentiality for the data stored on the cloud storage.

Several approaches [15]-[18] proposed some solutions to enable data deduplication over

the encrypted data. Their solutions commonly exploit a deterministic encryption primitive,

– 2 –



so called convergent encryption. This encryption algorithm takes a hashed value of a data as

an encryption key, hence will always output the identical ciphertexts on the same plaintexts.

Using this technique, a cloud server can perform deduplication over encrypted data. Convergent

encryption, however, inherits deterministic property that is not as secure as the semantically

secure and randomized encryption algorithms [19].

2) Information Leakage through Side Channel

In a storage system using client-side data deduplication, losing confidentiality of the out-

sourced data is not the only security problem. As shown in [3], client-side deduplication com-

monly incurs a side channel through which a malicious user (i.e., an adversary) may get sensitive

information about the other user’s data. The side channel is caused by two inherent properties;

1) data transmission over the network is visible to an adversary, and 2) a small-sized hashed

value of a file is used to determine the existence of the same file on the cloud server.

Using the side channel, an adversary can easily identify the existence of a file by uploading

the file and monitoring its network activity. If the whole file is not transmitted over the network,

the adversary learns that the file already exists on the server. Furthermore, the adversary is

even able to learn the content of the file by mounting an online-guessing attack. That is, an

adversary trying to figure out the content of the file will build a dictionary that consists of

guessed versions of that file and repeat uploading each guess to the server until finding out that

a deduplication event occurs.

3) Unauthorized Arbitrary Data Access

Besides an information leakage through the side channel, a cloud storage system that applies

the client-side deduplication technique is also vulnerable to another type of attack [20]. This

new security threat originates from the fact that client-side deduplication systems typically

adopt a hashing based strategy, in which a small-sized hash value is calculated for each file

(or block) and is used to find duplicate copies of the same file. In such a storage system, by

accepting the hash value for the file, the cloud server allows anyone who possesses the hash

value to download the entire file.

An adversary, who does not have a whole file except its hash value, will exploit this vulner-

ability to get the ownership of that file. The adversary can convince the cloud storage server

that it owns that file by presenting just the hash value, hence can download the entire file from

the server.

1.2 Contribution

It is challenging to solve the problems of data security and privacy with respect to data

deduplication, but certainly necessary for enhancing security in the cloud storage services. Un-

fortunately, the issues of efficient resource utilization using data deduplication while preserving

– 3 –



security in the cloud computing have not been considered together and well addressed yet in

either of academia or industries. It actually still remains open to achieve security and privacy

against an untrusted server as well as unauthorized and malicious users, while enabling data

deduplication. For offering a mature and stable cloud storage service, both problems of cost

efficiency and data security should be addressed well and resolved simultaneously.

In the dissertation, we study the security implications of data deduplication in the cloud

computing environment. We analyze the issues of security and efficiency in various aspects, and

propose novel solutions for secure and efficient data deduplication in the cloud storage system.

First, we propose a secure and efficient file deduplication scheme that preserves data se-

curity against an untrusted cloud server and unauthorized users. Concretely, we construct

equality predicate encryption schemes in the symmetric-key setting that are suitable for our

applications. Equality predicate encryption is a cryptographic primitive that allows to know

only equivalence relations among ciphertexts without leaking any other information about that

plaintexts. Utilizing our constructions, the cloud server is able to perform deduplication over

encrypted files without learning their content. This offers data confidentiality against the cloud

server while still preserving the storage efficiency. In addition, the proposed scheme allows

data deduplication in a hybrid manner. That is, deduplication will occur randomly either of

at server side or at client side. This randomized strategy greatly increases attack overhead of

online-guessing adversaries, hence reduces the risk of information leakage on the stored data.

The constructed equality predicate encryptions provide provable security, hence the required

data security of the proposed deduplication protocol, which is built upon these constructions,

is strongly enforced. The proposed solution achieves high level of efficiency in terms of storage

space and network bandwidth utilization, while also ensuring strong data security.

Second, we address an information leakage problem caused by the side channel in client-side

deduplication, and discuss inefficiency and security weakness of previously proposed solutions.

In order to achieve desired privacy requirements, we propose a differentially private client-side

data deduplication protocol. Differential privacy is a security notion that guarantees enhanced

privacy against an adversary who is capable of doing statistical analysis using sufficient com-

puting resources. By applying a differential private mechanism, the proposed protocol strongly

guarantees that the presence or absence of individual data in the cloud storage is hard to infer

from any side channel attacks. For the implementation, our proposed solution utilizes a storage

gateway, which is a network appliance server that provides access to the remote cloud storage

over the Internet. In the proposed solution, a storage gateway mainly handles user requests for

data uploads and performs data deduplication on them on behalf of users. The approach using

a storage gateway avoids generating unnecessary network traffic, thus improves the efficiency

in terms of network bandwidth utilization, while preventing the side channel by weakening the

link between the deduplication event and the amount of actually transferred. For the validation

of the effectiveness of the proposed solution, we make the analysis of security and performance,

as well as some experiments.
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Third, we address the security problem of a proof of storage with deduplication, which is

an approach that combines proof of ownership protocol with reliable data auditing schemes in a

cloud storage system. We propose a new attack model that users are allowed to manipulate their

own keys, and discuss security weakness of a previous scheme under the attack model. More

concretely, it is shown that the previous scheme fails to satisfy desired security requirements

if malicious users run the protocol with dishonestly manipulated keys. We present a solution

that mitigates this attack and enhances the security by modifying the original scheme such that

the clients-created keys are blended with the random values contributed by the storage server.

This approach weakens the adversary’s capability to manipulate their keys. We minimize the

modification so that the proposed scheme preserves the efficiency while providing more robust

security.

1.3 Organization

This paper is organized as follows. In Chapter 2, we describe several related works for secure

data deduplication in the cloud computing environment. In Chapter 3, we propose a secure data

deduplication protocol using equality predicate encryption. We present two constructions of the

equality predicate encryption scheme, and describe the proposed protocol. The security analysis

of the protocol and the encryption algorithms as well as the performance analysis are also given.

In Chapter 4, we address the issue of information leakage through the side channel in client-side

deduplication, and discuss the inefficiency and security weakness of previous solutions. We also

present the proposed differentially private client-side deduplication protocol that is resistant

against such an attack, as well as its security and performance analysis. In Chapter 5, we

present a new attack model in proof of storage with deduplication, and discuss the security

weakness of a previous scheme under our attack model. We propose a scheme that mitigates

the attack while keeping all the desired properties. We also present the security analysis of the

proposed scheme. In Chapter 6, we remark the conclusion and future work of the dissertation.
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Chapter 2. Related Work

2.1 Secure Data Outsourcing Techniques

2.1.1 Access Control over the Outsourced Data

Most previous works addressed the issue of secure data outsourcing in terms of crypto-

graphic access control. In order to achieve a goal of fine-grained access control and efficient

revocation over the outsourced data, various techniques are proposed built on several crypto-

graphic primitives that ensure access control over encrypted data. Attribute-based encryption

(ABE) [21][22] is one of their building tools. ABE is a type of public key encryption primitive

in which the private key given to a user and the corresponding ciphertext are dependent upon

attributes. In ABE, a user can decrypt the ciphertext if and only if the set of attributes given

to the user matches the attributes of the ciphertext (i.e., the access policy of the ciphertext).

Yu et al. addressed an issue of secure outsourcing to cloud storage servers with attribute

revocation, and proposed two solutions [4] and [5] in KP (Key Policy)-ABE and CP (Ciphertext

Policy)-ABE, respectively. In KP-ABE based scheme [4], outsourced data are associated with a

set of attributes, and a data owner associates the set of attributes to the data by encrypting it

with the corresponding public key. Each client who is assigned to attributes in the access tree

over the outsourced data can decrypt it according to the given attributes. In CP-ABE based

scheme [5], each user is associated with attributes and data is encrypted with access structures

according to attributes. Any user whose attributes satisfy the access policy of the encrypted

data can decrypt it.

Hur et al. [6] addressed a problem of key management in ABE based access control system,

specifically when a user is revoked from a group of users with same attributes (i.e., an attribute

group). Their main approach is to combine both CP-ABE and broadcast encryption technique

[23] together for enabling more fine-grained access control with efficient and scalable revocation

capability. Utilizing selective group key distribution mechanism, their solution provides back-

ward/forward secrecy of outsourced data on any membership changes in the attribute group,

hence achieves high degree of security compared to previous attribute revocation schemes.

Zhou et al. [7] and Green et al. [8] considered ABE encryption and decryption overhead at

client side, which grows with the complexity of the access formula. They proposed solutions that

outsource the computation burden to the cloud server while preserving privacy of outsourced

data. Zhou et al.’s work was focused on constructing a CP-ABE scheme which has a privacy

preserving property, namely PP-CP-ABE scheme. The main idea of Green et al.’s solution is to

generate a single transformation key that allows a cloud server to translate any ABE ciphertext

that satisfies the access policy into a ciphertext that can be decrypted by the user.
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2.1.2 Proof of Retrievability/Provable Data Possession

Outsourcing data to untrusted remote servers in the cloud storage service brings a new

challenge: ensuring the authenticity of outsourced data on storage. A straightforward solution

for this problem is that a client downloads the whole of files from storage and tests the integrity

of downloaded files itself. This approach, however, incurs a large number of disk I/Os and

wasteful network bandwidth consumption. Juels et al. [24] and Ateniese et al. [25] considered

this problem and proposed their solutions that enable verifying the integrity of outsourced data

in efficient way. Both works were presented almost at the same time and were followed by

several works extending their techniques in various ways.

Juels et al. [24] presented a notion of proof of retrievability (POR), which is similar to a kind

of cryptographic proof of knowledge. Unlike a proof of knowledge, however, in a POR neither

a prover (untrusted storage server) nor a verifier (a client) need actually to have knowledge of

a file. Hence, the POR scheme is applicable in some environments where the outsourced data

should be kept private from the remote storage server. Briefly, the POR scheme encrypts a

file F and randomly embeds a set of sentinels, which consists of small blocks that are filled

with random value, to the file. The sentinel value is indistinguishable from other data of file

blocks. During the protocol, the verifier sends challenges that specify the positions of some

sentinels to the prover, and asks for returning the associated sentinel values back This protocol

will detect the case that the prover has removed or modified a substantial portion of F with

high probability. The POR scheme has a preprocessing phase in which a file F is encoded to F ′

via error correcting codes. Hence, this scheme also provides a feature that corrupted portions

of F can be recovered through the protocol.

Shacham et al. [26] addressed on improving previous schemes in terms of executing in more

efficient way. The basic idea is to store homomorphic block integrity values so that in Shacham

et al.’s protocol, instead of sending out O(l) messages (l is a security parameter), these message

blocks are aggregated into just one message. This approach gives an advantage that clients

(i.e., verifiers) can generate and verify an unlimited number of challenges. Dodis et al. [27]

identified several variants of the problem in POR model, and presented some improvements of

the previous scheme as well. They gave an optimal version of Jeuls et al.’s scheme, where the

communication cost is linear, and proved its security without any assumption of adversary’s

behaviors as well as not relying on the random oracle model. Bowers et al. [28] addressed

the limitations of previous theoretical models, and proposed a new theoretical framework for

designing POR scheme which supports various adversarial models. The aforementioned POR

schemes do not support dynamic storages in which frequent file update operations are permitted,

hence are very inefficient in practical applications. Shi et al. [29] proposed dynamic POR scheme

that achieves efficiency in dynamic storage environments in terms of communication bandwidth

overhead and computation cost at client side.

Ateniese et al. [25] focused on drawbacks of Juels et al.’s POR scheme [24] that it is
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applicable to only encrypted data storage and the number of available challenge queries is

quite limited in that model. They introduced another model of data verifiability, provable data

possession (PDP), which can be applied to large and public databases with no restriction on the

number of possible challenges. PDP provides probabilistic proof that a client who has outsourced

data on an untrusted storage server can verify that the data is not removed or modified without

retrieving it. In this model, a client just needs holding a small sized data that is generated

from a file instead of downloading the whole of file data, and the storage serer is allowed to

access small portions of the file for generating the proof. In Ateniese et al.’s PDP constructions,

homomorphic verifiable tags, which have a homomorphic property that tags computed from

multiple data blocks can be aggregated into a single value, are used. Before uploading a file, a

client computes tags for each block of the file and stores them with the file in the storage server.

At later, the client can initiate the verification protocol with the storage server by generating

a challenge chosen at random from a set of file blocks. Upon receipt of the challenge,the server

responds a proof of possession that is computed by the queried blocks and their corresponding

tags. This scheme helps the client detect the case that the file has been modified or deleted

with high probability.

Following the previous work [25], Ateniese et al. [30] presented another version of PDP

scheme in the symmetric-key setting, which is also an improvement of both the efficiency and

the security of the original PDP. Furthermore, their improved version supports dynamic storage

environments, where dynamic operations such as modification, deletion, and append on the

outsourced data are permitted. Erway et al. [31] also addressed the problem of provable

data possession in dynamic storage environments. They introduced a framework for dynamic

provable data possession that extends the PDP model to support updates on the outsourced

data. Their solution is based on a variant of authenticated dictionaries, where rank information

is used for the dictionary organization. Zhang et al. [32] focused on lowering the overhead

during update operations and proposed a solution that utilized a data structure termed a

balanced update tree.

2.2 Techniques for Search over Encrypted Data

2.2.1 Predicate Encryption

Besides an issue of secure data outsourcing, it is also important to address the problem of

searching over encrypted storage in the cloud computing environments. Predicate encryption

techniques [9][33][34] are among the solutions for searching over encrypted data. A predicate

encryption is a kind of functional encryption [35], which has a feature that a master secret

key allows a user to evaluate a function (i.e., a predicate) of encrypted data without knowing

the plaintext. In predicate encryption scheme, an owner of a master secret key generates a

token, which is associated with predicates, and then other users can evaluate predicates over

the owner’s encrypted data using the token without knowing any information of the plaintext.
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Specifically, users rather than the owner can learn whether C, an encryption of dataM , satisfies

a predicate P by evaluating a token TKP associated with P over C.

Boneh et al. [9] focused on the problem of keyword search over encrypted data in the

public-key setting, and proposed constructions of PEKS (Public-key Encryption of Keyword

Search). PEKS is a public-key equality predicate encryption, which is a predicate encryption

scheme that allows to evaluate an equality predicate over a ciphertext of M with a token of M ′

to learn whether M = M ′ in the public-key environment. PEKS consists of four probabilistic

polynomial time (PPT) algorithms. The one of constructions of PEKS is built on bilinear

maps. Let a bilinear map e : G×G→ GT , where the order of G is p, and let two hash functions

H1 : {0, 1}∗ → G and H2 : GT → {0, 1}log p. The four PPT algorithms of PEKS work as follows:

• KeyGen(1λ): Given a security parameter 1λ, this algorithm picks a random value α ∈ Z∗
p,

where the length of p depends on λ, and a generator g ∈ G, then outputs a public key

Apub =< g, h = gα > and a private key Apriv = α.

• PEKS(Apub,M): This algorithm picks a random r ∈ Z∗
p, and computes t = e(H1(M), hr) ∈

GT . Then, it outputs S =< gr, H2(t) >.

• Trapdoor(Apriv, M): This algorithm outputs TM = H1(M)α ∈ G.

• Test(Apub, S, TM ): S is a tuple < A,B >, where A = gr and B = H2(t). This algorithm

tests whether if H2(e(TM , A)) = B. If the equation holds, then it outputs ‘yes’; otherwise,

outputs ‘no’.

PEKS is suitable for several applications including a secure e-mail server which is possible

for the untrusted server to retrieve encrypted mails. The security of PEKS was proved such

that it is semantically secure against a chosen keyword (i.e., a ciphertext) attack in the random

oracle model assuming the Bilinear Diffie-Hellman (BDH) problem [36][37] is hard.

Shen et al. [33] considers a new notion called predicate privacy, which is a property that

tokens reveal no information about the predicate. Since this property is inherently unnecessary

in the public-key setting, they focused on predicate encryption in the symmetric-key setting and

presented a symmetric-key predicate encryption system. Shen et al.’s scheme also supports inner

product queries, hence multiple types of predicates possible in the scheme. Their construction

is based on bilinear groups of composite order e : G×G→ GT , where G and GT are two cyclic

groups of order N = pqrs (p,q,r,s are distinct primes). Let the class of plaintexts be Σ = ZnN
and the class of predicates be F = {fv⃗|v⃗ ∈ ZnN} with fx⃗(v⃗) = 1 if and only if < x⃗, y⃗ >= 0. The

construction is described as follows:

• Setup(1λ): This algorithm picks four generators gp, gq, gr, gs of Gp,Gq,Gr,Gs, respec-

tively, where the size of each group depends on the security parameter λ. It also picks

h1,i, h2,i, u1,i, u2,i ∈ Gp at random for 1 ≤ i ≤ n, and outputs a secret key SK =(
gp, gq, gr, gs, {h1,i, h2,i, u1,i, u2,i}ni=1

)
.
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• Encrypt(SK, x⃗): Let x⃗ = (x1, . . . , xn) ∈ ZnN . This algorithm chooses at random y, z, α, β ∈
ZN , S, S0 ∈ Gs, and R1,i, R2,i ∈ Gr for 1 ≤ i ≤ n. Then, it outputs the ciphertext

CT =
(
C,C0, {C1,i, C2,i}ni=1

)
, where C = S · gyp , C0 = S0 · gzp, C1,i = hy1,i · uz1,i · gαxiq ·R1,i

and C2,i = hy2,i · uz2,i · g
βxi
q ·R2,i.

• GenToken(SK, y⃗): Let v⃗ = (v1, . . . , vn) ∈ ZnN . This algorithm chooses at random f1, f2 ∈
ZN , r1,i, r2,i ∈ ZN for 1 ≤ i ≤ n, R,R0 ∈ Gr, and S1,i, S2,i ∈ Gs for 1 ≤ i ≤ n. Then,

it outputs the token TKv⃗ =
(
K,K0, {K1,i,K2,i}ni=1

)
, where K = R ·

∏n
i=1 h

−r1,i
1,i · h−r2,i2,i ,

K0 = R0 ·
∏n
i=1 u

−r1,i
1,i · u−r2,i2,i , K1,i = g

r1,i
p · gf1viq · S1,i, and K2,i = g

r2,i
p · gf2viq · S2,i.

• Query(TKv⃗, CT ): Given CT =
(
C,C0, {C1,i, C2,i}ni=1

)
and TKv⃗ =

(
K,K0, {K1,i,K2,i}ni=1

)
,

this algorithm checks the following equation

e(C,K) · e(C0,K0) ·
n∏
i=1

e(C1,i,K1,i) · e(C2,i,K2,i) = 1.

If the above equation holds, then it outputs ‘yes’; otherwise, it outputs ‘no’.

The security of Shen et al.’s scheme was proved under Generalized 3-Party Diffie-Hellman

Assumption (C3DH) [38] in the context of groups whose order is the product of four distinct

primes.

Blundo et al. [34] improved Shen et al.’s scheme in terms of efficiency with respect to the

computation and the ciphertext size. Their construction is based on asymmetric bilinear groups

of prime order e : G1×G2 → GT , where G1, G2 and GT are cyclic multiplicative groups of order

p. Let the plaintext vector be x⃗ and the predicate vector be k⃗. The algorithms are described

as follows:

• MasterKeyGen (1λ,l): Let l be the number of attributes, which is dependent of the secu-

rity parameter 1λ, and let g1,g2 be generators of G1, G2, respectively. This algorithm

randomly picks y ∈ Zp and sets Y = e(g1, g2)
y. Then, for 1 ≤ i ≤ l, it chooses

at random ti,0, ti,1, vi,0, vi,1 ∈ Zp , and set SKi = (Ti,0 = gti,01 , Ti,1 = g
ti,1
1 , Vi,0 =

g
vi,0
1 , Vi,1 = g

vi,1
1 , T̄i,0 = g

1/ti,0
2 , T̄i,1 = g

1/ti,1
2 , V̄i,0 = g

1/vi,0
2 , V̄i,1 = g

1/vi,1
2 ). The output is

SK = (Y, y, SK1, . . . , SKl).

• Encrypt (SK, x⃗): This algorithm picks at random s ∈ Zp and set Ω = Y −s. Then, for

1 ≤ i ≤ l, it computes Xi = T s−sii,xi
and Zi = V si

i,xi
, where si ∈ Zp is chosen at random.

The output is X̃ =
(
Ω, (Xi, Zi)

l
i=1

)
.

• KeyGen (SK, k⃗): Let S
k⃗
be the set of positions in which ki is not empty. This algorithm

chooses randomly (ai)i∈S
k⃗
in Zp under the constraint that their sum is y. Then, for i ∈ S

k⃗
,

it computes Ri = T̄ aii,ki and Wi = V̄ ai
i,ki

. The output is K̃ = (i, Ri,Wi)i∈S
k⃗
.
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• Test (X̃,K̃): On input a ciphertext vector X̃ =
(
Ω, (Xi, Zi)

l
i=1

)
and a predicate key vector

K̃ =
(
ij , Rij ,Wij

)
1≤j≤m, this algorithm checks the equation Ω·

∏m
j=1 e(Xij , Rij )e(Zij ,Wij ) =

1. If this equation holds, then it outputs ‘yes’; otherwise, it outputs ‘no’.

Another version for larger alphabets also can be easily extended from the above construc-

tion. The semantic security of this scheme was proved under the Bilinear Decisional Diffie-

Hellman (BDDH) assumption.

2.2.2 Deterministic Searchable Encryption

Predicate encryption-based solutions provide strong privacy guarantee such as semantic

security against untrusted cloud storage server, but their search operation takes linear time

with respect to the size of storage. For some applications that require low searching complexity

(i.e., sub-linear searching time) while tolerating the loss of some privacy guarantee, deterministic

searchable encryption techniques [10][11][12][13] can be another option for the solution.

The basic idea of deterministic searchable encryptions is to eliminate any randomness in

running algorithms and to generate the ciphertexts in deterministic manner. This approach

enables tree-based indexing over encrypted data, hence it can achieve high degree of efficiency.

Due to the deterministic property of ciphertexts, however, there are several inherent limitations

of deterministic encryption as follows.

• No privacy can be guaranteed if the space of plaintext is too small, or an adversary has

some knowledge over it so that the adversary can mount guessing attack with a given

ciphertext to find out the information of the corresponding plaintext.

• Since a ciphertext is deterministically computed from the corresponding plaintext, the

ciphertext itself can be partial information about the plaintext.

In order to achieve desired level of privacy in constructing deterministic encryptions, the

above limitations lead a requirement that the plaintext space should have a large min-entropy.

Considering this limitations and requirement, Bellare et al. [11] presented PRIV, a new notion of

privacy and security that is suitable for deterministic encryption, and gave some constructions

in the public-key setting that preserve this privacy notion. Their constructions can be used

as a tool for building various deterministic searchable encryption schemes utilizing existing

encryption primitives and cryptographic hash functions. Searchable encryption schemes that

satisfy the definition of PRIV can provide strong privacy in the random oracle model assuming

that the underlying encryption primitive is semantically secure and the plaintext space has high

min-entropy.

Besides the public-key based constructions of searchable encryption, Sedghi et al. [12] and

Curtmola et al. [10] proposed deterministic searchable encryption schemes in the symmetric-

key setting. Sedghi et al. [12]’s scheme supports efficient searching over encrypted data in
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logarithmic time, as well as a new feature that the user can update the content of outsourced

data without giving any information about the modification to an adversary. Security of this

scheme was proved under adaptive attack model. Curtmola et al. [10] extended previous

searchable encryptions to the multi user setting, where users can query for search over other

user’s encrypted data. They formally defined symmetric searchable encryption in the multi

user setting, and presented a construction. C. Dong et al. [13] also proposed another searchable

encryption scheme and focused on enhancing security notions of previously proposed solutions.

2.3 Secure Data Deduplication Techniques

2.3.1 Convergent Encryption based Schemes

Implementing cross user data deduplication over outsourced data which is encrypted with

conventional cryptosystems, where the encryption keys are supplied by each user, is not straight-

forward, since a cryptosystem prevents the storage server from knowing the equivalence relations

among encrypted data. To overcome this, many solutions have been proposed using so called

convergent encryption.

The notion of convergent encryption was first presented in [16] as a rough idea. Convergent

encryption is a deterministic cryptosystem that generates a ciphertext using a hashed value

computed from a plaintext (i.e., a file) as an encryption key of the plaintext itself. Convergent

encryption can be constructed from any symmetric encryption cryptosystems (e.g., AES, DES

or Blowfish, etc) and cryptographic hash algorithms (e.g., MD5, SHA1, etc). Let us denote a

cryptographic hash algorithm toH, and a symmetric encryption cryptosystem to a tuple (E,D),

where E is an encryption algorithm and D is a decryption algorithm. Convergent encryption

is defined formally as a tuple of the following three algorithms:

• Key generation: it takes a plaintext M ∈ {0, 1}∗ as an input and computes H(M), which

is a hashed value of M . Then, it outputs an encryption key k = H(M).

• Encryption: it takes an encryption key k and a plaintext M as inputs, and computes a

ciphertext C = E(k,M).

• Decryption: it takes an encryption key k and a ciphertext C as inputs, and computes a

plaintext M = D(k,C).

Convergent encryption has a property that any client encrypting a given data chunk (or

a file) will use the same encryption key to do so, thus identical plaintexts will be encrypted

to identical ciphertexts, regardless of who encrypts them. This property helps the storage

server perform data deduplication on encrypted outsourced data. Several solutions after [16]

fundamentally follow this strategy.

M. Storer et al. [15] further extended [16] and implemented data deduplication frame-

work on the encrypted data storage. Their approach, which aims at achieving both storage
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efficiency and data privacy, provides a solution for secure data deduplication in authenticated

and anonymous way. The solution can be applied to single server storage environments, where

both data and metadata reside together, as well as to distributed server storage environments,

where metadata is stored on an independent server.

Li et al. [39] observed that secure deduplication schemes based on convergent encryption

suffer from managing an enormous number of convergent keys, since both encrypted data chunks

and their convergent keys should be handled together. To address this key management prob-

lem, they proposed Dekey, which is an efficient and reliable key management scheme in secure

deduplication. This construction makes cloud storage users to distribute their convergent key

shares across multiple cloud storage servers instead of managing the keys on their own.

DuPLESS [40] is a real deduplication system, which is built on commercial cloud storage

services, that provides security against brute-force attacks launched by malicious clients or an

untrusted server. In order to achieve the desired goals while satisfying the required security, a

Oblivious Pseudo Random Function (OPRF) protocol and message-locked encryption (MLE)

[41] were utilized for their construction. OPRF is a randomized protocol between clients and the

key server, which ensures that the key server learns nothing about the inputs and the resulting

outputs, and the clients learn nothing about the key. MLE is a generalized version of convergent

encryption designed to give restrictive semantic-security for unpredictable messages. Duan et al.

[42] provided a rigorous security proof of DuPLESS in the random oracle model, and proposed

a distributed protocol that eliminates the need for a key server in DuPLESS system.

Bellare et al. [41][43] gave security analysis on some variants of convergent encryptions in

detail, and discussed a tag consistency, which is a security property that prevents malicious ad-

versaries from faking deduplication, on them. According to [41][43], a deterministic convergent

encryption is the only encryption that preserves strong tag consistency. However, data confiden-

tiality such as semantic security cannot be strongly guaranteed due to its inherent deterministic

property.

Aside from applying convergent encryption to cloud storage systems, L. Marques et al.

[17] and P. Anderson et al. [18] utilized convergent encryption to address various problems in

different applications such as mobile devices.

2.3.2 Side Channel Resistant Schemes

Performing data deduplication across multiple users’ data at client side incurs a side chan-

nel, which can be exploited by adversaries who try to infer sensitive information of other user’s

data such as the existence of the data or even its content. Several works [3][44] studied various

security problems caused by the side channel in client-side deduplication, and classified three

possible attack scenarios on cloud storage systems as follows:

• Identifying the existence of files: Suppose that an adversary wants to know the existence

of interesting file F on the storage. The adversary can easily identify the existence of F
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Figure 2.1: Architecture of Olivier et al.’s deduplication system

by uploading the file and monitoring its network activity. If actual content of F is sent

over the network, then F has not previously uploaded. Otherwise, F already exists on

the storage.

• Learning the content of files: An adversary who tries to learn the content of interesting

file F can mount an online-guessing attack by utilizing the side channel. Initially, the

adversary builds a dictionary which consists of candidates of F as many as possible. After

that, the adversary repeats data deduplication protocol over each guess in the dictionary

with the cloud storage server until a deduplication event occurs.

• Establishing a covert channel: Suppose that two adversaries A and B seek to establish

a covert communication channel using deduplication. Two distinct random files F0 and

F1 are used for transferring one-bit data. In order to send ‘1’ to B, the adversary A just

uploads F1 to the storage. By uploading F1 and monitoring its deduplication event, B
will eventually learn that ‘1’ is sent from A.

To prevent adversaries from utilizing side channels during deduplication, several solutions

have been proposed. Harnik et al. [3] aimed at weakening the correlation between deduplication

and the existence of files in the storage, and proposed a randomized approach that obfuscates

the occurrence of deduplication. Given a security parameter d, a threshold value is randomly

generated and assigned for each file in the cloud storage. When a client uploads a new copy

of the file, the cloud server checks whether the accumulated number of file uploads exceeds

the threshold. If the number is at least as high as the threshold, the server performs data

deduplication at client side and the copy of that file is not sent over the network. Otherwise,

deduplication is performed at server side, in which the actual file content is sent to the server.

The security of Harnik et al.’s solution is defined such that the occurrence of client-side

deduplication does not reveal any information of files with some probability. However, Lee et
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al. [45] observed that the success probability of attack against Harnik et al.’s scheme is non-

negligible in a security parameter, and thus user’s privacy is still at risk with high probability.

Olivier et al. [46] also addressed the problem of the side channel in deduplication, and pro-

posed another solution for new service deployment model, in which a network service provider

offers cloud storage service through a home gateway appliance that resides at customer’s net-

work. The overall architecture of Olivier et al.’s deduplication system is given in Fig. 2.1. Since

a home gateway resides at the border between a local home network (LAN), which is insecure

zone that is easily controlled by an adversary, and a wide area network (WAN or the Internet),

which is secure zone that is hardly controlled by an adversary, it plays a crucial role in this

architecture. When a user sends an upload request for some file to the cloud server, the home

gateway (the gateway server module) handles this request and receives a whole content of the

file from the user. Upon receiving the file, the gateway (the gateway client module) performs

deduplication on behalf of the client with the cloud server, and uploads the file, if necessary.

Since the operation of deduplication always happens only at the WAN (i.e., the secure zone)

and the bandwidth manager in the gateway mixes the deduplication with other service traffic,

there is no way for the adversary to get information of the interesting file from monitoring the

network traffic.

2.3.3 Proof of Ownership

Aside from the side channel, Halevi et al. [20] observed new security problems in a cloud

storage system with client-side deduplication. The security problems stems from the fact that

in typical client-side deduplication, very small hash signatures of files are used for identifying

the existence of same file in the storage. With knowledge of this hash value, an adversary who

does not have a file can convince the cloud storage server that it owns that file by presenting just

the hash value, hence can download the entire file from the server. To prevent such an attack,

they introduced the notion of proof-of-ownership (POW), in which a client proves a cloud server

that the client actually holds a whole of a file, rather than the file’s hash value.

The security of the POW can be stated such that as long as the min-entropy in the file

(from the adversary’s perspective) is more than the sum of the number of bits given to the

adversary and the security parameter (in bits), the adversary should not be able to convince

the server that it possesses the file with non-negligible probability. In order to achieve this

security, the POW adapted the notion proof of retrievability, which is based on of Merkle hash

tree [47]. Once a whole content of the file is received from a client in the first time, the cloud

server encodes the file using an erasure code, such that it is able to recover the entire file from

any part of the encoded bits. Then, the server builds a Merkle hash tree over the encoded

file and generates shorter verification information. Later, any client attempting to outsource

the file runs the proof-of-ownership protocol with the server to prove that it really has the file.

Interacting with the client, the server verifies materials which are sent from the client with the

verification information generated from the file.
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We present more concrete description of one of Halevi et al.’s several solutions. Let E :

{0, 1}M → {0, 1}M ′
be an α-erasure code, which is able to recover upto α fraction of corrupted

bits, and let H be a collision resistant cryptographic hash function. A binary Merkle tree over

data buffer X with leaves of b-bits size and the hash function H is denoted to MTH,b(X). On

an input file F ∈ {0, 1}M of M bits, the verifier (i.e., the cloud server) generates the encoding

X = E(F ) as well as the Merkle tree MTH,b(X), and then stores the root of the tree and the

leaves as verification information of F . When the proof protocol is initiated, the verifier chooses

at random sufficient leafs, l1, l2, . . . , lu, where u depends on the security parameter, and sends

the indexes of these leafs to the prover (i.e., the client). Then, the prover responds the sibling-

paths of all these leaves (i.e., a set of the siblings of nodes along the path from leaf to root) to

the verifier. After verifying the prover’s response with respect toMTH,b(X), the verifier returns

to the prover Accept if it is valid, or Fail, otherwise.

The notion of POW were extended in various ways by several works [48][49][50]. Ng et

al. [48] proposed a private data deduplication protocol built upon Halevi et al.’s POW scheme.

A private data deduplication protocol is a zero-knowledge proof based two-party computation

protocol between a client and a cloud server. By executing the protocol, the cloud server, with-

out knowing any information of files, can verify client’s ownership of files with some materials

presented by the client.

The security of their scheme was shown such that it is provably secure in terms of the

simulation-based proof assuming that solving the discrete logarithm problem (DLP) is infeasible

and the underlying hash algorithm is collision-resistant.

Pietro et al. [50] addressed the inefficiency of the original POW scheme and proposed s-

POW, an efficiency-enhanced version of POW protocol in terms of the computation power and

I/O capacity. The basic idea of s-POW is from the fact that the adversary’s success probability

to learn some portion ofK bits of the file is negligible in the security parameter, hence a response

to a challenge will be a K-bit string, which is constructed as the concatenation of K bits of the

original file. Their constructions achieve high efficiency level that I/O and computational costs

at server side do not depend on the input file size.

Xu et al. [49] constructed a non-linear and pairwise-independent hash function in the

random oracle model, and applied it to build a POW scheme that is provably secure with respect

to any distribution of input files with sufficient min-entropy. Xu et al.’s scheme supplements

the original POW which is provably secure only in certain types of file distribution. They also

addressed the problem of deduplication over encrypted data, and presented a solution that

supports cross-user client-side deduplication utilizing a convergent encryption technique.
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Chapter 3. Data Deduplication Protocol using

Equality Predicate Encryption

3.1 Motivation and Contributions

Cloud storage service providers take advantage of efficient resource utilization by applying

data deduplication techniques over data which are outsourced from customers (i.e., clients).

In order to keep security of outsourced data from an untrusted cloud server, several previous

approaches [15]-[18] proposed some ideas to enable data deduplication over the encrypted data.

Their solutions are commonly based on so-called convergent encryption, which takes a hashed

value of a file as an encryption key. Using this technique, identical ciphertexts are always

generated from identical plaintexts in a deterministic manner. Hence, the cloud server can

perform deduplication over encrypted data, without knowing the exact content of the file. From

the view of cryptography, however, it is understood that deterministic encryption, including

convergent encryption naturally, is not as secure as randomized one [19].

Keeping confidentiality of the outsourced data from the untrusted cloud server is not the

only security problem for the system utilizing data deduplication. It has been shown that most

of storage services using client-side deduplication commonly incur a side channel through which

an adversary may learn information about the contents of files of other users [3]. This is because

these services share two inherent properties; 1) data transmission in a network can be visible

to an adversary, and 2) deterministic and small-size data, such as a hashed value of a file, is

queried to the cloud server before file uploading. A user who has not access to but curious about

some file might mount an online-guessing attack exploiting the side channel. The attack is as

follows: an adversary first constructs a search domain comprising possible versions of the target

file, and then queries a hash of each version to the server until a deduplication event occurs.

(See Fig.3.1) This attack is very relevant for a corporate environment where the file content

usually has low-entropy. That is, most of files are small variations of standard templates and

the number of possible versions of the target file is moderate. It is challenging but certainly

necessary to prevent such an information leakage in the client-side deduplication system.

In this chapter, we address the issue of efficiency and security in cloud storage, and propose a

novel solution to enable efficient resource utilization using data deduplication while preserving

data security. The proposed solution raises efficiency up to a level of practicality while also

achieving strong security. Concretely, the solution provides a data deduplication scheme which

is secure against the untrusted server as well as unauthorized users. The proposed scheme

utilizes primarily a novel cryptographic primitive, namely equality predicate encryption, which

allows cloud server to know only equivalence relations among ciphertexts without leaking any
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Cloud serversUnauthorized user

H(File) : File Hash

FileExists / NoFileExists

Figure 3.1: Online Guessing Attack Scenario: for each possible versions of target file unautho-

rized user continues querying its ashed value until receiving ‘FileExists’ message from the cloud

server.

other information of their plaintexts. Thus data privacy can be kept from the cloud server

while data deduplication is still enabled over the encrypted files. In addition, the proposed

scheme allows the cloud server to perform data deduplication in a hybrid manner. That is,

deduplication will occurs either of at server side or at client side with some probability. This

strategy greatly reduces the risk of information leakage by increasing attack overhead of online-

guessing adversaries. In order to achieve the design goals, two equality predicate encryption

schemes in the symmetric-key setting are constructed to be suitable for the application. The

proposed scheme is built upon these constructions, and the required data security is strongly

enforced through the underlying provable security of the constructions.

Main contributions of this chapter can be summarized as follows: 1) This is the first work

that simultaneously resolved two issues of the data security and the efficient resource utilization

in the cloud computing; 2) The proposed scheme also gives data owners a guarantee that adding

their data to the cloud storage has a very limited effect on what an adversary exploiting side

channel may learn about the data; 3) The proposed scheme as well as the constructed equality

predicate encryptions are proved to be secure under the standard cryptographic assumption.

The rest of this chapter is organized as follows: Section 3.2 presents the system models

and an overview of the proposed solution. Section 3.3 describes the constructions of equality

predicate encryption scheme. In Section 3.4, the proposed secure data deduplication scheme

based on the constructions of the encryption scheme is described in detail. In Section 3.5, the

security analysis and the discussion of the performance of the proposed scheme is presented.

Third, this chapter is summarized in Section 3.6.

3.2 Models and Solution Overview

3.2.1 System and Attack Model

The system consists of the three entities: Data owners, users and a cloud server. A data

owner wishes to outsource data (or file) in the external storage server and is in charge of
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encrypting the data before outsourcing it. In order to access the outsourced data, a user should

be authorized by the data owner. An authorized user possess the secret key of the data file and

can read the data by decrypting it. The cloud server, which stores outsourced data from data

owners, has abundant but limited storage and network capacity. The cloud server is operated

by the cloud service provider who is interested in cost savings by improving disk space and

network utilization.

Similar to the previous approaches, the cloud server is assumed to be honest-but-curious.

That is, the cloud server will honestly execute the assigned tasks in the system but may try to

learn some information of stored data as much as possible. Unauthorized users would try to

access stored data which is not authorized to them. To achieve this goal, they may perform an

online-guessing attack using the side channel incurred by a client-side duplication as an oracle.

In addition, users and other data owners may also collude to compute secret information that

is necessary to access data with any information that the colluding adversaries have. Both of

the cloud server and any unauthorized users mounting these attacks should be prevented from

getting any information of unauthorized data on the storage.

In the attack model, malicious data owners, who mount some kind of attacks targeting a

cloud server or other data owners, are also considered. In uploading a file, they would try to

disturb deduplication or corrupt data owned by others by doing dishonest behaviors such as

computing with a manipulated secret key and uploading a fake file. Reliability of the proposed

scheme against such attacks should be retained as well.

3.2.2 Solution Overview

The goal is to help the cloud server enjoy the cost savings offered by data deduplication,

while also giving data owners a guarantee that their data is kept confidential against the un-

trusted cloud server and the unauthorized users. Specifically, our motivation is to design an

efficient and secure cross-user data deduplication scheme for cloud storage services. For this, we

have primarily constructed, based on PEKS (Public-key Encryption with Keyword Search) [9],

two equality predicate encryptions schemes in the symmetric-key setting: 1) SEPE (Symmetric-

key Equality Predicate Encryption) which is a basic equality predicate encryption scheme and

2) SEPEn which is an extended scheme of SEPE that has one-to-n tokens mapping (n ≥ 1).

That is, SEPEn allows n possible tokens to be matched the corresponding encrypted file. Our

constructions allow the cloud server in possession of a token associated with each file to know

the equivalence relations between the encrypted files without knowledge of the file content.

In the proposed scheme, a data owner generates ciphertexts of a file and the corresponding

tokens using both of SEPE and SEPEn before uploading the file to the cloud server. Then

the cloud server retrieves an identical file in the storage by comparing these tokens with stored

ciphertexts. If an identical file has existed in the storage, using SEPE, the cloud server will

always perform server-side deduplication even without knowing the file content. On the other

hand, SEPEn will enables client-side deduplication with some probability less than 1. This
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is because just one out of n possible tokens will be correctly verified with the stored file.

Hence, using SEPEn gives online-guessing adversaries substantial search complexity so that no

adversary with probabilistic and polynomially bounded computational resources can recover the

information. With help of SEPE and SEPEn, the proposed scheme provides data security while

also enabling deduplication either of at server side or at client side in a hybrid manner. Some

network transmission overhead may be introduced due to the randomized occurrence of client-

side deduplication, but the overhead can be minimized while ensuring the required security as

will be discussed later.

3.3 Symmetric-key Equality Predicate Encryption

In this section, symmetric-key equality predicate encryption and its security requirement

are formally defined. Then, the constructions of two encryption schemes, SEPE and SEPEn,

which fulfill the definition and security requirement are presented. The security of the con-

structed schemes is also proved under the cryptographic complexity assumptions rigorously.

3.3.1 Definition

We first describe the concept of predicate encryption before giving the definition of symmetric-

key equality predicate encryption. By definitions in [35] and [33], predicate encryption is a kind

of functional encryption system in which a token associated with a function allows a user to

evaluate the function over the encrypted data. In predicate encryption scheme, an encryption

of a plaintext M can be evaluated using a token associated with a predicate to learn whether

M satisfies the predicate. Symmetric-key equality predicate encryption is a predicate encryp-

tion scheme in the symmetric-key setting that allows to evaluate an equality predicate over a

ciphertext of M given a token of another plaintext M ′ to learn whether M and M ′ are equal.

Symmetric-key setting means that both of encryption and token generation are computed with

the same secret key. Note that PEKS [9] is an equality predicate encryption scheme in the

public-key setting.

Definition 1. A symmetric-key equality predicate encryption scheme consists of the following

probabilistic and polynomial time algorithms:

Initialize(1λ): Take as input a security parameter 1λ and output a global parameter Param. For

brevity, the global parameter Param output by Initialize algorithm is omitted below.

KeyGen(aux): Output a secret key SK. An auxiliary input aux may be used in generating the

secret key.
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Encrypt(SK,M): Take as input a secret key SK and a plaintext M and output a ciphertext

CT .

GenToken(SK,M): Take as input a secret key SK and a plaintext M and output a token TK.

Test(TK,CT ): Take as input TK=GenToken(SK,M ′) and CT=Encrypt(SK,M), and output

‘Yes’ if M =M ′ and ‘No’ otherwise.

3.3.2 Security Requirement

The required security of symmetric-key equality predicate encryption scheme is an adaptive

chosen plaintext security. We define the security against an active adversary who can access

an encryption oracle and also obtain tokens TK for any plaintext M of his choice. Even under

such an attack, the adversary is not allowed to distinguish an encryption of a plaintextM0 from

an encryption of a plaintext M1. Now we define the security game between a challenger and

the adversary A, as below:

Setup: Challenger runs the Initialize algorithm to generate a global parameter Param and the

KeyGen algorithm to generate a secret key SK. It gives the global parameter to the adversary

and keeps SK to itself.

Phase 1: The adversary can adaptively ask the challenger for ciphertext CT or token TK for

any plaintext M ∈ {0, 1}∗ of his choice.

Challenge: Once A decides that Phase 1 is over, A sends two challenging plaintexts M0, M1

to the challenger. The restriction is that A did not previously ask for the ciphertexts or the

tokens of M0 and M1. The challenger picks a random b ∈ {0, 1} and gives A a CT of Mb.

Phase 2: A continues to ask for ciphertexts CT or tokens TK for any plaintextM of his choice

except M0, M1.

Guess: Finally, A outputs b′ ∈ {0, 1} and wins the game if b = b′.

We define the adversary A’s advantage in breaking the symmetric-key equality predicate

encryption scheme as

AdvA =

∣∣∣∣Pr{b = b′} − 1

2

∣∣∣∣ .
Definition 2. A symmetric-key equality predicate encryption scheme is semantically secure

against an adaptive chosen plaintext attack if for any probabilistic and polynomial time (PPT)

adversary A, the advantage of A in winning the game is negligible in λ.
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3.3.3 Cryptographic Background

In this section, the bilinear maps is briefly reviewed and the complexity assumption, on

which the proposed constructions are built, is presented.

Bilinear Maps

The proposed constructions are based on some facts about groups with efficiently com-

putable bilinear maps. Let G and GT be two multiplicative cyclic groups of prime order p. Let

g be a generator of G. A bilinear map is an injective function e : G × G → GT with following

properties:

1. Bilinearity : for all u, v ∈ G and a, b ∈ Z∗
p, we have e(ua, vb) = e(u, v)ab.

2. Non-degeneracy : e(g, g) ̸= 1.

3. Computability : There is an efficient algorithm to compute e(u, v) for ∀u, v ∈ G.

Bilinear Diffie-Hellman (BDH) Assumption

Let a, b, c ∈ Z∗
p be chosen at random and g be a generator of G. The Bilinear Diffie-Hellman

problem is to compute e(g, g)abc ∈ GT given g, ga, gb, gc ∈ G as input. The BDH assumption

[36][37] states that no PPT algorithm can solve the BDH problem with non-negligible advantage.

3.3.4 Constructions

Based on Bilinear Diffie-Hellman assumption in the random oracle model, two constructions

of symmetric-key equality predicate encryption scheme are given: (1) SEPE which is a basic

construction of symmetric-key equality predicate encryption scheme and (2) SEPEn which has

one-to-n tokens mapping so that n multiple tokens are possible to the corresponding ciphertext.

The following hash functions are needed; H0 : {0, 1}∗ → Z∗
p, H1 : {0, 1}∗ → G, H i

2 : {0, 1}∗ →
Z∗
p, where i ∈ N is an index and H3 : GT → {0, 1}log p. H i

2 can be easily constructed from a

keyed hash algorithm like MAC in which an index i is used as a key.

Construction of SEPE

SEPE scheme consists of the following algorithms.

Initialize(1λ): The initialize algorithm randomly chooses a prime p with the bit length λ

and generates a bilinear group G of order p with its generator g. Then, it outputs a tuple

Param=⟨p, g,G,GT ⟩ as a global parameter. Note that Param is taken as an input implicitly

next algorithms.
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KeyGen(aux): The key generating algorithm takes a binary string aux with arbitrary length

as an auxiliary input and computes SK = H0(aux) ∈ Z∗
p. Then, it outputs SK as a secret key.

Encrypt(SK,M): Let us denote SK=α ∈ Z∗
p. The encryption algorithm first chooses r ∈ Z∗

p at

random and then computes a ciphertext CT = ⟨hr, gr,H3(e(h, g
α)r)⟩, where h = H1(M) ∈ G.

GenToken(SK,M): Let us denote SK=α ∈ Z∗
p. The algorithm first chooses k ∈ Z∗

p at random

and then computes a token of a plaintext M as TK = ⟨hα+k, gk⟩, where h = H1(M) ∈ G.

Test(TK,CT ): We assume that CT = ⟨c1, c2, c3⟩ for a plaintext M and TK = ⟨t1, t2⟩ for a

plaintext M ′. The test algorithm computes

γ = e(t1, c2)/e(c1, t2).

If c3 = H3(γ), it outputs ‘Yes’ ; if not, it outputs ‘No’.

The algorithm KeyGen generates a secret key from aux which is distributed over {0, 1}∗.
Let us denote the min-entropy of the distribution of aux by Haux

∞ .

Theorem 1. SEPE described above is semantically secure against an adaptively chosen plaintext

attack in the random oracle model assuming that BDH is intractable and Haux
∞ is a polynomial

in λ.

Proof. Suppose A is an adversary algorithm that tries to break SEPE. A may run in two ways;

(1) guessing a binary string aux to extract the secret key and (2) performing the security game

described in Section 3.3.2.

Let us denote by p(·) a polynomial function. Since the min-entropy of the distribution of

aux is Haux
∞ = p(λ), A’s probability of guessing the correct aux is 2−p(λ). Thus, extracting the

correct secrete key is infeasible.

The only way to break SEPE is by the security game. Suppose that A has advantage ϵ in

breaking SEPE by running the security game. We show that an algorithm B that solves the

BDH problem can be constructed using algorithm A. Suppose A makes at most qC ciphertext

queries, qT tokens queries and at most qH3 hash function queries to H3. Then, the advantage

of algorithm B is at least ϵ′ = ϵ/eqH3(qT + qC), where e is the base of the natural logarithm. If

the BDH assumption holds in G, then ϵ′ is negligible in λ and consequently ϵ must be negligible

in λ. Let g be a generator of G. Algorithm B is given g, u1 = gα, u2 = gβ, u3 = gγ ∈ G.

B simulates the challenger and interacts with algorithm A to output v = e(g, g)αβγ ∈ GT as

follows:

Setup: Algorithm B gives A the global parameter: ⟨p, g, G,GT ⟩.
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H1-queries: Algorithm A can make queries to the random oracle H1 at any time. B maintains

the H1-list which is a list of tuples ⟨Mi, hi, ai, ki, ri, ci⟩ to respond to the query. The list is

initially empty. Here i represents the sequence of the queries (1 ≤ i ≤ qC + qT ). For each query

Mi ∈ {0, 1}∗, algorithm B responds as follows:

1. If the query Mi is already in the H1-list in a tuple ⟨Mi, hi, ai, ki, ri, ci⟩ then B responds

with H1(Mi)=hi ∈ G.

2. Otherwise, B picks a random ci ∈ {0, 1} so that Pr{ci = 0}=1/(qC + qT + 1), and also

picks ai, ki, ri ∈ Z∗
p at random.

If ci = 0, then B computes hi = u2g
ai .

If ci = 1, then B computes hi = gai .

3. Algorithm B appends the tuple ⟨Mi, hi, ai, ki, ri, ci⟩ to the H1-list and sends H1(Mi)=hi

to A.

H3-queries: To respond to these queries, B maintains a list of tuples ⟨ti, Vi⟩ called the H3-list.

The list is initially empty. If the query ti already appears on the H3-list then B responds with

H3(ti)=Vi. Otherwise, B responds with H3(ti) = V by generating V ∈ GT at random and adds

the new tuple ⟨ti, V ⟩ to the H3-list.

Ciphertext queries: When A issues a query for the ciphertext of Mi, B responds as follows:

1. B responds to H1-queries by running the above algorithm to obtain hi=H1(Mi). If

ci=0 then B outputs ⊥ and halts. If ci=1 then hi = gai ∈ G. Construct hrii , g
ri
i and

E=e(hi, u1)
ri .

2. B also gets H3(E) for the query E by running the above algorithm and gives the correct

ciphertext CT= ⟨hrii , g
ri
i ,H3(E)⟩ to A.

Token queries: When A issues a query for the token corresponding to Mi, B responds as

follows:

1. Similar to the ciphertext query, B gets hi=H1(Mi) forMi by running the above algorithm.

2. If ci=0 then B outputs ⊥ and halts. If ci=1 then hi = gai ∈ G. B gives the token TK =

⟨hkii u
ai
1 , g

ki⟩ to algorithm A. Observe that TK is correct because hkii u
ai
1 = hkii h

α
i = hki+αi .

Challenge: Algorithm A produces a pair of challenging plaintext M0 and M1. B generates the

challenge as follows:
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1. Algorithm B runs the above algorithm for responding to H1-queries to obtain a h0, h1 ∈ G
such that H1(M0)=h0 and H1(M1)=h1. If both c0 = 1 for h0 and c1 = 1 for h1 then B
outputs ⊥ and halts.

2. Otherwise, at least one of c0, c1 is equal to 0. Algorithm B picks a b ∈ {0, 1} at random
such that cb = 0.

3. Algorithm B responds with the challenge ciphertext CT=⟨I, u3, J⟩ for a random I ∈ G
and J ∈ GT . Observe that the challenge implicitly defines I, J as follows:

I = H1(Mb)
γ ,

J = H3(e(H1(Mb), u
γ
1)) = H3(e(u2g

ab , gαγ))

= H3(e(g, g)
αγ(β+ab)).

Hence, the challenge is a valid ciphertext for Mb.

More ciphertexts, token queries: A continues to ask for the ciphertext or the token of Mi

of his choice except M0,M1. Algorithm B responds to these queries as before.

Output: Finally, A outputs its guess b ∈ {0, 1}. Then, B picks randomly a tuple ⟨t, V ⟩ from
the H3-list and outputs t/e(u1, u3)

ab as its guess for e(g, g)αβγ .

This completes the description of algorithm B. Now we analyze the probability that B
does not output ⊥ during the simulation. We define two events; E1 denotes an event that B
does not output ⊥ during token or ciphertext queries, and E2 denotes an event that B does

not output ⊥ during the challenge phase. The probability that a ciphertext or a token query

cause B to output ⊥ is Pr{ci = 0} = 1/(qC + qT + 1). Since A makes at most qC + qT of all

queries the probability that event E1 occurs is at least (1 − 1/(qC + qT + 1))(qC+qT ) ≥ 1/e.

That is, Pr{E1} ≥ 1/e. Also, B will output ⊥ in the challenge phase if A produces M0, M1

such that c0 = c1 = 1. Since Pr{ci = 0} = 1/(qC + qT + 1) for i = 0, 1, and the two values

are independent, Pr{c0 = c1 = 1} = (1 − 1/(qC + qT + 1))2 ≤ 1 − 1/(qC + qT ). Therefore,

Pr{E2} = 1 − Pr{c0 = c1 = 1} ≥ 1/(qC + qT ). These two events E1 and E2 are independent

because A can never issue a ciphertext or token query for the challenge plaintext, M0 and M1.

Therefore, the probability that B does not output ⊥ during the simulation is Pr{E1 ∧ E2} =
Pr{E1}Pr{E2} ≥ 1/e(qC + qT ).

Next, assuming that B does not output ⊥, we argue that during the simulation A issues a

query for H3(e(H1(Mb), u
γ
1)) with probability at least ϵ as shown in the proof of Theorem 3.1 of

[9], where Mb is the challenge plaintext. That is, the value H3(e(H1(Mb), u
γ
1)) = e(gβ+ab , g)αγ

will appear on some tuple in the H3-list with probability at least ϵ. Algorithm B will choose the
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correct tuple with probability at least 1/qH3 and therefore, it will produce the correct answer

with probability at least ϵ/qH3 assuming that algorithm B does not output ⊥.
Consequently, since B does not output ⊥ with probability at least 1/e(qC + qT ) the prob-

ability that algorithm B succeeds overall is at least ϵ′ = ϵ/eqH3(qC + qT ).

Construction of SEPEn

SEPEn scheme consists of the following algorithms.

Initializen(1
λ′): The initialize algorithm parses an input 1λ

′
in a polynomial time as a tuple

⟨1λ, d⟩ that contains two security parameters 1λ and d. The algorithm randomly chooses a

prime p with the bit length λ and generates G of order p with its generator g. Then, it outputs

Param=⟨p, g,G,GT , d⟩ as a global parameter. Note that the security parameter d inherently

defines a set of permutations Φ in which a permutation domain is D = {1, 2, . . . , d} ⊂ N.

KeyGenn(aux): The key generating algorithm takes a binary string aux with arbitrary length

as an auxiliary input and outputs a secret key SK=⟨α, π⟩ by computing α = H0(aux) ∈ Z∗
p

and choosing randomly π from Φ.

Encryptn(SK,M): Let us denote SK=⟨α, π⟩, where α ∈ Z∗
p and π : D → D ∈ Φ. The encrypt

algorithm first chooses r ∈ Z∗
p at random and then computes h ∈ G by using two vectors

u⃗ = (1, 2, . . . , d) and v⃗π = (H
π(1)
2 (M), H

π(2)
2 (M), . . . , H

π(d)
2 (M)),

h = gu⃗·v⃗π , where u⃗ · v⃗π =
∑
i∈D

i ·Hπ(i)
2 (M).

The ciphertext is CT = ⟨hr, gr, H3(e(h, g
α)r)⟩.

GenTokenn(SK,M): Let us denote SK=⟨α, π⟩. The algorithm first chooses k ∈ Z∗
p at random

and then computes h = gu⃗·v⃗π = g
∑

i∈D i·Hπ(i)
2 (M). The token of the plaintext M is TK =

⟨hk+α, gk⟩.

Testn(TK,CT ): We assume that CT = ⟨c1, c2, c3⟩ for a plaintext M and TK = ⟨t1, t2⟩ for a

plaintext M ′. The test algorithm computes

γ = e(t1, c2)/e(c1, t2).

If c3 = H3(γ), it outputs ‘Yes’ ; if not, it outputs ‘No’.
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Table 3.1: Comparison of predicate encryption schemes

PEKS [9] Shen et al. [33] Blundo et al. [34] SEPE (SEPEn)

Secret key environment public-key symmetric-key symmetric-key symmetric-key

Predicate type equality multiple multiple equality

Cross-user deduplication No Yes Yes Yes

One-to-n token mapping No No No Yes

Ciphertext size |G|+ log g ≥ 4|G| ≥ 2|G|+ |GT | 2|G|+ log g

Token size |G| ≥ 4|G| ≥ 2|G| 2|G|
Encrypt algorithm cost 2e+p ≥ 8m+ 8e ≥ 3e 3e+p

GenToken algorithm cost e ≥ 8m+ 8e ≥ 2e 2e

Test algorithm cost p ≥ 3m+ 4p ≥ 2m+ 2p m+2p

|G|:size of an element in G, |GT |:size of an element in GT , g: order of G,

m:multiplication(division), e:exponentiation, p:pairing

Theorem 2. SEPEn described above is semantically secure against an adaptively chosen plain-

text attack in the random oracle model assuming that BDH is intractable and Haux
∞ is a poly-

nomial in λ.

Proof. The difference between SEPE and SEPEn is that in SEPEn scheme security parameter

d, a random permutation π and hash functions H i
2 are additionally defined. Without loss of

generality, we can assume that the security parameter d is a constant and a random permutation

π is fixed. Then the difference between SEPE and SEPEn lies only in the computation of h.

In the SEPEn scheme, h is calculated as h = gs, where s = u⃗ · v⃗π =
∑

i∈D iH
π(i)
2 (M), and

H i
2 : {0, 1}∗ → Z∗

p are d hash functions, while h is computed as h=H1(M) in the SEPE scheme,

whereH1 is a hash functionH1 : {0, 1}∗ → G. In the random oracle model, all hash functions are

treated as the random oracle and the distribution of hashed values is uniform. In the SEPEn

scheme, evaluations of the random oracles H i
2 are independent with each other. Hence, the

distribution of s is uniform in N, which implies that the distribution of h = gs is also uniform in

G. From the view of an adversary, these two schemes are statistically indistinguishable because

in the SEPE scheme the value of hash function H1 is also distributed uniformly in G. Therefore,

assuming SEPE scheme is semantically secure against an adaptively chosen plaintext attack,

SEPEn scheme is also semantically secure against the attack. And, by Theorem 1, SEPEn

scheme is secure.

3.3.5 Discussion

We discuss the effectiveness of our constructions, SEPE and SEPEn, by comparing with

several predicate encryption schemes that are similar to ours. Table 3.1 summarizes the com-

parisons of predicate encryption schemes.

PEKS [9] is a public-key equality predicate encryption scheme that allows to identify equal-

ity relations among ciphertexts and tokens. PEKS is designed to be run in the public-key envi-
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ronment, and thus the equality of ciphertexts that are encrypted with one’s public key can only

be tested with tokens that are generated with the corresponding private key. This public-key

setting is not suitable for cross-user data deduplication, in which the equality test should be

performed across ciphertexts and tokens that are generated with different users’ secret keys.

For cloud storage services, it is more desirable to perform data deduplication across multiple

users’ outsourced data than deduplicating only over a user’s data, since it gives more chance of

eliminating the redundancy and saves more resources of the cloud server.

Cross-user deduplication can be implemented by a symmetric-key type of predicate encryp-

tion algorithm. Shen et al.[33] and Blundo et al.[34] proposed symmetric-key predicate encryp-

tion schemes which support more general predicates such as a comparison predicate (x ≥ a), a
subset predicate (x ∈ S), and arbitrary conjunctive predicates (P1∧P2∧ . . .∧Pl). Both schemes

also support predicate privacy, which is a security property that a token reveals no information

about the predicate that it contains. For data deduplication that only the equality predicate

is sufficient, however, the feature that supports multiple predicates is not necessary, and is

inefficient in terms of ciphertext size (token size) and computation time of encryption, token

generation and predicate testing. Predicate privacy is also unnecessary for data deduplication,

since only one type of predicate is required.

SEPE and SEPEn are designed to be more suitable for data deduplication. The symmetric-

key based construction makes it applicable to cross-user deduplication that eliminates redun-

dancy of data across multiple users. Moreover, SEPE (SEPEn) uses less storage resources (i.e.,

size of ciphertexts and tokens) and incurs less computation, particularly in Test algorithm that

causes most of the computational burden in the cloud server, compared with other symmetric-

key predicate encryption schemes. One-to-n token mapping of SEPEn is another feature that

makes our constructions more useful for designing secure data deduplication.

3.4 Data Deduplication Scheme Construction

3.4.1 Definition and Notation

We state our definitions and notations. Table 3.2 gives the description of notations to be

used in the proposed scheme. For each file, a data owner assigns a globally unique file id fid and

encrypts with a set of randomly chosen symmetric encryption keys FEK={FEK1,FEK2,...,FEKl}.
Also, FEK is encrypted with another secret key α. The cloud server maintains a search index

SI to retrieve a stored file in the storage. SI is a list of entries in which each entry corresponds

to a file entity logically, and comprises a set of search keys and an index value. Search keys

include a file id fid and two predicate ciphertexts CTfid, CTn,fid which are encrypted with

SEPE and SEPEn, respectively. Files in the storage are retrieved by the cloud server with one

of search keys.

The usage of a search key depends on a type of file operation requested by users. An index

value contains an address addrFile at which the file is physically stored in the system. Each SI
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entry has its address addrIndex and can be referenced through the address. Fig. 3.2 shows the

format of a SI entry and the structure of file storage.

For data reliability, an erasure code is used in the proposed scheme. An erasure (x, y)-code

is an encoding function E : X → Y that transforms a message X comprised of x symbols to the

code Y of x + y redundant symbols such that any x of them are sufficient to reconstruct the

original message X. The number of losses that the erasure code E can sustain is y, while the

redundancy factor is RD = (x+ y)/x.

Table 3.2: Notations used in the proposed scheme description

Notation Description

FEK1, . . . ,FEKl symmetric file encryption keys

SI search index for file retrieval in the cloud storage

fid a unique id assigned to each file

addrobj address at which an object obj resides in the system

CTfid SEPE ciphertext of a file of fid

CTn,fid SEPEn ciphertext of a file of fid

CT
[i]
fid i-th element of CTfid (i=1,2,3)

CT
[i]
n,fid i-th element of CTn,fid (i=1,2,3)

TKfid token which corresponds to ciphertext CTfid

TKn,fid token which corresponds to ciphertext CTn,fid

TK
[i]
fid i-th element of TKfid (i=1,2)

TK
[i]
n,fid i-th element of TKn,fid (i=1,2)

{M}key ciphertext of M encrypted by a symmetric encryption

algorithm with an encryption key key

<i1,i2,. . .,in> tuple of n elements i1, i2, . . . , in

3.4.2 Scheme Description

The proposed scheme is composed of several system level operations: System Setup, New

File Upload, File Access, File Update and File Deletion.

System Setup: Initially, the cloud server and data owners have agreed two security parameters λ

and d. The cloud server calls the algorithm Initializen(⟨λ, d⟩) and outputs the global parameter

Param=⟨p, g,G,GT , d⟩. The parameters p, g, G and GT will be used commonly in both of SEPE

and SEPEn.

New File Upload : When uploading a file to the cloud server, a data owner proceeds as the

following:

1. assign a unique file id fid to this data file.
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fid,   CTfid,   CTn,fid addrFile

Search Key Index

(a) Format of an entry in the search index

{F1}FEK1
, {FEK1}α ,…,{Fl}FEKl

, {FEKl}αaddrFile

(b) Structure of a file storage

Figure 3.2: A search index and a file storage on a cloud server

2. generate a secret key ⟨α, π⟩ by running KeyGenn(File), where File is a binary represen-

tation of this file content. (α is also assigned to the secret key of SEPE.)

3. compute two tokens TKfid and TKn,fid by runningGenToken(α, File) andGenTokenn(⟨α, π⟩,
File), respectively.

4. compute two ciphertexts CTfid=Encrypt(α, File) and CTn,fid=Encryptn(⟨α, π⟩, File).

5. query to the cloud server with a tuple <fid, TKfid, TKn,fid, CTfid, CTn,fid>.

To ensure that the tuple is correct, the data owner is requested to compute ciphertexts and

tokens by sharing random values r, k ∈ Z∗
p between SEPE and SEPEn at steps 3 and 4 above.

(Thus, the tuple should satisfy CT
[2]
fid = CT

[2]
n,fid and TK

[2]
fid = TK

[2]
n,fid.)

(Tuple verification) Upon receiving the tuple, the cloud server first verifies the consistency

of a received tuple by checking both Testn(TKn,fid, CTn,fid) and Test(TKfid, CTfid) output

‘Yes’. Then, the cloud server continues to test the equations (3.1), (3.2) and (3.3).

e
(
CT

[1]
fid, TK

[1]
n,fid

)
= e

(
CT

[1]
n,fid, TK

[1]
fid

)
(3.1)

CT
[2]
fid = CT

[2]
n,fid (3.2)

TK
[2]
fid = TK

[2]
n,fid. (3.3)

If one of the verification processes fails, the cloud server reports an error and halts the

operation.

(Deduplication) If the tuple is successfully verified, the cloud server retrieves entries in the

search index SI comparing TKn,fid with CTn,fid′ of each SI entry through the algorithm

Testn(TKn,fid, CTn,fid′). If a matching entry found, the cloud server gets an address addrFile

from the entry and creates a new entry ⟨fid, CTfid, CTn,fid, addrFile⟩. Then the cloud server
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appends it to SI and responds the data owner with a message FileExist (i.e., client-side

deduplication event occurs). If not, the cloud server responds with a message FileNotExist.

Upon receiving a message FileNotExist, the data owner continues to upload the actual

file to the cloud server as the following:

1. transform File into F by running the erasure code E , and split F according to block length

b (e.g., b=512 bits) into l blocks F1,F2, ...,Fl (padding is added if the length of F is not

aligned to b).

2. choose randomly encryption keys FEK1,FEK2,...,FEKl from the key space.

3. encrypt the file blocks with an encryption algorithm C = ⟨{F1}FEK1 ,{FEK1}α,...,{Fl}FEKl
,{FEKl}α⟩,

where α is a hashed value of the file described above.

4. send a tuple <fid, C> to the cloud server.

Upon receiving the message <fid, C> from the data owner, the cloud server finds the same

file comparing TKfid with CTfid′ of each SI entry through Test(TKfid, CTfid′).

If the same file already exists in the storage, the cloud server randomly picks lr (0 ≤ lr ≤ l),
and replaces lr arbitrary blocks of the existing file (including their FEKs) by newly uploaded lr

blocks from C.

The cloud server then creates new entry ⟨ fid, CTfid, CTn,fid, addrFile⟩, where addrFile
is from the matching entry and appends it to SI (i.e., server-side deduplication event occurs).

If not found, the cloud server allocates new storage space with new address addrFile and puts

the encrypted file C into the file system. Then the server creates new SI entry ⟨fid, CTfid,
CTn,fid, addrFile⟩ and appends it to SI. Instead of two distinct searches in this operation, it is

possible to perform a single search during uploading by retrieving SI with CTfid and CTn,fid

at once.

As described above, the hashed value α acts not only as a plaintext of SEPE and SEPEn

but also as an encryption key of FEK associated with the file itself. Using α as an encryption

key helps keeping the system simple, since data owners in possession of same file should also

exclusively share a hashed value of the file without any explicit key sharing. If a random encryp-

tion key is used instead of the file hash, then we will need costly key management mechanism

such as broadcast encryption [23] to share the key among data owners who have a common file.

Such a strategy is similar to convergent encryptions, but not the heart of the technique that

enables deduplication contrary to convergent encryptions.

File Access: A user authorized to access a file stored in a cloud storage should be in possession

of ⟨fid, α⟩ of the file. The user sends a file access request message with a file id fid. The cloud

server finds the stored file retrieving the search index SI with a search key fid. If found, the

cloud server accesses the file in the file system with the address addrFile from the matching entry,
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and returns C = ⟨{F1}FEK1 ,{FEK1}α,...,{Fl}FEKl
,{FEKl}α⟩ to the user. The user will recover

the encrypted file with a decryption key α. The search index SI can be ordered according to a

search key fid thus can be built into a tree-structure. The search operation cost with a search

key fid then becomes O(log n), where n denotes the size of SI.

File Update: The procedure for updating a file is fully equal to New File Upload operation.

File Deletion: The data owner sends a file deletion request with fid. The cloud server searches

a matching SI entry associated with fid. If the searched file is associated with more fids other

than the requested one, the cloud server just removes the entry from SI. Otherwise, the server

also removes the actual file in the storage.

3.4.3 Efficiency Improvements

We present how to improve efficiency of the proposed scheme and to enhance its perfor-

mance.

Auxiliary Search Index

The operations of New File Upload and File Update require a search operation on the

search index SI. Since SI entries cannot be sorted with respect to search keys CT and CTn,

the searching cost is linear to the size of SI (i.e., the number of files). In this section, we

describe a technique that improves the efficiency of the proposed scheme in terms of searching

cost. An idea behind the technique is motivated from the fact that the size of uploading files

is distributed between a few to giga bytes and the cloud server can get information of the size

of a file from the encrypted one. Our idea is to use an auxiliary search index (AI) in addition

to SI. In AI, the size of a file is actually a search key, and an index value contains addrIndex,

an address of the SI entry that indicates the corresponding file. Each AI entry can be sorted

with respect to its search key. With help of a tree structure like B+-tree, an item insertion,

deletion and searching operation in AI can be handled in an efficient and scalable manner.

When a data owner uploads (or updates) a file, the data owner sends a tuple <size, fid,

TKfid, TKn,fid, CTfid, CTn,fid> to the cloud server. Then, the server first looks up AI entries

that correspond to size. If found, the cloud server gets matching SI entries which are addressed

by addrIndex. The number of matching SI entries may be one or more according to a density

of file size distribution. The cloud server then enumerates the matching SI entries and finds

a corresponding entry such that Test (or Testn) algorithm results in ‘Yes’. In this technique,

using AI limits efficiently the search scope of SI thus eventually reduces searching cost to

sub-linear complexity. In order to use this technique, the original scheme should be slightly

modified. The only difference from the original scheme is that size field is added on the above

tuple in this technique.
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Tradeoff between Security and Network Efficiency

The proposed scheme is designed to be resistant against the online-guessing attack. While

an unauthorized user has difficulty in guessing the content of a stored file, usual file upload

operation may also have little chance that a client-side deduplication event occurs, which even-

tually causes the increase of network transmission overhead. In order to avoid losing network

transmission efficiency, the proposed scheme allows the security parameter d of SEPEn to be

selected on the tradeoff between the security and the efficiency. The security parameter d de-

notes a domain size of permutation and actually determines the size of set of all permutations

with a domain D such that |D|=d. Hence, the lower value of d gives higher probability that

client-side deduplication occurs and vice versa.

This tradeoff is reasonable in practical applications. Data owners may upload not only high

privacy requiring files that contain personal information but also common files like software setup

files. The uploading files may also vary between high and low entropy. In the proposed scheme,

the value of d is globally chosen in system setup phase. However, it is not difficult to modify

the proposed scheme to allow d be selected for each file in uploading phase. Each file’s security

parameter d can be decided based on its properties like the entropy or the required level for

privacy. File size can be another decision factor of d because it is reasonably assumed that file

size and its entropy are highly correlated with each other [3]. For example, a file that requires

no privacy or its size is greater than some threshold may be given its security parameter d = 1,

which implies that client-side deduplication will always occur with probability 1 if the same file

has existed in the cloud server.

A quantitative analysis of the relation between the security parameter d and both security

and the network transmission overhead will be presented in Section 3.5.2.

3.4.4 Improving Reliability of the Cloud Storage

By applying a general data replication mechanism to the proposed scheme, we can further

improve reliability of the scheme against malicious data owners incurring data loss. A data

replication mechanism, where replication factor (RP) is r, creates r replicas of a data object

and stores them across geographically distributed storage systems.

New File Upload operation of the proposed scheme is extended to utilize such a data

replication as follows. When accepting < fid, C > from a data owner, the cloud server searches

on SI by using Test algorithm. If a matching entry is found (i.e., server-side deduplication

event occurs), the cloud server gets addrFile from the SI entry and determines the locations of

existing replicas for the file. If the number of the existing replicas is less than r, a new one is

allocated to store C = ⟨{F1}FEK1 ,{FEK1}α,...,{Fl}FEKl
,{FEKl}α⟩. Otherwise, the cloud server

selects one of them and replaces lr blocks of the chosen replica, where lr is randomly picked from

{0, 1, ..., l}, by new blocks of C. In other cases, the cloud server follows the original protocol

described in the previous section.
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With help of an erasure (x, y)-code, corrupted data can be recovered as long as at least

⌈lx/(x+ y)⌉ blocks among r replicas stored within the storage sustain the corruption, where l

is the number of blocks of the file.

Note that data replication is orthogonal to data deduplication. Goals of removing data

redundancy and improving reliability can be achieved simultaneously using both data replication

and data deduplication together.

3.5 Evaluation

In this section, we first present the security analysis of the proposed scheme. Then, we

present the storage, communication and computation performance analysis.

3.5.1 Security Analysis

Data Confidentiality

In the proposed scheme, files in the cloud storage are encrypted with a symmetric encryption

algorithm like AES [51]. Encrypting the file generates a randomized ciphertext, because FEK

is randomly chosen from the key space. Therefore any adversary including the cloud server

who has only ciphertexts of the file cannot distinguish it from the random data. That is, the

adversary does not know any information of the content of a file.

The cloud server will perform data deduplication through running Test and Testn algorithm

with inputs of tokens and ciphertexts of SEPE and SEPEn. Unless tokens are given, the cloud

server has negligible advantage in getting any information of the plaintext from its ciphertexts

by theorems, Theorems 1 and 2. Although the cloud server may have knowledge of equivalence

relations among the ciphertexts in the search index, Theorem 3 says that any PPT algorithm

including the test algorithms, Test and Testn, does not reveal any partial information to the

cloud server other than the equivalence relation.

Note that the cloud server obviously can infer to the information of file size from the

corresponding ciphertext because the file size and its ciphertext size are inherently correlated

with each other.

Theorem 3. For any two plaintexts M and M′ such that M ̸=M′, any PPT algorithm given

SEPE (or SEPEn) ciphertexts and tokens of M and M′ as inputs cannot output any partial

information of the plaintexts M and M′ under the random oracle assumption.

Proof. For the sake of simplicity, let us assume that hash functions used in SEPE and SEPEn

(i.e., H1, H2) are denoted as F : {0, 1}∗ → G. In computation of the tokens and the ciphertexts,

the plaintext M and M ′ are given as inputs in evaluating the hash function F . By collision

resistance property of a cryptographic hash function, it is highly unlikely that F (M)=F (M ′) for
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any two different plaintext M and M ′. Besides, using the fact that a cryptographic hash func-

tion can be modeled as a random oracle [52], both of F (M) and F (M ′) will be indistinguishable

from random in G. Therefore, in the case of Test and Testn algorithm, an intermediate com-

putation result γ will be indistinguishable from a random data in GT , and the test algorithm

will eventually result in meaningless output ‘No’. Another PPT algorithms given ciphertexts

and tokens of M and M ′ as inputs will also eventually output a data that looks like a random

from the view of the algorithm.

Resistance against Online-guessing Attack

Now we analyze security against an adversary who mounts online-guessing attack to figure

out the information of interesting file in the cloud storage. The adversary is neither in possession

of the file nor its hashed value. However, the adversary may have relatively small search domain

for the file because the file has inherent low-entropy property or he has some knowledge of it.

For each candidate in the search domain the adversary generates a token TKn and then queries

the token to the cloud server. If a matching ciphertext CTn exists such that Testn(CTn,TKn)

results ‘Yes’ for the query, the cloud server will respond with a message FileExist indicating

deduplication (at client side) event occurs. The adversary will continue querying to the cloud

server until receiving FileExist.

In the attack scenario, an adversary may select a correct candidate in high likelihood of

matching the target file. However, the adversary should query a correct token TKn for the

selected candidate in order to render a deduplication event (at client-side). Theorem 4 says

that a probability that an adversary computes a correct token TKn such that Testn(CTn, TKn)

results in ‘Yes’ is negligible in the security parameter d. Hence, the proposed scheme is resistant

against online-guessing attacks.

Theorem 4. For any PPT algorithm A, the probability that A outputs the corresponding token

TKn for given SEPEn ciphertext CTn is negligible in the security parameter d.

Proof. Let us assume a PPT algorithm A which computes a token TKn for a corresponding

SEPEn ciphertext CTn. A is given d, g, α and CTn as inputs and tries to find out the correct

token TKn. We also assume that CTn =⟨hr, gr,H3(e(h, g
a)r)⟩, where r is chosen at random

from Z∗
p. If A can get h from hr, it is obvious that A easily computes the corresponding token

TKn=⟨hk+α, gk⟩ with given h, where k is chosen randomly from Z∗
p. However, the problem

that computes h from hr in a cyclic group G is not easier than the discrete logarithm problem

(DLP) on elliptic curves which is generally known to be computationally infeasible for any

PPT algorithm if p is sufficiently large [37]. Hence, the best way for A to find out the token

is to choose one of possible tokens randomly and test it by running Testn algorithm. A can

choose a token at random by tossing coins to choose a random permutation π : D → D,

where D = {1, 2, . . . , d}. Now we analyze the probability that A outputs the correct token
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TKn given the input CTn. Let us denote a set of all permutations π : D → D as Φ. We

assume that CTn has been computed with a permutation π. That is, h = gu⃗·v⃗π in CTn , where

u⃗ · v⃗π =
∑

i∈D iH
π(i)
2 (M). When algorithm A chooses randomly a permutation π′ from Φ, h is

computed as h = gu⃗·v⃗π′ in TKn , where u⃗ · v⃗π′ =
∑

i∈D iH
π′(i)
2 (M). Note that u⃗ · v⃗π and u⃗ · v⃗π′

also can be represented as u⃗ · v⃗π = pk + r and u⃗ · v⃗π′ = pk′ + r, where p is order of G, k, k′ ∈ N
and 0 ≤ r, r′ < p. Let us denote an event p(k− 1) ≤ u⃗ · v⃗π′ < pk as Ek. Then, the probability is

Pr{A outputs the correct TKn}

= Pr{π′ R←− Φ , Testn(CTn, TKn) = ‘Yes’ }

= Pr{π′ R←− Φ , gu⃗·v⃗π = gu⃗·v⃗π′}

= Pr{π′ R←− Φ , u⃗ · v⃗π = u⃗ · v⃗π′ mod p}

≤
∑
k∈N

Pr{r = r′|Ek}Pr{π′
R←− Φ , Ek}

≤
∑
k∈N

Pr{π′ R←− Φ , π = π′}Pr{π′ R←− Φ , Ek}

= Pr{π′ R←− Φ , π = π′}
∑
k∈N

Pr{π′ R←− Φ , Ek}

≤ Pr{π′ R←− Φ , π = π′}

=
1

d!
≤ 1

2d−1
.

Therefore, the probability that A outputs the corresponding TKn is negligible in the secu-

rity parameter d.

Collusion-resistance

Unauthorized users and even other data owners who do not have an access right to their

interesting file can collude together to access the file. They should know the correct access

token ⟨fid, α⟩ in order to get the file via File Access operation. Hence they will try to compute

⟨fid, α⟩ from information such as secret keys or tokens which they have. Assuming that fid is

chosen from sufficiently large space and kept secret to the authorized users and data owners,

the colluding adversaries cannot compute fid since fid is independent of any information which

they have.

They may also try to compute the corresponding tokens TK, TKn to take advantage of a

side channel on client-side deduplication. However, since a permutation π of CTn corresponding

the file was chosen from Φ at random and is independent of any information, it is impossible

for the colluding adversaries to get the file by Theorem 4.
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Resistance against Malicious Data Owner

We analyze security of the proposed scheme against two kinds of attacks, which are launched

by a malicious data owner who does not follow the protocol and behaves dishonestly.

Server-side deduplication disturbing attack : Let us consider a malicious data ownerM who tries

to disturb server-side deduplication so as to intentionally reduce the available storage resources

of the cloud server. During New File Upload operation, M would mount such an attack by

composing the wrong tuple < fid, TK ′
fid, TKn,fid, CT

′
fid, CTn,fid >, where TK

′
fid, CT

′
fid are

calculated using the randomly generated secret key α′ (̸= α).

For the proposed scheme, this attack does not succeed, since the correctness of the received

tuple is verified by the cloud server before acceptance. Specifically, Test (or Testn) algorithm

checks whether a secret key is consistently used for computing both CTfid and TKfid (or CTn,fid

and TKn,fid). That is, the cloud server verifies the tuple by checking whether all of the following

equations holds.

e
(
CT

[1]
fid, TK

[1]
n,fid

)
= e

(
CT

[1]
n,fid, TK

[1]
fid

)
CT

[2]
fid = CT

[2]
n,fid

TK
[2]
fid = TK

[2]
n,fid.

By definition of bilinear map (in Section 3.3.3) and definition of our construction, it is infea-

sible forM to compose the wrong tuple such that TK ′
fid, CT

′
fid are calculated using randomly

generated α′, while also satisfying the above equations, as well as allowing Test(TK ′
fid, CT

′
fid)

to output ‘Yes’.

Duplicate faking attack : We consider a malicious data ownerM who tries to corrupt other users’

data. DuringNew File Upload operation,Mmay send a tuple< fid, TKfid, TKn,fid, CTfid, CTn,fid >

for File correctly, but then upload a fake < fid, C ′ >, where C ′ is constructed from File′(̸=

File) or a wrong secret key α′(̸= α). We analyze security against such an attack in terms of

two properties; (i) corruption detectability and (ii) data recoverability.

The proposed scheme ensures that the corruption of File is always detected by data owners

or their authorized users who treat the same file. Let us denote a decryption of ciphertext E

with a key k by Dec(k,E), n-th element of a tuple T by T [n], and a decoding function of an

erasure code E by D. Data corruption can be detected as follows.

1. get C = ⟨{F1}FEK1 ,{FEK1}α,...,{Fl}FEKl
,{FEKl}α⟩ via File Access operation.

2. for each Ti=⟨{Fi}FEKi , {FEKi}α⟩ in C, where 1 ≤ i ≤ l, compute vi=Dec(Dec(α, T
[2]
i ), T

[1]
i ).

3. compute w = D(v1||v2||...||vl), and z = KeyGen(w).
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Figure 3.3: File recoverability against fake uploads

4. test z = α.

If z is not equal to a secret key α, then the file is corrupted.

With help of data replication, the proposed scheme also ensures that with high probability,

a file can be recovered from corruption against fake uploads by M. To justify our argument,

we conducted a simulation, in which New File Upload operations for the same file (the block

size is b = 512 and the number of blocks is l = 16, 384) were performed in 1,000 times including

fake uploads among them. The ratio of the fake uploads varies from 0 to 0.99. At each New

File Upload operation, it was checked that sufficient blocks on the storage remain uncorrupted

for recovery.

Fig. 3.3 shows the simulation result. RP refers to a replication factor of data replication

mechanism (i.e., the number of replicas), and RD to a redundancy factor of the erasure code.

With RP=10 and RD=1.5, the probability of successfully recovering corrupted data is more

than 95%.

3.5.2 Performance Analysis

Storage Overhead

When a data owner uploads a file to the cloud server, data deduplication will always occur

either at client side or at server side, if the same file exists in the cloud storage. That is, the

proposed scheme always removes redundant copies of a file across multiple users, thus keeps the
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cloud storage optimized in terms of disk space utilization.

Additional storage overhead may be introduced due to the search index. The size of SI or

AI entry, however, is negligible compared to the size of corresponding file.

Employing data replication, which is discussed in Section 3.4.4, may increase the required

storage capacity. In the proposed scheme, however, data replication is run over deduplicated

data, and thus is independent of eliminating the redundancy. The amount of increased storage

resources does not exceed by the replication factor of a data replication mechanism.

Network Transmission Overhead

The hybrid approach that prevents the online-guessing attack may introduce some network

transmission overhead due to unnecessary file uploads. We analyze how much the network

bandwidth is actually consumed for the proposed scheme.

For this, we compare the proposed scheme with a basic scheme, which is exactly same

to the proposed scheme except that client-side deduplication always occurs (i.e., the security

parameter d = 1). Note that the basic scheme incurs no network transmission overhead at all.

Thus, the difference ∆ between the amount of network bandwidth consumed for the proposed

scheme and the amount for the basic scheme represents the network transmission overhead of

the proposed scheme.

Several events in New File Upload operation are defined as follows:

1. E : The file F exists in the cloud storage.

2. TP : New File Upload operation transmits the actual copy of F in the proposed scheme.

3. TB : New File Upload operation transmits the actual copy of F in the basic scheme.

From the security analysis in Section 3.5.1, we have Pr{TP | E}≥ 1 − 1
d! . Without loss

of generality, we assume Pr{TP | E}= 1 − 1
d! in this section. Note that Pr{TB | E}=0. The

probability that the event TP occurs is

Pr{TP } = Pr{TP | E}Pr{E}+ Pr{TP | ¬E}Pr{¬E}

= Pr{TP | E}Pr{E}+ Pr{¬E}

= Pr{TP | E}Pr{E}+ 1− Pr{E}

=

(
1− 1

d!
− 1

)
Pr{E}+ 1 = −Pr{E}

d!
+ 1.

By the similar way, the probability that the event TB occurs is Pr{TB}=1-Pr{E}.
The expected amount of network traffic in uploading the file F for the proposed scheme

and the basic scheme are s·Pr{TP } and s·Pr{TB}, respectively, where s is the size of F . Thus,
the network transmission overhead of the proposed scheme can be represented by the difference

∆
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Figure 3.4: Tradeoff between security and the network transmission overhead over the security

parameter d (The file size of FA and FB is 90 MBs, Pr{EFA
} = 0.001 and Pr{EFB

} = 0.3)

∆ =| sPr{TP } − sPr{TB} |= sPr{E}
(
1− 1

d!

)
. (3.4)

For each file in the cloud storage, the probability Pr{E} will be distributed between 0 to

1 according to its properties, especially to the type of file content. That is, it is easily inferred

that common files (e.g., software install files) usually have high Pr{E}, and private files, that

contain sensitive and personal information, requiring high privacy have low Pr{E}. From the

above equation, we can observe that as Pr{E} goes to 0, so does ∆, while ∆ closes to s(1−1/d!)

as Pr{E} goes to 1. This result implies that we can reduce overall network transmission overhead

substantially by just only decreasing the security parameter d of common files, while keeping

private file’s parameter d high, as we described in section 3.4.3.

Let us consider an example that a data owner uploads two files FA and FB, which represent

a private file and a common file, respectively. Suppose that the size of both FA and FB is 90

MBs and the probabilities that the file exists in the cloud storage are Pr{EFA
} = 0.001 and

Pr{EFB
} = 0.3. Fig. 3.4 shows the quantitative relation between the security parameter d and

both security (i.e., probability p = 1
d! that an adversary computes the correct TKn) and the

network transmission overhead (∆FA
for FA and ∆FB

for FB). Setting the parameter d to 11

for both FA and FB raises the overall network transmission overhead (∆FA
+ ∆FB

) to more

than 26 MBs. On the other hand, the overall overhead can be reduced to 92 KBs by just only
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decreasing the common file FB’s parameter d to 1, while keeping the probability p of the private

file FA lower than 2−24.

Table 3.3: Computation complexity of the proposed scheme considering two strategies: SI and

SI with AI (SI+AI)

Operation
The Proposed Scheme

SI SI+AI

New File Upload O(Ns) O(logNa +Ns,a)

File Update O(Ns) O(logNa +Ns,a)

File Access O(logNs) O(logNs)

Computation Overhead

Computational burden at the cloud server is mainly introduced by searching over the

storage. We analyze the computation complexity for the following operations that perform the

searching : New File Upload, File Update, File Access.

In New File Upload and File Update operation, the cloud server searches the matching file

in SI through two search keys CT and CTn. For each SI entry the cloud server compares it

with given tokens by computing Test and Testn algorithms which require two pairings and one

multiplication over GT . Let us denote Ns as the total number of SI entries, Na as the total

number of AI entries and Ns,a as the number of SI entries which correspond to the matching

AI entry. The computation complexity of New File Upload and File Update are shown in

Table 3.3. With help of AI, the proposed scheme (SI+AI in Table 3.3) can have sub-linear

complexity in this operations.

In File Access operation, SI is retrieved through the search key fid. Since SI is sorted

according to fid, the searching cost is more efficient than that of above operations as shown in

Table 3.3. We also note that no cryptographic operations are needed in comparison over fid.

3.6 Summary

This chapter aims at achieving both cost efficiency and data security in cloud computing.

One challenge in this context is to build a data deduplication system which offers cost savings

in terms of disk space and network bandwidth utilization, while also providing data security

and privacy against the untrusted cloud server and the unauthorized users. In this chapter, we

proposed an efficient and secure data deduplication scheme to resolve the challenging issue. In

order to achieve both of efficiency and security, we constructed two equality predicate encryption

schemes in the symmetric-key setting, on which the proposed data deduplication scheme is

built. Our rigorous security proofs show that our proposed scheme is provably secure under

cryptographic security models.
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Chapter 4. Differentially Private Client-side Data

Deduplication Protocol

4.1 Motivation and Contributions

Most cloud storage service providers utilize client-side (or source-based) data deduplication,

which is a technique that eliminates duplicate copies of data (or files) across multiple users

before uploading them, to save the cost of network bandwidth and disk storage [2]. It has been

known that this technique is not secure, since by monitoring and analyzing network traffic,

adversaries can use (client-side) deduplication as a side channel to obtain sensitive information

of other users’ data such as the existence of data or even its content [3][14]. Recently, some

solutions have been proposed to prevent such information leakage, but several problems still

remain unresolved.

Harnik et al.’s scheme [3] and its security-enhanced version [45] obfuscate the occurrence

of deduplication by randomizing the event with certain probability. This randomized approach,

however, causes huge network bandwidth consumption owing to the unnecessary file upload,

thus lowering the effectiveness of the deduplication. In addition, the schemes are based on the

strong assumption that all individual files are independent of each other. This leads to our

novel attack, denoted by related-files attack, which we will propose in this chapter. Security

of these approaches [3][45] are weakened by related-files attack in which an adversary can take

advantage of knowledge of correlations among files. Olivier et al. proposed another solution

for secure deduplication [46]. Their idea is to run the deduplication protocol at a home router

provided by an ISP and mix network traffic for cloud storage with other service traffic. This

solution, however, lacks flexibility because the fact that it requires an ISP home router limits

its uses to a specific service model.

Allowing efficient client-side deduplication while reducing the risk of information leakage is

still an open problem. In this chapter, we address this problem and propose a secure client-side

deduplication protocol. Our solution utilizes a storage gateway, which is a network appliance

that resides at the customer’s premises and provides APIs to access the remote cloud storage

server. Since they simplify interactions with cloud storage services, storage gateways are gaining

popularity and being deployed as a key component in various cloud service models, such as

public, private, or hybrid cloud computing [53]. The key idea of the proposed solution is that a

storage gateway handles user requests for file uploads and performs data deduplication on them

on behalf of the users (or clients). In this way, the network traffic for each user request is merged

together at the storage gateway’s WAN (Wide Area Network) interface. Without generating

unnecessary network traffic, this approach weakens the link between the deduplication event
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and the amount of actually transferred. This idea is similar to Olivier et al.’s solution [46], but

using storage gateways gives flexibility for adapting to various cloud service models.

For robust security, we apply a differentially private mechanism to our proposed protocol.

Differential privacy is a security notion that has been presented in database security literature

to design privacy enhanced statistical databases [54][55][56]. By exploiting differential privacy,

proposed protocol strongly guarantees that the presence or absence of individual files in the

cloud storage is hard to infer from any side channel attacks, including related-files attack.

The contributions of this chapter are three-fold. First, we discuss the security weakness of

the previous schemes [3][45] that are based on the randomized approach. Second, we propose

a storage gateway-based solution that guarantees robust security, while providing network effi-

ciency and flexibility. Third, we analyze its security under the definition of differential privacy

and evaluate its effectiveness by our experiments.

The rest of this chapter is organized as follows: In Section 4.2, we review the previously

proposed schemes and describe their security weakness. In Section 4.3, details of our storage

gateway-based deduplication solution are described. In Section 4.4, we present a security anal-

ysis and the experiment results of the proposed protocol. Finally, in Section 4.5, we give the

summary of this chapter.

4.2 Related-files Attack

4.2.1 Related-files attack on Harnik et al.’s scheme

We briefly review Harnik et al.’s scheme [3] and present its security weakness.

The protocol description

For every file F , a cloud storage server assigns a threshold tF chosen randomly in a range

[2, d], where d is a security parameter that might be known public. The cloud server keeps a

counter cF which represents the number of previous uploads of a copy of F . When a client

uploads a new copy of F , the server performs (client-side) deduplication if at least tF copies

of F have been previously uploaded (i.e., cF ≥ tF ) or if the copy is uploaded by an identical

user who has previously uploaded F ; no deduplication event occurs otherwise. This protocol is

illustrated in Fig. 4.1(a).

Compared to the straightforward method, this randomized approach pays some penalty in

terms of the network bandwidth utilization, since during the first tF − 1 times of uploading

F , a full data of F should be uploaded for hiding the occurrence of deduplication from users

including adversaries. Upon receiving F , however, the cloud server always performs server-side

deduplication on the data. Thus, in terms of the disk utilization, this approach can achieve the

same level of efficiency as the normal deduplication.

The security of Harnik et al.’s scheme can be stated by that too much information about
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Figure 4.1: Randomized client-side deduplication protocol

the inclusion of any file F in the cloud storage is not revealed with some probability. In order to

analyze its security, two views of the adversaries are compared; one that the file F was already

uploaded by another user, and the other that no copy of F has previously been uploaded.

For the sake of analysis, let us consider the following three types of events where the

adversary is about to identify whether a copy of F was uploaded.

(i) (2 < tF < d) The adversary finds out that a deduplication event occurs after uploading

2 < t < d copies of F . This could be due to two cases:

(i-1) F already exists, and the adversary uploads t = tF − 1 copies of F

(i-2) F does not exist and the adversary uploads t = tF copies of F

(ii) (tF = 2) The adversary finds out that a deduplication event occurs after uploading a single

copy of F . It is the case that tF = 2 and a single copy of F has been previously uploaded

by another user.

(iii) (tF = d) The adversary finds out that a deduplication event occurs after uploading d

copies of F . It is the case that no copy of F was previously uploaded and tF = d.

For F with 2 < tF < d, it can be shown that the events of two cases (i-1) and (i-2) occur

with equal probabilities. Hence, a deduplication event gives an adversary no information of the

existence of F in the storage. On the other hand, for F with tF = 2 or tF = d, the adversary

can easily learn the existence of F by uploading just one or d copies of the file. Note that the

two events (ii) and (iii) are mutually exclusive and each event happens with probability 1
d−1 .

As a result, with probability 1 − 1
d−1 , the scheme described above leaks no information which

enables an adversary to distinguish between the case that a single copy of F was previously

uploaded, and the case that the file was not uploaded.
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Figure 4.2: Success probability of related-files attack against Harnik el al.’s scheme

Related-files attack

The security of Harnik et al.’s scheme stands on an implicit assumption that all files are

stored independently. This assumption is too strong, because in real environments some files

are likely to be correlated to each other and thus stored at the same server together. For

instance, some executable files may coexist to construct a software package. We also consider

some document files with the same content in different formats, such as doc, pdf, and xml,

coexist to support various document viewers.

Related-files attack exploits this correlations among files. By uploading not only F but

also other files related to F , the adversary can infer the existence of F with high probability.

For Harnik et al.’s scheme, the probability that the threshold of at least one is 2 or d among n

related files is p = 1−
(
1− 1

d−1

)n
and the probability increases as n increases. Fig. 4.2 shows

the relationship between the number of related files n and the probability p that the adversary

successfully gets information of F via related-files attack varying the security parameter d. For

example, with 10 files related to F (i.e., n = 10), the adversary can determine the existence of

F with probability p = 0.45 (assume that d = 18), which is much higher than p = 0.06 with no

related files (i.e., n = 1).

4.2.2 Related-files attack on Lee et al.’s scheme

Lee et al. [45] observed that the probability of Harnik et al.’s scheme that information of

the existence of a file is leaked to the adversary is not negligible in security parameter d, and
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Figure 4.3: Success probability of related-files attack against Lee el al.’s scheme

proposed a security-enhanced version of Harnik et al.’s solution.

The protocol description

In Lee et al.’s scheme, a threshold tF is initially set to d for every file F , where d is a

security parameter. For each upload of a copy of F , the server randomly chooses r ∈ {0, 1, 2}
and calculates tF = tF − r instantly. Then, as similar to Harnik et al.’s scheme, deduplication

occurs at client side if cF ≥ tF or the copy of F is uploaded by the identical user; otherwise,

deduplication is performed at sever-side. Fig. 4.1(b) illustrates this protocol.

Let us denote the counters of the number of events, r = 0, r = 1 and r = 2, to w, y and z,

respectively. Then, the counter can be represented as cF = w+ y+ z. Client-side deduplication

occurs if

cF ≥ d− {(0 · w) + (1 · y) + (2 · z)}

≥ d− {y + (2 · z)}.

The above equation can be simplified as follows:

w + (2 · y) + (3 · z) ≥ d.

For analyzing the security, let us consider the following two cases.
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• P: The adversary finds out that a deduplication event occurs after uploading ⌈d3⌉ copies
of F . The probability of this event depends on the characteristic of d as follows:

i) If d is a multiple of 3 (i.e., d = 3k, where k is a positive integer). Then, Pr{P} =
(
1
3

)k
.

ii) If d is not a multiple of 3 (i.e., d = 3k + 1 or d = 3k′ + 2). Then,

Pr{P} = (2k + 3)

(
1

3

)k+1

+ (k′ + 2)

(
1

3

)k′+1

.

• Q: The adversary finds out that a deduplication event occurs after uploading d copies of

F . This is the case that w = d and y = z = 0. Thus, the probability is Pr{Q} =
(
1
3

)d
.

For better security, we select d as a multiple of 3 (i.e.,d = 3k, k > 1). Then, the probability

that the adversary learns information of the existence of F is

Pr{P or Q} =
(
1

3

)k
+

(
1

3

)d
=

(
1

3

)d/3
+

(
1

3

)d
,

which is negligible in the security parameter d.

Related-files attack

The security of Lee et al.’s scheme [45], however, stands on the same assumption as Harnik

et al.’s method that files are not related to each other and stored independently. The probability

that for at least one out of n related files, the event P or Q occurs is p = 1−
{
1−

(
1
3

)d/3 − (
1
3

)d}n
,

which increases as the number of related files increases. Fig. 4.3 shows the relationship between

the number of related files n and the probability p varying the security parameter (d). As shown

through the graph in Fig. 4.3, Lee et al.’s solution is still vulnerable to related-files attack.

4.3 The Proposed Protocol

4.3.1 Background

The notion of differential privacy was introduced by Dwork et al.[54][55][56]. It is a standard

privacy notion for release functions over sets of data items (or databases). Differential privacy

is defined for randomized functions (i.e., distributions over the set of possible outputs) and can

be formally stated as follows.

Definition 3. A randomized function Q : D → R satisfies ϵ-differential privacy if for all r ∈ R
and for all data sets D and D′ that differ in a single item

Pr{Q(D) = r} ≤ eϵ · Pr{Q(D′) = r}.
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The definition states that the probability of any result of the randomized function Q is

almost independent of whether any individual item among the data set is present in the input.

For each item, it is almost as if the item was not used in the computation of the function, a very

strong baseline for privacy. The privacy guarantee assumes that each data item is independent

of the rest and applies to all aspects of the item.

Differential privacy is actually preserved by adding noise to the output of the function.

Intuitively, the noise introduces uncertainty about the real value of the output, which naturally

makes the real values of the inputs also uncertain to an adversary. The basic method for

implementing differential privacy mechanism is to use Laplacian noise, which is a symmetric

exponential distribution [54]. The mechanism is additive, i.e., given a function it approximates

its output by computing the function exactly and then adding noise sampled from a specific

distribution.

Comparing with alternative privacy definitions, differential privacy gives strong security

guarantee. Unlike the notion of differential privacy, many other privacy notions do not provide

a direct guarantee or are even vulnerable to auxiliary information that an adversary might

know. For example, the notion of k-anonymity [57], which provides security on releasing data

such that the identity of individual data items remains private, is weaker than the notion of

differential privacy. That is, k-anonymity is provided if the information for each item cannot

be distinguished from at least k-1 other items. However, this definition gives no guarantee if

the adversary has knowledge of some auxiliary information about the data sets [58].

4.3.2 System and Attack Model

We consider a general cloud storage service model that involves the following three entities

(see Fig. 4.4).

• Cloud storage server (CSS): This is owned by a cloud service provider and provides many

storage resources as a service to its users through WAN (or the Internet).

• Storage gateway (GW): This is a local disk attached network server that resides at the

customer’s on-premises site and provides an interface to access data at CSS. Every user

request for a file upload or download is processed by GW, which in turn performs data

deduplication and transfers the actual user data to CSS.

• Users (U): A user outsources its data to CSS through GW. Data deduplication becomes

transparent to U since the process is performed on GW.

An adversary A, acting as a user by creating its own account or compromising the accounts

of others, interacts with GW by uploading or downloading some data. During the interactions, A
could view all network traffic and its content between A (including compromised users) and GW.

We assume that a connection from GW’s WAN interface to CSS is encrypted by SSL (Secure
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Figure 4.4: The system model of the proposed protocol

Socket Layer) or TLS (Transport Layer Security) protocol. As recent results [59][60] show that

SSL/TLS keeps the content of communications securely from being sniffed by adversaries unless

some flaws in its implementation exist, A can monitor only the amount of traffic at the link

between GW and CSS, but not its content. The goals of A are (1) to determine the existence of

a file of interest in CSS, and eventually (2) to learn the content of the file. A may have auxiliary

information that several files coexist with the file of interest. Monitoring the network traffic, A
will mount a sophisticated traffic analysis attack with powerful computing resources to achieve

its goals.

4.3.3 Design Goal

According to the attack model described above, A views a deduplication as an oracle and

will use it when mounting the attack. That is, A continues file uploading and observing the

amount of network traffic that eventually occurs during the attack. Thus, we can model the

deduplication as a function QS(F ), which on storage S takes a file F as input and outputs the

amount of network traffic.

Definition 4. We say that storage S is a set of files in CSS. A randomized function QS(F )

gives ϵ-differential privacy if for all storages S1 and S2 that differ in a single file F (i.e., S2 =

S1
∪
{F}) and all 0 ≤ τ ≤ |F |,

Pr{QS2(F ) = τ} ≤ eϵ · Pr{QS1(F ) = τ} .

The proposed protocol is expected to achieve the following security and performance goals.
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• Single-file privacy (ϵ-differential privacy): The proposed protocol should give ϵ-

differential privacy so that A cannot distinguish between two storages S1 and S2, where

S2 = S1
∪
{F}. That is, the proposed protocol should prevent A from using deduplication

as a side channel.

• Related-files privacy: The proposed protocol should prevent A from obtaining any

information even when knowing some related files {F1, F2, ..., Fn} for any n > 1. That is,

A should not gain a higher advantage in distinguishing S1 from S2 = S1
∪
{F1, F2, ..., Fn}

than distinguishing it from S2 = S1
∪
{F}.

• Efficiency: Network traffic overhead that is caused by the proposed protocol should be

minimized. We also require that the proposed protocol should not significantly degrade

the system performance on GW.

4.3.4 Protocol Description

The proposed deduplication protocol is implemented on GW. The main idea is that: (1)

For hiding the deduplication from A, GW runs a differentially private algorithm when deciding

the volume of data to be sent to CSS; (2) for minimizing the network overhead, GW maintains a

queue, denoted as T , in which data accepted from U is temporarily stored before transmission,

and if needed, GW uses data from T as noise traffic instead of generating dummy traffic. The

proposed protocol is comprised of two operations: File Upload and File Download.

File Upload operation

U uploads a file F to GW. During this uploading, deduplication is not run and all bytes of

F are always sent to GW. Once F accepted, GW runs Algorithm 1 to perform deduplication

and transfer the data to CSS. Let us denote by {b1, b2, ..., b|F |} a sequence of bytes of F and

by {c1, c2, ..., c|T |} a sequence of bytes of data stored in T . The details of Algorithm 1 are as

follows.

1. Put F = {b1, b2, ..., b|F |} into the local disk of GW.

2. Communicate with CSS to check if F has already been stored in CSS. In detail, Check-

FileExists() algorithm calculates h(F ), a hash value of F , and sends h(F ) to CSS. Then,

it receives an answer FileExists ∈ {true, false} from CSS.

3. Compute τ (0 ≤ τ ≤ |F |), the amount of data to be actually transferred to CSS. In

order to determine τ , GetTransferSize() (Algorithm 2) uses Poi(λ), which generates

a Poisson-distributed random number from a finite interval [0, 1] with a mean λ.

4. If F does not exist in CSS (i.e., a deduplication event does not occur), all bytes of F

should be transferred to CSS. A subset of bytes {b1, b2, ..., bτ} of F is moved to Buffer
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Algorithm 1

1: procedure Upload(F )

2: Buffer ← ∅
3: FileExists ← CheckFileExists(F )

4: τ ← GetTransferSize(|F |, FileExists)
5: if FileExists is false then

6: Buffer ← {b1, b2, ..., bτ}
7: Enqueue(T, {bτ+1, bτ+2, ..., b|F |}) ▷ Put |F | − τ bytes of F into T

8: else

9: {c1, c2, ..., ct} ← Dequeue(T, τ) ▷ Get τ bytes of data from T

10: Buffer ← {c1, c2, ..., ct}
11: if t < τ then

12: DummyBytes
R←− {0, 1}(|τ |−|t|)×8

13: Buffer ← Buffer || DummyBytes

14: end if

15: end if

16: Transfer(Buffer) ▷ Send data in Buffer to CSS

17: end procedure

from the local storage for transmission. The remaining bytes {bτ+1, bτ+2, ..., b|F |} are then
enqueued into T by running Enqueue() algorithm.

5. If F already exists in CSS (i.e., a deduplication event occurs), it is not necessary to

transfer F to CSS. Hence, τ bytes of data {c1, c2, ..., ct} are dequeued from T by running

Dequeue() and then put onto Buffer for transmission. If there are not enough data in

T (i.e., t < τ), dummy bytes are randomly generated and padded to Buffer so that the

total size becomes equal to τ .

6. Finally, the data in Buffer are sent to CSS by running Transfer().

File Download operation

U sends GW a request for downloading F . Upon receiving, GW retrieves F in the storage

of CSS. If found, GW returns the requested file F to U.
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Algorithm 2

1: procedure GetTransferSize(|F |, FileExists)
2: if FileExists is true then

3: α
R←− Poi

(
1+ϵ
2

)
▷ ϵ is a privacy parameter (0 ≤ ϵ ≤ 1)

4: else

5: α
R←− Poi

(
1−ϵ
2

)
6: end if

7: τ ← ⌈α|F |⌉ ▷ |F | is the size of F in bytes and 0 ≤ α ≤ 1

8: return τ

9: end procedure

4.4 Evaluation

4.4.1 Security Analysis

We analyze the security of the proposed protocol in terms of two requested security prop-

erties. For analysis, the proposed protocol is modeled as a randomized function QS(F ) in this

section. Suppose that an adversary algorithm A tries to learn information on the file of interest

in CSS.

Single-file privacy

A gets no information on the occurrence of deduplication by monitoring the link between

A and GW since all bytes of the file are always sent to GW at the link. At WAN link of GW,

the content of the network is not visible to A due to encryption, thus A has no option but to

conduct traffic analysis by querying QS(F ). The output of QS(F ), denoted by τ in the previous

section, is actually determined by Algorithm 2. By the definition of Poisson distribution,

Pr{Poi(λ) = x} = λxe−x/x!. It can be shown that the proposed protocol satisfies the security

that is described in Definition 4 and hence gives single-file privacy.

Pr{QS2(F ) = τ}
Pr{QS1(F ) = τ}

=
Pr

{
Poi

(
1−ϵ
2

)
= α

}
Pr

{
Poi

(
1+ϵ
2

)
= α

} =

(
1−ϵ
2

)α(
1+ϵ
2

)α e−1+ϵ
2

e
−1−ϵ

2

=

(
1− ϵ
1 + ϵ

)α
eϵ ≤ eϵ.

Single-file privacy means that for any two storages that differ on a single file, the proposed

protocol will release approximately the same volume of network transmission on both storages.

This property guarantees that the presence or absence of an individual file will not affect the

output of the proposed protocol significantly, and thus, prevents the adversary A from using

deduplication as a side channel.
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Figure 4.5: Cumulative file size distribution in the data set

Related-files privacy

Let us denote three storages: S1, S2 = S1
∪
{F}, and S3 = S1

∪
{F1, F2, ..., Fn}, where

F ∈ {F1, F2, ..., Fn}. It is obvious that the computation of QS(F ) is independent of the rest of

the files, and Pr{QS2(F ) = τ} = Pr{QS3(F ) = τ}. The ratio of probabilities is therefore

Pr{QS2(F ) = τ}
Pr{QS1(F ) = τ}

=
Pr{QS3(F ) = τ}
Pr{QS1(F ) = τ}

.

This result implies that the statistical difference ofQS(F ) between S1 and S3 is always equal

to the difference between S1 and S2. Hence, the advantage that A succeeds in distinguishing

between S1 and S3 (i.e., with knowledge of related files {F1, F2, ..., Fn}) is not greater than the

probability of distinguishing between storages S1 and S2, which differ in a single file.

4.4.2 Experiments

We conducted experiments for evaluating the effectiveness and efficiency of the proposed

protocol. Our test bed consisted of two servers, which acted as GW and CSS, with an Intel

Core processor i5 running at 2.8 GHz and 4 GB RAM memory with a 2 TB hard disk. One

server acting as the GW is located at local area network and connected with a client PC. The

other server is located remotely over the Internet and acting as the CSS. The data set used in

our experiments consists of files including Windows system files, office documents, and media

files, totaling up to 3 TBs. Fig. 4.5 shows cumulative file size distribution of the data set.

– 53 –



Figure 4.6: Network transmission overhead over time

We split the data set into two groups of equal size and put one group into CSS and used the

other group for uploading at client side during the experiment. Uploading behavior by users

was simulated such that the upload event followed exponential distribution with its frequency

varying from 10 to 600 uploads per 10 min.

Network efficiency

We first evaluated the network efficiency by measuring traffic overhead and comparing the

measurements with the previous randomized schemes of Harnik et al. and Lee el al.. For the

experiment, we simulated the previous schemes with all network traffic passing through GW.

In the proposed and the previous schemes, traffic overhead is measured at the outgoing (WAN)

interface of GW to CSS. Fig. 4.6 shows the amount of accumulated traffic overhead over time

with varying security parameters. “Traffic overhead” in Fig. 4.6 refers to the amount of extra

bandwidth consumption used to obfuscate the occurrence of deduplication. In the proposed

protocol, dummy traffic is generated and transferred to CSS only if there are not enough data

in T . Hence, the extra bandwidth consumption is quite small as compared to that of the

previous schemes, in which copies of duplicate data are always transferred until it reaches the

threshold. With greatest security guarantee (ϵ = 0), the proposed protocol incurs 48 GBs in

total, which is about 13% of the traffic overhead incurred by the previous schemes with the
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lowest security guarantee (d = 3).

System performance

We also evaluated the system performance on GW by measuring two metrics: required

local disk capacity and average processing time for each request. Both metrics are sufficient

to measure the required system resources on GW for running the proposed protocol. For

comparison, we considered a batch algorithm that is similar to the proposed protocol but

performs in a naive way. The batch algorithm immediately accepts user files and performs

deduplication but transfers them to CSS periodically every given batch interval. For ease of

comparison, we ran the proposed protocol such that at every batch interval all remaining data

in T were uploaded to CSS. Fig. 4.7 and 4.8 shows two measurements under different batch

intervals 60 and 120 min, respectively with varying upload frequencies. In Fig. 4.7, “Max

storage” refers to the greatest amount of data stored in the local disk on GW during the

experiment, which indicates the disk capacity required to run these schemes. In Fig. 4.8, “Avg.

processing time” refers to average time taken for each upload request to complete its upload

to CSS. The results of this experiment indicate that the proposed protocol uses a decreasing

amount of system resources on GW as the number of users (i.e., upload frequency) increases as

compared to the batch algorithm.

4.5 Summary

In order to achieve cost savings of network bandwidth and disk storage, cloud storage

service providers apply client-side (or source-based) data deduplication techniques. However,

deduplication can be used as a side channel by adversaries who try to obtain sensitive informa-

tion of other users’ data. Several solutions that have been proposed to prevent such information

leakage are based on a strong assumption that all individual files (or data) are independent of

each other.

Observing this assumption, we proposed new attack, which is called related-files attack, to

the previous approaches. In order to mitigate such an attack, we proposed a storage gateway

based secure client-side deduplication protocol. A storage gateway is a network appliance that

provides access to the remote cloud server and simplifies interactions with cloud storage services,

and is used in various cloud service delivery models such as public, private and hybrid cloud

computing. The proposed solution, by utilizing the storage gateway as an important component

in the system design, achieves greater network efficiency and architectural flexibility while also

reducing the risk of information leakage.

For more robust security guarantee, we applied a differential private mechanism to the

proposed protocol. Differential privacy is a security notion that has been used for designing

privacy enhanced databases. By exploiting a differential private mechanism, the proposed pro-

tocol strongly guarantees that the presence or absence of individual files in the cloud storage is
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hard to infer from any side channel attacks including related-files attack that has been proposed

in the chapter.

For validation of the effectiveness and efficiency of the proposed protocol, we conducted

several experiments using real data sets. The network efficiency and the system performance of

the proposed protocol were evaluated by measuring traffic overhead, required local disk capacity

and average processing time for each request. The experiments showed that the proposed

protocol outperforms the previous approaches.
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Figure 4.7: Storage overhead (b refers to batch interval in minutes)

Figure 4.8: Average processing time (b refers to batch interval in minutes)

– 57 –



Chapter 5. Security-enhanced Proof of Storage

with Deduplication

5.1 Motivation and Contributions

In terms of cloud storage security, there have been three important security properties:

• Provable Data Possession (PDP): This property allows a cloud storage client to verify the

integrity of its outsourced data in more efficient way than the straightforward solution

that downloads the whole data for verification. The notion of PDP was introduced by [25]

and has been addressed in various ways [30][31][32].

• Proof of Retrievability (POR): This property is a compact proof by a cloud storage server

to a client that a outsourced data is intact, that the client can fully recover it. That is, it

ensures that the cloud storage client can actually recover the outsourced data in the cloud

server. Compared to PDP, this property uses Error Correction/Erasure Codes to tolerate

the damage to a part of the outsourced data. The notion of POR, which was introduced

by [24], has been addressed in various ways [26][27][28][29].

• Proof of Ownership (POW): This property lets a cloud storage client efficiently prove

to a cloud server that the client actually holds a data (or file), rather than just short

information about it, such as a hash value. The notion of POW was introduced by [20]

and has been extended in various ways [48][49][50][61].

The notions of PDP and POR have been introduced for detecting the corruption of out-

sourced data in the cloud storage, while the notion of POW is for enabling the storage server to

use data deduplication techniques more securely. These two aspects seem to be to the opposite

of each other. However, it is known that public verifiability that offered by PDP/POR can be

used to design a POW scheme [62].

Based on the insight of exploiting public verifiability, a single scheme that couples the

notions of PDP/POR and POW can be built. Proof of Storage with Deduplication (POSD),

which is proposed by Zheng et al. [62], is the first scheme that achieves these three security

properties together. The POSD scheme makes not only a client to be assured the integrity of

its outsourced data, but also a storage server to take advantage of deduplication techniques in

a secure manner.

In the POSD scheme, the verification of auditing and deduplication protocol entirely depend

on public keys, which are created and provided by cloud storage clients. Hence, the validity

of the scheme is implicitly based on an assumption, which is called random key assumption
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in the rest of this chapter, that all clients are honest in terms of generating their keys. In

the cross-multiple users and the cross-domain environment of the cloud computing, however,

such an assumption is unrealistic. Eliminating the random key assumption may cause cloud

storage systems that utilize the POSD scheme to face a new security threat that has not been

considered before. Unfortunately, the scheme has a serious security breach under new attack

model in which malicious clients are allowed to dishonestly manipulate their keys.

In this chapter, the security weakness of the POSD scheme is presented. More specifically,

it is shown that the scheme fails to satisfy two security requirements, server unforgeability and

(κ, θ)-uncheatability, under new attack model that is very reasonable and effective. A counter-

measure against this attack is provided by modifying the scheme such that the client-created

keys are blended with the random values contributed by the storage server. The proposed solu-

tion actually weakens the client’s capability to control their keys. The modification is minimized

so that our scheme preserves the efficiency while providing more robust security.

This chapter is organized as follows: In Section 5.2, the POSD scheme is briefly reviewed.

In Section 5.3, new attack model and some attack scenarios are presented. In Section 5.4, the

proposed countermeasure against the attack is described. Finally, in Section 5.5, this chapter

is summarized.

5.2 Proof of Storage with Deduplication

In this section, a brief review of the POSD [62] scheme including the cryptographic back-

ground, system model and security requirements are presented.

5.2.1 Preliminaries

Computational Diffie-Hellman (CDH) assumption

Let g, gw, h ∈ G be chosen uniformly at random. The CDH problem is to compute hw. The

CDH assumption states that no PPT algorithm can solve the CDH problem with non-negligible

advantage.

Discrete Log (DLOG) assumption

The DLOG problem is to find w such that gw = h, given any two random elements g, h ∈ G.

The DLOG assumption states that no PPT algorithm can solve the DLOG problem with non-

negligible advantage. Note that the DLOG assumption is weaker than the CDH assumption.

5.2.2 System Model

In the POSD scheme, we consider a system that consists of the following three participants.

– 59 –



• Cloud storage server: It provides abundant storage resources to the cloud storage clients.

The server also has relevant assurance procedures, by which the clients can verify the

integrity of their outsourced data. For saving the storage space, the cloud storage server

can utilize data deduplication techniques.

• Cloud storage clients: They outsource their own data to the cloud storage server via secure

channel. The clients want their data to be stored securely, while allowing the server to

perform data deduplication operation.

• Auditor: It is a third party which is allowed to check the integrity of the client’s outsourced

data. Any client in possession of an outsourced data may act as an auditor of that specific

data.

5.2.3 Definition and Security requirements

Built on the definitions of PDP/POR[25][24] and POW[20], the POSD scheme is defined as

follows:

Definition 5. A POSD scheme consists of the following tuple of probabilistic polynomial algo-

rithms (KEYGEN, UPLOAD, AUDITINT, DEDUP).

KEYGEN: It takes a security parameter λ as an input, and outputs two pair of public/private

keys (PKint, SKint) and (PKdup, SKdup), where PKint is known to public and SKint is the corre-

sponding private key of a client, PKdup is made public and SKdup is the server’s corresponding

private key.

UPLOAD: This is a data (or file) uploading protocol running by a cloud storage server and

a client. For uploading a new data file F to the cloud storage server, the client takes as inputs

a unique file identifier fid as well as the secret key SKint, and generates Tagint, which can be

used to audit the integrity of F later. Upon receiving a tuple (fid, F, Tagint) from the client,

the server calculates Tagdup using SKdup and stores them in the storage.

AUDITINT: This is the auditing protocol for checking the data integrity, which is run by a

cloud storage server and an auditor. The protocol can be written formally as follows:

b← (AUDITOR(fid,PKint)⇐⇒ S(fid,F,Tagint))

, where b ∈ {0, 1} and S denotes the cloud storage server. The auditor takes the file identifier fid

and the corresponding public key PKint as inputs. Also, the server takes the file F corresponding

to fid and the file’s Tagint as inputs. At the beginning of the protocol, the auditor sends a

challenge to the server and the server computes and sends back a response. If the response is

valid with respect to the challenge, the auditor outputs 1, and 0 otherwise.
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DEDUP: This is the data deduplication protocol running by a cloud storage server and a

client. The protocol can be written formally as follows:

b← (S(fid,Tagdup, SKdup,PKdup)⇐⇒ C(fid,F))

, where C denotes a cloud storage client, who is about to outsource a data file F. The server

sends a challenge to the client, which returns a response value that is generated using F and

its relevant information. The server verifies the response value using Tagdup, PKdup and SKdup,

and then outputs 1 if it is successful, and 0 otherwise.

The POSD scheme is required to satisfy the two security properties: server unforgeability,

(κ, θ)-uncheatability.

Server unforgeability : No cheating server can fool an honest client (or an auditor), who is to

verify the outsourced file F, by presenting F′ ̸= F with non-negligible probability. This security

property can be defined formally as follows:

Definition 6. Let us consider the following game between an adversary A and a challenger. In

the game, A plays the role of the cloud server, and may control many compromised clients. The

challenger acts as an honest client during the game. The POSD scheme is server unforgeable if

the winning probability for any polynomial algorithm A is negligible in λ.

Setup phase: KEYGEN algorithm is executed to generate (PKint,SKint) and (PKdup,SKdup).

PKint and PKdup are known to public, while SKint and SKdup are given to the challenger and A,
respectively. Note that the challenger keeps the private key SKint secret from others including

A.

Challenge phase: At this phase, A does the following.

• A adaptively chooses a file F ∈ {0, 1}∗ and runs the UPLOAD protocol with the chal-

lenger. The process may be repeated for polynomial times. At the end of the execution,

A obtains (fid, F, Tagint) and the challenger keeps a record of Q = {fid}.

• A may execute AUDITINT protocol with the challenger with respect to any fid ∈ Q
chosen by the challenger, and execute DEDUP protocol with respect to some file.

Forgery phase: Finally, A outputs an fid ∈ Q corresponding to F. The adversary A wins the

above game if for any F′ ̸= F,

1← (AUDITOR(fid,PKint)⇐⇒ A(fid,F′, ·)).
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(κ, θ)-uncheatability : Given a file F with min-entropy κ, no cheating client, who gets up to

θ-bit entropy of F, can fool the server with non-negligible probability. This security property

can be defined formally as follows:

Definition 7. Let us consider the following game between an adversary A and a challenger,

where A plays the role of (compromised) clients, and the challenger acts as the server and

an honest client. The POSD scheme is (κ, θ)-uncheatable if the winning probability for any

polynomial algorithm A is negligible in λ.

Setup phase: KEYGEN algorithm is executed to generate (PKint,SKint) and (PKdup,SKdup).

PKint and PKdup are known to public. For a compromised client, the corresponding SKint is

given to A, while both SKdup and SKint corresponding to the honest client (the challenger) are

kept secret from A. Then, the challenger chooses a file F of κ-bit min entropy and its unique

fid. The challenger honestly executes the UPLOAD protocol by acting the roles of both the

client and the server. During the process, A can observe and obtain the public information.

Challenge phase: In order to inter the information of F, A runs the UPLOAD, AUDITINT

and DEDUP protocols with the challenger, while also utilizing computing resources of com-

promised clients. At the end of this phase, A may learn up to θ-bit entropy of F.

Forgery phase: A outputs some F′. The adversary A wins the game if

1← (S(fid,Tagdup,SKdup,PKdup)⇐⇒ A(fid,F′)).

5.2.4 The Scheme Construction

Let p, q be two sufficiently large primes and G, GT be cyclic groups of order q. Let g ∈ G be

a generator of G and e : G→ GT be an admissible bilinear map. Let F be a data file consisting

of n blocks and each block Fi (1 ≤ i ≤ n) consist of m symbols in Zq. Let us denote each

symbol of Fi as Fij for 1 ≤ j ≤ m. Let fid be a unique file id, and let H1 : {0, 1}∗ → G and

H2 : {0, 1}∗ → Zq be hash functions. The POSD scheme consists of the following probabilistic

and polynomial algorithms and protocols:

KEYGEN: This algorithm generates two pairs of public key and private key. A client runs

this protocol as follows:

1. Choose v1 and v2 randomly from Z∗
p such that the orders of subgroups generated by v1

and v2 are q. Choose sj1 and sj2 randomly from Z∗
q and set zj = v

−sj1
1 v

−sj2
2 for 1 ≤ j ≤ m.

2. Choose u uniformly at random from G and w from Z∗
q . Then, set zq = gw, where g is a

generator of G.
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3. Set the public key PKint={q, p, g, u, v1, v2, z1, z2, . . . , zm, zg} and the private key SKint=

{(s11, s12) , . . . , (sm1, sm2), w}.

4. Set PKdup=PKint and SKdup=null.

UPLOAD: A client who is to outsource the file F and the server run this protocol as follows:

1. For each block Fi (1 ≤ i ≤ n), the client chooses ri1, ri2 at random from Z∗
q and computes

xi = vri11 vri22 mod p,

yi1 = ri1 +

m∑
j=1

Fijsj1 mod q,

yi2 = ri2 +

m∑
j=1

Fijsj2 mod q,

ti =
(
H1(fid ∥ i)uH2(xi)

)w
(∈ G) .

2. The client sends (fid, F, Tagint) to the server, where Tagint={(xi, yi1, yi2, ti)1≤i≤n}.

3. The server receives (fid, F, Tagint) and sets Tagdup=Tagint.

AUDITINT: An auditor, which can be the client itself, and the server run this protocol as

follows:

1. The auditor chooses a set of c elements I={α1, α2, . . . , αc}, where αi ∈ N, and chooses

a set of coefficients β = {β1, β2, . . . , βc}, where βi ∈ Z∗
q . The auditor sends a challenge

chal = (I, β) to the server.

2. Upon receiving chal, the server computes

µj =
∑
i∈I

βiFij mod q (1 ≤ j ≤ m),

Y1 =
∑
i∈I

βiyi1 mod q,

Y2 =
∑
i∈I

βiyi2 mod q,

T =
∏
i∈I

tβii (∈ G)

and sends resp=({µj}1≤j≤m, {xi}i∈I,Y1,Y2,T) to the auditor.
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3. Upon receiving resp, the auditor computes :

X =
∏
i∈I

xβii mod p,

W =
∏
i∈I

H1(fid ∥ i)βi

and verifies

X
?
= vY1

1 vY2
2

m∏
j=1

z
µj
j mod p (5.1)

e(T, g)
?
= e(Wu

∑
i∈I βiH2(xi), zg) (∈ GT ) . (5.2)

If both hold, return PASS; otherwise, return FAIL.

DEDUP: The server and the client run this protocol as follows:

1. The server generates a challenge chal = (I, β), where I={α1, α2, . . . , αc} and β = {β1, β2, . . . , βc}
as the AUDITINT protocol, and sends it to the client.

2. Upon receiving chal, the client computes

µj =
∑
i∈I

βiFij mod q , 1 ≤ j ≤ m

and sends resp = ({µj}1≤i≤m) to the server.

3. Upon receiving resp, the server verifies

X
?
= vY1

1 vY2
2

m∏
j=1

z
µj
j mod p (5.3)

e(T, g)
?
= e(Wu

∑
i∈I βiH2(xi), zg) (∈ GT ) , (5.4)

where Y1,Y2,W,X and T are computed from Tagdup={(xi, yi1, yi2, ti)i≤i≤n}. If both hold,

return PASS; otherwise, return FAIL.

5.3 Weakness of the POSD scheme

In this section, new attack model against the POSD scheme is described and some practical

attack scenarios are presented.
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5.3.1 Weak key Attack

With the elimination of the random key assumption, a malicious client may create the

manipulated keys of his/her own dishonestly rather than executing the KEYGEN algorithm.

Some manipulated keys, which we call weak keys, can incur a security breach of the POSD

scheme. The weak keys can be constructed as follows:

1. ξ is chosen at random from Z∗
p such that the order of ξ is q.

2. ψ1, ψ2, . . . , ψm are chosen at random from Z∗
q .

3. ξ and ψj (1 ≤ j ≤ m) are assigned as follows:

v1 = ξ, v2 = ξ−1,

sj1 = sj2 = ψj (1 ≤ j ≤ m).

4. The rest of key components g, u, w, z1, z2, . . . , zm and zg are generated correctly according

to the KEYGEN algorithm.

5. The weak keys are formed as:

P̂Kint = P̂Kdup = {q, p, g, u, v1, v2, z1, z2, . . . , zm, zg},

ŜKint = {(s11, s12), . . . , (sm1, sm2), w},

ŜKdup = null.

Under new attack model that allows to exploit the weak keys, a malicious client can break

two security properties, server unforgeability and (κ, θ)-uncheatability, of the POSD scheme.

The details are described below.

Breaking server unforgeability

We show that under the weak key attack, an auditor will be fooled into assuring the

integrity of an outsourced file F even if a storage server does not have the correct file but an

arbitrary F′(̸= F). Let us denote an auxiliary audit information computed from the weak keys

as T̂agint. Suppose that an adversary A, which acts as a client, generates a weak key P̂Kint and

ŜKint. A begins uploading a tuple (fid,F′, T̂agint), where F′ ̸= F and T̂agint, fid is for F, to the

storage server. An auditor who is to verify the integrity of the file F will start the AUDITINT

protocol by sending the storage server a challenge (I, β), where I={α1, α2, . . . , αc} and β =

{β1, β2, . . . , βc}. Upon receiving the challenge, the storage server computes the following with

F′ and T̂agint:
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µ′j =
∑
i∈I

βiF
′
ij mod q (1 ≤ j ≤ m),

Y1 =
∑
i∈I

βiyi1 mod q,

Y2 =
∑
i∈I

βiyi2 mod q,

T =
∏
i∈I

tβii (∈ G) ,

and sends resp =
(
{µ′j}1≤j≤m, {xi}i∈I,Y1,Y2,T

)
to the auditor. In the verification phase,

Eq. (5.1) holds as follows:

vY1
1 vY2

2

m∏
j=1

z
µ′j
j

= v
∑

i∈I βiy1i
1 v

∑
i∈I βiy12

2

m∏
j=1

(
v
−sj1
1 v

−sj2
2

)∑
i∈I βiF

′
ij

= v
∑

i∈I βiy1i
1 v

∑
i∈I βiy12

2

m∏
j=1

ξ(ψj−ψj)
∑

i∈I βiF
′
ij

= v
∑

i∈I βi(ri1+
∑m

j=1 FijSj1)
1 v

∑
i∈I βi(ri2+

∑m
j=1 FijSj2)

2

=
(
v
∑

i∈I βiri1
1 v

∑
i∈I βiri2

2

)
ξ
∑

i∈I

∑m
j=1 βiFijψj−

∑
i∈I

∑m
j=1 βiFijψj

= (vri11 vri22 )
∑

i∈I βi

=
∏
i∈I

xβii

= X.

Eq. (5.2) also holds since the resp is valid and any xi, yi1, yi2 and ti (1 ≤ i ≤ n) of the

Tagint are not forged in the attack. Thus, the verification process returns PASS, which indicates

that the POSD scheme fails to satisfy server unforgeability.

Breaking (κ, θ)-uncheatability

Suppose that an adversary A has uploaded a file F of κ-bit min-entropy in the form of a

tuple (fid,F, T̂agint) to the storage server, and another client B executes the DEDUP protocol

to take an ownership of F. Upon receiving of a challenge (I, β) from the server, B picks a dummy

F′ and computes

µ′j =
∑
i∈I

βiF
′
ij mod q (1 ≤ j ≤ m).
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Then, B sends resp =
(
{µ′j}1≤j≤m

)
to the server. In the verification phase, Eqs. (5.3)

and (5.4) hold as the calculations are the same as the aforementioned case of breaking server

unforgeability. Note that even without knowing any information of F (i.e., θ = 0), B can pass

the DEDUP protocol. Hence, the POSD scheme fails to satisfy (κ, θ)-uncheatability.

5.3.2 Attack Scenario

Exploiting the weak keys, several practical attacks against storage systems using the POSD

scheme are feasible. Some plausible attack scenarios are listed below.

Malware Distribution

A malware writer can use a storage server as a malware distribution platform by exploiting

the weak keys. For clarity, let us denote the malware writer as A, which may play a role of

a client in the POSD scheme. In order to deploy the malware effectively, A may use a setup

file F of a popular software like Acrobat Reader or Google Chrome for hosting the malware. A
modifies F into F′ by attaching the malware to F and changing the program’s execution flow.

Executing the UPLOAD protocol, A uploads a tuple (fid, F′, T̂agint), where fid and T̂agint is

for F, to the storage server.

Any (victim) client, denoted as C, who wants to outsource F to the storage server will

execute the DEDUP protocol with the server. The DEDUP protocol will pass though the

server actually has only F′. As a result of the protocol, C takes an ownership of file F. When

downloading, however, C will get F′ instead of F. In order to verify the integrity of the outsourced

file, C or an auditor may perform the AUDITINT protocol with the server. However, the

protocol will also pass though the server has modified version of F.

Unintended CDN

A storage server utilizing the POSD scheme also can be used as a CDN (Content Distribu-

tion Network) among malicious clients. Suppose that there are two malicious clients, A and B:
A owns a file F which is potentially huge and probably copyright violating like pirated movie

files, and wishes to send F to B who is not in possession of the file. Generating the weak key, A
uploads F to the storage server through the UPLOAD protocol. Then, B starts executing the

DEDUP protocol for F. Since B has no information of F, B may present a dummy F′, given

a challenge, to the storage server. The DEDUP protocol will pass though F′ ̸= F, and B can

take an ownership of F and eventually will download it. As noted in [20], the behavior of A
and B conflicts with the business model of the cloud storage server, which is meant to support

many uploads but few downloads (restores).
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5.4 Mitigation and Security Analysis

We present an improved POSD scheme by modifying the original scheme to mitigate the

weak key attack described in the previous section. Then, we give a security analysis of the

modified scheme.

5.4.1 Security-enhanced Scheme Construction

The security problem caused by the weak key attack comes from the fact that a client

is fully capable of controlling its key generation. Hence, our mitigation solution against the

attack is to weaken the client’s capability by blending parts of the keys with random values

contributed by the storage server. This solution requires only a slight modification of the

UPLOAD protocol, and KEYGEN, AUDITINT, DEDUP protocols remain same as those

of the original scheme. The modified POSD scheme is described as follows:

KEYGEN: This algorithm generates two pairs of public key and private key. A client runs

this protocol as follows:

1. Choose v1 and v2 randomly from Z∗
p such that the orders of subgroups generated by v1

and v2 are q. Choose sj1 and sj2 randomly from Z∗
q and set zj = v

−sj1
1 v

−sj2
2 for 1 ≤ j ≤ m.

2. Choose u uniformly at random from G and w from Z∗
q . Then set zq = gw, where g is a

generator of G.

3. Set the public key PKint={q, p, g, u, v1, v2, z1, z2, . . . , zm, zg} and the private key SKint=

{(s11, s12) , . . . , (sm1, sm2), w}.

4. Set PKdup=PKint and SKdup=null.

UPLOAD: The modified file uploading protocol is described as follows:

1. For each block Fi (1 ≤ i ≤ n), the client chooses ri1, ri2 at random from Z∗
q and computes

xi = vri11 vri22 mod p,

yi1 = ri1 +

m∑
j=1

Fijsj1 mod q,

yi2 = ri2 +
m∑
j=1

Fijsj2 mod q,

ti =
(
H1(fid ∥ i)uH2(xi)

)w
(∈ G) .

2. The client sends (fid, F, Tagint) to the server, where Tagint={(xi, yi1, yi2, ti)1≤i≤n}.
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3. Upon receiving (fid, F, Tagint), the server selects σj1 and σj2 uniformly at random from

Z∗
q for 1 ≤ j ≤ m, and computes with the corresponding public key PKint as follows:

z′j = zjv
−σj1
1 v

−σj2
2

(
= v

−sj1−σj1
1 v

−sj1−σj1
2

)
mod p.

For each block Fi, where 1 ≤ i ≤ n, the server computes

y′i1 = yi1 +
m∑
j=1

Fijσj1

= ri1 +
m∑
j=1

Fij(sj1 + σj1)

 ,

y′i2 = yi2 +
m∑
j=1

Fijσj2

= ri2 +
m∑
j=1

Fij(sj2 + σj2)

 ,

where y′i1, y
′
i2 are computed under mod q.

4. The server updates the corresponding public keys, PKint and PKdup, by replacing zj with

z′j for 1 ≤ j ≤ m and updates Tagint by replacing yi1, yi2 with y′i1, y
′
i2 for 1 ≤ i ≤ n. Then

the server sets Tagdup=Tagint.

AUDITINT: An auditor, which can be the client itself, and the server run this protocol as

follows:

1. The auditor chooses a set of c elements I={α1, α2, . . . , αc}, where αi ∈ N, and chooses

a set of coefficients β = {β1, β2, . . . , βc}, where βi ∈ Z∗
q . The auditor sends a challenge

chal = (I, β) to the server.

2. Upon receiving chal, the server computes

µj =
∑
i∈I

βiFij mod q (1 ≤ j ≤ m),

Y1 =
∑
i∈I

βiyi1 mod q,

Y2 =
∑
i∈I

βiyi2 mod q,

T =
∏
i∈I

tβii (∈ G)

and sends resp=({µj}1≤j≤m, {xi}i∈I,Y1,Y2,T) to the auditor.
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3. Upon receiving resp, the auditor computes :

X =
∏
i∈I

xβii mod p,

W =
∏
i∈I

H1(fid ∥ i)βi

and verifies

X
?
= vY1

1 vY2
2

m∏
j=1

z
µj
j mod p

e(T, g)
?
= e(Wu

∑
i∈I βiH2(xi), zg) (∈ GT ) .

If both hold, return PASS; otherwise, return FAIL.

DEDUP: The server and the client run this protocol as follows:

1. The server generates a challenge chal = (I, β), where I={α1, α2, . . . , αc} and β = {β1, β2, . . . , βc}
as the AUDITINT protocol, and sends it to the client.

2. Upon receiving chal, the client computes

µj =
∑
i∈I

βiFij mod q , 1 ≤ j ≤ m

and sends resp = ({µj}1≤i≤m) to the server.

3. Upon receiving resp, the server verifies

X
?
= vY1

1 vY2
2

m∏
j=1

z
µj
j mod p

e(T, g)
?
= e(Wu

∑
i∈I βiH2(xi), zg) (∈ GT ) ,

where Y1,Y2,W,X and T are computed from Tagdup={(xi, yi1, yi2, ti)i≤i≤n}. If both hold,

return PASS; otherwise, return FAIL.
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5.4.2 Security Analysis

Now we show that the modified scheme satisfies two security requirements, server unforge-

ability and (κ, θ)-uncheatability, even under the weak key attack.

Theorem 5. The modified POSD scheme is server unforgeable and (κ, θ)-uncheatable in the

random oracle model without the random key assumption.

Proof. The proof is presented through a hybrid argument. In each game, an adversary A plays

a role of the malicious client or the malicious server, and the challenger verifies the adversary

A in the role of the sever or a client (an auditor).

Game0: In Game0, A and the challenger run the original POSD scheme assuming that all

clients including A honestly execute the KEYGEN algorithm (the random key assumption).

A tries to fool the challenger by breaking the scheme within the polynomially bounded resources.

Given the random key assumption, A can break the scheme just with negligible probability, as

proved in [62]. Hence, the required security properties are preserved in Game0.

Game1: The only difference between Game0 and Game1 is that in Game1, the original POSD

scheme is replaced with the modified scheme, where additional values σj1, σj2 ∈ Z∗
q (1 ≤ j ≤ m)

are chosen at random and supplemented in the computation of the UPLOAD protocol. Since

the distributions of {σj1, σj2}1≤j≤m are statistically independent from that of the other variables

of the scheme, A has no additional advantage breaking the modified scheme even with the

knowledge of {σj1, σj2}1≤j≤m. Hence, the required security properties are preserved in Game1.

Game2: In Game2, we remove the random key assumption from Game1. A may try to break

the modified POSD scheme through generating weak keys. Suppose that A generates weak keys

such that v1 = ξ, v2 = ξ−1 and sj1 = sj2 = ψj for 1 ≤ j ≤ m and executes the UPLOAD

protocol with the server. At the end of the protocol, the corresponding P̂Kint and T̂agint (P̂Kdup

and T̂agdup) will be updated so that sj1, sj2 (1 ≤ j ≤ m) are blended with randoms generated

by the server. Hence, A can control just only v1 and v2 in the key generation.

We show that if A (in the role of the server) is still able to fool the auditor by making the

keys such that v1 = ξ and v2 = ξ−1, then there is an efficient algorithm to compute the DLOG

(Discrete Logarithm Problem) with respect to base ξ. Suppose that a DLOG-solving algorithm

B is given a ∈ Z∗
p as an instance of the DLOG problem with respect to base ξ. B can solve the

problem by interacting with A. The algorithm B is constructed as follows:

• First, B generates the keys as follows: B chooses sj1, sj2 at random from Z∗
q for 2 ≤ j ≤ m

and set
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v1 = ξ, v2 = ξ−1,

z1 = a, zj = v
−sj1
1 v

−sj2
2 (2 ≤ j ≤ m).

Then, B selects the remaining part of the keys according to KEYGEN algorithm.

• B answers H1 and H2 queries through modeling H1(·) and H2(·) as random oracles. In

addition, B may interact with A executing the UPLOAD, AUDITINT and DEDUP

protocols on behalf of the server.

• When B is asked to compute Tagint for F, B executes the following: For each Fi (1 ≤ i ≤ n),
B chooses yi1, yi2 at random from Z∗

q and computes

xi = vyi11 vyi22

m∏
j=1

z
Fij

j ,

ti =
(
H1(fid ∥ i)uH2(xi)

)w
.

Then, B returns Tagint={(xi, yi1, yi2, ti)1≤i≤n} to A.

• Eventually, A outputs a forgery of the original file F as resp=({µ′j}1≤j≤m,Y′
1,Y

′
2,T

′, {x′i}i∈I)
which is computed with F′ (̸= F) . Note that T′ = T and x′i = xi for all i ∈ I since other-

wise, A would be used for solving the CDH problem [62].

• Let us assume z1(= a) = ξx. The following verification holds since resp=

({µ′j}1≤j≤m,Y′
1,Y

′
2,T

′, {x′i}i∈I) is the valid response to the challenge:

v
Y′

1
1 v

Y′
2

2

m∏
j=1

z
µ′j
j

=

vY1
1 vY2

2

m∏
j=1

z
µj
j

vY′
1−Y1

1 v
Y′

2−Y2

2

m∏
j=1

z
µ′j−µj
j


= X

ξ(Y′
1−Y1)−(Y′

2−Y2)
m∏
j=1

z
µ′j−µj
j


= X

(
ξ(Y

′
1−Y1)−(Y′

2−Y2)ξ
∑m

j=2 (−sj1+sj2)(µ′j−µj)z
µ′1−µ1
1

)
= X

(
ξ(Y

′
1−Y1)−(Y′

2−Y2)+
∑m

j=2 (−sj1+sj2)(µ′j−µj)+x(µ′1−µ1)
)

= X.

Thus, B outputs the DLOG of a with respect to base ξ as
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x =
(Y′

1 −Y1)− (Y′
2 −Y2) +

∑m
j=2 (−sj1 + sj2)(µ

′
j − µj)

µ1 − µ′1
.

For the adversary A acting as the client in DEDUP protocol, it also can be shown that

the adversary can be converted into the DLOG-solving algorithm in similar manner. Thus, the

required security properties are still preserved in Game2.

5.5 Summary

In order to make cloud storage services to be secure while losing no efficiency, it is required

for the system to achieve all desired security properties; PDP (Provable Data Possession), POR

(Proof of Retrievability) and POW (Proof of Ownership). Proof of storage with deduplication

(POSD) [62] is the first scheme that fits that requirement. In this chapter, a security weakness

of the POSD scheme was addressed. Under new attack model that allows malicious clients to

exploit dishonestly manipulated keys, the POSD scheme fails to guarantee required security.

In order to mitigate the attack, a security-enhanced scheme against any attacks exploiting

the vulnerability was proposed. The main approach is to blend client’s keys with the server

contributed random values. By doing so, the proposed scheme keeps all the desired security

properties even under the new attack model. The proposed scheme was proved to guarantee

the security based on the CDH (Computational Diffie-Hellman) assumption and the DLOG

(Discrete Log) assumption in the random oracle model.
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Chapter 6. Concluding Remark

6.1 Conclusion

For the fast growth of cloud storage services, it is certainly necessary to address the problem

of data security and privacy on the outsourced data without losing efficiency in resource utiliza-

tion. The challenge is to build a data deduplication system which offers cost savings in terms

of utilization of disk space and network bandwidth, while providing data security and privacy

against the untrusted cloud server and the unauthorized users. In the dissertation, we studied

the security implications of data deduplication techniques in the cloud computing environment

in various aspects, and proposed novel solutions for secure and efficient data deduplication in

cloud storage systems.

First, we proposed a secure file deduplication scheme that offers data confidentiality on

the outsourced data as well as the storage and network efficiency. For the basis of building the

deduplication scheme, we constructed symmetric-key equality predicate encryption algorithms,

by which the cloud server is allowed to perform deduplication over encrypted files without

getting any information about their content. The proposed scheme adopts an hybrid approach

so that deduplication occurs either of at server side or at client side in randomized manner.

This randomized strategy greatly increases attack overhead of online-guessing adversaries, hence

reduces the risk of information leakage on the stored data. We presented analysis of the proposed

scheme as well as the constructed encryption algorithms in terms of security and performance.

Second, we addressed a problem of information leakage through the side channel in client-

side data deduplication. We also discussed the security weakness of previous solutions under

newly proposed attack model as well as their inefficiency. For enhancing security and privacy

on the outsourced data, we proposed a differentially private client-side data deduplication pro-

tocol, which strongly guarantees that the side channel adversaries have difficulty in knowing the

existence of individual data in the cloud storage. By utilizing a storage gateway in the cloud

storage infrastructure, the proposed scheme prevents generating unnecessary network traffic

and eliminates the side channel. Through the rigorous analysis of security and performance, we

showed that the proposed solution is very effective.

Third, we addressed a security problem of a proof of storage with deduplication in a cloud

storage system. We showed that the previous scheme fails to satisfy the desired security require-

ments under a new attack model in which malicious users run the protocol with dishonestly

manipulated keys. For mitigating such an attack and improving security, we presented a se-

curity enhanced scheme. In the proposed scheme, the user keys are blended with the random

values contributed by the cloud storage server, hence the adversary’s capability to manipulate

their keys is weakened. We also showed that the proposed scheme preserves the efficiency while
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providing more robust security.

The secure deduplication schemes that have been proposed in the dissertation bring high

level of efficiency in terms of utilizing the resources of storage space and network bandwidth.

These schemes also ensure strong data security and privacy against an untrusted cloud server

and unauthorized users. We expect that the proposed schemes will contribute to the advance

of secure deduplication techniques for cloud storage services.

6.2 Future Work

The literature of secure data deduplication in the cloud computing environment is relatively

new, and there are still many challenging problems to be resolved to accelerate the growth

of cloud storage services. As future work, we will extend the proposed solutions with more

security features such as secure deletion from the untrusted and persistent storage, flexible and

fine-grained access control over encrypted storage with deduplication, and scalable convergent

key management. We also intend to enhance the proposed solutions so that they are suitable

for real applications. We will provide full implementations of the proposed schemes and test

them in real cloud environments.
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Summary

Secure and Efficient Data Deduplication Techniques for Cloud
Storage Systems

클라우드스토리지서비스는스토리지저장용량과네트워크대역폭등 IT자원을효율적으로

사용하기 위해 대부분 데이터 중복 제거 기술을 사용하고 있다. 데이터 중복 제거 기술이란

여러 사용자가 동일한 파일을 스토리지에 아웃소싱 하게 되는 경우 물리적으로 하나의 파일을

제외하고 나머지는 논리적인 링크로 대체하는 기술을 말한다. 데이터 중복 제거 기술은 중복

제거가 일어나는 위치에 따라 서버 방식과 클라이언트 방식으로 구분할 수 있다. 서버 방식의

중복 제거는 클라우드 서버에서 중복된 파일을 찾아 제거하는 방식이며 클라이언트 방식은

클라이언트가 파일을 업로드 하기 전에 중복 여부를 탐지하여 중복을 제거한다. 클라이언트

방식의중복제거는서버의스토리지용량을절감할수있을뿐아니라네트워크에서소모되는

대역폭도 절감할 수 있는 장점이 있다. 이러한 데이터 중복 제거 기술은 디스크 저장 공간과

네트워크 대역폭을 최대 90% 가까이 절감할 수 있는 것으로 나타났다. 따라서 IT 자원의 효

율적 이용이 금전적 비용의 절감과 직결되면서 데이터 중복 제거 기술은 클라우드 스토리지

서비스 사업자에게는 반드시 필요한 기술로 받아들여지고 있다.

그러나현재의데이터중복제거기술은사용자의데이터에대해심각한보안위협을초래

한다. 클라우드 서버가 사용자의 파일들에 대해 중복 여부를 판단하기 위해서는 파일이 평문

형태로저장이되어야한다. 각사용자의암호키로암호화되어저장된다면중복여부를판단할

수 없기 때문이다. 따라서 클라우드 서버 시스템에 침투한 해커 등 외부 공격자로부터 사용자

의데이터에대한기밀성과프라이버시가전혀보장되지못한다. 침해사고에대비해클라우드

서버가 저장 데이터에 대하여 직접 암호화를 할 수 는 있으나 역시 신뢰할 수 없는 클라우드

서버에 대하여는 사용자 데이터를 보호할 수 없다.

데이터 중복 제거 기술이 야기하는 또 다른 형태의 보안 문제도 존재한다. 최근의 연구에

따르면 클라이언트 방식의 중복 제거를 사용하는 클라우드 스토리지 서비스에서 비인가 사용

자가 부 채널을 이용하여 저장된 파일의 정보를 획득할 수 있는 보안 취약점이 발견되었다.

이 취약점을 이용하면 공격자는 온라인 추측 공격을 실행하여 저장된 파일의 내용을 복구할

수 있다. 공격 방법은 간단하다. 공격자는 파일의 내용을 추측하여 후보 파일을 만들고 이를

클라우드 서버에 업로드를 요청한다. 클라우드 서버는 파일 업로드를 하기 전에 파일의 중복

여부를판단하여동일파일이존재하면업로드를하지않고요청을처리한다. 공격자는네트워

크 전송 크기를 모니터링 하여 후보 파일이 실제로 업로드 되는지를 판단할 수 있다. 공격자는

이러한 과정을 반복하면서 서버에 저장된 파일의 내용을 알아낼 수 있다. 현재의 데이터 중복

제거 기술은 위의 두 가지 보안 위협에 대하여 사용자 데이터에 대한 안전성을 전혀 보장하지

못한다. IT 자원의 효율적 활용을 가능하게 하는 동시에 사용자 데이터의 안전성을 보장하는

안전한 데이터 중복 제거 기술의 구현은 아직까지 해결하지 못한 문제로 남아있다.
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본 연구는 이 문제를 다루어 효율적이면서도 안전한 데이터 중복 제거 기법을 제시한다.

첫째,신뢰할수없는클라우드서버와비인가사용자들에게저장된데이터의정보가노출되는

것을방지할수있는효율적데이터중복제거기법을제안한다. 이를위해대칭키환경의동치

술어 암호 시스템을 구현하고 이에 기반한 데이터 중복 제거 프로토콜을 구현한다. 동치술어

암호란두암호문이주어졌을때그평문의동치관계를판단할수있는암호시스템을말한다.

이를 활용하면 클라우드 서버는 사용자가 암호화한 파일에 대해서도 중복 여부를 판단할 수

있게 된다. 또한 온라인 추측 공격으로부터 사용자의 데이터를 보호하기 위하여 하이브리드

방식의 중복 제거 방식도 제안한다. 하이브리드 방식이란 일정한 확률에 따라 클라이언트 또

는 서버에서 중복 제거를 실행하는 것으로 온라인 추측 공격의 복잡도를 증가시키고 데이터의

정보가 노출될 위험을 최소화 시킬 수 있다.

둘째, 클라이언트 방식의 데이터 중복 제거 기술을 사용 시 부 채널에 의한 정보 유출

문제를다루고기존에제안된기법들의안전성및효율성문제에대해논의한다. 부채널을방

지하면서 보다 향상된 안전성 기준을 만족하기 위하여 차분적 프라이버시를 보장하는 새로운

클라이언트데이터중복제거기법을제안한다. 차분적프라이버시는특정데이터가클라우드

서버에존재하는지또는존재하지않는지에대한정보가공격자에게쉽게노출되지않는것을

보장하는 새로운 안전성 개념이다. 본 연구에서 제안한 기법은 차분적 프라이버시 개념을 충

족하면서 기존에 제안된 기법들에 비해 네트워크 대역폭 낭비가 대폭 줄어드는 장점을 가지고

있다.

셋째, 클라우드 스토리지에서 데이터 중복 제거와 소유권 증명 및 무결성 검증을 모두

제공하는 기법을 고안할 때 발생하는 보안 문제에 대해 논의 하고 안전성을 향상시키기 위한

방안을 제안한다. 구체적으로, 사용자가 자신의 비밀키를 악의적인 방법으로 생성할 수 있는

새로운보안모델을제시하고,이보안모델에서기존에제안된기법에보안취약점이존재함을

보인다. 그리고 새로운 보안 모델에서 안전성을 보장하기 위하여 기존 기법을 개선한 방법을

제안한다. 제안한 방법은 기존의 안전성과 효율성을 그대로 유지하면서 새 보안 모델에서의

공격도 차단할 수 있는 장점을 가지고 있다.

본 연구에서 제시된 기법들은 모두 스토리지 공간과 네트워크 대역폭 활용 측면에서 효율

성을 제공하는 동시에 클라우드 서버와 비인가 사용자 등 내외부 공격자들로부터 높은 수준의

데이터 기밀성과 프라이버시를 보장한다. 본 제안 방법들이 앞으로 클라우드 스토리지 시스

템에서 더욱 효율적이고 안전한 데이터 중복 제거 기술이 개발되는 데 기여할 수 있을 것으로

기대한다.
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