
석사 학위논문

Master’s Thesis

SDN에서 Flow 기반 침입 탐지 시스템의

탐지 성능 개선 방법

Improving Detection Capability

of Flow-based IDS in SDN

이 동 수 (李 東 秀 Lee, Dongsoo)

전산학과

Department of Computer Science

KAIST

2015

SDN에서 Flow 기반 침입 탐지 시스템의

탐지 성능 개선 방법

Improving Detection Capability

of Flow-based IDS in SDN

Improving Detection Capability

of Flow-based IDS in SDN

Advisor : Professor Kim, Kwangjo

by

Lee, Dongsoo

Department of Computer Science

KAIST

A thesis submitted to the faculty of KAIST in partial fulfillment

of the requirements for the degree of Master of Science in Engineering

in the Department of Computer Science . The study was conducted in

accordance with Code of Research Ethics1.

2014. 12. 23.

Approved by

Professor Kim, Kwangjo

[Advisor]

1Declaration of Ethical Conduct in Research: I, as a graduate student of KAIST, hereby declare that

I have not committed any acts that may damage the credibility of my research. These include, but are

not limited to: falsification, thesis written by someone else, distortion of research findings or plagiarism.

I affirm that my thesis contains honest conclusions based on my own careful research under the guidance

of my thesis advisor.

SDN에서 Flow 기반 침입 탐지 시스템의

탐지 성능 개선 방법

이 동 수

위 논문은 한국과학기술원 석사학위논문으로

학위논문심사위원회에서 심사 통과하였음.

2014년 12월 19일

심사위원장 김 광 조 (인)

심사위원 이 영 희 (인)

심사위원 김 순 태 (인)

MCS

20133476

이 동 수. Lee, Dongsoo. Improving Detection Capability

of Flow-based IDS in SDN. SDN에서 Flow 기반 침입 탐지 시스템의

탐지 성능 개선 방법. Department of Computer Science . 2015. 29p. Advisor Prof. Kim,

Kwangjo. Text in English.

ABSTRACT

An intrusion detection system (IDS) identifies malicious behaviours or attacks, and reports to

network administrators as intrusion events. In many cases, an IDS is installed at the boundary of the

interconnecting network and scrutinizes all transmitted packets between the external network and the

internal networks.

Due to the development of the Internet technologies, large-scale networks which have support vari-

ous functionality have put into a service, such as city-wide networks and networks using network function

virtualisation, etc. Thus, detection throughout the internal network plays of crucial importance much as

an external network detection. However, if the IDS performs intrusion detection in the internal network

using the existing methods of packet-based detection, this leads to excessive bandwidth consumption in

the network detection.

Flow-based IDS is considered to be more lightweight IDS based on flow information which are

extracted by sFlow and NetFlow than packet-based IDS. Applying flow-based detection, the internal

detection is feasible with low operating resources. This enables a large-scale network can operate with

an IDS.

Even if an unknown attack using as new worm virus, etc. is detected by the flow-based detection,

an IDS can not recognize the detailed behaviour of a specific attack.

Such an flow-based IDS cannot archive all the detailed information, as with a packet-based IDS.

The permanent intolerance for unknown attacks without other tools, like a Honeypot, which gathers

both known and unknown attack information will be difficult.

This paper proposes a novel IDS scheme that operates lightweight intrusion detection that keeps a

detailed analysis of attacks. In this scheme, a flow-based IDS detects intrusions, but with low operating

cost. When an attack is detected, the IDS requests the forwarding of attack traffic to packet-based

detection so the detailed results obtained by packet-based detection can be analysed later by security

experts. To realize this scheme, the IDS uses a software-defined network (SDN) to control the routing

table of the network. With the SDN, to change the path of the attack packets for analysis easily is

possible, but the IDS can also work as an intrusion prevention system (IPS) by dropping the attack

packets.

For the verification of our proposed IDS, POX (a python based SDN/OpenFlow controller) and

Mininet (an OpenFlow testbed constructor), were implemented with about 1,300 nodes. The IDS scheme

was checked for proper operation by replaying tcpdump of the data set from the testbed.

Keywords: IDS, SDN, Flow-based Detection, Hybrid IDS

i

Contents

Abstract . i

Contents . ii

List of Tables . iii

List of Figures . iv

Chapter 1. Introduction 1

1.1 Overview of Intrusion Detection System 1

1.2 Motivation . 3

1.3 Organization . 4

Chapter 2. Related Work and Background 5

2.1 Intrusion Detection Method . 5

2.1.1 Signature-based Detection 5

2.1.2 Anomaly-based Detection 6

2.1.3 Packet-based Detection . 6

2.1.4 Flow-based Detection . 7

2.2 Data Set for Intrusion Detection 7

2.2.1 Method of Gathering Data 7

2.2.2 Public Labeled Data Set for an IDS 8

2.3 Software Defined Network(SDN) 9

2.3.1 SDN Overview . 9

2.3.2 OpenFlow . 10

2.3.3 Flow-based Detection using SDN 11

Chapter 3. Our Proposed IDS Scheme 13

3.1 Goals and their Solutions . 13

3.1.1 Detection of Insider Attack 13

3.1.2 Analysis of Malicious Packets 13

3.1.3 Prevention or Mitigation of Attacks 14

3.2 IDS Structure . 14

3.2.1 Flow Information Logger 14

3.2.2 Flow-based IDS . 14

3.2.3 Packet-based IDS . 15

3.2.4 Packet Information Logger 15

ii

3.3 Working Scenario . 16

3.3.1 Initial Phase . 16

3.3.2 Flow-based IDS Phase . 16

3.3.3 Packet-based IDS Phase 17

3.3.4 Wrap-up Phase . 17

3.4 Implementation . 17

Chapter 4. Evaluation 19

4.1 Testbed Configuration . 19

4.1.1 Test Environment . 19

4.1.2 Testbed Topology . 19

4.1.3 System under Test . 19

4.2 Evaluation Criteria . 21

4.3 Result . 22

4.3.1 Detection Overhead . 22

4.3.2 Detection Result . 22

4.3.3 Amount of Packet Analysis Result 23

4.4 Discussion . 24

Chapter 5. Concluding Remark 26

References 27

Appendices 30

A Source Code of IDS Module on POX 30

B Source Code of Testbed Initialization on Mininet 41

C Source Code of PCAP Replayer 44

Summary (in Korean) 65

– iii –

List of Tables

2.1 Structure of Match Information . 11

2.2 Structure of Flow Information . 11

4.1 Network Overhead by OpenFlow Message Type . 22

4.2 Detection Result by Flow-based Detection in DARPA 1998 23

4.3 Calculated Detection Result using only Two Classes . 23

iv

List of Figures

1.1 Basic IDPS Architecture . 2

2.1 Software-Defined Network Architecture [14] . 10

2.2 DDoS Flooding Attack Detection on OpenFlow . 12

3.1 Attack Classification of Flows and Packets . 16

3.2 Pseudo Code of our Proposed Scheme . 18

4.1 Network Topology of Testbed . 20

v

Chapter 1. Introduction

1.1 Overview of Intrusion Detection System

An intrusion detection system (IDS) identifies unauthorized behavior or attacks and reports on

them from within the network or system [19]. There are two types of IDS: a host-based IDS (HIDS)

and a network-based IDS (NIDS). An HIDS is installed on individual hosts or devices in the network

and detects attacks from outside. Typically, an HIDS is used for equipment that must operate reliably,

like a web server. A NIDS is a device that detects attacks that occur in the network, and is mainly

installed where a lot of traffic passing through the network. Although the term IDS includes both HIDS

and NIDS, in this paper, IDS refers to a NIDS, unless otherwise noted.

From the viewpoint of possible detection of an attack, a firewall has similar operations to an

IDS. However, there is a big difference between a firewall and an IDS. A firewall is only capable of

operating according to pre-installed rules, but an IDS can analyse the traffic to determine whether or

not an intrusion happens, as well as its corresponding countermeasure. Therefore, an IDS plays an

important role in maintaining a secure network, in this view. Among IDSs, detection and prevention are

also available; such a device is called an intrusion prevention system (IPS), with the two devices together

called an intrusion detection/prevention system (IDPS).

An IDS is composed of the server (to determine whether an attack has occurred or not) and the

sensor (to collect traffic information). The sensor is installed in a place which can easily gather a lot

of network traffic (near a gateway or router, for example). The sensor collects the network payload, or

network flow, under the policy of the IDS server, and sends the values to the IDS server. The server can

be in various positions, depending on the strategy of the IDS. If the IDS is intended to prevent attacks,

the server is installed close to the location of the sensor, router, or gateway. Figure 1.1 illustrates a

representative example of firewall and IDS installed close together.

– 1 –

Figure 1.1: Basic IDPS Architecture

Detection targets can vary for each IDS. The IDS can detect some or all attacks, such as distributed

denial of service (DDoS), botnets, worm virus, anomalous behaviour, etc., which will occur in the network.

In order to detect attacks, an efficient detection algorithm against all the malicious attack must be

prepared. Machine learning, artificial intelligence, data mining, and expert systems are used as well-

known methods of creating algorithms.

To evaluate the IDS’ algorithm, data sets and real network traffic are used, and users can compare

prediction results of the detection algorithm and analyze the results of actual network traffic. Detection

results are largely divided into four categories. If a malicious traffic is determined as an attack by the

IDS, and this is a true positive. A true negative means the test case is determined to be normal behavior,

and is not an attack. A false positive means that the behavior is normal, but is detected as an attack;

and a false negative means that the behavior is an attack but is classified by the IDS as normal behavior.

Detection rate (true positive rate) and false alarm rate (false positive rate) are useful indicators for

evaluating the IDS. Detection rate is an indicator of how well the IDS detects the attacks; when the

detection rate is low, the IDS cannot detect attacks very well. The false alarm rate is the number of

cases of normal traffic incorrectly detected as attacks. When the false alarm rate is high, the detection

results can be misleading, so reliability of all detection results can also be undervalued.

– 2 –

1.2 Motivation

In general, a powerful algorithm in order to detect all the attacks with the IDS is important. But

one cannot expect that an algorithm that provides good results once will also show good result in the

future. This is because the types of network traffic and attacks change over time. For example, network

users might at first just connect to the Internet, but later can start to use a lot of peer-to-peer (P2P)

applications. In this case, an IDS will not be able to properly detect normal traffic with the existing

detection methods. In addition, attackers will try another approach to break into the network in place

of a conventional attack method. For example, where formerly an attacker used a single host to attempt

a DoS attack, he now tries to attack from a number of hosts, like a botnet. In this case, the IDS has

difficulty determining whether an intrusion is occurred. Therefore, in order to deal with new attacks,

the IDS must continue to determine adaptively which new attacks are occurred.

Also, relying only the IDS for the security of the system can be a problem. For example, let us

assume that a new worm virus attempts to intrude on the network, but the IDS detects the worm virus

as an abnormal attempt and prevents the spread of the worm virus. just blocking malicious packets is

a good thing to prevent attacks on the network. However, if we cannot understand the purpose of this

unprecedented new attack because the IDS just try to prevent attacks without keeping detailed reports, a

big problem will happen, because some attacks can happen to the network due to the IDS’ imperfection.

Therefore, if the IDS determines that network traffic is an attack, we at least need to store the detection

results or packet payload of the attack for an expert to analyse in detail later.

The important thing is that too many network resources should not be required to perform

these tasks. If the IDS is used in a network, we can easily assume that this network is a kind of

resource–critical system, such as a wireless mesh network using OpenFlow [6] or a corporate network

with network functions virtualisation (NFV) [7]. They operate network as a unified form including

network controls, so saving network’s overhead is also very important as its functionality.

With this view, this paper proposes a new intrusion detection scheme that uses less network

resources than a typical IDS, which can efficiently detect attacks, and can store detailed information

about the detected attack for analysis afterwards by security experts.

– 3 –

1.3 Organization

The rest of this thesis is organized as follows: Chapter 2 describes related work and background

about the audit source of the IDS, the detection algorithm, and building data sets and the IDS on an

SDN. The design requirements for our proposed scheme and how to operate are described in Chapter

3. The implementation of our proposed scheme including the realistic evaluation and the results are

discussed in Chapter 4. Finally, the conclusion and future work are discussed in Chapter 5.

– 4 –

Chapter 2. Related Work and Background

This chapter will introduce the key factors that must be considered to constitute the current IDS.

First, the operation method of the IDS is described, with a comparison of pros and cons. Also described

is the public data set for the IDS, and a description is given of the method used to generate the data

set. The SDN that is the background network of the idea is presented, along with previous attempts to

implement a lightweight IDS in an SDN.

2.1 Intrusion Detection Method

2.1.1 Signature-based Detection

Signature-based detection is the way to detect packets that have a signature in the network traffic

corresponding to the rules established in the IDS [2]. Each rule has attributes and conditions about

an attack. When the traffic from the network comes into the IDS, we must find some rules to match

the provided data in the IDS. If matched rules were found in the traffic data, the IDS decides if the

transmitted traffic contains an intrusion. In this respect, signature-based detection is similar to the

operation of an anti-virus application.

Because the actual IDS should be applied at the same time for at least several thousand rules

for all traffic, we do not need to compare each rule, but use a decision tree or some kind of automated

algorithm to speed up the process. Well-written signature rules can perform detection of known attacks

with high probability, so misjudged results are very few. Because of these characteristics, signature-

based detection is used frequently in commercial usage, and an IPS in particular will use this detection

to essentially perform the preventive reactions without mistakes.

– 5 –

2.1.2 Anomaly-based Detection

Anomaly-based detection will not find attacks using one-to-one correspondence, like signature-

based detection; this detection uses the tendency of the attack traffic to determine whether an attack is

occurred or not. To operate this detection method, a prior learning process is required. First, security

experts collect a great deal of general traffic and attack traffic, and generate an algorithm or heuristics

based on statistics, artificial intelligence, or machine learning to judge each attack type [4]. When

detecting attacks, the IDS tries to distinguish which pre-classified group is correct for the entered traffic.

If a proper group for the traffic is found in pre-classified group, the IDS decides this traffic is a known

attack. Otherwise the IDS decides the other traffic as an ”outlier,” which means a new kind of attack.

Anomaly-based detection can distinguish outlier traffic, so the IDS has the possibility of detecting new

attacks if the detection algorithm is trained well.

However, because the learning outcomes of anomaly-based detection are represented by a sequence

of numbers, most experts have difficulty seeing the working method. Consequently, even though a learned

algorithm potentially has the critical problems, they cannot be found fast, or found when the IDS operates

in a real environment in certain cases. Also, anomaly-based detection generally has a lower detection rate,

compared to signature-based detection, and has a high false alarm rate. This result reduces reliability

of the IDS, so flow-based detection is commonly used along with signature-based detection together.

2.1.3 Packet-based Detection

Packet-based detection (or payload-based detection) is a way to choose a data source from network

traffic which requires the entire packet payload to detect an attack. Packet-based detection is mainly

combined with signature-based detection, which requires a lot of features of the traffic, especially for

operating an IPS. For example, Snort is a well-known IDS based on packet-based and signature-based

detection. This detection method requires all packet payloads for detection. Therefore the IDS using

packet-based detection is mainly installed near the gateway or root of a tree network structure, where

almost all packets are transmitted.

In theory, packet-based detection can provide the highest detection rate due to detection target

which implies all the information from the traffic. But detection hardware must be should have powerful

devices to process several terabits of traffics. To address this limitation, NetFPGA [11] which processes

– 6 –

packets at high speed, or a distributed IDS [1], can be used for a packet-based IDS.

2.1.4 Flow-based Detection

Flow-based detection is used to minimize network overhead when the IDS operates. In flow-based

detection, flow is the basic unit between connections to be detected [23]. Even if connection time is long

and the number of packets is large, they can be represented as one flow or a few flows. This is the reason

flow-based detection requires far fewer network resources, compared to packet-based detection.

In flow-based detection, a network switch and router collect flow information from the network

traffic, and send this information to the server during some intervals. Because switches and routers are

installed throughout the entire network, not only on the boundary of the network, flow-based detection

can detect insider attacks as well as outsider attacks. Therefore flow-based detection can be used in a

university network, an industrial network and a city-wide network, in which all of the network members

are not guaranteed harmless. A flow contains source internet protocol (IP) address, destination IP

address, protocol, packets per flow, TCP flags (if possible), bytes per flow, and duration. A flow is

not used with signature-based detection which requires many features, and is generally combined with

anomaly-based detection.

2.2 Data Set for Intrusion Detection

As described above, selecting a data set is very important, because the data set is used to evaluate

the performance of the IDS, or to make a pre-learned detection algorithm. However to make a useful

data set, a well-designed data collection plan is required. Because of the difficulty in making a data set,

using a public data set for intrusion detection is also a good idea in researching an intrusion detection

system.

2.2.1 Method of Gathering Data

Honeypot

A honeypot [17] is a tool for collecting attack data. The term honeypot comes from its behavior,

which attracts attackers (bees) to a place (the attack target, or “honey”) used as a trap. The honeypot is

configured as the intended attack target using a physical system or a pseudo system, and the researcher

leaves its web address on the internet so automated attack tools will attack the honeypot device. If

– 7 –

the intruder attacks a honeypot device, this device analyses the information about the attacker, which

includes IP address or names of tools, and archives the tcpdump data of its packets. After some time

has passed, security experts can analyse the detailed attack information using the stored tcpdump data.

To operate the honeypot, the operator must assume the types of applications that will be attacked

by attackers. In many cases, the ‘server’ (including web servers, mail servers, etc.) is the main target to

collect attack data. So daemons installed in a honeypot are server applications, and normal applications

draw relatively less attention.

NetFlow, sFlow

Compared to a honeypot, which provides assistance in obtaining the attack signature, NetFlow

[5] and sFlow [6] provide flow information for intrusion detection. A flow exporter (or sensor) is installed

in a router or switch and extracts flow information from network traffic. After time goes by, the exporter

sends a bunch of flow information to a flow collector that collects flow data or operates a flow-based IDS.

Devices for NetFlow and sFlow only have the functionality to send flow information, but they do

not have control operation by flow. Therefore, if we want to add blocking or attack prevention, other

devices are required.

2.2.2 Public Labeled Data Set for an IDS

DARPA / KDD Cup Data Set

The Defense Advanced Research Projects Agency (DARPA) Data Set [10] is a data set for intrusion

detection produced by the MIT Lincoln Laboratory at the request of DARPA. DARPA data sets were

made in 1998, 1999, 2000, and each data set has a different purpose for detection. Regardless of the year,

all DARPA data sets provide tcpdump for all the traffic, and expected attack types are in the data set.

Among the data sets, the DARPA 1998 data set is most used for network intrusion detection systems

because this dataset contains very huge network traffic and various attack types. The DARPA 1998

data set was made over eight weeks and has approximately 20GiB of network traffic. Also, this data set

classified 27 attack types and contains about 15,000 IP addresses, including fake IPs for attacks.

The KDD99 Data Set [24] is a data set for the Knowledge Discovery and Data Mining Tools KDD

Cup 99 competition which is based on the DARPA 1998 data set. this dataset extracted 41 features

from the entire packet dump, and reclassified as 24 attack types from DARPA 1998 data set. By 2010,

– 8 –

the DARPA 1998 and KDD99 data sets had been used most frequently for performance evaluation of

IDS systems.

However, there are criticisms that the learned algorithms using the DARPA data set and the

KDD99 data set are not proper for detecting attacks in real network environments [25]. When evaluating

the DARPA 1998 data set using a commercial signature-based IDS, the IDS showed a lower detection

rate, even if the IDS showed good performance on a real network. As a result of the analysis, the recorded

TCP dump of attacks is quite different from general attack tools. To solve this problem, NSL-KDD [25],

which removed and fixed the improper attack dump, was suggested. However, DARPA 1998 which is

the basis of NSL-KDD is too old a data set, so NSL-KDD can not represent ‘current’ dataset.

Other Public Labeled Data Set

In addition to the DARPA data set, some labelled data sets are published. The Information

Security and Object Technology (ISOT) data set [18] is one that combines a normal traffic packet

dump published previously and botnet tcpdump data. The Kyoto data set [21] collects packets using a

commercial honeypot and IDS. The Labeled Data Set for Intrusion Detection [22] is similar to the Kyoto

data set, but was only made for flow-based IDS. These data sets have extracted features, not a full TCP

dump, for machine learning and data mining to use easily, but they are not appropriate for an attack

replay in a testbed.

Also, there are various data sets which contains network packets. But in most cases, they do not

contain attack traffic, or do not provide labelled data. So they are not useful for testing an IDS.

2.3 Software Defined Network(SDN)

2.3.1 SDN Overview

Up to now, each network device has had limited settings for the network layer and for only the

device itself. So if changing network policy is required, network operators must change settings of each

devices. Because the equipment is not connected organically, the settings between devcies can be confused

within several modification of network configuration. A software-defined network [14] divides the existing

network into the control layer, the infrastructure layer (data layer), and the application layer, as shown

in Figure 2.1. Common routers and switches contain the link status and manage routing, forwarding

– 9 –

the table itself. In an SDN, these devices have only link status and just transmit data, and devolve

management functions to an SDN controller and network application, such as NAT, load balancer linked

with an SDN controller. This separation allows the network administrator to easily change the entire

network policy.

Figure 2.1: Software-Defined Network Architecture [14]

2.3.2 OpenFlow

OpenFlow (OF) [14] is the most widely used protocol, which provides the functionality of an SDN.

OpenFlow describes how the SDN controller and the OpenFlow switch (OF switch) communicate, and

which message block is sent by them. In an OpenFlow network, OF devices (including OF controller

and OF switches) have their own OF port number (DPID as SDN) and set destinations using the OF

port number in the OpenFlow network. To communicate between controllers and not directly connect

switches, they build a secure channel virtually using transport layer security (TLS) encryption.

In SDN and OpenFlow [13], forwarding and routing of packets are treated as follows. When a

packet enters the OF switch, the switch will make sure a proper rule in the match table, and a rule

contains match information as seen in Table 2.1. If a matched rule is found in the table, the OF switch

does the action in the rule. If not, the OF switch requests the proper action by sending the packet to

the controller. The OF controller forwards the packet to the OF application in the controller. If the

controller receives the proper action for the packet from the application, then this provides a response

– 10 –

rule and action to the OF switch to transmit the packet properly.

OpenFlow can do many things, not just receive packet information and send routing information,

but also communicates with switches with a variety of information. For example, OpenFlow can receive

port status, flow status, lookup table status by switch, and make new packets in the network. Therefore,

various network network application can be addopted in OpenFlow.

2.3.3 Flow-based Detection using SDN

OpenFlow uses the flow as a minimum unit of the routing table to reduce processing throughput.

The flow status was created automatically without third-party tools to allow implementation of flow-

based IDS using OpenFlow’s flow status. Information that is a response to a flow stats request message

is shown in Tables 2.1 and 2.2. Bold face attributes are the same as those provided in Labeled Data

Set for Intrusion Detection [22]. Therefore, by using the flow stats request of the OpenFlow message, to

perform flow-based detection without any limitations is feasible.

Table 2.1: Structure of Match Information

Attribute Description
ingress port Length of action entry
ether source MAC address of source
ether dest MAC address of the destination
VLAN id VLAN id of flow
VLAN priority VLAN priority of flow
IP src IP address of source
IP dest IP address of the destination
IP proto IP protocol
IP ToS bits Type of service of IPv4
source port TCP, UDP source port and ICMP Type
dest port TCP, UDP destination port and ICMP Code

Table 2.2: Structure of Flow Information

Attribute Description
length Length of action entry
table id ID of match table flow came from
match Match information of flow
duration sec Time flow has been alive in seconds
duration nsec Time flow has been alive in nanoseconds
priority Priority of the entry
idle timeout Number of seconds idle before expiration
hard timeout Number of seconds before expiration
packet count Number of packets in flow
byte count Number of bytes in flow

– 11 –

Braga et al. [3] proposed Lightweight DDoS flooding attack detection using NOX/OpenFlow.

This IDS was installed as a NOX application as shown in Figure 2.2.

Figure 2.2: DDoS Flooding Attack Detection on OpenFlow

Flow collector periodically sends OF switches an ofp stats request message to receive flow status

in an OpenFlow network. Feature Extractor extracts six features for intrusion detection, such as average

packets per flow (APf), average bytes per flow (ABf), average duration per flow (ADf), percentage of

pair-flow (PPf), growth of single-flows (GSf), and growth of different ports (GDP). This IDS focused

only on flood attacks and DDoS attacks. To detect these attacks, only traffic amount data based on

packet count, bytes in a flow, and port are extracted.

A classifier detects whether the flow is an attack or not using machine learning. Some authors

choose self-organizing map (SOM) for the classifier algorithm. The classifier learned using TCP, UDP

flooding, and was tested with a real DDoS flooding attack. If some malicious flows are detected by the

classifier, the IDS immediately warns attacks to network administrator.

– 12 –

Chapter 3. Our Proposed IDS Scheme

This chapter proposes a new scheme, which combines the related works referred to in Chapter 2.

3.1 Goals and their Solutions

This section discusses the goals and their solutions to design our IDS system.

3.1.1 Detection of Insider Attack

In general, network attacks occur on an internal server from an external server, but different

attacks are also possible from inside the network. For example, a city-wide network, a wireless mesh

network, and an internet of things (IoT) network are hard to distinguish harmless users is difficult due

to scalability. Also, some network attacks spreads by not only network, but also different sources. In a

botnet, a zombie node can be created through various sources, such as program updates, a flash drive

auto-run, and via instant messaging [20]. For a common IDS near the network gateway, attacks using

various propagation paths are difficult to detect. However, as mentioned in Section 2.1, if a packet-based

IDS is used to detect insider attacks, heavy consumption of network resources will be a problem. So

using flow-based IDS with anomaly-based detection is better than using only packet-based IDS to reduce

network overhead for internal network attack detection.

3.1.2 Analysis of Malicious Packets

When an IDS detects an attack, an attack report should be stored in order to analyse the attack

and improve the system. Flow information is an appropriate source for detecting an attack, but enough

information for analysis. Aside from whether an attack occurred and who attacked the network, the

tools used and how the attack was launched provide much more useful information. However, to obtain

this information, the entire packet payload of the attack is essential. To do this, changing the routing

path is required to send attack packets to IDS devices. However, to change the routing table between

end-points in a typical network device is a very tedious task. The SDN (especially OpenFlow) can assist

to modify routing table easily, because an OpenFlow controller can order routing table changes in all

– 13 –

OpenFlow network devices. So this new scheme is proposed as an OpenFlow application.

3.1.3 Prevention or Mitigation of Attacks

If detected attacks is already known and well-analysed by IDS, just blocking attacks can be useful

to assure reliability of the network. In order to perform prevention and mitigation, when analysis of the

malicious packets is finished, we can make the OF switch drop the attack packet.

3.2 IDS Structure

A novel IDS is proposed to achieve the above goals. Our IDS is based on OpenFlow protocol and

consists of four modules: a flow information logger, a flow-based IDS, a packet-based IDS, and a packet

information logger. The entire configuration including the testbed is described in Section 4.1.

3.2.1 Flow Information Logger

The flow information logger is the module that receives flow information from the OpenFlow

controller, extracts and stores features. OpenFlow has some ways to gather flow information from OF

switches because flow is used in matching tables. In this structure, the IDS can gather flow information

using flow stats response, which was used by Braga et al. [3], and the flow removed event. From the

collected flows, extract the features required by the IDS, and store them to allow analysis of the extracted

flow data later.

3.2.2 Flow-based IDS

The flow-based IDS the most critical module of all the modules which detects attacks using features

extracted by the flow information logger. Also, no other module can interrupt its decision-making during

run time. When an attack is detected, the IDS request OF controller to forwards the packets to the

packet-based IDS, which has the same source IP address, the same destination IP address, the same

protocol type, and the same destination port for analysis.

For detection, the IDS uses basic features, which are destination IP, network protocol, type of

service (ToS), and destination port, as well as the six features used by Braga et al. [3]: average packets

per flow (APf), average bytes per flow (ABf), average duration per flow (ADf), percentage of pair-flow

(PPf), growth of single-flows (GSf), and growth of different ports (GDP). However flow in OpenFlow

– 14 –

has a hard timeout. Therefore, even though two hosts communicate in only one flow, flow can be divided

if connection time is long. So the six features are used in modified form, including merge in 30-minute

similar flows.

A flow-based detection algorithm is not fixed in this scheme, so a well-trained algorithm is rec-

ommended for actual usage. In this paper, a converted flow-based data set from the DARPA 1998 data

set was used to train the detection algorithm.

3.2.3 Packet-based IDS

Packet-based IDS is the module that uses signature-based detection for analysing packets detected

as an attack by a flow-based IDS. The packet-based IDS detects the packets once more, so the detec-

tion results of both IDSs will be different. Results from the packet-based IDS are sent to the packet

information logger. Also, if a detected attack is a known attack under packet-based detection, the IDS

requests the OF controller to just drop and not forward attacks which are already analysed. The detailed

procedure is described in Chapter 3.

3.2.4 Packet Information Logger

The packet information logger is a module that stores analysis results sent from the packet-based

IDS and alerts the network administrator. The analysis results are stored and divided into two files. The

first file is the tcpdump (pcap) file, which stores sent packets from the packet-based IDS. The second file

contains detection time, flow-based results of detection, results of packet-based detection, and the file

offset of the first file for each item.

– 15 –

(Undecided)
Flow

Normal
Flow

Malicious
Flow

Known
Attack

Unknown
Attack

Known
Attack

New
Attack

False
Alarm

Initial Phase Flow-based
IDS Phase

Packet-based
IDS Phase

Wrap-up Phase
(Security Expert)

Figure 3.1: Attack Classification of Flows and Packets

3.3 Working Scenario

Our proposed IDS operates using the modules described above. In the detection process, flows

and packets are classified as illustrated in Figure 3.1

3.3.1 Initial Phase

First, the IDS requests that the OF controller send the IDS flow removed message or the

flow stats response event, then the IDS modules can be configured by responses of OF controller. Also,

when OF controller and OF switches report a modification of network topology, the IDS modules can

achieve the topology to their storage for utilization.

3.3.2 Flow-based IDS Phase

After initialization, the OF switch sends the flow to the OF controller, and the controller conveys

the flow to the flow information logger. The flow information logger extracts the features using the

new flow, stores the flow information, and sends the features to the flow-based IDS. The flow-based IDS

performs anomaly detection to determine whether the flow is normal flow or malicious (attack) flow. If

the flow is detected as normal, the flow-based IDS module does not do anything; if not, the flow-based

IDS requests an analysis of the new target of the packet-based IDS, and also requests the closest OF

switch to change the routing path of that flow and similar flows received later.

– 16 –

3.3.3 Packet-based IDS Phase

If a packet has the same source IP address, the same destination IP address, and the same

destination port of the OF switch, the flow-based IDS forwards the packet to the packet-based IDS

through the OF controller. The packet-based IDS analyses the received packet. In this phase, a packet

detected as an attack by flow-based detection, and detected as normal by packet-based detection, will

be assumed to be a false alarm or an unknown (maybe a new) attack. When the analysis is finished, the

report and packet dump are archived for later review.

3.3.4 Wrap-up Phase

The stored analysis and packet dump can be analysed again later by security experts. Experts

classify unknown attacks into false alarms and new attacks. Also, experts can check to see if an attack

really is a known attack. Analysis by experts can be used to improve the IDS’s performance and the

security capabilities of the entire system.

3.4 Implementation

Implementation is with POX, which is an OpenFlow enabler. POX is python fork of NOX [8]. By

using POX, which provides a full OpenFlow 1.0 protocol, researchers can develop an OpenFlow controller

easily for research purposes. The implemented IDS can be used with another OpenFlow application, like

a routing application or a load balancer. In the prototype for the test, our proposed IDS and L2 learning

switch application provided by default are performed in the testbed.

This paper assumes that a well-trained algorithm is needed to perform flow-based detection.

However the prototype has a detection algorithm trained by scikit-learn [15] which is a python open source

machine learning package, so its detection results lack accuracy compared to a well-trained detection

algorithm. The flow-based detection algorithm was trained using support vector machine (SVM), and

the packet-based detection algorithm is a pre-configured rule set using a classification and regression

trees (CART) decision tree.

The pseudo code of our proposed IDS prototype is shown in Figure 3.2. The pseudo code does

not show detailed procedures of each module, only depicts the flow of the detection process. Also entire

source code of the testbed is described in Appendices A, B and C.

– 17 –

#Request flow statistics periodically, If we want
Timer(SendStatRequest, FlowStat, 30 sec, repeat)

#Add OpenFlow event handler (Asynchronous)
AddHandler("Flow_Stat", handlerFlowStat)
AddHandler("Flow_Removed", handlerFlowRemoved)
AddHandler("Packet_In", handlerPacketIn)

procedure handlerFlowStat(flows)
 foreach flow in flows
 FlowStorage.dumpInformation(flow)
 detectIntrusion(flow)
 end foreach
end procedure

procedure handlerFlowRemoved(flow)
 newFlow = FlowStorage.extractFeature(flow)
 FlowLogger.dumpInformation(newFlow)
 detectIntrusion(newFlow)
end procedure

procedure detectIntrusion(flow)
 #Flow-based IDS Phase
 if flow.key not in monitoringList
 resultF = FlowIDS.detect(flow)
 if resultF.malicious is True
 monitoringList.set(flow.key, Dump, now + 5 min)
 modifyMatchAction(flow.key, ToController, for 5 min)
 else
 #Normal Flow, do nothing
 end if
 else if monitoringList.get(flow.key).time > now
 monitoringList.remove(flow.key)
 detectIntrusion(flow)
 else if monitoringList.get(flow.key).work == Dump
 FlowIDS.detect(flow) #Refresh result
 modifyMatchAction(flow.key, ToController)
 else if monitoringList.get(flow.key).work == Drop
 modifyAction(flow.key, Drop, for 1 hour)
 end if
end procedure

procedure handlerPacketIn(event)
 if event.key in monitoringList
 #Packet-based IDS Phase
 resultP = PacketIDS.detect(event)
 resultF = FlowIDS.getResult(event)
 PacketLogger.dumpInformation(event, resultP, resultF)
 if resultP.knownAttack is True and resultF.attackClass == resultP.attackClass
 modifyMatchAction(event.key, Drop, for 1 hour)
 monotoringList.set(event.key, Drop, now + 1 hour)
 end if
 else
 #Let controller do SDN/OpenFlow routing and other stuff
 event.setFlag(triggerFlowRemoved) #turn on Flow_Removed event
 end if
end procedure

Figure 3.2: Pseudo Code of our Proposed Scheme

– 18 –

Chapter 4. Evaluation

4.1 Testbed Configuration

4.1.1 Test Environment

To evaluate the IDS, two types of data set, a flow-based data set and a packet-based data set

with packet dump, are required. But no proper data is provided satisfying both condition, so a flow-

based data set was extracted from the DARPA 1998 data set, which provides a labelled packet dump.

As mentioned in Section 2.2, the DARPA 1998 data set has some limitations when we adopt in a real

network environment. However, this will be fine for our simulation, as many machine learning(ML)-based

detection algorithms for an IDS does too.

To implement the testbed, Mininet [9], which provides a virtual network space for OpenFlow, was

simulated over an Ubuntu machine. In our testbed, a host was assigned to have one IP address in the

DARPA 1998 data set and replayed its own packet in the packet dumping process.

4.1.2 Testbed Topology

The network topology of the testbed for evaluation is shown in Figure 4.1. In an OpenFlow

network, topologies are not limited to establish, but a tree topology was used due to POX’s default

routing application which can not support loop condition officially. However, the OF controller and the

OF switches were connected with a ‘secure channel’ so results are not affected by topology if packets are

transmitted properly.

DARPA 1998 has a total of 15,000 IP addresses, including fake IP addresses, but the testbed

used only 1,376 IP addresses, which are mainly used in the data set because Mininet cannot support

thousands of hosts. In the testbed, end-hosts were linked in a leaf node switch, and about 172 hosts were

connected to one switch.

4.1.3 System under Test

Using Mininet, tcpdump data was replayed in the testbed using the sixth week of data from the

DARPA 1998 data set. Each host had a randomized IP address in 10.0.0.0/8, was connected to a packet

– 19 –

Flow
Information

Logger

PCAP Reader

OpenFlow
Switch #7

OpenFlow
Switch #8

OpenFlow
Switch #9

OpenFlow
Switch #10

OpenFlow
Switch #11

OpenFlow
Switch #12

OpenFlow
Switch #13

OpenFlow
Switch #14

Host

Packet
Replayer

[#0 ~171]

Host

Packet
Replayer
[#172~332]

Host

Packet
Replayer
[#333~519]

Host

Packet
Replayer
[#520~681]

Host

Packet
Replayer
[#682~880]

Host

Packet
Replayer
[#881~1039]

Host

Packet
Replayer

[#1040~1210]

Host

Packet
Replayer

[#1211~1375]

OpenFlow
Switch #3

OpenFlow
Switch #4

OpenFlow
Switch #6

OpenFlow
Switch #5

OpenFlow
Switch #1

OpenFlow
Switch #2

OpenFlow
Switch #0

POX OpenFlow Controller

Mininet

L2 Learning
Switch

Application

Flow-based
IDS

Packet-based
IDS

Packet
Information

Logger

: Implemented

: Provided

Figure 4.1: Network Topology of Testbed

– 20 –

capture (PCAP) reader with a ‘POSIX pipe’, and received packets to replay 10 seconds later. The PCAP

reader parsed the tcpdump of the data set, and sent packets to its host. Each host replayed the packets

at a specified time in the testbed using a Libnet library. The host did not act on any responses without

packets sent from the PCAP reader.

The tcpdump was replayed 60 times faster in the testbed, which is the maximum speed that a

testbed can endure. The hard timeout and idle timeout of the OF controller and switches were set to

1/60 by default. When the IDS received flow and packet data, time informations such as connection

time are converted as 60 times multiplied form.

4.2 Evaluation Criteria

For the evaluation, the following factors were examined. First, network overhead during operating

both-IDS must be measured. Our proposed IDS should be embedded in a bandwidth-critical network

such as a wireless network. To measure overhead, openflow messages gathering flow information will be

tested, such as flow stats request and flow removed message. The flow stats request message is mentioned

by Braga et al. [3], and the IDS will periodically send this message to the OF switches. The flow removed

event was used in this scheme and was automatically sent when the flow terminated in the switches. Also

checked was the number of results created by the packet-based IDS.

Second, detection result by flow-based IDS should be measured. Our proposed IDS can not

recognize false negative results, so the detection algorithm should be tuned to show low false negative

rate with sufficiently good detection rate and false positive rate.

If how the stored data was useful for improving the flow-based IDS was checked by measuring the

detection rate and false alarm rate of the flow-based IDS, and checking how many mis-detected results

were stored in the packet information logger. If the detection rate is high enough and mis-detected

results (such as false alarms and true negatives) are appropriate to this scheme, then the scheme can be

regarded as sufficient to operate.

Third, The amount of stored data from packet-based IDS should be measured. If the amounts of

the estimated attack traffic and the stored data are similar size, we decide that our IDS gathers detailed

malicious traffic properly.

– 21 –

4.3 Result

4.3.1 Detection Overhead

To measure the amount of OpenFlow control packets, the outcomes of the flow information logger

and the packet information logger were checked.

By the PCAP reader, the entire amount of traffic in the testbed was 4,406,821,422 bytes ≒

4,202MiB. Also, the packet size of flow events were estimated as 100 bytes, including 88 bytes for

the ofp flow stats header, and 8 bytes for the ofp action header, etc. From the results of the flow log

information, the network overhead was estimated as seen in Table 4.1.

Table 4.1: Network Overhead by OpenFlow Message Type
flow removed(A) flow stats request(B) Ratio(A/B)

Event count 1,185,277 4,936,505 0.2401
Sum of packet counts 9,420,952 39,059,643 0.2411
Estimated overhead(%a) 108MiB(2.6) 470MiB(11.2)

aEvent count × header size / total traffic

Flow-based detection overhead was compared with the flow removed event and the flow stats request

event. The amount for an event using the flow stats request was approximately four times higher than

that of flow removed. By checking raw flow dumps, there is no significant content difference between the

response of the flow stats request and the response of flow removed, but results are duplicated in all of

the OF switches in the path of the flows when flow stats request was sent to the network. Therefore,

the flow removed message, which is suggested in our proposed scheme, is a better approach than the

flow stats request to perform the flow-based intrusion detection. In addition, our IDS requires only 2.6%

of network overhead for all network traffic.

Also, only a 10MiB pcap file was saved in the test, which is the same amount as network overhead

to gather result of packet-based IDS. The total network overhead during the test is 118MiB which is sum

of 108MiB by flow-based IDS and 10MiB by packet-based IDS.

4.3.2 Detection Result

Table 4.2 shows the detection results using the flow removed event. In order to analyze only the

results of flow-based detection, the un-labelled flows in DARPA 1998 were excluded from our calculation.

Five attack classes are based on the KDD99 data set; Probe(satan, ipsweep, portsweep, nmap),

– 22 –

DoS(Smurf, Neptune, back, teardrop, pod, land), U2R(buffer overflow, rootkit, loadmodule, perl, eject,

perl-magic, ffb), R2L(warezclient, guess passwd, warezmaster, imap, ftp write, multihop, phf, spy, dict)

and normal. Anomaly attack traffic were extracted from the DARPA 1998 dataset.

Table 4.2: Detection Result by Flow-based Detection in DARPA 1998

Actual Value
Normal Probe DoS U2R R2L Anomaly Sum

Normal 503,131 0 0 72 704 48 503,955
Probe 76 1,238 0 0 0 0 1,314
DoS 11,456 273 7,667 5 26 0 19,427
U2R 179 0 0 0 0 9 179
R2L 1,565 0 0 1 8,883 0 10,449

Anomaly 64 0 0 0 0 0 64

T
es

t
o
u

tc
o
m

e

Sum 516,471 1,511 7,667 78 9,613 48 535,388

DoS and probe attacks were detected at high detection rates. Remote to user (R2L) attacks

were detected quite well, but some attacks were not detected. User to root (U2R) and anomaly attacks

detection showed poor results, but having too few such attacks could be the reason.

Assuming that a detailed analysis will be performed by packet-based detection, we can reduce all

attack classes to only one ‘attack’ class. Table 4.3 shows detection results with only two classes

Table 4.3: Calculated Detection Result using only Two Classes

Actual Value
Normal Attack Sum

Normal 503,131 824 503,955
Attack 13,340 18,093 31,433

T
es

t
ou

tc
om

e

Sum 516,471 18,971 535,388

False alarms were quite high compared to real attacks. However, in our proposed scheme, false

alarms can be analysed and re-treated in the IDS system. Therefore, the result shows that the scheme

is appropriate for detecting attacks and improving the IDS.

4.3.3 Amount of Packet Analysis Result

For packet-based detection, only a 10MB pcap file was saved in the test, which is far less than

expected. During analysis, most of the packets were false alarms, and only a few attacks are recorded.

This is a defect in our proposed scheme, which will be discussed in Section 4.4.

– 23 –

4.4 Discussion

This section discusses about the details from the results that require further analysis. Because

there were only a few packet-based detection results, compiling results for the detection rate and the false

alarm rate seems impossible. However, most of the results from packet-based detection were found to

be false alarms, and only a few R2L attacks were detected in our system. In the DARPA 1998 data set,

most of the attacks are DoS and R2L attacks with a short-time connection. So when a flow is removed

in the OF switch, an attack with the same matching rule may not be detected later. If this estimation

is correct, improving the IDS using false alarms can be feasible, but gathering DoS attack traffics under

this current scheme may be limited. Therefore, a process of simultaneously collecting some parts of

packet and its flow are necessary to import into our IDS.

In addition, there is no proper solution for reducing the 4.5% true negative results under the

flow-based detection. As shown in Figure 3.1, the false alarms (false positives) can be improved by using

the stored data after the packet detection is over. However, the true negative results were decided as

a normal flow mistakenly by our IDS, so there is no way to detect this kind of result in this IDS. By

accepting an increase in overhead, sending a part of the network traffic to the packet-based IDS will be

a feasible solution. If the flow-based detection decides a flow to be an attack only, but the packet-based

detection classifies this as normal, we can know whether this traffic was a real attack or not. This

ambiguous detection result may be a false alarm, but also might be classified to be an unknown attack.

This must be analysed by a security expert later in details. Fortunately, all the information about flows

and packets are recorded in the storage area in the scheme, so this problem can be solved later.

However, the amount of packet analysis is not sufficient since we didn’t scrutinize all the malicious

packets. According to our estimation, a sum of all the malicious packets’ length is expected to be about

20MB, but the actual stored file size is recorded to be 10MB. This size is quite small amount, because

this includes not only true positive result and but also false positive result (less than similar amount of

true positive result). This is due to the fact that our proposed scheme responses as a reactive way to

detect real attacks only. If a short attack is finished before flow-based detection phase, the malicious

packet of this attack can not forwarded to packet-based IDS. Because this attack was exploited before,

so there is no matched packet on OF switch. To mitigate this analysis failure if a detection operates for

– 24 –

a short-period attack, the packet-based IDS should respond almost of packet in message of OF controller

even if the packet is not detected by flow-based IDS. For instance, a packet in message is also triggered

when a packet doesn’t have proper action by OF switch. If this case is detected by packet-based IDS at

first and detected by flow-based IDS later, the total amount of packet analysis will be increased.

– 25 –

Chapter 5. Concluding Remark

This paper proposes a novel IDS scheme that provides lightweight intrusion detection and records

the detailed analysis of all the attacks. We propose flow-based IDS detects intrusion which can be

operated with low overhead. Our proposed scheme consists of four SDN applications: a flow information

logger, a flow-based IDS, a packet-based IDS, and a packet information logger based on SDN. To detect

attacks, the flow-based IDS operates with low overhead at first. When an intrusion occurs, the intrusion

packets are forwarded to packet-based detection using an SDN controller at first, and then the packet-

based detection can be analysed later to report the detailed information and all the packet payload.

Our implementation is done with POX (a python-based SDN/OpenFlow controller) and Mininet

(a python-based OpenFlow testbed tool). The DARPA 1998 data set was used to replay network traffic

in our testbed to evaluate the operation performance of our proposed scheme. The overhead of flow-based

detection from the point of operation is verified to have about 2.7% of the entire network traffic, which

can be 76% less overhead than the related work. Also, the false alarm traffic was collected well and

analysed by the packet-based detector.

A corporate network using NFV and wireless mesh network using OpenFlow which use SDN,

provide a lot of functionality, but inside intruder as a worm virus carrier, botnet node or etc. can attack

the network in the internal. To use our proposed idea in practice, we expect that the detection of any

attacks originating from the internal network and the deep packet analysis will be feasible. Therefore,

our proposed idea is extended to be useful for a new kind of an emerging network.

However, future research also remain. First, true-negative can’t be treated properly in our pro-

posed scheme. To solve this problem, using two kinds of flow-based detection, which are low threshold

and high threshold, or sampling packets in ‘normal packets’ can be possible solutions. Also, flow-based

detection and packet-based detection don’t have intercommunication method. If automated feedback

from packet-based detection to flow-based detection or detecting attacks using both methods simultane-

ously are possible, our IDS will be more impressive.

– 26 –

References

[1] Abraham, A., Jain, R., Thomas, J., and Han, S. Y. “D-SCIDS: Distributed soft computing intrusion

detection system.” Journal of Network and Computer Applications, 30(1), pp. 81-98, 2007.

[2] Axelsson, S. (2000). “Intrusion detection systems: A survey and taxonomy” Vol. 99. Technical

report.

[3] Braga, R., Mota, E., and Passito, A. “Lightweight DDoS flooding attack detection using NOX/Open-

Flow.” Local Computer Networks (LCN), 2010 IEEE 35th Conference, pp. 408-415, 2010.

[4] Chandola, V., Banerjee, A., and Kumar, V. “Anomaly detection: A survey.” ACM Computing

Surveys (CSUR), 41(3), 15, 2009.

[5] Claise, B. “Cisco systems NetFlow services export version 9.” 2004.

[6] Dely, P., Kassler, A., and Bayer, N. “Openflow for wireless mesh networks.” In Computer Commu-

nications and Networks (ICCCN), 2011 Proceedings of 20th International Conference on IEEE, pp.

1-6, 2011.

[7] ETSI, “Network Functions Virtualisation – Introductory White Paper.” SDN and OpenFlow World

Congress, 2012.

[8] Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., and Shenker, S. “NOX:

towards an operating system for networks.” ACM SIGCOMM Computer Communication Review,

38(3), pp. 105-110, 2008.

[9] Lantz, B., Heller, B., and McKeown, N. “A network in a laptop: rapid prototyping for software-

defined networks.” In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks

ACM, p. 19, 2010.

[10] Lincoln laboratory MIT, “DARPA Intrusion Detection Evaluation,”

http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/ , 1998. ac-

cessible on Nov. 2014.

– 27 –

[11] Lockwood, J. W., McKeown, N., Watson, G., Gibb, G., Hartke, P., Naous, J., Raghuraman, R.,

and Luo, J. “NetFPGA–An Open Platform for Gigabit-Rate Network Switching and Routing.” In

Microelectronic Systems Education, 2007. MSE’07. IEEE International Conference on IEEE. pp.

160-161, 2007.

[12] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S.,

and Turner, J. “OpenFlow: enabling innovation in campus networks.” ACM SIGCOMM Computer

Communication Review, 38(2), pp. 69-74, 2008.

[13] Open Networking Foundation, “OpenFlow Switch Specification Version 1.0.0.” 2009.

[14] Open Networking Foundation, “Software-Defined Networking: The New Norm for Networks.” ONF

White Paper, 2012.

[15] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Vrucher, M.,

and Duchesnay, É. “Scikit-learn: Machine learning in Python.” The Journal of Machine Learning

Research, 12, pp. 2825-2830, 2011.

[16] Phaal, P., Panchen, S., and McKee, N. “InMon corporation’s sFlow: A method for monitoring traffic

in switched and routed networks” RFC 3176, pp. 1-31, 2001.

[17] Provos, N. “A Virtual Honeypot Framework.” In USENIX Security Symposium Vol. 173, 2004.

[18] Saad, S., Traore, I., Ghorbani, A., Sayed, B., Zhao, D., Lu, W., Felix, J., and Hakimian, P. “De-

tecting P2P botnets through network behavior analysis and machine learning.” In Privacy, Security

and Trust (PST), 2011 Ninth Annual International Conference on IEEE. pp. 174-180, 2011.

[19] Scarfone, K., and Mell, P. “Guide to intrusion detection and prevention systems (IDPS).” NIST

special publication, 800(2007) 94, 2007.

[20] Sinha, P., Boukhtouta, A., Belarde, V. H., and Debbabi, M. “Insights from the Analysis of the

Mariposa Botnet. In Risks and Security of Internet and Systems (CRiSIS),” 2010 Fifth International

Conference on IEEE, pp. 1-9, 2010.

– 28 –

[21] Song, J., Takakura, H., and Okabe, Y., “Description of Kyoto University Benchmark Data.” Tech-

nical Report, 2010.

[22] Sperotto, A., Sadre, R., van Vliet, F., and Pras, A. “A labeled data set for flow-based intrusion

detection.” In IP Operations and Management Springer Berlin Heidelberg. pp. 39-50, 2009.

[23] Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., and Stiller, B. “An overview of IP

flow-based intrusion detection.” Communications Surveys & Tutorials, IEEE, 12(3), pp. 343-356,

2010.

[24] Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A. “A detailed analysis of the KDD CUP

99 data set.” In Proceedings of the Second IEEE Symposium on Computational Intelligence for

Security and Defence Applications 2009, 2009.

[25] Thomas, C., Sharma, V., and Balakrishnan, N. “Usefulness of darpa dataset for intrusion detection

system evaluation.” In SPIE Defense and Security Symposium . International Society for Optics

and Photonics, pp. 69730G-69730G, 2008.

– 29 –

Appendices

A Source Code of IDS Module on POX

#!/ usr / bin /python

from pox . core import core

from pox . l i b . u t i l import dpidToStr

import pox . openf low . l i bopen f l ow 01 as o f

import pox . openf low . o f 0 1 as o f01

from pox . openf low import ∗
from datet ime import ∗
from c o l l e c t i o n s import deque

from packet2 import ∗
import pox . l i b . packet as pkt

import dpkt

from s k l e a r n . svm import LinearSVC

from s k l e a r n . t r e e import D e c i s i o n T r e e C l a s s i f i e r

import p i c k l e

import operator

from s k l e a r n . e x t e r n a l s import j o b l i b

import time

from pox . openf low . o f j s o n import ∗

l og = core . getLogger ()

mult i = 60

baseTime = datet ime (1970 ,1 ,1)

AttackClass = { ’− ’ : 0 , ’ probe ’ : 1 , ’ dos ’ : 2 , ’ u2r ’ : 3 , ’ r 2 l ’ : 4 , ’ anomaly ’ : 5}
AttackClass0 = {0 : ’− ’ , 1 : ’ probe ’ , 2 : ’ dos ’ , 3 : ’ u2r ’ , 4 : ’ r 2 l ’ , 5 : ’ anomaly ’ }
AttackClass2 = { ’− ’ : ’− ’ ,

’ back ’ : ’ dos ’ ,

’ b u f f e r o v e r f l o w ’ : ’ u2r ’ ,

’ f t p w r i t e ’ : ’ r 2 l ’ ,

’ guess passwd ’ : ’ r 2 l ’ ,

’ imap ’ : ’ r 2 l ’ ,

’ ipsweep ’ : ’ probe ’ ,

’ land ’ : ’ dos ’ ,

’ loadmodule ’ : ’ u2r ’ ,

’ multihop ’ : ’ r 2 l ’ ,

’ neptune ’ : ’ dos ’ ,

’nmap ’ : ’ probe ’ ,

’ p e r l ’ : ’ u2r ’ ,

’ phf ’ : ’ r 2 l ’ ,

’ pod ’ : ’ dos ’ ,

’ portsweep ’ : ’ probe ’ ,

’ r o o t k i t ’ : ’ u2r ’ ,

’ satan ’ : ’ probe ’ ,

– 30 –

’ smurf ’ : ’ dos ’ ,

’ spy ’ : ’ r 2 l ’ ,

’ t eardrop ’ : ’ dos ’ ,

’ w a r e z c l i e n t ’ : ’ r 2 l ’ ,

’ warezmaster ’ : ’ r 2 l ’ ,

’ e j e c t ’ : ’ u2r ’ ,

’ d i c t ’ : ’ r 2 l ’ ,

’ per lmagic ’ : ’ u2r ’ ,

’ f f b ’ : ’ u2r ’ }
AttackClass3 = l i s t (AttackClass2 . i tems ())

class monVal (object) :

def i n i t (s e l f , durat ion , isDump , f low) :

s e l f . time = time . time ()+time

s e l f . isDump = isDump

s e l f . f l ow = f low

def makeHash (f low) :

match = f low . match

pkg = (match . nw src , match . nw dst , match . nw proto or 0 , match . t p s r c or 0 , match . tp d s t or

0)

return hash (pkg)

class Monitor ingLi s t (object) :

def i n i t (s e l f) :

s e l f . l s t = {}

def get (s e l f , f l ow) :

key = makeHash (f low)

i f key not in s e l f . l s t :

return None

return s e l f . l s t [key]

def set (s e l f , f low , isDump , durat ion) :

va l = monVal (durat ion , isDump , f low)

key = makeHash (f low)

s e l f . l s t [key] = va l

def remove (s e l f , f low) :

key = makeHash (f low)

i f key in s e l f . l s t :

s e l f . l s t . pop (key)

class FlowInfo () :

def i n i t (s e l f , o fp) :

match = ofp . match

s e l f . convStartTime = datet ime . utcfromtimestamp (ofp . d u r a t i o n s e c)

s e l f . convConnectTime = t imede l ta (seconds=f loat (ofp . dura t i on nse c) /1000)

s e l f . packet count = ofp . packet count

s e l f . byte count = ofp . byte count

s e l f . s r c i p = match . nw src

s e l f . d e s t i p = match . nw dst

– 31 –

s e l f . p r o t o co l = match . nw proto

s e l f . toc = match . nw tos

s e l f . t p s r c = match . t p s r c

s e l f . t p d e s t = match . tp d s t

s e l f . or igStartTime = s e l f . convStartTime

s e l f . origConnectTime = s e l f . convConnectTime

s e l f . connect msec = s e l f . origConnectTime . microseconds /1000

s e l f . c onnec t s e c = s e l f . origConnectTime . t o t a l s e c o n d s ()

s e l f . s t a r t s e c = (s e l f . or igStartTime−baseTime) . t o t a l s e c o n d s ()

class FlowLogger (object) :

def i n i t (s e l f) :

p o s t f i x=datet ime . now () . s t r f t i m e (”%Y%m%d %H%M%S”)

s e l f . fp=open(’ / root / r e p l a y l o g/%s f l o w . txt ’%p os t f i x , ’wt ’)

s e l f . ipFlows = {}

def dumpInformation (s e l f , ofp , conn) :

match = ofp . match

bu f f = ’ ’

t = time . time ()

i f ofp . mtype == ’ f s r ’ :

bu f f += ”FSR\ t%f \ t%d.%06d\ t%s \ t%d\ t ”%(t , ofp . d u r a t i o n s e c or 0 , ofp . dura t i on nse c

/1000 or 0 , str (conn) ,−1)

bu f f += ”%d\ t%d\ t%d\ t ”%(match . i n p o r t or 0 , ofp . packet count or 0 , ofp . byte count or

0)

bu f f += ”%s \ t%s \ t%d\ t%d\ t%d\ t%d\n”%(match . nw src , match . nw dst , match . nw proto or 0 ,

match . nw tos or 0 , match . t p s r c or 0 , match . tp d s t or 0)

else :

bu f f += ”FR\ t%f \ t%d.%06d\ t%s \ t%d\ t ”%(t , ofp . d u r a t i o n s e c or 0 , ofp . dura t i on nse c

/1000 or 0 , str (conn) , ofp . reason or 0)

bu f f += ”%d\ t%d\ t%d\ t ”%(match . i n p o r t or 0 , ofp . packet count or 0 , ofp . byte count or

0)

bu f f += ”%s \ t%s \ t%d\ t%d\ t%d\ t%d\n”%(match . nw src , match . nw dst , match . nw proto or 0 ,

match . nw tos or 0 , match . t p s r c or 0 , match . tp d s t or 0)

s e l f . fp . wr i t e (bu f f)

def ext rac tFeature (s e l f , f l ow) :

f low = FlowInfo (f l ow)

connect by msec = f low . connec t s e c ∗1000 + f low . connect msec

i f f l ow . s r c i p not in s e l f . ipFlows :

s e l f . ipFlows [f low . s r c i p]=deque ()

g e n l i s t = s e l f . ipFlows [f low . s r c i p]

’ ’ ’ : type : deque ’ ’ ’

g e n l i s t . append (f low)

APf = 0 #Average o f Packets per f l ow

– 32 –

ABf = 0 #Average o f Bytes per f l ow

ADf = 0 #Average o f Duration per f l ow

PPf = 0 #Percentage o f Pair−f l ows

GSf = 0 #Growth o f S ing le−f l ows

GDP = set () #Growth o f D i f f e r en t Ports

APf2 = 0

ABf2 = 0

ADf2 = 0

PPf2 = 0

h a l f f l o w s 2 = 0

while len (g e n l i s t) >0 and f l ow . or igStartTime−g e n l i s t [0] . or igStartTime > t imede l ta (

minutes =30) :

g e n l i s t . p o p l e f t ()

for f low2 in g e n l i s t :

f low2 = f low2

’ ’ ’ : type : FlowInfo ’ ’ ’

APf += flow2 . packet count

ABf += flow2 . byte count

ADf += flow2 . connec t s e c + f low2 . connect msec ∗0 .001

i f f low2 . t p d e s t not in GDP:

GDP. add (f low2 . t p d e s t)

i f f low2 . t p d e s t == f low . t p d e s t :

APf2 += flow2 . packet count

ABf2 += flow2 . byte count

ADf2 += flow2 . connec t s e c + f low2 . connect msec ∗0 .001

h a l f f l o w s 2 += 1

p a i r f l o w s = 0

p a i r f l o w s 2 = 0

i f f l ow . d e s t i p in s e l f . ipFlows :

g e n l i s t 2 = s e l f . ipFlows [f low . d e s t i p]

while len (g e n l i s t 2) >0 and f l ow . or igStartTime−g e n l i s t 2 [0] . or igStartTime >

t imede l ta (minutes =30) :

g e n l i s t 2 . p o p l e f t ()

for f low3 in g e n l i s t 2 :

f low3 = f low3

’ ’ ’ : type : FlowInfo ’ ’ ’

i f f low3 . d e s t i p == f low . s r c i p :

p a i r f l o w s+=1

i f f low3 . t p d e s t == f low . t p s r c :

p a i r f l o w s 2+=1

revLen = 1 ./ len (g e n l i s t)

APf ∗= revLen

ABf ∗= revLen

ADf ∗= revLen

– 33 –

PPf = p a i r f l o w s ∗ revLen

GSf = len (g e n l i s t) − p a i r f l o w s

GDP = len (GDP)

retVal = (connect by msec , f low . protoco l , f low . toc , f low . tp dest , f low . packet count , f low

. byte count , APf , ABf , ADf , PPf , GSf ,GDP)

return re tVal

class PacketLogger (object) :

def i n i t (s e l f) :

p o s t f i x=datet ime . now () . s t r f t i m e (”%Y%m%d %H%M%S”)

s e l f . fp = open(’ / root / r e p l a y l o g/%s packe t . txt ’%po s t f i x , ’wt ’)

s e l f . fpPcap = open(’ / root / r e p l a y l o g/%s dump . pcap ’%p os t f i x , ’wb ’)

s e l f . fpPcap = dpkt . pcap . Writer (s e l f . fpPcap)

s e l f . idx = 0

def d e l (s e l f) :

s e l f . fpPcap . c l o s e ()

s e l f . fpPcap . c l o s e ()

s e l f . fp . c l o s e ()

def dumpInformation (s e l f , evt , resu l tP , r e su l tF) :

ofp = re su l tF . f low

match = ofp . match

bu f f = ’ ’

t = time . time ()

bu f f += ”%f \ t%d.%06d\ t%s \ t%d\ t ”%(t , ofp . d u r a t i o n s e c or 0 , ofp . dura t i on nse c /1000 or

0 , str (evt . connect ion) , ofp . reason or 0)

bu f f += ”%d\ t%d\ t%d\ t ”%(match . i n p o r t or 0 , ofp . packet count or 0 , ofp . byte count or

0)

bu f f += ”%s \ t%s \ t%d\ t%d\ t%d\ t%d\ t ”%(match . nw src , match . nw dst , match . nw proto or 0 ,

match . nw tos or 0 , match . t p s r c or 0 , match . tp d s t or 0)

bu f f += ”%s \ t%s \ t%s \ t%s \ t%d\n”%(str (r e su l tF . ma l i c i ou s) , r e su l tF . attackClass , r e su l tP .

attackClass , r e su l tP . a t tackDeta i l , s e l f . idx)

s e l f . fpPcap . wr i tepkt (evt . data , t)

s e l f . idx+=1

s e l f . fp . wr i t e (bu f f)

class Bunch(dict) :

def i n i t (s e l f , ∗∗kwargs) :

dict . i n i t (s e l f , kwargs)

s e l f . d i c t = s e l f

class FlowIDS (object) :

def i n i t (s e l f) :

s e l f . c l f = j o b l i b . load (’ l e a r n i n g /5 l e a r n . pkl ’)

pass

def det e c t (s e l f , f l ow) :

t e s t = f lowLogger . ex t rac tFeature (f low)

r e s = s e l f . c l f . p r e d i c t (t e s t)

ma l i c i ou s = r e s != 0

return Bunch(ma l i c i ou s = mal i c ious , a t tackCla s s = res , f low= f low)

– 34 –

class PacketIDS (object) :

def i n i t (s e l f) :

s e l f . c l f = j o b l i b . load (’ l e a r n i n g / p l e a r n . pkl ’)

def det e c t (s e l f , evt) :

t e s t = ext ra c t packe t2 (evt . data)

r e s = s e l f . c l f . p r e d i c t (t e s t)

ma l i c i ou s = r e s !=0

at tackCla s s = AttackClass [AttackClass3 [r e s] [1]]

return Bunch(ma l i c i ou s=mal i c ious , a t tackCla s s=attackClass , a t t a ckDeta i l=r e s)

mon i to r ingL i s t = Monitor ingLi s t ()

f lowLogger =FlowLogger ()

packetLogger = PacketLogger ()

flowIDS = FlowIDS ()

packetIDS = PacketIDS

class MyIDS (object) :

def i n i t (s e l f) :

l og . i n f o (” Monitoring Ready”)

def s ta r tup () :

core . openf low . addL i s t ene r s (s e l f , p r i o r i t y =0 x f f f f f f f e)

from pox . l i b . r ecoco import Timer

s e l f . t = Timer (60 . 0/ multi , s e l f . t imer func , r e c u r r i n g=True)

core . ca l l when ready (startup , (” my ids forward ing ”))

def t i m e r f u n c (s e l f) :

for connect ion in core . openf low . connec t i on s . va lue s () :

connect ion . send (o f . o f p s t a t s r e q u e s t (body=of . o f p f l o w s t a t s r e q u e s t ()))

l og . debug (” Sent %i f low / port s t a t s r eque s t (s) ” , len (core . openf low . connec t i on s))

def d e t e c t I n t r u s i o n (s e l f , f low , event) :

t = time . time ()

r e s u l t = mon i to r ingL i s t . get (f low)

i f r e s u l t i s None :

r e su l tF = flowIDS . de t e c t (f low)

i f r e su l tF . ma l i c i ou s :

mon i to r ingL i s t . set (f low , True ,300/ mult i)

msg = o f . ofp f low mod ()

msg . match = f low . match

msg . i d l e t i m e o u t = 300 / mult i

msg . hard t imeout = 300 / mult i

msg . i n p o r t = event . port

msg . b u f f e r i d = event . ofp . b u f f e r i d

ac t i on = of . o f p a c t i o n o u t p u t (port = o f .OFPP CONTROLLER)

msg . a c t i o n s . append (ac t i on)

event . connect ion . send (msg)

else :

pass

e l i f r e s u l t . time > t :

mon i to r ingL i s t . remove (f low)

s e l f . d e t e c t I n t r u s i o n (f low , event)

e l i f r e s u l t . isDump :

– 35 –

msg = of . ofp f low mod ()

msg . match = f low . match

msg . i d l e t i m e o u t = 300 / mult i

msg . hard t imeout = 300 / mult i

msg . i n p o r t = event . port

msg . b u f f e r i d = event . ofp . b u f f e r i d

ac t i on = o f . o f p a c t i o n o u t p u t (port = o f .OFPP CONTROLLER)

msg . a c t i o n s . append (ac t i on)

event . connect ion . send (msg)

else :

msg = o f . ofp f low mod ()

msg . f l a g s = o f .OFPFF SEND FLOW REM

msg . match = f low . match

msg . i d l e t i m e o u t = 3600 / mult i

msg . hard t imeout = 3600 / mult i

msg . i n p o r t = event . port

msg . b u f f e r i d = event . ofp . b u f f e r i d

event . connect ion . send (msg)

def handle FlowStatsRece ived (s e l f , event) :

s t a t s = f l o w s t a t s t o l i s t (event . s t a t s)

i f len (s t a t s) >0:

l og . debug (” FlowStatsReceived from %s : %s ” ,

dpidToStr (event . connect ion . dpid) , len (s t a t s))

for ofp in event . s t a t s :

o fp . mtype = ’ f s r ’

match = ofp . match

f lowLogger . dumpInformation (ofp , event . connect ion)

s e l f . d e t e c t I n t r u s i o n (ofp , event)

def handle FlowRemoved (s e l f , event) :

”””

@type event : FlowRemoved

”””

#log . i n f o ()

ofp = event . ofp

ofp . mtype = ’ f r ’

match = ofp . match

i f match . d l type !=0 x0800 :

return

f lowLogger . dumpInformation (ofp , event . connect ion)

s e l f . d e t e c t I n t r u s i o n (ofp , event)

def handle Packet In (s e l f , event) :

”””

@type event : PacketIn

”””

#f low removed i s on fowarding .

packet = event . parsed

i f packet . e f f e c t i v e e t h e r t y p e == pkt . e the rne t . IP TYPE :

ip pck = packet . f i n d (pkt . ipv4)

– 36 –

pkg = (ip pck . s r c ip , ip pck . dst ip , ip pck . protoco l , ip pck . next . s r cpor t , ip pck . next .

d s tpor t)

key = hash (pkg)

t = time . time ()

e l i f packet . e f f e c t i v e e t h e r t y p e == pkt . e the rne t .ARP TYPE:

arp pck = packet . f i n d (pkt . arp)

pkg = (arp pck . protos rc , arp pck . protodst , 0 , 1 , arp pck . opcode , 0)

key = hash (pkg)

else :

return

r e su l tF = moni to r ingL i s t . get (key)

i f r e su l tF i s None :

return

r e su l tP = packetIDS . de t e c t (event)

packetLogger . dumpInformation (event , resu l tP , r e su l tF)

i f r e su l tP . knownAttack and r e su l tF . a t tackCla s s == re su l tP . a t tackCla s s :

msg = o f . ofp f low mod ()

msg . f l a g s = o f .OFPFF SEND FLOW REM

msg . match = o f . ofp match . f rom packet (packet)

msg . i d l e t i m e o u t = 3600 / mult i

msg . hard t imeout = 3600 / mult i

msg . b u f f e r i d = event . ofp . b u f f e r i d

msg . i n p o r t = event . port

event . connect ion . send (msg)

mon i to r ingL i s t . set (r e su l tF . f low , False ,3600/ mult i)

return EventHalt

def launch () :

core . openf low . m i s s s e n d l e n = 0 x f f f f

core . reg i s te rNew (MyIDS)

IDS Module Main Code - /root/pox/ext/my ids/monitor.py

import datet ime

from pox . core import core

import pox . openf low . l i bopen f l ow 01 as o f

from pox . l i b . revent import ∗

def launch () :

from l og . l e v e l import launch

setLogLeve l = launch

setLogLeve l (INFO=True)

from samples . p r e t t y l o g import launch

launch ()

from openf low . d i s cove ry import launch

launch ()

speed =60.0

s t a r t=1

– 37 –

from my ids . forward ing import launch

launch ()

from my ids . monitor import launch

launch ()

kwargs = {” my ids forward ing ” : ’DEBUG’ , ” my ids . monitor ” : ’DEBUG’ }
setLogLeve l (∗∗ kwargs)

IDS Module Startup Code - /root/pox/ext/my ids/startup.py

from pox . core import core

import pox . openf low . l i bopen f l ow 01 as o f

from pox . l i b . u t i l import d p i d t o s t r

from pox . l i b . u t i l import s t r t o b o o l

import time

log = core . getLogger ()

f l o o d d e l a y = 0

class LearningSwitch (object) :

def i n i t (s e l f , connect ion , t ransparent) :

s e l f . connect ion = connect ion

s e l f . t ransparent = transparent

s e l f . macToPort = {}
connect ion . addL i s t ene r s (s e l f)

s e l f . ho ld down expired = f l o o d d e l a y == 0

def handle Packet In (s e l f , event) :

packet = event . parsed

def f l o o d (message = None) :

msg = o f . o fp packe t out ()

i f time . time () − s e l f . connect ion . connect t ime >= f l o o d d e l a y :

i f s e l f . ho ld down expired i s False :

s e l f . ho ld down expired = True

log . i n f o (”%s : Flood hold−down exp i red −− f l o o d i n g ” ,

d p i d t o s t r (event . dpid))

i f message i s not None : l og . debug (message)

msg . a c t i o n s . append (o f . o f p a c t i o n o u t p u t (port = o f .OFPP FLOOD))

else :

pass

msg . data = event . ofp

msg . i n p o r t = event . port

s e l f . connect ion . send (msg)

def drop (durat ion = None) :

i f durat ion i s not None :

i f not isinstance (durat ion , tuple) :

durat ion = (durat ion , durat ion)

msg = o f . ofp f low mod ()

msg . f l a g s = o f .OFPFF SEND FLOW REM #Add Flow Removed

– 38 –

msg . match = o f . ofp match . f rom packet (packet)

msg . i d l e t i m e o u t = durat ion [0]

msg . hard t imeout = durat ion [1]

msg . b u f f e r i d = event . ofp . b u f f e r i d

s e l f . connect ion . send (msg)

e l i f event . ofp . b u f f e r i d i s not None :

msg = o f . o fp packe t out ()

msg . b u f f e r i d = event . ofp . b u f f e r i d

msg . i n p o r t = event . port

s e l f . connect ion . send (msg)

s e l f . macToPort [packet . s r c] = event . port

i f not s e l f . t ransparent :

i f packet . type == packet .LLDP TYPE or packet . dst . i s B r i d g e F i l t e r e d () :

drop ()

return

i f packet . dst . i s m u l t i c a s t :

f l o o d ()

else :

i f packet . dst not in s e l f . macToPort :

f l o o d (”Port f o r %s unknown −− f l o o d i n g ” % (packet . dst ,))

else :

port = s e l f . macToPort [packet . dst]

i f port == event . port :

l og . warning (”Same port f o r packet from %s −> %s on %s .%s . Drop . ”

% (packet . src , packet . dst , d p i d t o s t r (event . dpid) , port))

drop (1)

return

l og . debug (” i n s t a l l i n g f low f o r %s .% i −> %s.% i ” %

(packet . s rc , event . port , packet . dst , port))

msg = o f . ofp f low mod ()

msg . match = o f . ofp match . f rom packet (packet , event . port)

msg . i d l e t i m e o u t = 3

msg . hard t imeout = 9

msg . f l a g s = o f .OFPFF SEND FLOW REM #Add Flow Removed

msg . a c t i o n s . append (o f . o f p a c t i o n o u t p u t (port = port))

msg . data = event . ofp

s e l f . connect ion . send (msg)

class l 2 l e a r n i n g (object) :

core name = ” my ids forward ing ”

def i n i t (s e l f , t ransparent) :

core . openf low . addL i s t ene r s (s e l f)

s e l f . t ransparent = transparent

def handle ConnectionUp (s e l f , event) :

l og . debug (” Connection %s ” % (event . connect ion ,))

LearningSwitch (event . connect ion , s e l f . t ransparent)

def launch (t ransparent=False , hold down= f l o o d d e l a y) :

try :

– 39 –

global f l o o d d e l a y

f l o o d d e l a y = int (str (hold down) , 10)

a s s e r t f l o o d d e l a y >= 0

except :

raise RuntimeError (”Expected hold−down to be a number”)

core . reg i s te rNew (l 2 l e a r n i n g , s t r t o b o o l (t ransparent))

IDS Module Forwarding Application - /root/pox/ext/my ids/forwarding.py

– 40 –

B Source Code of Testbed Initialization on Mininet

#!/ usr / bin /python

from mininet . net import Mininet

from mininet . topo import Topo

from mininet . node import Contro l l e r , RemoteControl ler , OVSController

from mininet . node import CPULimitedHost , Host , Node

from mininet . node import OVSKernelSwitch , UserSwitch

from mininet . node import IVSSwitch

from mininet . c l i import CLI

from mininet . l og import setLogLevel , i n f o

from mininet . l i n k import TCLink , I n t f

from subproces s import c a l l

import random

import os

def parseIP (ip) :

a = ip>>24 & 0xFF

b = ip>>16 & 0xFF

c = ip>>8 & 0xFF

d = ip&0xFF

return a , b , c , d

def parseIP2 (ip) :

return ’ . ’ . j o i n (map(str , parseIP (ip)))

def makeIP (a , b , c , d) :

return a<<24 | b<<16 | c<<8 | d

def makeIP2 (pk) :

a , b , c , d = pk

return makeIP (a , b , c , d)

def makeIP3 (i pS t r) :

return makeIP2 (map(int , i p S t r . s p l i t (’ . ’)))

class NetworkTopo2 (Topo) :

def bu i ld (s e l f , n=2, h=1, ∗∗ opts) :

random . seed (734563)

i f not os . path . e x i s t s (’ /tmp/ net r ep lay ’) :

os . mkdir (’ /tmp/ net r ep lay ’)

s s =[]

for i in range (15) :

s s . append (s e l f . addSwitch (’ s%d ’%i , c l s=UserSwitch))

cnt = 1

ipMaps = {}
a l r eady = set ()

ipX = {}
for l i n e in open(’ / root / i p I n S r c 1 9 98 i p m a p f u l l . txt ’ , ’ r t ’) :

v a l s = l i n e . s p l i t (’ \ t ’)

i f len (v a l s) <2: continue

– 41 –

or ig IP = makeIP3 (v a l s [0] . s t r i p ())

newIP = makeIP3 (v a l s [1] . s t r i p ())

ipMaps [o r i g IP] = newIP

for l i n e in open(’ / root /6 t a r g e t . txt ’ , ’ r t ’) :

v a l s = l i n e . s p l i t (’ \ t ’)

i f len (v a l s) <2: continue

t = random . rand int (7 , 14)

or ig IP = makeIP3 (v a l s [0] . s t r i p ())

newIP = parseIP2 (ipMaps [o r i g IP])

i f newIP in a l r eady :

continue

a l r eady . add (newIP)

i p s = parseIP (makeIP3 (newIP))

ipH = i p s [1]

i f ipH not in ipX :

ipX [ipH] = 1

x = 1

else :

ipX [ipH] += 1

x = ipX [ipH]

h = s e l f . addHost (’h%03d%03d ’%(i p s [1] , x) , ip=’%s /8 ’%newIP)

s e l f . addLink (h , s s [t])

x+=1

cnt+=1

f i f o p a t h = ’ /tmp/ net r ep lay / f i f o %s ’%newIP

i f not os . path . e x i s t s (f i f o p a t h) :

os . mkf i fo (f i f o p a t h)

s e l f . addLink (s s [0] , s s [1])

s e l f . addLink (s s [0] , s s [2])

s e l f . addLink (s s [1] , s s [3])

s e l f . addLink (s s [1] , s s [4])

s e l f . addLink (s s [2] , s s [5])

s e l f . addLink (s s [2] , s s [6])

s e l f . addLink (s s [3] , s s [7])

s e l f . addLink (s s [3] , s s [8])

s e l f . addLink (s s [4] , s s [9])

s e l f . addLink (s s [4] , s s [1 0])

s e l f . addLink (s s [5] , s s [1 1])

s e l f . addLink (s s [5] , s s [1 2])

– 42 –

s e l f . addLink (s s [6] , s s [1 3])

s e l f . addLink (s s [6] , s s [1 4])

def doStart (net , netb=None) :

i f netb i s not None :

net = netb

cmd = ’ / root / workspace / rep lay worker / Re lease / rep lay worker ’

for host in net . hos t s :

i f host . name [0] == ’h ’ :

host . cmd(cmd+’ &’)

def doStop (net , netb=None) :

i f netb i s not None :

net = netb

cmd = ’ / root / workspace / rep lay worker / Re lease / rep lay worker ’

for host in net . hos t s :

i f host . name [0] == ’h ’ :

host . cmd(’ k i l l %’+cmd)

def myNetwork () :

topo = NetworkTopo2 ()

net = Mininet (topo=topo ,

ipBase=’ 1 0 . 0 . 0 . 0 / 8 ’ ,

c o n t r o l l e r=RemoteControl ler)#autoSetMacs=True

net . my start = doStart

net . my stop = doStop

net . s t a r t ()

net . my start (net)

CLI(net)

net . my stop (net)

net . stop ()

i f name == ’ ma in ’ :

setLogLeve l (’ i n f o ’)

myNetwork ()

Mininet Initialization Code - /root/mininet/examples/my.py

– 43 –

C Source Code of PCAP Replayer

#include <s t d i o . h>

#include <s t d l i b . h>

#include <s t r i n g . h>

#include <iostream>

#include <ctime>

#include <s t r i ng>

#include <vector>

#include <deque>

#include <algor ithm>

#include <netdb . h>

#include <pthread . h>

#include <un i s td . h>

#include < f c n t l . h>

#include < l i b n e t . h> // l i b n e t !

#include <sys / types . h>

#include <sys / s t a t . h>

#include <sys / socke t . h>

#include <sys / s e l e c t . h>

#include <sys / i o c t l . h>

#include <sys /utsname . h>

#include <sys / e p o l l . h>

#include <sys / time . h>

#include <net / i f . h>

#include <n e t i n e t / in . h>

#include <n e t i n e t / tcp . h>

#include <arpa / i n e t . h>

#include <l i nux / s o c k i o s . h>

us ing namespace std ;

typedef unsigned char u8 ;

typedef unsigned short u16 ;

typedef unsigned int u32 ;

typedef unsigned int uint32 ;

typedef unsigned int uint ;

u int32 g myIP = 0 ;

char g szMyIP [2 0] = ” 255 . 255 . 255 . 255 ” ;

u int32 g l o c a l = 0 ;

char g s zLoca l [2 0] = ” 1 2 7 . 0 . 0 . 1 ” ;

char l og path [300]= ”” ;

char startTime [3 0 0] = ”” ;

struct IP4{
int a ;

int b ;

int c ;

– 44 –

int d ;

} ;

struct QueueData{
u32 timestamp ;

u32 timestamp u ;

u8 dscp ;

u16 id ;

bool more f rag ;

bool n o t f r a g ;

u16 o f f s e t ;

u16 raw f rag ;

u8 t t l ;

char type ;

u8 IPSrc [4] ;

u8 IPDest [4] ;

vector<u8> payload ;

} ;

deque<QueueData> g workQueue ;

IP4 parseIP (uint32 ip) ;

s t r i n g parseIP2 (u int32 ip) ;

u int32 makeIP (u int a , u int b , u int c , u int d) ;

u int32 makeIP2 (IP4 ip) ;

u int32 makeIP2 (s t r i n g ip) ;

u int32 makeIP3 (const u8∗ ar r) ;

u int32 makeIP3B(const u8∗ ar r) ;

u int32 getMyIP () ;

u32 get4 (u8∗ buf f , u int& ptr) {
u32 retVal = ∗(u32 ∗) (bu f f+ptr) ;

ptr+=4;

return re tVal ;

}

u32 get4 (vector<u8>& buff , u int& ptr) {
i f (bu f f . s i z e ()<ptr +4){

ptr+=4;

return 0 ;

}
return get4 (bu f f . data () , ptr) ;

}

u16 get2 (u8∗ buf f , u int& ptr) {
u16 retVal = ∗(u32 ∗) (bu f f+ptr) ;

ptr+=2;

return re tVal ;

}

u16 get2 (vector<u8>& buff , u int& ptr) {
i f (bu f f . s i z e ()<ptr +2){

ptr+=2;

return 0 ;

– 45 –

}
return get2 (bu f f . data () , ptr) ;

}

u8 get1 (u8∗ buf f , u int& ptr) {
u16 retVal = ∗(u32 ∗) (bu f f+ptr) ;

ptr++;

return re tVal ;

}

u8 get1 (vector<u8>& buff , u int& ptr) {
i f (bu f f . s i z e ()<ptr +1){

ptr++;

return 0 ;

}
return get1 (bu f f . data () , ptr) ;

}

u32 switch4 (u32 va l) {
u8 a = va l &0xFF ;

u8 b = val>>8 & 0xFF ;

u8 c = val>>16 & 0xFF ;

u8 d = val>>24 & 0xFF ;

return a<<24 | b<<16 | c<<8 | d ;

}

int doRun=1;

pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;

pthread t p thread ;

u i n t 6 4 t s e n t T r a f f i c =0;

IP4 parseIP (uint32 ip) {
IP4 ip4 ;

ip4 . a = ip>>24 & 0xFF ;

ip4 . b = ip>>16 & 0xFF ;

ip4 . c = ip>>8 & 0xFF ;

ip4 . d = ip&0xFF ;

return ip4 ;

}
s t r i n g parseIP2 (u int32 ip) {

IP4 ip4 = parseIP (ip) ;

char bu f f [2 0] = ”” ;

s p r i n t f (buf f , ”%d.%d.%d.%d” , ip4 . a , ip4 . b , ip4 . c , ip4 . d) ;

return bu f f ;

}

uint32 makeIP (u int a , u int b , u int c , u int d) {
return a<<24 | b<<16 | c<<8 | d ;

}

uint32 makeIP2 (IP4 ip) {

– 46 –

return makeIP (ip . a , ip . b , ip . c , ip . d) ;

}

uint32 makeIP2 (s t r i n g s t r IP) {
IP4 ip ;

s s c a n f (s t r IP . c s t r () , ”%d.%d.%d.%d”,& ip . a ,& ip . b,& ip . c ,& ip . d) ;

return makeIP2 (ip) ;

}

uint32 makeIP3 (const u8∗ ar r) {
return ar r [0]<<24 | ar r [1]<<16 | ar r [2]<<8 | ar r [3] ;

}

uint32 makeIP3B(const u8∗ ar r) {
return ar r [3]<<24 | ar r [2]<<16 | ar r [1]<<8 | ar r [0] ;

}

stat ic bool l inux getMyIP (int nFamily , sockaddr ∗ re tVal)

{
int sock ;

int nRet ;

s i z e t nNIC ;

const s i z e t nMaxNIC = 256 ;

struct i f c o n f i f c ;

struct i f r e q i f r [nMaxNIC] ;

struct sockaddr ∗ pAddr (NULL) ;

sock = socket (nFamily , SOCK STREAM, 0) ;

i f (sock == −1) return f a l s e ;

i f c . i f c l e n = s izeof (i f r) ;

i f c . i f c i f c u . i f c u r e q = i f r ;

nRet = i o c t l (sock , SIOCGIFCONF, &i f c) ;

i f (nRet == −1) return f a l s e ;

c l o s e (sock) ;

nNIC = i f c . i f c l e n / s izeof (struct i f r e q) ;

for (s i z e t i = 0 ; i < nNIC ; i ++)

{
int aFamily = i f c . i f c i f c u . i f c u r e q [i] . i f r i f r u . i f r u a d d r . s a f a m i l y ;

i f (nFamily == aFamily)

{
pAddr = (& i f c . i f c i f c u . i f c u r e q [i] . i f r i f r u . i f r u a d d r) ;

}
}

i f (pAddr==NULL) {
return f a l s e ;

}

– 47 –

memcpy(retVal , pAddr , s izeof (sockaddr)) ;

return t rue ;

}

uint32 getMyIP () {
sockaddr myIP ;

i f (l inux getMyIP (2 ,&myIP)) {
return makeIP ((u8)myIP . sa data [2] , (u8)myIP . sa data [3] , (u8)myIP . sa data [4] , (u8)myIP .

sa data [5]) ;

}
else i f (l inux getMyIP (1 ,&myIP)) {

return makeIP ((u8)myIP . sa data [2] , (u8)myIP . sa data [3] , (u8)myIP . sa data [4] , (u8)myIP .

sa data [5]) ;

}
return 0 ;

}

int sendTCP(l i b n e t t ∗ l , QueueData& data) {
l i b n e t c l e a r p a c k e t (l) ;

vector<u8>& buf f = data . payload ;

int sent =0;

u int ptr = 0 ;

u16 spor t = get2 (buf f , ptr) ;

u16 dport = get2 (buf f , ptr) ;

u32 seq = get4 (buf f , ptr) ;

u32 ack = get4 (buf f , ptr) ;

u16 c t r l = get2 (buf f , ptr) ;

u16 win = get2 (buf f , ptr) ;

u16 urg = get2 (buf f , ptr) ;

int pay load s = bu f f . s i z e ()−ptr ;

u8∗ payload = NULL;

i f (pay load s > 0) {
payload = bu f f . data ()+ptr ;

}
else {

pay load s =0;

}

u32 destIP = makeIP3 (data . IPDest) ;

u32 src IP = makeIP3 (data . IPSrc) ;

l i b n e t b u i l d t c p (sport , dport , seq , ack , c t r l , win , 0 , urg , LIBNET TCP H +

payload s , payload , payload s , l , 0) ;

l i b n e t b u i l d i p v 4 (LIBNET IPV4 H + LIBNET TCP H + payload s , data . dscp , data . id , data .

raw frag , data . t t l ,

IPPROTO TCP, 0 , srcIP , destIP , 0 , 0 , l , 0) ;

s ent = l i b n e t w r i t e (l) ;

i f (sent == 0) p r i n t f (”why t0 ?\n”) ;

return sent ;

}

int sendUDP(l i b n e t t ∗ l , QueueData& data) {
l i b n e t c l e a r p a c k e t (l) ;

– 48 –

vector<u8>& buf f = data . payload ;

int sent =0;

u int ptr = 0 ;

u16 spor t = get2 (buf f , ptr) ;

u16 dport = get2 (buf f , ptr) ;

u16 l ength = get2 (buf f , ptr) ;

int pay load s = bu f f . s i z e ()−ptr ;

u8∗ payload = NULL;

i f (pay load s > 0) {
payload = bu f f . data ()+ptr ;

}
else {

pay load s =0;

}

u32 destIP = makeIP3 (data . IPDest) ;

u32 src IP = makeIP3 (data . IPSrc) ;

i f (! data . more f rag) {
l i b n e t p t a g t ptag = l i b n e t b u i l d u d p (sport , dport , length , 0 , payload , payload s , l , 0) ;

l i bne t t ogg l e che ck sum (l , ptag ,LIBNET OFF) ;

l i b n e t b u i l d i p v 4 (LIBNET IPV4 H + LIBNET UDP H + payload s , data . dscp , data . id , data .

raw frag , data . t t l ,

IPPROTO UDP, 0 , srcIP , destIP , 0 , 0 , l , 0) ;

}
else {

l i b n e t b u i l d i p v 4 (LIBNET IPV4 H + bu f f . s i z e () , data . dscp , data . id , data . raw frag , data .

t t l ,

IPPROTO UDP, 0 , srcIP , destIP , 0 , 0 , l , 0) ;

}
sent = l i b n e t w r i t e (l) ;

i f (sent == 0) p r i n t f (”why u0?\n”) ;

return sent ;

}

int sendICMP(l i b n e t t ∗ l , QueueData& data) {
l i b n e t c l e a r p a c k e t (l) ;

vector<u8>& buf f = data . payload ;

int sent =0;

u int ptr = 0 ;

u8 type = get1 (buf f , ptr) ;

u8 code = get1 (buf f , ptr) ;

u16 id = get2 (buf f , ptr) ;

//u16 unsed = id ;

u16 seq = get2 (buf f , ptr) ;

//u16 nexthopMTU = seq ;

int pay load s = bu f f . s i z e ()−ptr ;

u8∗ payload = NULL;

– 49 –

i f (pay load s > 0) {
payload = bu f f . data ()+ptr ;

}
else {

pay load s =0;

}

u32 destIP = makeIP3 (data . IPDest) ;

u32 src IP = makeIP3 (data . IPSrc) ;

// destIP = swi tch4 (g l o c a l) ;

// srcIP = swi tch4 (g l o c a l) ;

l i b n e t p t a g t ptag ;

i f (data . more f rag && data . o f f s e t >0){
//haha?

ptag= l i b n e t b u i l d i p v 4 (LIBNET IPV4 H + bu f f . s i z e () , data . dscp , data . id , data . raw frag ,

data . t t l ,

IPPROTO ICMP, 0 , srcIP , destIP , bu f f . data () , bu f f . s i z e () , l , 0) ;

}
else i f (type ==0){//echo r ep l y

ptag= l i b n e t b u i l d i c m p v 4 e c h o (ICMP ECHOREPLY, 0 , 0 , id , seq , payload , payload s , l , 0) ;

l i b n e t b u i l d i p v 4 (LIBNET IPV4 H + LIBNET ICMPV4 ECHO H + payload s , data . dscp , data . id

, data . raw frag , data . t t l ,

IPPROTO ICMP, 0 , srcIP , destIP , 0 , 0 , l , 0) ;

}
else i f (type == 3) {// unreachab le

ptag= l ibne t bu i l d i cmpv4 unreach (ICMP UNREACH, code , 0 , payload , payload s , l , 0) ;

l i b n e t b u i l d i p v 4 (LIBNET IPV4 H + LIBNET ICMPV4 UNREACH H + payload s , data . dscp , data

. id , data . raw frag , data . t t l ,

IPPROTO ICMP, 0 , srcIP , destIP , 0 , 0 , l , 0) ;

}
else i f (type==8){//echo reque s t

ptag= l i b n e t b u i l d i c m p v 4 e c h o (ICMP ECHO, 0 , 0 , id , seq , payload , payload s , l , 0) ;

l i b n e t b u i l d i p v 4 (LIBNET IPV4 H + LIBNET ICMPV4 ECHO H + payload s , data . dscp , data . id

, data . raw frag , data . t t l ,

IPPROTO ICMP, 0 , srcIP , destIP , 0 , 0 , l , 0) ;

}
else {

p r i n t f (”icmp e r r ?\n”) ;

return 0 ;

}
sent = l i b n e t w r i t e (l) ;

i f (sent == 0) p r i n t f (”why i 0 ?\n”) ;

return sent ;

}

void∗ s ende r l oop (void ∗data) {

int bytesSent = 0 ;

int o ldbytesSent = 0 ;

l i b n e t t ∗ l ; /∗ Libnet Handle ∗/
char e r rbu f [LIBNET ERRBUF SIZE] ; /∗ Libnet Error Buf fer ∗/
struct t imeva l tp ;

– 50 –

/∗
∗ Libnet Handle I n i t i a l i z a t i o n .

∗/

int maxtimegap = 0 ;

struct tm ∗tmp ;

p r i n t f (” thread run !\n”) ;

deque<QueueData> myQueue ;

l = l i b n e t i n i t (LIBNET RAW4, g szMyIP , e r rbu f) ;

i f (l == NULL) {
f p r i n t f (s tde r r , ”ERROR: l i b n e t i n i t f a i l e d : %s \n” , e r rbu f) ;

return NULL;

}
char datebu f f [1 0 0] = ”” ;

int inCount =0;

while (t rue) {
inCount =0;

pthread mutex lock(&mutex) ;

i f (doRun <= 0) {
pthread mutex unlock(&mutex) ;

return 0 ;

}

i f (! g workQueue . empty ()) {
myQueue . i n s e r t (myQueue . end () , g workQueue . begin () , g workQueue . end ()) ;

g workQueue . c l e a r () ;

}
else i f (doRun == 2) {

p r i n t f (”work complete ! ”) ;

pthread mutex unlock(&mutex) ;

return 0 ;

}
pthread mutex unlock(&mutex) ;

i f (myQueue . empty ()) {
us l e ep (100∗1000) ;

continue ;

}

while (! myQueue . empty ()) {
gett imeofday(&tp ,NULL) ;

i f (inCount>0){
tmp = l o c a l t i m e (&tp . t v s e c) ;

s t r f t i m e (datebuf f , s izeof (da t ebu f f) , ”%Y%m%d %H%M%S” , tmp) ;

p r i n t f (” in ! %s , %d\n” , datebuf f , g workQueue . s i z e ()) ;

}
QueueData& data = myQueue . f r o n t () ;

i f (data . timestamp < tp . t v s e c) {
int nowgap = tp . t v s e c − data . timestamp ;

i f (nowgap > maxtimegap) {
maxtimegap = nowgap ;

– 51 –

p r i n t f (” timegap i n c r e a s e d :%d\n” , maxtimegap) ;

}
}
else i f (data . timestamp >= tp . t v s e c +2){

us l e ep (1000∗1000) ;

break ;

}
else i f (data . timestamp > tp . t v s e c) {

u32 utime = (data . timestamp−tp . t v s e c) ∗1000∗1000;

utime += data . timestamp u−tp . tv u s e c ;

u s l e ep (utime) ;

continue ;

}
else i f (data . timestamp u <= tp . tv us e c +10000){
}
else {

u32 utime = data . timestamp u−tp . tv u s e c ;

u s l e ep (utime) ;

continue ;

}
i f (data . type==’T ’ | | data . type == ’ t ’) {

bytesSent = sendTCP(l , data) ;

}
else i f (data . type==’U ’ | | data . type == ’u ’) {

bytesSent = sendUDP(l , data) ;

}
else i f (data . type==’ I ’ | | data . type == ’ i ’) {

bytesSent = sendICMP(l , data) ;

}

myQueue . pop f ront () ;

s e n t T r a f f i c+=bytesSent ;

i f (o ldbytesSent +104858 < s e n t T r a f f i c) {
o ldbytesSent += 104858∗((s e n t T r a f f i c−o ldbytesSent) /104858) ;

int gap = oldbytesSent&0 x f f f f f ;

i f (gap < 20) {
oldbytesSent−=gap ;

}
p r i n t f (”%s : %.1fMB sent \n” , g szMyIP , 1 . 0 ∗ s e n t T r a f f i c /1048796) ;

}

}

}

l i b n e t d e s t r o y (l) ;

return NULL;

}

void e xe I t (vector<u8>& buf f) {
QueueData data ;

u int ptr =0;

– 52 –

data . timestamp = get4 (buf f , ptr) ;

data . timestamp u = get4 (buf f , ptr) ;

data . dscp = get1 (buf f , ptr) ;

data . id = get2 (buf f , ptr) ;

data . more f rag = get1 (buf f , ptr) !=0;

data . n o t f r a g = get1 (buf f , ptr) !=0;

data . o f f s e t = get2 (buf f , ptr) ;

data . raw f rag = get2 (buf f , ptr) ;

data . t t l = get1 (buf f , ptr) ;

data . type = (char) get1 (buf f , ptr) ;

memcpy(data . IPSrc , bu f f . data ()+ptr , 4) ;

ptr+=4;

memcpy(data . IPDest , bu f f . data ()+ptr , 4) ;

ptr+=4;

int remain = bu f f . s i z e ()−ptr ;

//

i f (remain < 0) {
p r i n t f (” f %d , %c\n” , remain , data . type) ;

for (int i =0; i<bu f f . s i z e () ; i++){
p r i n t f (”%02X” , bu f f [i]) ;

}
p r i n t f (”\n”) ;

}

data . payload . i n s e r t (data . payload . end () , bu f f . begin ()+ptr , bu f f . end ()) ;

pthread mutex lock(&mutex) ;

g workQueue . push back (data) ;

pthread mutex unlock(&mutex) ;

}

void s t a r t () {
char t a r g e t [2 0 0] = ”” ;

int f p r =−1;

int read n =0;

bool rece iveComplete = f a l s e ;

vector<u8> raw buf f2 (5000) ;

u8∗ raw buf f=raw buf f2 . data () ;

deque<u8> bu f f ;

vector<u8> buf f2 ;

bu f f 2 . r e s e r v e (70000) ; //65536

vector<u8> buf f3 ;

bu f f 3 . r e s e r v e (4) ; // in t

const int e r r b l o c k=0 x f f f f f f f ;

int b l o c k s i z e=e r r b l o c k ;

s p r i n t f (target , ”/tmp/ net r ep lay / f i f o %s ” , g szMyIP) ;

p r i n t f (” f i f o :%s \n” , t a r g e t) ;

i f ((f p r= open (target , O RDONLY))<0){
pe r ro r (”open e r r o r : ”) ;

e x i t (0) ;

– 53 –

}
f c n t l (fp r , F SETPIPE SZ , 1048576) ; //max bu f f e r

while ((read n = read (fp r , raw buff , 4096)) > 0) {

i f (bu f f . s i z e () == 0 && b l o c k s i z e == e r r b l o c k) {
b l o c k s i z e = ∗(int ∗) (raw buf f) ;

bu f f . i n s e r t (bu f f . end () , raw buf f +4, raw buf f+read n) ;

}
else {

bu f f . i n s e r t (bu f f . end () , raw buff , raw buf f+read n) ;

}

i f (b l o c k s i z e == e r r b l o c k && bu f f . s i z e ()>=4){
buf f3 . c l e a r () ;

bu f f 3 . i n s e r t (bu f f 3 . end () , bu f f . begin () , bu f f . begin () +4) ;

bu f f . e r a s e (bu f f . begin () , bu f f . begin () +4) ;

b l o c k s i z e = ∗(int ∗) (bu f f 3 . data ()) ;

}

i f (b l o c k s i z e <0){
pthread mutex lock(&mutex) ;

i f (doRun == 1) {
doRun = 2 ;

}
pthread mutex unlock(&mutex) ;

break ;

}

while (b l o c k s i z e <= (int) bu f f . s i z e ())

{
buf f2 . c l e a r () ;

bu f f 2 . i n s e r t (bu f f 2 . end () , bu f f . begin () , bu f f . begin ()+b l o c k s i z e) ;

bu f f . e r a s e (bu f f . begin () , bu f f . begin ()+b l o c k s i z e) ;

e x e I t (bu f f 2) ;

b l o c k s i z e=e r r b l o c k ;

i f (bu f f . s i z e () <4)

break ;

bu f f 3 . c l e a r () ;

bu f f 3 . i n s e r t (bu f f 3 . end () , bu f f . begin () , bu f f . begin () +4) ;

bu f f . e r a s e (bu f f . begin () , bu f f . begin () +4) ;

b l o c k s i z e = ∗(int ∗) (bu f f 3 . data ()) ;

}

}
c l o s e (f p r) ;

}

int main (int argc , char∗∗ argv) {
int s t a t u s =0;

s t a t i c a s s e r t (s izeof (int)==4,” s i z e o f (i n t)==4”) ;

g myIP = getMyIP () ;

s t r cpy (g szMyIP , parseIP2 (g myIP) . c s t r ()) ;

– 54 –

g l o c a l = makeIP2 (g s zLoca l) ;

int t h r i d = pthr ead c r ea t e (&p thread , NULL, sender loop , NULL) ;

t ime t t ;

struct tm ∗tmp ;

t = time (NULL) ;

tmp = l o c a l t i m e (&t) ;

i f (s t r f t i m e (startTime , s izeof (startTime) , ”%Y%m%d %H%M%S” , tmp) == 0) {
f p r i n t f (s tde r r , ” s t r f t i m e returned 0”) ;

e x i t (EXIT FAILURE) ;

}

i f (argc == 1 | | strcmp (argv [1] , ” l o c a l ”) != 0) {
s p r i n t f (log path , ”/ root / r e p l a y l o g/%s %s . txt ” , startTime , g szMyIP) ;

int l o g f d = open (log path ,ORDWR|O CREAT |O TRUNC,0644) ;

dup2 (l og fd , 1) ;

dup2 (l og fd , 2) ;

c l o s e (l o g f d) ;

}

p r i n t f (” l e t ’ s s t a r t ! %s , %l l u \n” , g szMyIP , t) ;

s t a r t () ;

pthread mutex lock(&mutex) ;

i f (doRun == 1) {
doRun = 0 ;

}
pthread mutex unlock(&mutex) ;

p t h r e a d j o i n (p thread , (void ∗∗)&s t a t u s) ;

return 0 ;

}

PCAP Replayer - /root/workspace/replay worker/worker.cpp

#−∗− coding : u t f−8 −∗−

from s t r u c t import ∗
from ppr int import ppr int

import os

import operator

from mul t i p ro c e s s i ng import Pool

import glob

from datet ime import ∗
import os

import time

i s L i t t l e E n d i a n = True

f i f o s = {}
ipMaps = {}
base t ime1970 = datet ime (1970 ,1 ,1)

ba s e t ime s e t = Fal se

– 55 –

baset ime = datet ime (1998 ,6 ,1 ,11 ,55 ,29 ,518704)

basenowtime = datet ime . utcnow ()+t imede l ta (seconds =5)

speed = 240

v a l i d s = set ()

def parseIP (ip) :

a = ip>>24 & 0xFF

b = ip>>16 & 0xFF

c = ip>>8 & 0xFF

d = ip&0xFF

return a , b , c , d

def parseIP2 (ip) :

return ’ . ’ . j o i n (map(str , parseIP (ip)))

def makeIP (a , b , c , d) :

return a<<24 | b<<16 | c<<8 | d

def makeIP2 (pk) :

a , b , c , d = pk

return makeIP (a , b , c , d)

def makeIP3 (i pS t r) :

return makeIP2 (map(int , i p S t r . s p l i t (’ . ’)))

class PcapHeader :

”””

typede f s t r u c t pcap hdr s {
guint32 magic number ; /∗ magic number ∗/
guint16 ve r s i on majo r ; /∗ major v e r s i on number ∗/
guint16 ver s i on minor ; /∗ minor ve r s i o n number ∗/
g int32 th i s zone ; /∗ GMT to l o c a l c o r r e c t i o n ∗/
guint32 s i g f i g s ; /∗ accuracy o f timestamps ∗/
guint32 snaplen ; /∗ max length o f captured packets , in o c t e t s ∗/
guint32 network ; /∗ data l i n k type ∗/

} pcap hdr t ;

”””

g fmt = ” IHHiI I I ”

c a l c s i z e = c a l c s i z e (g fmt)

def i n i t (s e l f , stream) :

global i s L i t t l e E n d i a n

hdrRaw = stream . read (s e l f . c a l c s i z e)

hdrMagic = unpack (”<L” ,hdrRaw [: 4]) [0]

i f hdrMagic == 0xd4c3b2a1 :

i s L i t t l e E n d i a n = False

e l i f hdrMagic == 0xa1b2c3d4 :

i s L i t t l e E n d i a n = True

else :

print (’ unva l id magic code ’)

return

i f i s L i t t l e E n d i a n :

s e l f . fmt = ”<”+s e l f . g fmt

– 56 –

else :

s e l f . fmt = ”>”+s e l f . g fmt

hdrPack = unpack (s e l f . fmt , hdrRaw)

s e l f . magic = hdrPack [0]

s e l f . vers ionMajor = hdrPack [1]

s e l f . vers ionMinor = hdrPack [2]

s e l f . zone = hdrPack [3]

s e l f . s i g f i g s = hdrPack [4]

s e l f . snaplen = hdrPack [5]

s e l f . network = hdrPack [6]

class PcapData :

”””

typede f s t r u c t pcaprec hdr s {
guint32 t s s e c ; /∗ timestamp seconds ∗/
guint32 t s u s e c ; /∗ timestamp microseconds ∗/
guint32 i n c l l e n ; /∗ number o f o c t e t s o f packet saved in f i l e ∗/
guint32 o r i g l e n ; /∗ ac tua l l ength o f packet ∗/

} pcaprec hdr t ;

”””

g fmt = ” I I I I ”

c a l c s i z e = c a l c s i z e (g fmt)

def i n i t (s e l f , stream) :

global i s L i t t l e E n d i a n

i f i s L i t t l e E n d i a n :

s e l f . fmt = ”<”+s e l f . g fmt

else :

s e l f . fmt = ”>”+s e l f . g fmt

hdrPack = unpack (s e l f . fmt , stream . read (s e l f . c a l c s i z e))

s e l f . t sSec = hdrPack [0]

s e l f . t sUsec = hdrPack [1]

s e l f . i n c l l e n = hdrPack [2]

s e l f . len = hdrPack [3]

i f s e l f . len != s e l f . i n c l l e n :

print (’%d + %d ’%(s e l f . len , s e l f . i n c l l e n))

rawData = stream . read (s e l f . i n c l l e n)

i f s e l f . i n c l l e n < s e l f . len :

rawData = rawData [: s e l f . len]

e l i f s e l f . i n c l l e n > s e l f . len :

rawData += b ’ \x00 ’ ∗(s e l f . len−s e l f . i n c l l e n)

#s e l f . rawdata = rawdata

s e l f . frame = FrameData (rawData)

s e l f . remainData = rawData [len (s e l f . frame) :]

def l e n (s e l f) :

return s e l f . len + s e l f . c a l c s i z e

class FrameData :

”””

s t r u c t MAC{

– 57 –

u8 dest [6] ;

u8 s r c [6] ;

u16 etherType ;

}
”””

c a l c s i z e = 6+6+2

def i n i t (s e l f , rawData) :

s e l f . des t = rawData [0 : 6]

s e l f . s r c = rawData [6 : 1 2]

s e l f . p r o t o co l = rawData [1 2 : 1 4]

s e l f . ip = None

i f s e l f . p r o t o co l == b ’ \x08\x00 ’ : #IP

s e l f . ip = IPData (rawData [1 4 :])

s e l f . v a l i d = s e l f . ip . v a l i d

else :

s e l f . v a l i d = False

def l e n (s e l f) :

i f s e l f . v a l i d :

return s e l f . c a l c s i z e + len (s e l f . ip)

return s e l f . c a l c s i z e

class IPData :

”””

u8 Vers ion (4 b i t) + HeaderLength (4 b i t) [32∗ l ength]

u8 DSCP

u16 tota lLength

u16 i d e n t i f i c a t i o n

u16 f l a g s (3 b i t) + fragmentOf f se t (13 b i t)

u8 TTL

u8 protoco l ID

u16 checksum

u32 src IP

u32 destIP

u8 opt ions []

”””

c a l c s i z e = 20

def i n i t (s e l f , rawData) :

packed = unpack (”>BBHHHBBHII” , rawData [: s e l f . c a l c s i z e])

#pr in t (’ ’ . j o in (”{ :02 x} ” . format (ord (c)) f o r c in rawData [: s e l f . c a l c s i z e]))

v l = packed [0]

s e l f . v l = v l

#pr in t (v l)

s e l f . v e r s i o n = v l >> 4

s e l f . headerLength = v l & 0xF

s e l f . v a l i d = False

s e l f . opt = b ’ ’

i f s e l f . headerLength > 5 :

s e l f . opt = rawData [s e l f . c a l c s i z e : s e l f . headerLength∗4− s e l f . c a l c s i z e]

i f s e l f . v e r s i o n != 4 :

s e l f . v a l i d = False

– 58 –

return

s e l f .DSCP = packed [1]

s e l f . to ta lLen = packed [2]

s e l f . obolsatedID = packed [3]

f f = packed [4]

f l a g s = f f >> 13

i f f l a g s &0x4 != 0 :

s e l f . v a l i d = False

return

s e l f . d f = f l a g s &0x2 != 0

s e l f . mf = f l a g s &0x1 != 0

s e l f . f r a g O f f s e t = f f & 0x1FFF

s e l f . rawFrag = f f

s e l f . t t l = packed [5]

s e l f . p r o t o co l = packed [6]

s e l f . checksum = packed [7]

s e l f . s rc IP = packed [8]

s e l f . destIP = packed [9]

s e l f . data = rawData [s e l f . headerLength ∗4 : s e l f . to ta lLen]

i f s e l f . p r o t o co l in (1 , 6 , 17) :

s e l f . v a l i d=True

i f s e l f . p r o t o co l == 1 : #ICMP

s e l f . po r t In f o = ICMPData(s e l f . data)

e l i f s e l f . p r o t o co l == 6 : #TCP

s e l f . po r t In f o = TCPData(s e l f . data)

e l i f s e l f . p r o t o co l == 17 : #UCP

s e l f . po r t In f o = UDPData(s e l f . data)

i f s e l f . po r t In f o . type == ’X ’ :

s e l f . v a l i d=False

def l e n (s e l f) :

i f s e l f . v a l i d :

return s e l f . to ta lLen

return 0

class TCPData :

”””

u16 Source port

u16 Des t inat i on port

u32 seq

u32 ack

u16 d a t a o f f s e t and f l a g s

u16 window s i z e

u16 checksum

u16 urgent po in t e r

”””

c a l c s i z e = 20

– 59 –

def i n i t (s e l f , rawData) :

i f len (rawData) < s e l f . c a l c s i z e :

s e l f . type = ”X”

return

packed = unpack (”>HHIIHHHH” , rawData [: s e l f . c a l c s i z e])

s e l f . s r cPort = packed [0]

s e l f . destPort= packed [1]

s e l f . seq = packed [2]

s e l f . ack = packed [3]

s e l f . c t r l = packed [4]

s e l f . win = packed [5]

s e l f . check = packed [6]

s e l f . urgent = packed [7]

s e l f . data = rawData [s e l f . c a l c s i z e :]

s e l f . type = ”T”

class UDPData :

”””

u16 Source port

u16 Des t inat i on port

u16 l ength

u16 checksum

”””

c a l c s i z e = 8

def i n i t (s e l f , rawData) :

i f len (rawData) < s e l f . c a l c s i z e :

s e l f . type = ”X”

return

packed = unpack (”>HHHH” , rawData [: s e l f . c a l c s i z e])

s e l f . s r cPort = packed [0]

s e l f . destPort= packed [1]

s e l f . l ength = packed [2]

s e l f . checksum = packed [3]

s e l f . data = rawData [s e l f . c a l c s i z e :]

s e l f . type = ”U”

class IGRPData :

”””

”””

def i n i t (s e l f , rawData) :

s e l f . type = ”G”

s e l f . s r cPort = −1

s e l f . destPort = −1

class ICMPData :

”””

u8 type

u8 code

u16 checksum

u16 part1

u16 part2

”””

– 60 –

c a l c s i z e = 8

def i n i t (s e l f , rawData) :

i f len (rawData) < s e l f . c a l c s i z e :

s e l f . type = ”X”

return

s e l f . type = ” I ”

s e l f . s r cPort = −1

s e l f . destPort = −1

packed = unpack (”>BBHHH” , rawData [: s e l f . c a l c s i z e])

s e l f . i t ype = packed [0]

s e l f . code= packed [1]

s e l f . check = packed [2]

s e l f . part1 = packed [3]

s e l f . part2 = packed [4]

s e l f . data = rawData [s e l f . c a l c s i z e :]

tmptarget = makeIP3 (’ 1 0 . 1 7 2 . 1 5 . 1 3 4 ’)

def work (job) :

#fi lename = ’ . . / Dataset /DARPA1998/week∗/day∗/ ou t s i d e . tcpdump ’

global baset ime se t , baset ime

f i l ename = job

paths = ’ / ’ . j o i n (f i l ename . s p l i t (’ \\ ’)) . s p l i t (’ / ’)

ob jSrc = {}
nowloca l = datet ime . now ()

nowstr = nowloca l . s t r f t i m e (’%Y%m%d %H%M%S ’)

with open(f i l ename , ’ rb ’) as fp ,\
open(’ / root / r e p l a y l o g/%s r e p l a y . txt ’%nowstr , ’wt ’) as fpLog :

f i l e s i z e = os . path . g e t s i z e (f i l ename)

pcapHdr = PcapHeader (fp)

cnt = 0

done = 0

while fp . t e l l () + PcapData . c a l c s i z e < f i l e s i z e :

newPacket = PcapData (fp)

#ppr in t (vars (newPacket))

cnt += 1

i f cnt %100000 == 0 :

print (’%s/%s : %d ’%(paths [−3] , paths [−2] , cnt))

i f not newPacket . frame . v a l i d :

continue

s rc IP = newPacket . frame . ip . s rc IP

destIP = newPacket . frame . ip . destIP

i f not s rc IP in v a l i d s or not destIP in v a l i d s :

continue

– 61 –

s rc IP = ipMaps [s rc IP]

destIP = ipMaps [destIP]

int ime = datet ime . utcfromtimestamp (newPacket . t sSec +0.000001∗newPacket . tsUsec)

i f not bas e t ime s e t :

ba s e t ime s e t = True

baset ime = int ime

f i x t i m e = basenowtime#(intime−baset ime)/ speed + basenowtime == basenowtime

b a s e t i m e s t r = baset ime . s t r f t i m e (’%Y%m%d %H%M%S ’)

f i x t i m e s t r = basenowtime . s t r f t i m e (’%Y%m%d %H%M%S ’)

fpLog . wr i t e (’%s \ t−>\t%s \ t%d\n ’%(base t ime s t r , f i x t i m e s t r , speed))

else :

f i x t i m e = (intime−baset ime) / speed + basenowtime

f i x s e c = (f ix t ime−base t ime1970) . t o t a l s e c o n d s ()

f i x u s e c = f i x t i m e . microsecond

i f f i x t i m e > datet ime . utcnow ()+t imede l ta (seconds =10) :

#pass

time . s l e e p (1)

p = newPacket

f = newPacket . frame

i = f . ip

t = i . po r t In f o

bu f f = pack (’=IIBHBBHHBBII ’ , f i x s e c , f i x u s e c , i .DSCP, i . obolsatedID ,

i . mf , i . df , i . f r a g O f f s e t , i . rawFrag , i . t t l , ord (i . po r t In f o . type) ,

srcIP , destIP)

i f i . po r t In f o . type == ’T ’ :

bu f f +=pack (’=HHIIHHH ’ , t . srcPort , t . destPort , t . seq , t . ack , t . c t r l ,

t . win , t . urgent)

bu f f +=t . data

e l i f i . p o r t In f o . type == ’U ’ :

bu f f +=pack (’=HHH’ , t . srcPort , t . destPort , t . l ength)

bu f f +=t . data

e l i f i . p o r t In f o . type == ’ I ’ :

bu f f +=pack (’=BBHH’ , t . i type , t . code , t . part1 , t . part2)

bu f f +=t . data

else :

continue

print int ime , f i x t ime , len (bu f f)

fd = f i f o s [s rc IP]

os . wr i t e (fd , pack (’=I ’ , len (bu f f)))

os . wr i t e (fd , bu f f)

#done+=1

– 62 –

#i f done >100:

break

print (’%s t o t a l : %d ’%(f i l ename , cnt))

return ’%s/%s ’%(paths [−3] , paths [−2]) , ob jSrc

def main () :

global speed , va l i d s , ipMaps

ip InSrc = {}
speed = 60

print (’ prepare IP Map ’)

for l i n e in open(’ / root / i p I n S r c 1 9 98 i p m a p f u l l . txt ’ , ’ r t ’) :

v a l s = l i n e . s p l i t (’ \ t ’)

i f len (v a l s) <2: continue

v a l s [0] = v a l s [0] . s t r i p ()

v a l s [1] = v a l s [1] . s t r i p ()

o r ig IP = makeIP3 (v a l s [0] . s t r i p ())

newIP = makeIP3 (v a l s [1] . s t r i p ())

ipMaps [o r i g IP] = newIP

print (’ o p e n f i f o ’)

for l i n e in open(’ / root /6 t a r g e t . txt ’) :

v a l s = l i n e . s p l i t (’ \ t ’)

i f len (v a l s) <2: continue

or ig IP = makeIP3 (v a l s [0])

v a l i d s . add (or ig IP)

newIP = ipMaps [o r i g IP]

#i f newIP==tmptarget :

fd = os .open(’ /tmp/ net r ep lay / f i f o %s ’%parseIP2 (newIP) , os .OWRONLY| os .O SYNC)

f i f o s [newIP] = fd

print (’ v a l i d s %d ’%len (v a l i d s))

print (’ s tack 10 sec ’)

workQueue = sorted (g lob . g lob (’ / root /DARPA1998/week6/day ∗/∗ . tcpdump ’))

#work (workQueue [0])

print (workQueue)

for va l in workQueue :

work (va l)

for ip , f i f o in f i f o s . i tems () :

ends ig = pack (’=i ’ ,−1)

os . wr i t e (f i f o , ends ig)

print (’ wait 10 sec ’)

time . s l e e p (30)

for ip , f i f o in f i f o s . i tems () :

os . c l o s e (f i f o)

– 63 –

i f name == ’ ma in ’ :

s t a r t = datet ime . now ()

main ()

end = datet ime . now ()

print ’ time %d ’%(end−s t a r t) . t o t a l s e c o n d s ()

PCAP Reader- /root/PycharmProjects/DumpOn/dumpon.py

– 64 –

Summary

Improving Detection Capability

of Flow-based IDS in SDN

Intrusion Detection System (IDS)은 네트워크나 시스템에서 원하지 않은 행동이나 공격을 확인하고

보고하는시스템이다. 일반적인침입탐지시스템은네트워크경계에설치되어외부망과내부망사이의패킷

데이터를 모두 검사하는 방식을 사용하고 있다.

네트워크의 발달로 네트워크의 기능들이 통합되고, 넓은 범위의 네트워크를 통합하여 관리하는 과

정에서 네트워크의 구조가 복잡해지고 있어, 기존의 외부망 탐지뿐만 아니라 내부망의 탐지 또한 요구된다.

그러나 내부망의 침입 탐지를 기존 방법인 packet-based IDS로 수행할 경우, 네트워크의 가용 대역폭의

감소를 유발하기 때문에 침입 탐지가 어려운 점이 있다.

sFlow, NetFlow와 같은 flow 기반 자료를 통한 flow-based IDS는 거대한 네트워크에서도 위와 같은

flow 기반 모니터링 툴에서 추출된 정보만을 이용해 공격 탐지가 가능해, 대규모 네트워크에서도 비교적

손쉽게 IDS를 구성할 수 있게 되었다.

그러나, flow-based detection은 공격을 분석하는 데 한계가 있다. 알려지지 않은 worm virus가 침입

하고 있을 경우, IDS로 새로운 공격으로 탐지할 수 있으나, packet의 정보가 기록되기 않기 때문에, 새로운

공격에대해서내성을갖기어렵고, Honeypot과같이공격정보를수집하는다른시스템에의존해야만한다.

따라서, 본 논문에서는 기반 네트워크로서 Software Defined Network (SDN)를 이용하여 적은 네트

워크 자원을 사용하면서, 탐지한 공격에 대해서 자세히 분석이 가능한 자료를 보관할 수 있도록 하는 방법을

제안한다. flow-based IDS를 이용하여 적은 오버헤드로 침입 탐지를 수행하고, 침입이 탐지될 경우 이후의

packet을 packet-based IDS로보내침입에대해서상세한결과를얻어,공격에대한분석이가능하도록한다.

또한, 수동적인 대응만 할 수 있는 IDS 역할 뿐만 아니라 탐지한 침입의 차단이 가능한 IPS로서도 운용 이

가능하다.

제안한 방식의 실증을 위하여 SDN 컨트롤러로써 POX를 사용하였고, Mininet를 이용해 1,300개의

노드가연결된테스트베드를구성하였다. 구현한테스트베드에공개된 Dataset의 packet dump를이용하여

제안한 방식이 정상적으로 동작하는 것을 확인하였다.

핵심어: IDS, SDN, Flow-based Detection, Hybrid IDS

– 65 –

감 사 의 글

이 논문을 작성하기까지 많은 분들께 다양한 도움을 받았습니다. 지도교수님이신 김광조 교수님께

는 적게는 연구의 진행 방향뿐만 아니라, 연구자로써의 마음가짐과 태도에 이르기까지 많은 것을 배울 수

있어 제 인생의 이정표를 세우는데 정말로 큰 도움을 주셨습니다. 또한 바쁘신 와중에도 학위논문심사에

참여하셔서 진심어린 조언을 주신 이영희 교수님, 김순태 교수님께도 감사의 말씀을 드립니다.

그리고 연구실의 동기, 선후배인 김학주 형님, Khalid Telman Huseynov, 최락용 형님, 박준정 형님,

정제성 형님, 안수현 형님, 김경민, Aminanto Erza Muhamad 에게도 연구 및 과제, 연구실 생활과 같은

부분에서 이야기를 나누면서 많은 격려를 받았습니다. 특히 영어로 많이 헤맬 때 도움을 주신 김학주 형님,

최락용 형님께는 진심으로 감사드립니다.

이외에도 감사를 드릴 분들이 많습니다. SDN에 대해서 이해하는데 도움을 준 류형열 선배님, Com-

fort Mhalanga에게감사드리며,같은학기에들어와함께수업을들으며,이야기를나누었던석사동기들께도

감사를 드립니다.

끝으로, 지금의 제가 있기까지 언제나 믿음을 가지고 지켜봐주신 부모님과 동생 은경이에게 깊은

감사를 드립니다. 앞으로도 지금의 저보다 한층 더 나아진 모습으로 보답하겠습니다. 감사합니다.

– 66 –

이 력 서

이 름 : 이 동 수

생 년 월 일 : 1990년 6월 2일

E-mail 주 소 : Letrhee@kaist.ac.kr

학 력

2006. 3. – 2009. 2. 전라고등학교

2009. 2. – 2013. 2. 한국과학기술원 전산학과 (B.S.)

2013. 3. – 2015. 2. 한국과학기술원 전산학과 (M.S.)

경 력

2011. 9. – 2011. 12. 한국과학기술원 프로그래밍 기초 일반조교

2012. 3. – 2012. 6. 한국과학기술원 프로그래밍 기초 일반조교

2012. 9. – 2012. 12. 한국과학기술원 프로그래밍 기초 일반조교

2013. 3. – 2013. 6. 한국과학기술원 프로그래밍 기초 일반조교

2013. 3. – 2013. 6. 한국과학기술원 정보보호개론 일반조교

2013. 9. – 2013. 12. 한국과학기술원 프로그래밍 기초 일반조교

2013. 9. – 2013. 12. 한국과학기술원 고급정보보호 일반조교

2014. 3. – 2014. 6. 한국과학기술원 정보보호개론 일반조교

– 67 –

연 구 과 제

2013. 3. – 2013. 10. Securing SCADA Protocols for Nuclear Plants

2013. 4. – 2013. 12. Intrusion Detection System for Critical Infrastructures

2013. 8. – 2015. 2. 생체모방 알고리즘(Bio-inspired Algorithm)을 활용한 통신기술 연구

2014. 8. – 2015. 2. Intrusion Detection System for Critical Infrastructures Using Big Data Analytics

연 구 업 적

1. 이동수, 김광조, “SCADA용 DNP3 프로토콜의 소규모 실험환경구축”, 2013 정보보호학술발표회논문

집 충청지부, pp.66-71, 2013.9.27. 순천향대학교, 천안. - [우수논문]

2. 이동수, 김광조, “Swarm Intelligence를이용한침입탐지시스템의방식비교”, 한국정보보호학회동계

학술대회(CISC-W13), 2013.12.6-7. 아주대학교, 수원

3. Dongsoo Lee, HakJu Kim, Kwangjo Kim, and Paul D. Yoo, “Simulated Attack on DNP3 Protocol

in SCADA System”, 2014 Symposium on Cryptography and Information Security (SCIS 2014), Jan.

21-24, 2014, Kagoshima, Japan

4. 김광조, 이동수, “escar 회의 등을 통한 각국의 자동차 보안 기술 동향 연구”, 한국정보보호학회지 제

24권 제 2호 pp. 7 – 2014.4.20

5. 이동수,김광조, “소규모 DNP3실험환경에서각종공격과대응방안”,한국정보보호학회하계학술대회

(CISC-S’14), 2014.06.26-27. 부산대학교, 부산

6. 김광조, 이동수, “내부망에서 효율적인 침입탐지 방법 및 장치”, 특허 [출원중]

7. 이동수, 김광조, “SDN에서 Flow 기반 침입 탐지 시스템의 탐지 성능 개선 방법”, 한국정보보호학회

동계학술대회(CISC-W’14), 2014.12.06. 한양대학교, 서울

– 68 –

	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Overview of Intrusion Detection System
	Motivation
	Organization

	Related Work and Background
	Intrusion Detection Method
	Signature-based Detection
	Anomaly-based Detection
	Packet-based Detection
	Flow-based Detection

	Data Set for Intrusion Detection
	Method of Gathering Data
	Public Labeled Data Set for an IDS

	Software Defined Network(SDN)
	SDN Overview
	OpenFlow
	Flow-based Detection using SDN

	Our Proposed IDS Scheme
	Goals and their Solutions
	Detection of Insider Attack
	Analysis of Malicious Packets
	Prevention or Mitigation of Attacks

	IDS Structure
	Flow Information Logger
	Flow-based IDS
	Packet-based IDS
	Packet Information Logger

	Working Scenario
	Initial Phase
	Flow-based IDS Phase
	Packet-based IDS Phase
	Wrap-up Phase

	Implementation

	Evaluation
	Testbed Configuration
	Test Environment
	Testbed Topology
	System under Test

	Evaluation Criteria
	Result
	Detection Overhead
	Detection Result
	Amount of Packet Analysis Result

	Discussion

	Concluding Remark
	References
	Appendices
	Source Code of IDS Module on POX
	Source Code of Testbed Initialization on Mininet
	Source Code of PCAP Replayer

	Summary (in Korean)

