A Sl

Master’s Thesis

SDNoj| A Flow 7|89F 21¢] &
) A% A

- O

A

A 259

Improving Detection Capability
of Flow-based IDS in SDN

o] &5 4 (& W F Lee, Dongsoo)
Ao}

Department of Computer Science

KAIST

2015

SDNOJA Flow Z|8F Q) B2 AlA
A s M '

Improving Detection Capability
of Flow-based IDS in SDN

Improving Detection Capability
of Flow-based IDS in SDN

Advisor : Professor Kim, Kwangjo

by

Lee, Dongsoo

Department of Computer Science
KAIST

A thesis submitted to the faculty of KAIST in partial fulfillment
of the requirements for the degree of Master of Science in Engineering
in the Department of Computer Science . The study was conducted in

accordance with Code of Research Ethics!.

2014. 12. 23.
Approved by

Professor Kim, Kwangjo

[Advisor]

Declaration of Ethical Conduct in Research: I, as a graduate student of KAIST, hereby declare that
I have not committed any acts that may damage the credibility of my research. These include, but are
not limited to: falsification, thesis written by someone else, distortion of research findings or plagiarism.
I affirm that my thesis contains honest conclusions based on my own careful research under the guidance

of my thesis advisor.

SDNOJA] Flow 719F 2 ¢f B 2] A|2~H] 0]
HA s A
o] 5 %
9 R GRNNI &Y AR o
S9SB4 AL E oS

2014 129 19¢

AR Ad xR ()

AR ol 98 ()
o)

AN A %

MCS 0| = £=. Lee, Dongsoo. Improving Detection Capability

of Flow-based IDS in SDN. SDNO{|A{ Flow 7|8 21Q] EFZ| A|AEIQ|
20133476 EfZ| M 714 2 Department of Computer Science . 2015. 29p. Advisor Prof. Kim,
Kwangjo. Text in English.

ABSTRACT

An intrusion detection system (IDS) identifies malicious behaviours or attacks, and reports to
network administrators as intrusion events. In many cases, an IDS is installed at the boundary of the
interconnecting network and scrutinizes all transmitted packets between the external network and the
internal networks.

Due to the development of the Internet technologies, large-scale networks which have support vari-
ous functionality have put into a service, such as city-wide networks and networks using network function
virtualisation, etc. Thus, detection throughout the internal network plays of crucial importance much as
an external network detection. However, if the IDS performs intrusion detection in the internal network
using the existing methods of packet-based detection, this leads to excessive bandwidth consumption in
the network detection.

Flow-based IDS is considered to be more lightweight IDS based on flow information which are
extracted by sFlow and NetFlow than packet-based IDS. Applying flow-based detection, the internal
detection is feasible with low operating resources. This enables a large-scale network can operate with
an IDS.

Even if an unknown attack using as new worm virus, etc. is detected by the flow-based detection,
an IDS can not recognize the detailed behaviour of a specific attack.

Such an flow-based IDS cannot archive all the detailed information, as with a packet-based IDS.
The permanent intolerance for unknown attacks without other tools, like a Honeypot, which gathers
both known and unknown attack information will be difficult.

This paper proposes a novel IDS scheme that operates lightweight intrusion detection that keeps a
detailed analysis of attacks. In this scheme, a flow-based IDS detects intrusions, but with low operating
cost. When an attack is detected, the IDS requests the forwarding of attack traffic to packet-based
detection so the detailed results obtained by packet-based detection can be analysed later by security
experts. To realize this scheme, the IDS uses a software-defined network (SDN) to control the routing
table of the network. With the SDN, to change the path of the attack packets for analysis easily is
possible, but the IDS can also work as an intrusion prevention system (IPS) by dropping the attack
packets.

For the verification of our proposed IDS, POX (a python based SDN/OpenFlow controller) and
Mininet (an OpenFlow testbed constructor), were implemented with about 1,300 nodes. The IDS scheme

was checked for proper operation by replaying tcpdump of the data set from the testbed.

Keywords: IDS, SDN, Flow-based Detection, Hybrid IDS

Contents

[Abstract] o o o e e e i
Contents |. o o i i e e e e e e e e e e e e e e e e e il
(List of Tables | v o v v o i e e e e e e e iii
[List of Figures| o o e iv
[Chapter 1. Introduction | 1
(1.1 Overview of Intrusion Detection System| 1
1.2 Motivation|. e 3
(1.3 Organization] ¢ i v vt v vttt 4
[Chapter 2. Related Work and Background | 5
2.1 Intrusion Detection Method| 5
2.1.1 Signature-based Detection| 5

2.1.2 Anomaly-based Detection| 6

2.1.3 Packet-based Detectionl., 6

2.1.4 Flow-based Detectionl 7

2.2 Data Set for Intrusion Detectionl 7
2.2.1 Method of Gathering Datal 7

2.2.2 Public Labeled Data Set for an IDS| 8

2.3 Software Defined Network(SDN)[. 9
2.3.1 SDN Overview| v v v v v v v v 9

2.3.2 OpenFlow|. 000000, 10

2.3.3 Flow-based Detection using SDN|. 11

[Chapter 3. Our Proposed IDS Scheme | 13
3.1 Goals and their Solutions| 000 13
3.1.1 Detection of Insider Attackl 13

[3.1.2 Analysis of Malicious Packets| 13

[3.1.3 Prevention or Mitigation of Attacks 14

3.2 IDS Structurel. 14
3.2.1 Flow Information Logger|. 14

3.2.2 Flow-based IDS| 14

B.2.3 Packet-based IDS| 000, 15

[3.2.4 Packet Information Logger|. 15

ii

3.3.4 Wrap-up Phase,,

3.4 Implementation|. 00 0.,

[Chapter 4. Evaluation |

[4.1 Testbed Configuration|.

[4.1.2 Testbed Topology|
4.1.3 System under Test|

[Chapter 5. Concluding Remark |

[References |
[A__ Source Code of IDS Module on POX|.
IB_ Source Code of Testbed Initialization on Mininetl
(C Source Code of PCAP Replayer|

I[Summary (in Korean)|

—iii —

19
19
19
19
19
21
22
22
22
23
24

26

27

30
30
41
44

65

List of Tables

2.1 _Structure of Match Information| oL 11
2.2 Structure of Flow Information| 11
4.1 Network Overhead by Openklow Message Type|. oo 0., 22
4.2 Detection Result by Flow-based Detection in DARPA 1998 23
4.3 Calculated Detection Result using only T'wo Classes| 23

iv

List of Figures

[L1_Basic IDPS Architecture| 2
.1 Software-Defined Network Architecture [14] 10
2.2 DDoS Flooding Attack Detection on Openklow| 0. . 12
3.1 Attack Classification of Flows and Packets 16
3.2 Pseudo Code of our Proposed Scheme| 18
4.1 Network Topology of Testbed| 20

Chapter 1. Introduction

1.1 Overview of Intrusion Detection System

An intrusion detection system (IDS) identifies unauthorized behavior or attacks and reports on
them from within the network or system [I9]. There are two types of IDS: a host-based IDS (HIDS)
and a network-based IDS (NIDS). An HIDS is installed on individual hosts or devices in the network
and detects attacks from outside. Typically, an HIDS is used for equipment that must operate reliably,
like a web server. A NIDS is a device that detects attacks that occur in the network, and is mainly
installed where a lot of traffic passing through the network. Although the term IDS includes both HIDS
and NIDS, in this paper, IDS refers to a NIDS, unless otherwise noted.

From the viewpoint of possible detection of an attack, a firewall has similar operations to an
IDS. However, there is a big difference between a firewall and an IDS. A firewall is only capable of
operating according to pre-installed rules, but an IDS can analyse the traffic to determine whether or
not an intrusion happens, as well as its corresponding countermeasure. Therefore, an IDS plays an
important role in maintaining a secure network, in this view. Among IDSs, detection and prevention are
also available; such a device is called an intrusion prevention system (IPS), with the two devices together
called an intrusion detection/prevention system (IDPS).

An IDS is composed of the server (to determine whether an attack has occurred or not) and the
sensor (to collect traffic information). The sensor is installed in a place which can easily gather a lot
of network traffic (near a gateway or router, for example). The sensor collects the network payload, or
network flow, under the policy of the IDS server, and sends the values to the IDS server. The server can
be in various positions, depending on the strategy of the IDS. If the IDS is intended to prevent attacks,
the server is installed close to the location of the sensor, router, or gateway. Figure illustrates a

representative example of firewall and IDS installed close together.

e
Y Intemet
1

Router

.
-
Switch @

Firewall

Monitoring
e interface

Management
.......... interface
-_— Management
Switch

... Moritoring
~interface

Switch @
Internal
Network

IDPS IDPS
Management Console
Server

IDPS Sensor

Figure 1.1: Basic IDPS Architecture

Detection targets can vary for each IDS. The IDS can detect some or all attacks, such as distributed
denial of service (DDoS), botnets, worm virus, anomalous behaviour, etc., which will occur in the network.
In order to detect attacks, an efficient detection algorithm against all the malicious attack must be
prepared. Machine learning, artificial intelligence, data mining, and expert systems are used as well-
known methods of creating algorithms.

To evaluate the IDS’ algorithm, data sets and real network traffic are used, and users can compare
prediction results of the detection algorithm and analyze the results of actual network traffic. Detection
results are largely divided into four categories. If a malicious traffic is determined as an attack by the
IDS, and this is a true positive. A true negative means the test case is determined to be normal behavior,
and is not an attack. A false positive means that the behavior is normal, but is detected as an attack;
and a false negative means that the behavior is an attack but is classified by the IDS as normal behavior.
Detection rate (true positive rate) and false alarm rate (false positive rate) are useful indicators for
evaluating the IDS. Detection rate is an indicator of how well the IDS detects the attacks; when the
detection rate is low, the IDS cannot detect attacks very well. The false alarm rate is the number of
cases of normal traffic incorrectly detected as attacks. When the false alarm rate is high, the detection

results can be misleading, so reliability of all detection results can also be undervalued.

1.2 Motivation

In general, a powerful algorithm in order to detect all the attacks with the IDS is important. But
one cannot expect that an algorithm that provides good results once will also show good result in the
future. This is because the types of network traffic and attacks change over time. For example, network
users might at first just connect to the Internet, but later can start to use a lot of peer-to-peer (P2P)
applications. In this case, an IDS will not be able to properly detect normal traffic with the existing
detection methods. In addition, attackers will try another approach to break into the network in place
of a conventional attack method. For example, where formerly an attacker used a single host to attempt
a DoS attack, he now tries to attack from a number of hosts, like a botnet. In this case, the IDS has
difficulty determining whether an intrusion is occurred. Therefore, in order to deal with new attacks,
the IDS must continue to determine adaptively which new attacks are occurred.

Also, relying only the IDS for the security of the system can be a problem. For example, let us
assume that a new worm virus attempts to intrude on the network, but the IDS detects the worm virus
as an abnormal attempt and prevents the spread of the worm virus. just blocking malicious packets is
a good thing to prevent attacks on the network. However, if we cannot understand the purpose of this
unprecedented new attack because the IDS just try to prevent attacks without keeping detailed reports, a
big problem will happen, because some attacks can happen to the network due to the IDS’ imperfection.
Therefore, if the IDS determines that network traffic is an attack, we at least need to store the detection
results or packet payload of the attack for an expert to analyse in detail later.

The important thing is that too many network resources should not be required to perform
these tasks. If the IDS is used in a network, we can easily assume that this network is a kind of
resource—critical system, such as a wireless mesh network using OpenFlow [6] or a corporate network
with network functions virtualisation (NFV) [7]. They operate network as a unified form including
network controls, so saving network’s overhead is also very important as its functionality.

With this view, this paper proposes a new intrusion detection scheme that uses less network
resources than a typical IDS, which can efficiently detect attacks, and can store detailed information

about the detected attack for analysis afterwards by security experts.

1.3 Organization

The rest of this thesis is organized as follows: Chapter |2 describes related work and background
about the audit source of the IDS, the detection algorithm, and building data sets and the IDS on an
SDN. The design requirements for our proposed scheme and how to operate are described in Chapter
The implementation of our proposed scheme including the realistic evaluation and the results are

discussed in Chapter [Finally, the conclusion and future work are discussed in Chapter [5}

Chapter 2. Related Work and Background

This chapter will introduce the key factors that must be considered to constitute the current IDS.
First, the operation method of the IDS is described, with a comparison of pros and cons. Also described
is the public data set for the IDS, and a description is given of the method used to generate the data
set. The SDN that is the background network of the idea is presented, along with previous attempts to

implement a lightweight IDS in an SDN.

2.1 Intrusion Detection Method

2.1.1 Signature-based Detection

Signature-based detection is the way to detect packets that have a signature in the network traffic
corresponding to the rules established in the IDS [2]. Each rule has attributes and conditions about
an attack. When the traffic from the network comes into the IDS, we must find some rules to match
the provided data in the IDS. If matched rules were found in the traffic data, the IDS decides if the
transmitted traffic contains an intrusion. In this respect, signature-based detection is similar to the
operation of an anti-virus application.

Because the actual IDS should be applied at the same time for at least several thousand rules
for all traffic, we do not need to compare each rule, but use a decision tree or some kind of automated
algorithm to speed up the process. Well-written signature rules can perform detection of known attacks
with high probability, so misjudged results are very few. Because of these characteristics, signature-
based detection is used frequently in commercial usage, and an IPS in particular will use this detection

to essentially perform the preventive reactions without mistakes.

2.1.2 Anomaly-based Detection

Anomaly-based detection will not find attacks using one-to-one correspondence, like signature-
based detection; this detection uses the tendency of the attack traffic to determine whether an attack is
occurred or not. To operate this detection method, a prior learning process is required. First, security
experts collect a great deal of general traffic and attack traffic, and generate an algorithm or heuristics
based on statistics, artificial intelligence, or machine learning to judge each attack type [4]. When
detecting attacks, the IDS tries to distinguish which pre-classified group is correct for the entered traffic.
If a proper group for the traffic is found in pre-classified group, the IDS decides this traffic is a known
attack. Otherwise the IDS decides the other traffic as an ”outlier,” which means a new kind of attack.
Anomaly-based detection can distinguish outlier traffic, so the IDS has the possibility of detecting new
attacks if the detection algorithm is trained well.

However, because the learning outcomes of anomaly-based detection are represented by a sequence
of numbers, most experts have difficulty seeing the working method. Consequently, even though a learned
algorithm potentially has the critical problems, they cannot be found fast, or found when the IDS operates
in a real environment in certain cases. Also, anomaly-based detection generally has a lower detection rate,
compared to signature-based detection, and has a high false alarm rate. This result reduces reliability

of the IDS, so flow-based detection is commonly used along with signature-based detection together.

2.1.3 Packet-based Detection

Packet-based detection (or payload-based detection) is a way to choose a data source from network
traffic which requires the entire packet payload to detect an attack. Packet-based detection is mainly
combined with signature-based detection, which requires a lot of features of the traffic, especially for
operating an IPS. For example, Snort is a well-known IDS based on packet-based and signature-based
detection. This detection method requires all packet payloads for detection. Therefore the IDS using
packet-based detection is mainly installed near the gateway or root of a tree network structure, where
almost all packets are transmitted.

In theory, packet-based detection can provide the highest detection rate due to detection target
which implies all the information from the traffic. But detection hardware must be should have powerful

devices to process several terabits of traffics. To address this limitation, NetFPGA [11] which processes

packets at high speed, or a distributed IDS [I], can be used for a packet-based IDS.

2.1.4 Flow-based Detection

Flow-based detection is used to minimize network overhead when the IDS operates. In flow-based
detection, flow is the basic unit between connections to be detected [23]. Even if connection time is long
and the number of packets is large, they can be represented as one flow or a few flows. This is the reason
flow-based detection requires far fewer network resources, compared to packet-based detection.

In flow-based detection, a network switch and router collect flow information from the network
traffic, and send this information to the server during some intervals. Because switches and routers are
installed throughout the entire network, not only on the boundary of the network, flow-based detection
can detect insider attacks as well as outsider attacks. Therefore flow-based detection can be used in a
university network, an industrial network and a city-wide network, in which all of the network members
are not guaranteed harmless. A flow contains source internet protocol (IP) address, destination IP
address, protocol, packets per flow, TCP flags (if possible), bytes per flow, and duration. A flow is
not used with signature-based detection which requires many features, and is generally combined with

anomaly-based detection.

2.2 Data Set for Intrusion Detection

As described above, selecting a data set is very important, because the data set is used to evaluate
the performance of the IDS, or to make a pre-learned detection algorithm. However to make a useful
data set, a well-designed data collection plan is required. Because of the difficulty in making a data set,
using a public data set for intrusion detection is also a good idea in researching an intrusion detection

system.

2.2.1 Method of Gathering Data

Honeypot

A honeypot [I7] is a tool for collecting attack data. The term honeypot comes from its behavior,
which attracts attackers (bees) to a place (the attack target, or “honey”) used as a trap. The honeypot is
configured as the intended attack target using a physical system or a pseudo system, and the researcher

leaves its web address on the internet so automated attack tools will attack the honeypot device. If

-7 -

the intruder attacks a honeypot device, this device analyses the information about the attacker, which
includes IP address or names of tools, and archives the tcpdump data of its packets. After some time
has passed, security experts can analyse the detailed attack information using the stored tcpdump data.

To operate the honeypot, the operator must assume the types of applications that will be attacked
by attackers. In many cases, the ‘server’ (including web servers, mail servers, etc.) is the main target to
collect attack data. So daemons installed in a honeypot are server applications, and normal applications

draw relatively less attention.
NetFlow, sFlow

Compared to a honeypot, which provides assistance in obtaining the attack signature, NetFlow
[5] and sFlow [6] provide flow information for intrusion detection. A flow exporter (or sensor) is installed
in a router or switch and extracts flow information from network traffic. After time goes by, the exporter
sends a bunch of flow information to a flow collector that collects flow data or operates a flow-based IDS.
Devices for NetFlow and sFlow only have the functionality to send flow information, but they do
not have control operation by flow. Therefore, if we want to add blocking or attack prevention, other

devices are required.

2.2.2 Public Labeled Data Set for an IDS

DARPA / KDD Cup Data Set

The Defense Advanced Research Projects Agency (DARPA) Data Set [10] is a data set for intrusion
detection produced by the MIT Lincoln Laboratory at the request of DARPA. DARPA data sets were
made in 1998, 1999, 2000, and each data set has a different purpose for detection. Regardless of the year,
all DARPA data sets provide tcpdump for all the traffic, and expected attack types are in the data set.
Among the data sets, the DARPA 1998 data set is most used for network intrusion detection systems
because this dataset contains very huge network traffic and various attack types. The DARPA 1998
data set was made over eight weeks and has approximately 20GiB of network traffic. Also, this data set
classified 27 attack types and contains about 15,000 IP addresses, including fake IPs for attacks.

The KDD99 Data Set [24] is a data set for the Knowledge Discovery and Data Mining Tools KDD
Cup 99 competition which is based on the DARPA 1998 data set. this dataset extracted 41 features

from the entire packet dump, and reclassified as 24 attack types from DARPA 1998 data set. By 2010,

-8 —

the DARPA 1998 and KDD99 data sets had been used most frequently for performance evaluation of
IDS systems.

However, there are criticisms that the learned algorithms using the DARPA data set and the
KDD99 data set are not proper for detecting attacks in real network environments [25]. When evaluating
the DARPA 1998 data set using a commercial signature-based IDS, the IDS showed a lower detection
rate, even if the IDS showed good performance on a real network. As a result of the analysis, the recorded
TCP dump of attacks is quite different from general attack tools. To solve this problem, NSL-KDD [25],
which removed and fixed the improper attack dump, was suggested. However, DARPA 1998 which is

the basis of NSL-KDD is too old a data set, so NSL-KDD can not represent ‘current’ dataset.
Other Public Labeled Data Set

In addition to the DARPA data set, some labelled data sets are published. The Information
Security and Object Technology (ISOT) data set [I§] is one that combines a normal traffic packet
dump published previously and botnet tcpdump data. The Kyoto data set [21] collects packets using a
commercial honeypot and IDS. The Labeled Data Set for Intrusion Detection [22] is similar to the Kyoto
data set, but was only made for flow-based IDS. These data sets have extracted features, not a full TCP
dump, for machine learning and data mining to use easily, but they are not appropriate for an attack
replay in a testbed.

Also, there are various data sets which contains network packets. But in most cases, they do not

contain attack traffic, or do not provide labelled data. So they are not useful for testing an IDS.

2.3 Software Defined Network(SDN)

2.3.1 SDN Overview

Up to now, each network device has had limited settings for the network layer and for only the
device itself. So if changing network policy is required, network operators must change settings of each
devices. Because the equipment is not connected organically, the settings between devcies can be confused
within several modification of network configuration. A software-defined network [14] divides the existing
network into the control layer, the infrastructure layer (data layer), and the application layer, as shown

in Figure 2. Common routers and switches contain the link status and manage routing, forwarding

the table itself. In an SDN, these devices have only link status and just transmit data, and devolve
management functions to an SDN controller and network application, such as NAT, load balancer linked
with an SDN controller. This separation allows the network administrator to easily change the entire

network policy.

Business Applications

APPLICATION LAYER | |

CONTROL LAYER

Network ﬁ
gt Network Services .
INFRASTRUGTURE
LAYER

Figure 2.1: Software-Defined Network Architecture [I4]

2.3.2 OpenFlow

OpenFlow (OF) [14] is the most widely used protocol, which provides the functionality of an SDN.
OpenFlow describes how the SDN controller and the OpenFlow switch (OF switch) communicate, and
which message block is sent by them. In an OpenFlow network, OF devices (including OF controller
and OF switches) have their own OF port number (DPID as SDN) and set destinations using the OF
port number in the OpenFlow network. To communicate between controllers and not directly connect
switches, they build a secure channel virtually using transport layer security (TLS) encryption.

In SDN and OpenFlow [13], forwarding and routing of packets are treated as follows. When a
packet enters the OF switch, the switch will make sure a proper rule in the match table, and a rule
contains match information as seen in Table If a matched rule is found in the table, the OF switch
does the action in the rule. If not, the OF switch requests the proper action by sending the packet to
the controller. The OF controller forwards the packet to the OF application in the controller. If the

controller receives the proper action for the packet from the application, then this provides a response

— 10 —

rule and action to the OF switch to transmit the packet properly.

OpenFlow can do many things, not just receive packet information and send routing information,
but also communicates with switches with a variety of information. For example, OpenFlow can receive
port status, flow status, lookup table status by switch, and make new packets in the network. Therefore,

various network network application can be addopted in OpenFlow.

2.3.3 Flow-based Detection using SDN

OpenFlow uses the flow as a minimum unit of the routing table to reduce processing throughput.
The flow status was created automatically without third-party tools to allow implementation of flow-
based IDS using OpenFlow’s flow status. Information that is a response to a flow_stats_request message
is shown in Tables 2.1] and 2.2l Bold face attributes are the same as those provided in Labeled Data
Set for Intrusion Detection [22]. Therefore, by using the flow_stats_request of the OpenFlow message, to

perform flow-based detection without any limitations is feasible.

Table 2.1: Structure of Match Information

Attribute Description

ingress port Length of action entry

ether source MAC address of source

ether dest MAC address of the destination

VLAN id VLAN id of flow

VLAN priority VLAN priority of flow

IP src IP address of source

IP dest IP address of the destination

IP proto IP protocol

IP ToS bits Type of service of IPv4

source port TCP, UDP source port and ICMP Type
dest port TCP, UDP destination port and ICMP Code

Table 2.2: Structure of Flow Information

Attribute Description

length Length of action entry
table_id ID of match table flow came from
match Match information of flow

duration_sec ~ Time flow has been alive in seconds
duration_nsec Time flow has been alive in nanoseconds
priority Priority of the entry

idle_timeout Number of seconds idle before expiration
hard_timeout Number of seconds before expiration
packet_count Number of packets in flow

byte_count Number of bytes in flow

- 11 —

Braga et al. [3] proposed Lightweight DDoS flooding attack detection using NOX/OpenFlow.

This IDS was installed as a NOX application as shown in Figure

NOX NOX Applications

" / A
e 8e Network infrastructure
_. switeh OF
Flow

Collector "~ """ r------ .. o
o “77o--- switch OF
& l i, wireless
= switch OF
= Feature
E Extractor
E l Secure Channel

C{IESOS:}H Detection Loop

l if attack traffic

Figure 2.2: DDoS Flooding Attack Detection on OpenFlow

Flow collector periodically sends OF switches an ofp_stats_request message to receive flow status
in an OpenFlow network. Feature Extractor extracts six features for intrusion detection, such as average
packets per flow (APf), average bytes per flow (ABf), average duration per flow (ADf), percentage of
pair-flow (PPf), growth of single-flows (GSf), and growth of different ports (GDP). This IDS focused
only on flood attacks and DDoS attacks. To detect these attacks, only traffic amount data based on
packet count, bytes in a flow, and port are extracted.

A classifier detects whether the flow is an attack or not using machine learning. Some authors
choose self-organizing map (SOM) for the classifier algorithm. The classifier learned using TCP, UDP
flooding, and was tested with a real DDoS flooding attack. If some malicious flows are detected by the

classifier, the IDS immediately warns attacks to network administrator.

- 12 —

Chapter 3. Owur Proposed IDS Scheme

This chapter proposes a new scheme, which combines the related works referred to in Chapter

3.1 Goals and their Solutions

This section discusses the goals and their solutions to design our IDS system.
3.1.1 Detection of Insider Attack

In general, network attacks occur on an internal server from an external server, but different
attacks are also possible from inside the network. For example, a city-wide network, a wireless mesh
network, and an internet of things (IoT) network are hard to distinguish harmless users is difficult due
to scalability. Also, some network attacks spreads by not only network, but also different sources. In a
botnet, a zombie node can be created through various sources, such as program updates, a flash drive
auto-run, and via instant messaging [20]. For a common IDS near the network gateway, attacks using
various propagation paths are difficult to detect. However, as mentioned in Section [2:1] if a packet-based
IDS is used to detect insider attacks, heavy consumption of network resources will be a problem. So
using flow-based IDS with anomaly-based detection is better than using only packet-based IDS to reduce

network overhead for internal network attack detection.

3.1.2 Analysis of Malicious Packets

When an IDS detects an attack, an attack report should be stored in order to analyse the attack
and improve the system. Flow information is an appropriate source for detecting an attack, but enough
information for analysis. Aside from whether an attack occurred and who attacked the network, the
tools used and how the attack was launched provide much more useful information. However, to obtain
this information, the entire packet payload of the attack is essential. To do this, changing the routing
path is required to send attack packets to IDS devices. However, to change the routing table between
end-points in a typical network device is a very tedious task. The SDN (especially OpenFlow) can assist

to modify routing table easily, because an OpenFlow controller can order routing table changes in all

~ 13—

OpenFlow network devices. So this new scheme is proposed as an OpenFlow application.

3.1.3 Prevention or Mitigation of Attacks

If detected attacks is already known and well-analysed by IDS, just blocking attacks can be useful
to assure reliability of the network. In order to perform prevention and mitigation, when analysis of the

malicious packets is finished, we can make the OF switch drop the attack packet.

3.2 1IDS Structure

A novel IDS is proposed to achieve the above goals. Our IDS is based on OpenFlow protocol and
consists of four modules: a flow information logger, a flow-based IDS, a packet-based IDS, and a packet

information logger. The entire configuration including the testbed is described in Section [4.1

3.2.1 Flow Information Logger

The flow information logger is the module that receives flow information from the OpenFlow
controller, extracts and stores features. OpenFlow has some ways to gather flow information from OF
switches because flow is used in matching tables. In this structure, the IDS can gather flow information
using flow_stats_response, which was used by Braga et al. [3], and the flow_removed event. From the
collected flows, extract the features required by the IDS, and store them to allow analysis of the extracted

flow data later.

3.2.2 Flow-based IDS

The flow-based IDS the most critical module of all the modules which detects attacks using features
extracted by the flow information logger. Also, no other module can interrupt its decision-making during
run time. When an attack is detected, the IDS request OF controller to forwards the packets to the
packet-based IDS, which has the same source IP address, the same destination IP address, the same
protocol type, and the same destination port for analysis.

For detection, the IDS uses basic features, which are destination IP, network protocol, type of
service (ToS), and destination port, as well as the six features used by Braga et al. [3]: average packets
per flow (APf), average bytes per flow (ABf), average duration per flow (ADf), percentage of pair-flow

(PPf), growth of single-flows (GSf), and growth of different ports (GDP). However flow in OpenFlow

— 14 —

has a hard_timeout. Therefore, even though two hosts communicate in only one flow, flow can be divided
if connection time is long. So the six features are used in modified form, including merge in 30-minute
similar flows.

A flow-based detection algorithm is not fixed in this scheme, so a well-trained algorithm is rec-
ommended for actual usage. In this paper, a converted flow-based data set from the DARPA 1998 data

set was used to train the detection algorithm.

3.2.3 Packet-based IDS

Packet-based IDS is the module that uses signature-based detection for analysing packets detected
as an attack by a flow-based IDS. The packet-based IDS detects the packets once more, so the detec-
tion results of both IDSs will be different. Results from the packet-based IDS are sent to the packet
information logger. Also, if a detected attack is a known attack under packet-based detection, the IDS
requests the OF controller to just drop and not forward attacks which are already analysed. The detailed

procedure is described in Chapter [3]

3.2.4 Packet Information Logger

The packet information logger is a module that stores analysis results sent from the packet-based
IDS and alerts the network administrator. The analysis results are stored and divided into two files. The
first file is the tcpdump (pcap) file, which stores sent packets from the packet-based IDS. The second file
contains detection time, flow-based results of detection, results of packet-based detection, and the file

offset of the first file for each item.

— 15—

Normal Known

Flow Attack
(Undecided) Known
Flow Attack
Malicious False
Flow Alarm
Unknown
Attack
New
Attack

Figure 3.1: Attack Classification of Flows and Packets

3.3 Working Scenario

Our proposed IDS operates using the modules described above. In the detection process, flows

and packets are classified as illustrated in Figure (3.1

3.3.1 Initial Phase

First, the IDS requests that the OF controller send the IDS flow_removed message or the
flow_stats_response event, then the IDS modules can be configured by responses of OF controller. Also,
when OF controller and OF switches report a modification of network topology, the IDS modules can

achieve the topology to their storage for utilization.

3.3.2 Flow-based IDS Phase

After initialization, the OF switch sends the flow to the OF controller, and the controller conveys
the flow to the flow information logger. The flow information logger extracts the features using the
new flow, stores the flow information, and sends the features to the flow-based IDS. The flow-based IDS
performs anomaly detection to determine whether the flow is normal flow or malicious (attack) flow. If
the flow is detected as normal, the flow-based IDS module does not do anything; if not, the flow-based
IDS requests an analysis of the new target of the packet-based IDS, and also requests the closest OF

switch to change the routing path of that flow and similar flows received later.

—16 -

3.3.3 Packet-based IDS Phase

If a packet has the same source IP address, the same destination IP address, and the same
destination port of the OF switch, the flow-based IDS forwards the packet to the packet-based IDS
through the OF controller. The packet-based IDS analyses the received packet. In this phase, a packet
detected as an attack by flow-based detection, and detected as normal by packet-based detection, will
be assumed to be a false alarm or an unknown (maybe a new) attack. When the analysis is finished, the

report and packet dump are archived for later review.

3.3.4 'Wrap-up Phase

The stored analysis and packet dump can be analysed again later by security experts. Experts
classify unknown attacks into false alarms and new attacks. Also, experts can check to see if an attack
really is a known attack. Analysis by experts can be used to improve the IDS’s performance and the

security capabilities of the entire system.

3.4 Implementation

Implementation is with POX, which is an OpenFlow enabler. POX is python fork of NOX [§]. By
using POX, which provides a full OpenFlow 1.0 protocol, researchers can develop an OpenFlow controller
easily for research purposes. The implemented IDS can be used with another OpenFlow application, like
a routing application or a load balancer. In the prototype for the test, our proposed IDS and L2 learning
switch application provided by default are performed in the testbed.

This paper assumes that a well-trained algorithm is needed to perform flow-based detection.
However the prototype has a detection algorithm trained by scikit-learn [I5] which is a python open source
machine learning package, so its detection results lack accuracy compared to a well-trained detection
algorithm. The flow-based detection algorithm was trained using support vector machine (SVM), and
the packet-based detection algorithm is a pre-configured rule set using a classification and regression
trees (CART) decision tree.

The pseudo code of our proposed IDS prototype is shown in Figure [3.2] The pseudo code does
not show detailed procedures of each module, only depicts the flow of the detection process. Also entire

source code of the testbed is described in Appendices [A] [B] and [C]

~17 -

#Request flow statistics periodically, If we want
Timer(SendStatRequest, FlowStat, 30 sec, repeat)

#Add OpenFlow event handler (Asynchronous)
AddHandler("Flow_Stat", handlerFlowStat)
AddHandler("Flow Removed", handlerFlowRemoved)
AddHandler("Packet In", handlerPacketIn)

procedure handlerFlowStat(flows)
foreach flow in flows
FlowStorage.dumpInformation(flow)
detectIntrusion(flow)
end foreach
end procedure

procedure handlerFlowRemoved(flow)
newFlow = FlowStorage.extractFeature(flow)
FlowLogger.dumpInformation(newFlow)
detectIntrusion(newFlow)

end procedure

procedure detectIntrusion(flow)
#Flow-based IDS Phase
if flow.key not in monitoringList
resultF = FlowIDS.detect(flow)
if resultF.malicious is True
monitoringList.set(flow.key, Dump, now + 5 min)
modifyMatchAction(flow.key, ToController, for 5 min)
else
#Normal Flow, do nothing
end if
else if monitoringList.get(flow.key).time > now
monitoringList.remove(flow.key)
detectIntrusion(flow)
else if monitoringList.get(flow.key).work == Dump
FlowIDS.detect(flow) #Refresh result
modifyMatchAction(flow.key, ToController)
else if monitoringList.get(flow.key).work == Drop
modifyAction(flow.key, Drop, for 1 hour)
end if
end procedure

procedure handlerPacketIn(event)
if event.key in monitoringList
#Packet-based IDS Phase
resultP = PacketIDS.detect(event)
resultF = FlowIDS.getResult(event)
PacketLogger.dumplnformation(event, resultP, resultF)
if resultP.knownAttack is True and resultF.attackClass == resultP.attackClass
modifyMatchAction(event.key, Drop, for 1 hour)
monotoringList.set(event.key, Drop, now + 1 hour)
end if
else
#Let controller do SDN/OpenFlow routing and other stuff
event.setFlag(triggerFlowRemoved) #turn on Flow Removed event
end if
end procedure

Figure 3.2: Pseudo Code of our Proposed Scheme

~18 -

Chapter 4. Evaluation

4.1 Testbed Configuration

4.1.1 Test Environment

To evaluate the IDS, two types of data set, a flow-based data set and a packet-based data set
with packet dump, are required. But no proper data is provided satisfying both condition, so a flow-
based data set was extracted from the DARPA 1998 data set, which provides a labelled packet dump.
As mentioned in Section the DARPA 1998 data set has some limitations when we adopt in a real
network environment. However, this will be fine for our simulation, as many machine learning(ML)-based
detection algorithms for an IDS does too.

To implement the testbed, Mininet [9], which provides a virtual network space for OpenFlow, was
simulated over an Ubuntu machine. In our testbed, a host was assigned to have one IP address in the

DARPA 1998 data set and replayed its own packet in the packet dumping process.

4.1.2 Testbed Topology

The network topology of the testbed for evaluation is shown in Figure In an OpenFlow
network, topologies are not limited to establish, but a tree topology was used due to POX’s default
routing application which can not support loop condition officially. However, the OF controller and the
OF switches were connected with a ‘secure channel’ so results are not affected by topology if packets are
transmitted properly.

DARPA 1998 has a total of 15,000 IP addresses, including fake IP addresses, but the testbed
used only 1,376 IP addresses, which are mainly used in the data set because Mininet cannot support
thousands of hosts. In the testbed, end-hosts were linked in a leaf node switch, and about 172 hosts were

connected to one switch.

4.1.3 System under Test

Using Mininet, tcpdump data was replayed in the testbed using the sixth week of data from the

DARPA 1998 data set. Each host had a randomized IP address in 10.0.0.0/8, was connected to a packet

~19 —

L2 Learning
Switch
Application

Flow

Flow-based
IDS

Information
Logger

IDS

. : Implemented

: Provided

Packet
Information
Logger

Packet-based

POX OpenFlow Controller

OpenFlow
Switch #0

T

L

OpenFlow
Switch #1

1

T

OpenFlow
Switch #2

.

OpenFlow
Switch #3

T

L .

OpenFlow
Switch #4

OpenFlow
Switch #5

1

OpenFlow
Switch #6

1 [[[

OpenFlow
Switch #7

OpenFlow
Switch #8

OpenFlow
Switch #9

OpenFlow
Switch #10

OpenFlow
Switch #11

OpenFlow
Switch #12

OpenFlow
Switch #13

OpenFlow
Switch #14

I

Host

Packet
Replayer

[#0~171]

PCAP Reader

i

Host

Packet
Replayer
[#172~332]

Host

Packet
Replayer
[#333~519]

i

Host Host Host
Packet
Replayer
[#881~1039]

Packet
Replayer
[#682~880]

Packet
Replayer
[#520~681]

Figure 4.1: Network Topology of Testbed

— 20 —

Host Host

Packet
Replayer
[#1211~1375]

Packet
Replayer
[#1040~1210]

capture (PCAP) reader with a ‘POSIX pipe’, and received packets to replay 10 seconds later. The PCAP
reader parsed the tcpdump of the data set, and sent packets to its host. Each host replayed the packets
at a specified time in the testbed using a Libnet library. The host did not act on any responses without
packets sent from the PCAP reader.

The tcpdump was replayed 60 times faster in the testbed, which is the maximum speed that a
testbed can endure. The hard timeout and idle timeout of the OF controller and switches were set to
1/60 by default. When the IDS received flow and packet data, time informations such as connection

time are converted as 60 times multiplied form.

4.2 Evaluation Criteria

For the evaluation, the following factors were examined. First, network overhead during operating
both-IDS must be measured. Our proposed IDS should be embedded in a bandwidth-critical network
such as a wireless network. To measure overhead, openflow messages gathering flow information will be
tested, such as flow_stats_request and flow_removed message. The flow_stats_request message is mentioned
by Braga et al. [3], and the IDS will periodically send this message to the OF switches. The flow_removed
event was used in this scheme and was automatically sent when the flow terminated in the switches. Also
checked was the number of results created by the packet-based IDS.

Second, detection result by flow-based IDS should be measured. Our proposed IDS can not
recognize false negative results, so the detection algorithm should be tuned to show low false negative
rate with sufficiently good detection rate and false positive rate.

If how the stored data was useful for improving the flow-based IDS was checked by measuring the
detection rate and false alarm rate of the flow-based IDS, and checking how many mis-detected results
were stored in the packet information logger. If the detection rate is high enough and mis-detected
results (such as false alarms and true negatives) are appropriate to this scheme, then the scheme can be
regarded as sufficient to operate.

Third, The amount of stored data from packet-based IDS should be measured. If the amounts of
the estimated attack traffic and the stored data are similar size, we decide that our IDS gathers detailed

malicious traffic properly.

— 21 —

4.3 Result

4.3.1 Detection Overhead

To measure the amount of OpenFlow control packets, the outcomes of the flow information logger
and the packet information logger were checked.

By the PCAP reader, the entire amount of traffic in the testbed was 4,406,821,422 bytes =
4,202MiB. Also, the packet size of flow events were estimated as 100 bytes, including 88 bytes for
the ofp_flow_stats header, and 8 bytes for the ofp_action_header, etc. From the results of the flow log

information, the network overhead was estimated as seen in Table

Table 4.1: Network Overhead by OpenFlow Message Type

flow_removed(A) flow_stats_request(B) | Ratio(A/B)
Event count 1,185,277 4,936,505 0.2401
Sum of packet counts 9,420,952 39,059,643 0.2411
Estimated overhead (%) 108MiB(2.6) A7T0MiB(11.2)

%Event count X header size / total traffic

Flow-based detection overhead was compared with the flow_removed event and the flow_stats_request
event. The amount for an event using the flow_stats_request was approximately four times higher than
that of flow_removed. By checking raw flow dumps, there is no significant content difference between the
response of the flow_stats_request and the response of flow_removed, but results are duplicated in all of
the OF switches in the path of the flows when flow_stats_request was sent to the network. Therefore,
the flow_removed message, which is suggested in our proposed scheme, is a better approach than the
flow_stats_request to perform the flow-based intrusion detection. In addition, our IDS requires only 2.6%
of network overhead for all network traffic.

Also, only a 10MiB pcap file was saved in the test, which is the same amount as network overhead
to gather result of packet-based IDS. The total network overhead during the test is 118MiB which is sum

of 108MiB by flow-based IDS and 10MiB by packet-based IDS.

4.3.2 Detection Result

Table [4.2] shows the detection results using the flow_removed event. In order to analyze only the
results of flow-based detection, the un-labelled flows in DARPA 1998 were excluded from our calculation.

Five attack classes are based on the KDD99 data set; Probe(satan, ipsweep, portsweep, nmap),

— 292 —

DoS(Smurf, Neptune, back, teardrop, pod, land), U2R(buffer_overflow, rootkit, loadmodule, perl, eject,
perl-magic, ffb), R2L(warezclient, guess_passwd, warezmaster, imap, ftp_write, multihop, phf, spy, dict)

and normal. Anomaly attack traffic were extracted from the DARPA 1998 dataset.

Table 4.2: Detection Result by Flow-based Detection in DARPA 1998

Actual Value

Normal Probe DoS U2R R2L Anomaly Sum

Normal 503,131 0 0 72 704 48 | 503,955

@ Probe 76 1,238 0 0 0 0 1,314
g DoS 11,456 273 7,667 5 26 0| 19,427
£ U2R 179 0 0 0 0 9 179
g R2L 1,565 0 0 1 8,883 0 10,449
8 Anomaly 64 0 0 0 0 0 64
a Sum 516,471 1,511 7,667 78 9,613 48 | 535,388

DoS and probe attacks were detected at high detection rates. Remote to user (R2L) attacks
were detected quite well, but some attacks were not detected. User to root (U2R) and anomaly attacks
detection showed poor results, but having too few such attacks could be the reason.

Assuming that a detailed analysis will be performed by packet-based detection, we can reduce all

attack classes to only one ‘attack’ class. Table shows detection results with only two classes

Table 4.3: Calculated Detection Result using only Two Classes

Actual Value
Normal Attack Sum
Normal 503,131 824 | 503,955
Attack 13,340 18,093 31,433

Sum 516,471 18,971 | 535,388

Test
putcome

False alarms were quite high compared to real attacks. However, in our proposed scheme, false
alarms can be analysed and re-treated in the IDS system. Therefore, the result shows that the scheme

is appropriate for detecting attacks and improving the IDS.

4.3.3 Amount of Packet Analysis Result

For packet-based detection, only a 10MB pcap file was saved in the test, which is far less than
expected. During analysis, most of the packets were false alarms, and only a few attacks are recorded.

This is a defect in our proposed scheme, which will be discussed in Section

—923 —

4.4 Discussion

This section discusses about the details from the results that require further analysis. Because
there were only a few packet-based detection results, compiling results for the detection rate and the false
alarm rate seems impossible. However, most of the results from packet-based detection were found to
be false alarms, and only a few R2L attacks were detected in our system. In the DARPA 1998 data set,
most of the attacks are DoS and R2L attacks with a short-time connection. So when a flow is removed
in the OF switch, an attack with the same matching rule may not be detected later. If this estimation
is correct, improving the IDS using false alarms can be feasible, but gathering DoS attack traffics under
this current scheme may be limited. Therefore, a process of simultaneously collecting some parts of
packet and its flow are necessary to import into our IDS.

In addition, there is no proper solution for reducing the 4.5% true negative results under the
flow-based detection. As shown in Figure the false alarms (false positives) can be improved by using
the stored data after the packet detection is over. However, the true negative results were decided as
a normal flow mistakenly by our IDS, so there is no way to detect this kind of result in this IDS. By
accepting an increase in overhead, sending a part of the network traffic to the packet-based IDS will be
a feasible solution. If the flow-based detection decides a flow to be an attack only, but the packet-based
detection classifies this as normal, we can know whether this traffic was a real attack or not. This
ambiguous detection result may be a false alarm, but also might be classified to be an unknown attack.
This must be analysed by a security expert later in details. Fortunately, all the information about flows
and packets are recorded in the storage area in the scheme, so this problem can be solved later.

However, the amount of packet analysis is not sufficient since we didn’t scrutinize all the malicious
packets. According to our estimation, a sum of all the malicious packets’ length is expected to be about
20MB, but the actual stored file size is recorded to be 10MB. This size is quite small amount, because
this includes not only true positive result and but also false positive result (less than similar amount of
true positive result). This is due to the fact that our proposed scheme responses as a reactive way to
detect real attacks only. If a short attack is finished before flow-based detection phase, the malicious
packet of this attack can not forwarded to packet-based IDS. Because this attack was exploited before,

so there is no matched packet on OF switch. To mitigate this analysis failure if a detection operates for

— 24 —

a short-period attack, the packet-based IDS should respond almost of packet_in message of OF controller
even if the packet is not detected by flow-based IDS. For instance, a packet_in message is also triggered
when a packet doesn’t have proper action by OF switch. If this case is detected by packet-based IDS at

first and detected by flow-based IDS later, the total amount of packet analysis will be increased.

— 95—

Chapter 5. Concluding Remark

This paper proposes a novel IDS scheme that provides lightweight intrusion detection and records
the detailed analysis of all the attacks. We propose flow-based IDS detects intrusion which can be
operated with low overhead. Our proposed scheme consists of four SDN applications: a flow information
logger, a flow-based IDS, a packet-based IDS, and a packet information logger based on SDN. To detect
attacks, the flow-based IDS operates with low overhead at first. When an intrusion occurs, the intrusion
packets are forwarded to packet-based detection using an SDN controller at first, and then the packet-
based detection can be analysed later to report the detailed information and all the packet payload.

Our implementation is done with POX (a python-based SDN/OpenFlow controller) and Mininet
(a python-based OpenFlow testbed tool). The DARPA 1998 data set was used to replay network traffic
in our testbed to evaluate the operation performance of our proposed scheme. The overhead of flow-based
detection from the point of operation is verified to have about 2.7% of the entire network traffic, which
can be 76% less overhead than the related work. Also, the false alarm traffic was collected well and
analysed by the packet-based detector.

A corporate network using NFV and wireless mesh network using OpenFlow which use SDN,
provide a lot of functionality, but inside intruder as a worm virus carrier, botnet node or etc. can attack
the network in the internal. To use our proposed idea in practice, we expect that the detection of any
attacks originating from the internal network and the deep packet analysis will be feasible. Therefore,

our proposed idea is extended to be useful for a new kind of an emerging network.

However, future research also remain. First, true-negative can’t be treated properly in our pro-
posed scheme. To solve this problem, using two kinds of flow-based detection, which are low threshold
and high threshold, or sampling packets in ‘normal packets’ can be possible solutions. Also, flow-based
detection and packet-based detection don’t have intercommunication method. If automated feedback
from packet-based detection to flow-based detection or detecting attacks using both methods simultane-

ously are possible, our IDS will be more impressive.

— 926 —

[1]

References

Abraham, A., Jain, R., Thomas, J., and Han, S. Y. “D-SCIDS: Distributed soft computing intrusion

detection system.” Journal of Network and Computer Applications, 30(1), pp. 81-98, 2007.

Axelsson, S. (2000). “Intrusion detection systems: A survey and taxonomy” Vol. 99. Technical

report.

Braga, R., Mota, E., and Passito, A. “Lightweight DDoS flooding attack detection using NOX/Open-

Flow.” Local Computer Networks (LCN), 2010 IEEE 35th Conference, pp. 408-415, 2010.

Chandola, V., Banerjee, A., and Kumar, V. “Anomaly detection: A survey.” ACM Computing

Surveys (CSUR), 41(3), 15, 2009.
Claise, B. “Cisco systems NetFlow services export version 9.” 2004.

Dely, P., Kassler, A., and Bayer, N. “Openflow for wireless mesh networks.” In Computer Commu-
nications and Networks (ICCCN), 2011 Proceedings of 20th International Conference on IEEE, pp.

1-6, 2011.

ETSI, “Network Functions Virtualisation — Introductory White Paper.” SDN and OpenFlow World

Congress, 2012.

Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., and Shenker, S. “NOX:
towards an operating system for networks.” ACM SIGCOMM Computer Communication Review,

38(3), pp. 105-110, 2008.

Lantz, B., Heller, B., and McKeown, N. “A network in a laptop: rapid prototyping for software-
defined networks.” In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks

ACM, p. 19, 2010.

Lincoln laboratory MIT, “DARPA Intrusion Detection Evaluation,”
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/ , 1998. ac-

cessible on Nov. 2014.

_97 —

[11]

[15]

[16]

[19]

[20]

Lockwood, J. W., McKeown, N., Watson, G., Gibb, G., Hartke, P., Naous, J., Raghuraman, R.,
and Luo, J. “NetFPGA—-An Open Platform for Gigabit-Rate Network Switching and Routing.” In
Microelectronic Systems Education, 2007. MSE’07. IEEE International Conference on IEEE. pp.

160-161, 2007.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S.,
and Turner, J. “OpenFlow: enabling innovation in campus networks.” ACM SIGCOMM Computer

Communication Review, 38(2), pp. 69-74, 2008.
Open Networking Foundation, “OpenFlow Switch Specification Version 1.0.0.” 2009.

Open Networking Foundation, “Software-Defined Networking: The New Norm for Networks.” ONF

White Paper, 2012.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Vrucher, M.,
and Duchesnay, E. “Scikit-learn: Machine learning in Python.” The Journal of Machine Learning

Research, 12, pp. 2825-2830, 2011.

Phaal, P., Panchen, S., and McKee, N. “InMon corporation’s sFlow: A method for monitoring traffic

in switched and routed networks” RFC 3176, pp. 1-31, 2001.
Provos, N. “A Virtual Honeypot Framework.” In USENIX Security Symposium Vol. 173, 2004.

Saad, S., Traore, 1., Ghorbani, A., Sayed, B., Zhao, D., Lu, W., Felix, J., and Hakimian, P. “De-
tecting P2P botnets through network behavior analysis and machine learning.” In Privacy, Security

and Trust (PST), 2011 Ninth Annual International Conference on IEEE. pp. 174-180, 2011.

Scarfone, K., and Mell, P. “Guide to intrusion detection and prevention systems (IDPS).” NIST

special publication, 800(2007) 94, 2007.

Sinha, P., Boukhtouta, A., Belarde, V. H., and Debbabi, M. “Insights from the Analysis of the
Mariposa Botnet. In Risks and Security of Internet and Systems (CRiSIS),” 2010 Fifth International

Conference on IEEE, pp. 1-9, 2010.

_ 928 —

[21]

[25]

Song, J., Takakura, H., and Okabe, Y., “Description of Kyoto University Benchmark Data.” Tech-

nical Report, 2010.

Sperotto, A., Sadre, R., van Vliet, F., and Pras, A. “A labeled data set for flow-based intrusion

detection.” In IP Operations and Management Springer Berlin Heidelberg. pp. 39-50, 2009.

Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., and Stiller, B. “An overview of IP
flow-based intrusion detection.” Communications Surveys & Tutorials, IEEE, 12(3), pp. 343-356,

2010.

Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A. “A detailed analysis of the KDD CUP
99 data set.” In Proceedings of the Second IEEE Symposium on Computational Intelligence for

Security and Defence Applications 2009, 2009.

Thomas, C., Sharma, V., and Balakrishnan, N. “Usefulness of darpa dataset for intrusion detection
system evaluation.” In SPIE Defense and Security Symposium . International Society for Optics

and Photonics, pp. 69730G-69730G, 2008.

—99 —

Appendices

A Source Code of IDS Module on POX

#!/usr/bin/python

from pox.core import core

from pox.lib.util import dpidToStr
import pox.openflow.libopenflow_01 as of
import pox.openflow.of_01 as of01

from pox.openflow import x*

from datetime import =x

from collections import deque

from packet2 import x*

import pox.lib.packet as pkt

import dpkt

from sklearn.svm import LinearSVC

from sklearn.tree import DecisionTreeClassifier
import pickle

import operator

from sklearn.externals import joblib

import time

from pox.openflow.of_json import x*
log = core.getLogger ()

multi = 60

baseTime = datetime (1970,1,1)

AttackClass = {’—’:0, probe’:1,’dos’:2,’u2r’:3,’r21’:4, ’anomaly ’:5}

AttackClass0 = {0:’=’,1: probe’ ,2:’dos’ ,3:’u2r’,4:’r21’ /5: anomaly '}
AttackClass2 = {'—’ =7,
"back ’: ’dos 7,

buffer_overflow ’: ’u2r’,

“ftp_write ’:'r217,

’guess_passwd ':’r2l’7,

imap’:’r2l1 7,

’ipsweep ' : 'probe’,

’land ’: "dos 7,

’loadmodule ’: "u2r’

"multihop’: 'r21 7,

"neptune’: 'dos’,
‘nmap’: ’probe’,
"perl’:’u2r’,
"phf’:’r217,
'pod’:’dos’,
’portsweep ': ’probe’
rootkit’:’u2r’,
’satan’: 'probe’,

— 30 —

>smurf’: ’dos’,
‘spy ':r2l7,
"teardrop ’: 'dos’,
"warezclient 7:’r21 7,

’warezmaster ’: 'r2l1 7,

))

‘eject ’:’u2r’,
’dict 7:’r217,
i 7u2r

’perlmagic
"ffb:’u2r’}

AttackClass3 = list (AttackClass2.items())

class monVal(object):

def __init__(self ,duration ,isDump, flow):

self.time = time.time ()+time
self .isDump = isDump
self.flow = flow

def makeHash (flow):
match = flow .match
pkg = (match.nw_src ,match.nw_dst ,match.nw_proto or 0,match.tp_src or 0,match.tp_dst or
0)
return hash(pkg)

class MonitoringList (object):
def __init__(self):
self . 1st = {}

def get(self ,flow):
key = makeHash (flow)

if key not in self.lIst:
return None

return self.lst [key]

def set(self ,flow, isDump, duration):

val = monVal(duration ,isDump, flow)
key = makeHash (flow)
self.lst [key] = val

def remove(self ,flow):
key = makeHash (flow)
if key in self.lIst:
self.lst .pop(key)

class FlowlInfo():
def __init__(self ,ofp):

match = ofp.match

self.convStartTime = datetime.utcfromtimestamp (ofp.duration_sec)
self.convConnectTime = timedelta (seconds=float (ofp.duration_nsec)/1000)
self.packet_count = ofp.packet_count

self.byte_count = ofp.byte_count
self.src_ip = match.nw_src

self.dest_ip = match.nw_dst

~- 31—

self.protocol = match.nw_proto
self.toc = match.nw_tos
self . tp_src = match.tp_src
self.tp_dest = match.tp_dst

self.origStartTime = self.convStartTime

self.origConnectTime = self.convConnectTime

self.connect_msec = self.origConnectTime.microseconds /1000
self.connect_sec = self.origConnectTime.total_seconds ()

self .start_sec = (self.origStartTime—baseTime).total_seconds ()

class FlowLogger(object):
def __init__(self):
postfix=datetime .now () . strftime (”%Y%od _JHAMAGS”)
self . fp=open(’/root/replay_log/%s_flow .txt "%postfix , wt’)
self.ipFlows = {}

def dumplnformation(self ,ofp,conn):

match = ofp.match

buff = 7~

t = time.time ()

if ofp.mtype = ’fsr ’:

buff += "FSR\t%f\ t%d.%06d\ t%s \ t%d\t” %(t , ofp . duration_sec or 0,ofp.duration_nsec
/1000 or O,str(conn),—1)

buff 4+= "%d\ t%d\ t%d\ t” %(match.in_port or 0,ofp.packet_count or 0,ofp.byte_count
0)

buff += "%s\ t%s\ t%d\ t%d \ t%d\ t%d\n” %(match . nw_src , match.nw_dst ,match.nw_proto or
match.nw_tos or 0,match.tp_src or 0,match.tp_dst or 0)
else

buff += "FR\ t%f \ t%d.%06d\ t%s \ t%d\t” %(t , ofp . duration_sec or 0,ofp.duration_nsec
/1000 or 0,str(conn),ofp.reason or 0)

buff 4+= "%d\ t%d\ t%d\ t” %(match.in_port or 0,ofp.packet_count or 0,ofp.byte_count
0)

buff += "%s\ t%s\ t%d \ t%d\ t%d\ t%d \n” %(match . nw_src ,match. nw_dst , match.nw_proto or
match.nw_tos or 0,match.tp_src or 0,match.tp_dst or 0)

self.fp.write(buff)
def extractFeature(self , _flow):
flow = FlowlInfo(_-flow)
connect_by_msec = flow.connect_sec*1000 + flow.connect_msec

if flow.src_.ip not in self.ipFlows:

self . ipFlows[flow.src_ip]=deque()

gen_list = self.ipFlows[flow.src_ip]

PRI LRI

:type : deque
gen_list .append (flow)

APf = 0 #Average of Packets per flow

~ 32—

or

or

ABf = 0 #Average of Bytes per flow
ADf = 0 #Average of Duration per flow
PPf = 0 #Percentage of Pair—flows

GSf = 0 #Growth of Single—flows

GDP = set () #Growth of Different Ports

APf2 =
ABf2
ADf2
PPf2 =

Il
o o o o

half_flows2 = 0

while len(gen_list) >0 and flow.origStartTime—gen_list [0]. origStartTime > timedelta(
minutes=30):
gen_list .popleft ()

for flow2 in gen_list:

flow2 = flow2
7?7 type : FlowInfo '’

APf += flow2.packet_count

ABf += flow2.byte_count

ADf 4= flow2.connect_sec + flow2.connect_msec*0.001
if flow2.tp_dest not in GDP:

GDP. add (flow2 . tp_dest)

if flow2.tp_-dest =— flow.tp_-dest:
APf2 += flow2.packet_count
ABf2 += flow2.byte_count
ADf2 4= flow2.connect_sec + flow2.connect_-msec=*0.001
half_flows2 4= 1

pair_flows = 0

pair_flows2 = 0

if flow.dest_ip in self.ipFlows:

gen_list2 = self.ipFlows[flow.dest_ip]

while len(gen_list2) >0 and flow.origStartTime—gen_list2 [0].origStartTime >
timedelta (minutes=30):

gen_list2.popleft ()

for flow3 in gen_list2:
flow3 = flow3
> :type : FlowlInfo’’’

if flow3.dest_ip = flow.src_ip:
pair_flows+4+=1
if flow3.tp_dest = flow.tp_src:

pair_flows2+=1
revLen = 1./len(gen_list)
APf x= revLen

ABf x= revLen
ADf = revLen

— 33 —

PPf = pair_flows*revLen
GSf len(gen_list) — pair_flows
GDP = len (GDP)

retVal = (connect_by_msec, flow.protocol ,flow.toc,flow.tp_dest ,flow.packet_count ,flow
.byte_count ,APf, ABf, ADf, PPf, GSf,GDP)

return retVal

class PacketLogger(object):
def __init__(self):
postfix=datetime .now () .strftime (”%Y%Pod YHAPS™)
self.fp = open(’/root/replay_log/%s_packet.txt %postfix , wt’)
self. _fpPcap = open(’/root/replay_log/%s_-dump.pcap %postfix , 'wb’)
self.fpPcap = dpkt.pcap.Writer(self._fpPcap)
self.idx = 0

def __del__(self):
self. _fpPcap.close ()
self .fpPcap.close ()
self . fp.close ()

def dumplnformation(self, evt, resultP, resultF):

ofp = resultF . flow

match = ofp.match
buff = 77
t = time.time ()

buff += "%f\t%d.%06d\ t%s\t%d\t” %(t , ofp . duration_sec or 0,ofp.duration_nsec/1000 or
0,str(evt.connection) ,ofp.reason or 0)

buff 4+= "%d\ t%d\ t%d\ t” %(match.in_port or 0,ofp.packet_count or 0,ofp.byte_count or
0)

buff += "%s\ t%s\ t%d\ t%d\ t%d\ t%d\ t” %(match . nw_src ,match. nw_dst ,match.nw_proto or 0,
match.nw_tos or 0,match.tp_src or 0,match.tp_dst or 0)

buff += "%s\ t%s\ t%s\ t%s\t%d\n” %(str (resultF . malicious) ,resultF . attackClass ,resultP .
attackClass ,resultP .attackDetail , self.idx)

self.fpPcap.writepkt(evt.data,t)

self .idx+=1

self . fp.write(buff)

class Bunch(dict):
def __init__(self, sxkwargs):
dict. __init__(self, kwargs)
self.__dict__ = self

class FlowIDS(object):
def __init__(self):
self.clf = joblib.load(’learning/5_learn.pkl’)

pass
def detect (self ,flow):
test = flowLogger.extractFeature (flow)

res = self.clf.predict(test)
malicious = res != 0

return Bunch(malicious = malicious, attackClass = res, flow= flow)

— 34—

class PacketIDS (object):
def __init__(self):
self.clf = joblib.load(’learning/p-learn.pkl”’)

def detect (self jevt):
test

= extract_packet2 (evt.data)

res = self.clf.predict(test)

malicious = res !=0

attackClass = AttackClass[AttackClass3[res |[1]]

return Bunch(malicious=malicious ,attackClass=attackClass ,attackDetail=res)

monitoringList = MonitoringList ()
flowLogger =FlowLogger ()
packetLogger = PacketLogger ()
flowIDS = FlowIDS ()

packetIDS = PacketIDS

class MyIDS (object):
def __init__(self):
log.info (”Monitoring Ready”)
def startup():
core.openflow.addListeners(self , priority=0xfffffffe)

from pox.lib.recoco import Timer
self .t = Timer(60.0/ multi, self._timer_func, recurring=True)

core.call_-when_ready (startup, (”my-ids_-forwarding”))

def _timer_func (self):
for connection in core.openflow._connections.values():
connection.send (of.ofp_stats_.request (body=of.ofp_flow_stats_request ()))

log .debug(” Sent %i flow/port stats request(s)”, len(core.openflow._connections))

def detectIntrusion (self ,flow ,event):
t = time.time ()
result = monitoringList.get (flow)
if result is None:
resultF = flowIDS.detect (flow)
if resultF .malicious:
monitoringList .set (flow ,True,300/ multi)
msg = of.ofp_flow_mod ()
msg.match = flow .match
msg.idle_timeout = 300 / multi
msg. hard_timeout = 300 / multi
msg.in_port = event.port
msg. buffer_id = event.ofp.buffer_id
action = of.ofp_action_output(port = of .OFPP.CONTROLLER)
msg. actions.append(action)
event.connection .send (msg)
else:
pass
elif result.time > t:
monitoringList.remove(flow)
self.detectIntrusion (flow ,event)

elif result.isDump:

— 35 —

msg = of.ofp_flow_mod ()
msg. match = flow .match
msg.idle_timeout = 300 / multi
msg. hard_timeout = 300 / multi
msg.in_port = event.port
msg. buffer_id = event.ofp. buffer_id
action = of.ofp_action_output (port = of.OFPP.CONTROLLER)
msg. actions .append (action)
event .connection .send (msg)

else:
msg = of.ofp_flow_mod ()
msg. flags = of .OFPFF_SEND_FLOW_REM
msg. match = flow . match
msg.idle_timeout = 3600 / multi
msg. hard_timeout = 3600 / multi
msg.in_port = event.port
msg. buffer_id = event.ofp.buffer_id

event.connection.send (msg)

def _handle_FlowStatsReceived(self ,event):
stats

flow_stats_to_list (event.stats)

if len(stats)>0:
log.debug(” FlowStatsReceived from %s: %s” ,
dpidToStr(event.connection.dpid), len(stats))

for ofp in event.stats:
ofp . mtype = ’fsr’

match = ofp.match

flowLogger .dumpInformation (ofp ,event.connection)

self.detectIntrusion (ofp,event)

def _handle_.FlowRemoved (self ,event):

99

@Qtype event: FlowRemoved
#log . info ()
ofp = event.ofp
ofp.mtype = ’fr’
match = ofp.match
if match.dl_type !=0x0800:
return
flowLogger.dumplInformation (ofp ,event.connection)

self.detectIntrusion (ofp ,event)

def _handle_PacketIn (self, event):

9999

Q@Qtype event: Packetln

#flow removed is on fowarding.

packet = event.parsed

if packet.effective_ethertype — pkt.ethernet .IP_.TYPE:
ip-pck = packet. find (pkt.ipv4)

— 36 —

pkg = (ip-pck.srcip,ip_pck.dstip,ip_-pck.protocol ,ip_pck.next.srcport ,ip_pck.next.
dstport)
key = hash(pkg)
t = time.time ()
elif packet.effective_ethertype = pkt.ethernet.ARP.TYPE:
arp_pck = packet.find (pkt.arp)
pkg = (arp_pck.protosrc ,arp_pck.protodst ,0,1,arp_-pck.opcode,0)
key = hash(pkg)
else:
return
resultF = monitoringList. get (key)
if resultF is None:

return

resultP = packetIDS.detect (event)

packetLogger.dumplInformation (event ,resultP ,resultF)

if resultP .knownAttack and resultF .attackClass = resultP .attackClass:
msg = of.ofp_flow_mod ()
msg. flags = of .OFPFF_SEND_FLOW_REM
msg. match = of.ofp_match.from_packet(packet)
msg.idle_timeout = 3600 / multi
msg. hard_timeout = 3600 / multi
msg. buffer_id = event.ofp.buffer_id
msg.in_port = event.port
event.connection .send (msg)

monitoringList .set (resultF . flow ,False ,3600/ multi)
return EventHalt
def launch ():

core.openflow.miss_send_len = Oxffff

core.registerNew (MyIDS)

IDS_Module Main Code - /root/pox/ext/my_ids/monitor.py

import datetime
from pox.core import core
import pox.openflow.libopenflow_01 as of

from pox.lib.revent import x

def launch ():
from log.level import launch

setLogLevel = launch

setLogLevel (INFO=True)

from samples.pretty_-log import launch
launch ()

from openflow.discovery import launch

launch ()
speed =60.0
start=1

— 37 —

from my_ids.forwarding import launch
launch ()

from my_ids.monitor import launch
launch ()

kwargs = {"my-ids_forwarding” : 'DEBUG’ ,” my-ids . monitor” : 'DEBUG’ }
setLogLevel (¥xkwargs)

IDS_Module Startup Code - /root/pox/ext/my-ids/startup.py

from pox.core import core

import pox.openflow.libopenflow_01 as of
from pox.lib.util import dpid_to_str
from pox.lib.util import str_to_bool

import time

log = core.getLogger ()

_flood_delay = 0

class LearningSwitch (object):

def __init__ (self, connection, transparent):
self.connection = connection
self.transparent = transparent

self .macToPort = {}
connection.addListeners (self)

self.hold_down_expired = _flood_delay = 0

def _handle_PacketIn (self, event):

packet = event.parsed

def flood (message = None):
msg = of.ofp_packet_out ()
if time.time() — self.connection.connect_-time >= _flood_delay:
if self.hold_down_expired is False:
self.hold_down_expired = True
log.info ("%s: Flood hold—down expired — flooding”,
dpid_to_str (event.dpid))

if message is not None: log.debug(message)
msg. actions.append(of.ofp_action_output (port = of.OFPPFLOOD))

else:

pass
msg.data = event.ofp
msg.in_port = event.port

self.connection.send (msg)

def drop (duration = None):
if duration is not None:
if not isinstance(duration, tuple):
duration = (duration ,duration)
msg = of.ofp_flow_mod ()
msg. flags = of .OFPFF_SEND_FLOW_REM #Add Flow_Removed

— 38 —

msg. match = of.ofp_match.from_packet(packet)
msg.idle_timeout = duration [0]
msg. hard_timeout = duration [1]
msg. buffer_id = event.ofp.buffer_id
self.connection .send (msg)

elif event.ofp.buffer_id is not None:
msg = of.ofp_packet_out ()
msg. buffer_id = event.ofp. buffer_id
msg.in_port = event.port

self.connection .send (msg)
self .macToPort [packet.src] = event.port

if not self.transparent:
if packet.type = packet .LLDP.TYPE or packet.dst.isBridgeFiltered ():
drop ()

return

if packet.dst.is_multicast:
flood ()
else:

if packet.dst not in self.macToPort:

flood (”Port for %s unknown — flooding” % (packet.dst,))
else:
port self .macToPort [packet . dst]

if port =— event.port:
log . warning (”Same port for packet from %s —> %s on %s.%s. Drop.”
% (packet.src, packet.dst, dpid_-to_str(event.dpid), port))
drop (1)
return
log .debug(”installing flow for %s.%i —> %s.%i” %
(packet.src, event.port, packet.dst, port))
msg = of.ofp_flow_mod ()

msg. match = of.ofp_match.from_packet(packet, event.port)
msg.idle_timeout = 3
msg. hard_timeout = 9

msg. flags = of .OFPFF.SEND FLOW_REM #Add Flow_-Removed
msg. actions.append(of.ofp_action_output (port = port))
msg.data = event.ofp

self.connection .send (msg)

class 12_learning (object):

_core_name = "my_ids_forwarding”
def __init__ (self, transparent):
core.openflow.addListeners(self)

self.transparent = transparent
def _handle_ConnectionUp (self, event):

log .debug(” Connection %s” % (event.connection ,))

LearningSwitch (event.connection, self.transparent)

def launch (transparent=False, hold_.down=_flood_delay):
try:

-39 —

global _flood_delay
_flood_delay = int(str(hold_-down), 10)
assert _flood_delay >= 0

except:

raise RuntimeError(” Expected hold—down to be a number”)

core.registerNew (12_learning , str_to_bool(transparent))

IDS_Module Forwarding Application - /root/pox/ext/my_ids/forwarding.py

— 40 —

B Source Code of Testbed Initialization on Mininet

#!/usr/bin/python

from mininet.net import Mininet

from mininet.topo import Topo

from mininet.node import Controller, RemoteController, OVSController
from mininet.node import CPULimitedHost, Host, Node
from mininet.node import OVSKernelSwitch, UserSwitch
from mininet.node import IVSSwitch

from mininet. cli import CLI

from mininet.log import setLogLevel, info

from mininet.link import TCLink, Intf

from subprocess import call

import random

import os

def parselP (ip):
a = ip>>24 & OxFF
b = ip>>16 & OxFF
¢ = ip>>8 & OxFF
d = ip&OxFF

return a,b,c,d

def parselP2(ip):

return ’

.’ .join (map(str ,parselP (ip)))
def makelP(a,b,c,d):
return a<<24 | b<<16 | c<<8 | d

def makelP2(pk):
a,b,c,d = pk

return makelP (a,b,c,d)

def makeIP3(ipStr):
return makelP2(map(int ,ipStr.split(’.7)))

class NetworkTopo2(Topo):
def build(self, n=2, h=1, **xopts):
random . seed (734563)

if not os.path.exists(’/tmp/netreplay’):
os.mkdir (’/tmp/netreplay)
ss =]
for i in range(15):
ss.append (self.addSwitch (’s%d %i, cls=UserSwitch))

cnt =1

ipMaps = {}
already = set ()
ipX = {}

for line in open(’/root/ipInSrcl1998_ipmap_full.txt’,’rt’):
vals = line.split (’\t’)

if len(vals)<2: continue

— 41 —

origlP = makeIP3(vals [0].strip ())
newIP = makeIP3(vals[1].strip())

ipMaps[origIP] = newlIP

for line in open(’/root/6_target.txt’,’ rt’):

vals = line.split (’\t’)

if len(vals)<2: continue
t = random.randint (7, 14)

origlP = makelIP3(vals [0].strip())
newlIP = parselP2 (ipMaps[origIP])

if newIP in already:
continue
already .add (newIP)

ips = parselP (makeIP3(newIP))
ipH ips [1]
if ipH not in ipX:

ipX [ipH]

x =1

else:
ipX[ipH] +=1
x = ipX[ipH]
h = self.addHost (’h%03d%03d’%(ips [1] ,x) ,ip="%s/8 TmewIP)

self.addLink(h,ss[t])
x+=1
cnt+=1

fifopath = ’/tmp/netreplay/fifo_%s %newIP
if not os.path.exists(fifopath):
os. mkfifo (fifopath)

self.addLink (ss [0],ss[1])
self.addLink (ss[0],ss[2])

self.addLink(ss[1],ss[3])
self.addLink (ss[1],ss[4])

self.addLink(ss[2],ss[5])
self.addLink(ss[2],ss[6])

self.addLink(ss [3],ss[7])
self.addLink(ss [3],ss[8])
self.addLink (ss[4],ss[9])
self.addLink (ss[4],ss[10])
self.addLink(ss[5],ss[11])
self.addLink(ss[5],ss[12])

— 42 —

self.addLink(ss [6],ss[13])
self.addLink(ss [6],ss[14])

def doStart(net,netb=None):
if netb is not None:
net = netb
cmd = ’/root/workspace/replay_worker/Release/replay_worker’
for host in net.hosts:
if host.name[0] == ’h’:
host .cmd(cmd+’ &)

def doStop (net,netb=None):
if netb is not None:
net = netb
cmd = ’/root /workspace/replay_worker /Release/replay_worker’
for host in net.hosts:
if host.name[0] = ’'h’:
host.cmd(’kill %’4cmd)

def myNetwork () :

topo = NetworkTopo2 ()

net = Mininet(topo=topo,
ipBase="10.0.0.0/8 ",
controller=RemoteController)#autoSetMacs=True

net . my_start = doStart

net.my_stop = doStop

net.start ()

net.my_start (net)

CLI(net)
net . my_stop (net)
net.stop ()

if __name_. = ’__main__":
setLogLevel(’info’)
myNetwork ()

Mininet Initialization Code - /root/mininet/examples/my.py

— 43 —

C Source Code of PCAP Replayer

#include <stdio.h>
#include <stdlib .h>
#include <string.h>

#include <iostream>
#include <ctime>
#include <string>
#include <vector>
#include <deque>
#include <algorithm>

#include <netdb.h>
#include <pthread.h>
#include <unistd.h>
#include <fcntl.h>

#include <libnet.h> //libnet!

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/select.h>
#include <sys/ioctl.h>
#include <sys/utsname.h>
#include <sys/epoll.h>
#include <sys/time.h>

#include <net/if .h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <linux/sockios.h>

using namespace std;

typedef unsigned char u8;
typedef unsigned short ul6;
typedef unsigned int u32;
typedef unsigned int uint32;
typedef unsigned int uint;

uint32 g.myIP = 0;
char g_szMyIP[20] = 7255.255.255.255";

uint32 g_local = 0;
char g_szLocal [20] = 7127.0.0.17;
char log_path[300]="";
char startTime[300] = 77;
struct IP4{
int a;
int b;

int c;

— 44 —

int d;

s

struct QueueData{
u32 timestamp;
u32 timestamp_u;
u8 dscp;
ul6 id;
bool more_frag;
bool not_frag;
ul6 offset;
ul6 raw_frag;
u8 ttl;
char type;
u8 IPSrc[4];
u8 IPDest [4];
vector<u8> payload;

b
deque<QueueData> g_workQueue;

IP4 parselP (uint32 ip);

string parselP2(uint32 ip);

uint32 makelP (uint a, uint b, uint c,
uint32 makelP2(IP4 ip);

uint32 makelP2(string ip);

uint32 makeIP3(const u8* arr);
uint32 makeIP3B(const u8% arr);
uint32 getMylIP () ;

u32 get4 (u8+ buff,uint& ptr){
u32 retVal = %(u32x)(buff+ptr);
ptr+=4;

return retVal;

u32 get4 (vector<u8>& buff,uint& ptr){
if (buff.size ()<ptr+4){
ptr+=4;
return O0;

}

return get4 (buff.data(),ptr);

ul6é get2(u8+ buff,uint& ptr){
ul6é retVal = x(u32x)(buff+ptr);
ptr+=2;

return retVal;

ul6 get2(vector<u8>& buff,uint& ptr){
if (buff.size ()<ptr+2){
ptr+=2;

return 0;

uint d);

— 45 —

}

return get2 (buff.data(),ptr);

u8 getl (u8+ buff,uint& ptr){
ul6é retVal = x(u32x)(buff+ptr);
ptr++;

return retVal;

u8 getl(vector<u8>& buff ,uint& ptr){
if (buff.size ()<ptr+1){
ptr+-+;
return 0;

}

return getl (buff.data(),ptr);

u32 switch4 (u32 val){
u8 a val &OxFF;
u8 b = val>>8 & O0xFF;
u8 ¢ = val>>16 & OxFF;
u8 d val>>24 & OxFF;
return a<<24 | b<<16 | c<<8 | d;

int doRun=1;
pthread_mutex_t mutex = PTHREAD MUTEX_INITIALIZER;
pthread_t p_thread;

uint64_t sentTraffic=0;

IP4 parselP (uint32 ip){

IP4 ip4;

ipd.a = ip>>24 & OxFF;
ipd.b = ip>>16 & OxFF;
ipd.c = ip>>8 & OxFF;

ipd.d = ip&0xFF;

return ip4;

}

string parselP2(uint32 ip){
IP4 ip4 = parselP (ip);
char buff[20] = 77,
sprintf (buff,”%d.%d.%d.%d” ,ip4.a,ip4.b,ip4.c,ipd.d);
return buff;

uint32 makelP (uint a, uint b, uint ¢, uint d){
return a<<24 | b<<16 | c<<8 | d;

uint32 makelP2(IP4 ip){

— 46 —

return makeIP(ip.a,ip.b,ip.c,ip.d);

uint32 makelP2(string strIP){
P4 ip;
sscanf(strIP.c_str () ,”%d.%d.%d.%d” ,&ip .a,&ip .b,&ip.c,&ip.d);
return makelP2(ip);

uint32 makeIP3(const u8* arr){
return arr[0]<<24 | arr[l]<<16 | arr[2]<<8 | arr[3];

uint32 makeIP3B(const u8x arr){
return arr([3]<<24 | arr[2]<<16 | arr[l]<<8 | arr[0];

static bool linux_getMyIP (int nFamily, sockaddr* retVal)

{

int sock ;

int nRet;

size_t nNIC;

const size_t nMaxNIC = 256;
struct ifconf ifc;

struct ifreq ifr [nMaxNIC];

struct sockaddrx pAddr(NULL) ;

sock = socket (nFamily, SOCKSTREAM, 0);

if (sock = -1) return false;
ifc.ifc_len = sizeof(ifr);
ifc.ifc_ifcu.ifcu_req = ifr;

nRet = ioctl (sock, SIOCGIFCONF, &ifc);

if (nRet = —1) return false;
close (sock);

nNIC = ifc.ifc_-len / sizeof(struct ifreq);

for (size_-t i =0 ; i < nNIC; i 4+)

{
int aFamily = ifc.ifc_ifcu.ifcu-req[i]. ifr_ifru.ifru-addr.sa_family;
if (nFamily = aFamily)

{

pAddr = (&ifc.ifc_ifcu.ifcu_req[i]. ifr_ifru.ifru_addr);

if (pAddr=NULL) {

return false;

47—

memcpy (retVal , pAddr, sizeof(sockaddr));

return true;

uint32 getMyIP (){

sockaddr mylP;

if (linux_getMyIP (2,&myIP)){
return makelP ((u8)myIP.sa_data [2],(u8)myIP.sa_data [3],(u8)mylP.sa_data [4],(u8)mylIP.
sa_data [5]) ;

}

else if(linux_getMyIP (1,&myIP)){
return makelP ((u8)myIP.sa_data[2],(u8)myIP.sa_data[3],(u8)myIP.sa_data[4],(u8)myIP.
sa_data [5]) ;

}

return 0;

int sendTCP(libnet_t *l,QueueData& data){
libnet_clear_packet (1);
vector<u8>& buff = data.payload;
int sent=0;

uint ptr = 0;

ul6é sport = get2(buff,ptr);

ul6 dport = get2(buff, ptr);

u32 seq = getd (buff, ptr);

u32 ack = getd (buff,ptr);

ul6é ctrl = get2(buff,ptr);

ul6é win = get2(buff,ptr);

ul6é urg = get2(buff,ptr);

int payload-s = buff.size ()—ptr;
u8x* payload = NULL;

if (payload_s > 0){

payload = buff.data()+ptr;
}
else{

payload_s=0;

u32 destIP = makelP3(data.IPDest);
u32 srcIP = makelP3(data.IPSrc);

libnet_build_tcp (sport, dport, seq, ack, ctrl, win, 0, urg, LIBNET.TCPH +
payload_s, payload, payload_s, 1, 0);
libnet_build_-ipv4 (LIBNET_.IPV4_H + LIBNET.TCP_H + payload_s,data.dscp,data.id,data.
raw_frag ,data.ttl
IPPROTO_TCP,0 , srcIP ,destIP ,0,0,1,0);
sent = libnet_write (1);
if (sent = 0) printf(”why t0?\n”);

return sent;

int sendUDP(libnet_t *1,QueueData& data){
libnet_clear_packet (1);

_ 48 —

vector<u8>& buff = data.payload;
int sent=0;

uint ptr = 0;

ul6é sport = get2(buff,ptr);
ul6 dport = get2(buff, ptr);
ul6é length = get2(buff,ptr);

int payload_s = buff.size ()—ptr;
u8x payload = NULL;
if (payload_s > 0){
payload = buff.data()+ptr;
}
else{

payload_s=0;

u32 destIP = makeIP3(data.IPDest);
u32 srcIP = makelP3(data.IPSrc);

if (!data.more_frag){
libnet_ptag_t ptag = libnet_build_udp (sport ,dport,length ,0,payload, payload_s,1,0);
libnet_-toggle_checksum (1, ptag ,LIBNET_OFF) ;
libnet_build_ipv4 (LIBNET_.IPV4_H + LIBNET_UDP H + payload_s,data.dscp,data.id, data.
raw_frag ,data.ttl
IPPROTO_UDP,0 , srcIP ,destIP ,0,0,1,0);

}
else{
libnet_build_ipv4 (LIBNET.IPV4_.H + buff.size () ,data.dscp,data.id,data.raw_frag ,h data.
ttl
IPPROTO_UDP, 0 , srcIP , destIP ,0,0,1,0);
}
sent = libnet_write (1);
if (sent = 0) printf(”why u0?\n”);

return sent;

int sendICMP (libnet_t x1,QueueData& data){
libnet_clear_packet (1);
vector<u8>& buff = data.payload;
int sent=0;

uint ptr = 0;

u8 type = getl(buff, ptr);
u8 code = getl (buff,ptr);

ulé id = get2(buff,ptr);
//ul6 unsed = id;

ul6é seq = get2(buff, ptr);
//ul6 nexthopMTU = seq;

int payload_s = buff.size ()—ptr;
u8x payload = NULL;

— 49 —

if (payload_s > 0){

payload = buff.data()+ptr;
}
else{

payload_s=0;

u32 destIP = makelP3(data.IPDest);
u32 srcIP = makeIP3(data.IPSrc);
//destIP = switch4 (g-local);
//srcIP = switchj (g-local);

libnet_ptag_t ptag;
if (data.more_frag && data.offset >0){
//haha?
ptag= libnet_build_ipv4 (LIBNET_.IPV4 H + buff.size(),data.dscp,data.id,data.raw_frag,
data. ttl,
IPPROTOICMP,0 , srcIP ,destIP , buff.data() ,buff.size(),1,0);
}
else if(type ==0){//echo reply
ptag= libnet_build_icmpv4_echo (ICMPECHOREPLY,0,0,id,seq,payload, payload_s,1,0);
libnet_build_ipv4 (LIBNET.IPV4_H + LIBNETICMPV4_ECHOH + payload_s,6 data.dscp,data.id
,data.raw_frag ,data. ttl
IPPROTOICMP,0 , srcIP ,destIP ,0,0,1,0);
}
else if(type = 3){//unreachable
ptag= libnet_build_-icmpv4_unreach (ICMP_.UNREACH, code ,0 ,payload , payload_s ,1,0);
libnet_build_ipv4 (LIBNET_.IPV4_H + LIBNETICMPV4 UNREACHH + payload_.s,data.dscp,data
.id ,data.raw_frag ,data. ttl ,
IPPROTOICMP,0 , srcIP ,destIP ,0,0,1,0);
}
else if(type==8){//echo request
ptag= libnet_build_icmpv4_echo (ICMP_ECHO,0,0,id,hseq,payload, payload_s,1,0);
libnet_build_-ipv4 (LIBNET.IPV4_H + LIBNETICMPV4_ECHOH + payload_s,6 data.dscp,data.id
,data.raw_frag ,data.ttl,
IPPROTOICMP,0 , srcIP ,destIP ,0,0,1,0);

}

else{
printf(”icmp err?\n”);
return O0;
}
sent = libnet_write (1);
if (sent = 0) printf(”why i0?\n”);

return sent;

void* sender_loop (void *data){

int bytesSent = 0;

int oldbytesSent = 0;

libnet_-t *1; /x Libnet Handle %/

char errbuf [LIBNET_ERRBUF.SIZE]; /+ Libnet Error Buffer x/

struct timeval tp;

— 50 —

V&

* Libnet Handle Initialization .

*/

int maxtimegap = 0;

struct tm *tmp;

printf(”thread run!\n”);
deque<QueueData> myQueue;
1 = libnet_init (LIBNET_RAW4, g szMyIP, errbuf);
if (1 = NULL){
fprintf(stderr, "ERROR: libnet init failed: %s \n”, errbuf);
return NULL;
}
char datebuff[100] = 77;
int inCount=0;
while (true){
inCount=0;
pthread_mutex_lock(&mutex) ;
if (doRun <= 0){
pthread_mutex_unlock(&mutex) ;

return 0;

if (! g-workQueue.empty ()){
myQueue. insert (myQueue. end () ,g-workQueue. begin () ,g-workQueue.end ());
g-workQueue. clear () ;
}
else if(doRun =— 2){
printf(”work complete!”);
pthread_mutex_unlock(&mutex) ;
return O;

}

pthread_mutex_unlock(&mutex) ;

if (myQueue.empty ()) {
usleep (100%1000) ;

continue;

while (! myQueue.empty ()){
gettimeofday (&tp ,NULL) ;
if (inCount >0){
tmp = localtime(&tp.tv_sec);
strftime (datebuff, sizeof(datebuff), "%Yalod YHAGS” , tmp) ;
printf(7in! %s, %d\n” ,datebuff ,g-workQueue.size ());
}

QueueData& data = myQueue. front () ;

if (data.timestamp < tp.tv_sec){
int nowgap = tp.tv_sec — data.timestamp;
if (nowgap > maxtimegap) {

maxtimegap = nowgap;

~51 —

printf(”timegap increased :%d\n” ,maxtimegap);

}

else if(data.timestamp >= tp.tv_sec+2){
usleep (1000%1000) ;
break;
}
else if(data.timestamp > tp.tv_sec){
u32 utime = (data.timestamp—tp.tv_sec)*1000%x1000;
utime 4= data.timestamp_u—tp.tv_usec;

usleep (utime) ;

continue;

}

else if(data.timestamp_u <= tp.tv_usec+10000){

}

else{
u32 utime = data.timestamp_u—tp.tv_usec;
usleep (utime) ;
continue;

}

if (data.type="T’ || data.type =— ’t’){
bytesSent = sendTCP(1,data);

}

else if(data.type="U’ || data.type = ’'u’){
bytesSent = sendUDP(1,data);

}

else if(data.type="1" || data.type = ’i’){
bytesSent = sendICMP (1, data);

}

myQueue. pop-front () ;

sentTraffic+=bytesSent ;
if (oldbytesSent+104858 < sentTraffic){
oldbytesSent += 104858« ((sentTraffic—oldbytesSent)/104858);
int gap = oldbytesSent&Oxfffff;
if (gap < 20){
oldbytesSent—=gap;

}
printf ("%s : %.1fMB sent\n” ,g_szMyIP ,1.0xsentTraffic /1048796);

libnet_destroy (1);

return NULL;

void exelt(vector<u8>& buff){
QueueData data;
uint ptr=0;

52 —

data.timestamp = getd (buff ptr);
data.timestamp_u = get4 (buff, ptr);
data.dscp = getl(buff, ptr);

data.id = get2(buff, ptr);
data.more_frag = getl (buff, ptr)!=0;
data.not_frag = getl (buff ptr)!=0;
data.offset = get2(buff,ptr);
data.raw_frag = get2(buff, ptr);
data.ttl = getl (buff, ptr);
data.type = (char)getl (buff, ptr);

memcpy (data.IPSrc, buff.data ()+ptr,4);

ptr+=4;

memcpy (data.IPDest, buff.data()+ptr,4);
ptr+=4;

int remain = buff.size ()—ptr;

//

if (remain < 0){
printf(”f %d, %c\n” ,remain ,data.type);
for (int i=0;i<buff.size ();i++){
printf (?%02X” ,buff[i]) ;
}

printf(”\n”);

data.payload.insert (data.payload.end () ,buff.begin ()+ptr,buff.end());
pthread_mutex_lock(&mutex) ;
g-workQueue. push_back (data);

pthread_mutex_unlock(&mutex) ;

void start (){
char target[200] = 77
int fp_r=-1;

int read_n=0;

bool receiveComplete = false;
vector<u8> raw_buff2(5000);
u8x raw_buff=raw_buff2.data();

deque<u8> buff;

vector<u8> buff2;
buff2.reserve (70000);//65536
vector<u8> buff3;
buff3.reserve (4);//int

const int err_block=0xfffffff;
int block_size=err_block;
sprintf(target ,” /tmp/netreplay/fifo_%s” ,g_szMylIP);
printf(” fifo :%s\n” ,target);
if ((fp-r= open(target , ORDONLY))<0){
perror (”open error : 7);
exit (0);

— 53 —

}
fcntl (fp_r , F.SETPIPE_SZ, 1048576);//maz buffer

while ((read-n = read (fp-r, raw_buff, 4096)) > 0){

if (buff.size() = 0 && block_size = err_block){
block_size = x(intx*)(raw_buff);
buff.insert (buff.end () ,raw_buff+4,raw_buff+read_-n);
}
else{
buff.insert (buff.end () ,raw_buff,raw_buff+read_n);

if(block_size = err_block && buff.size ()>=4){
buff3.clear();
buff3.insert (buff3.end () ,buff.begin(),buff.begin()+4);
buff.erase (buff.begin(),buff.begin()+4);

block_size = *(intx*)(buff3.data());
if (block_size <0){

pthread_mutex_lock(&mutex) ;
if (doRun = 1){

doRun = 2;
}
pthread_mutex_unlock(&mutex) ;
break;

while(block_size <= (int)buff.size())
{
buff2.clear () ;
buff2.insert (buff2.end () ,buff.begin () ,buff.begin()+block_size);
buff.erase (buff.begin(),buff.begin()+block_size);
exelt (buff2);
block_size=err_block;
if (buff.size ()<4)
break;
buff3 . clear ();
buff3.insert (buff3.end(),buff.begin(),buff.begin()+4);
buff.erase (buff.begin(),buff.begin()+4);

block_size = *(int=)(buff3.data());

}

close (fp.r);

int main(int argc, charxx argv){
int status=0;
static_assert (sizeof(int)==4,"sizeof (int)==4");
g-myIP = getMyIP () ;
strepy (g-szMyIP , parseIP2 (g.myIP).c_str ());

_ 54—

g_local = makelP2(g_szLocal);
int thr_id = pthread_create(&p-thread , NULL, sender_loop, NULL);

time_t t;

struct tm *tmp;

t = time (NULL) ;

tmp = localtime(&t);

if (strftime (startTime, sizeof(startTime), "%Y%lod YHAMAS” , tmp) =— 0) {
fprintf(stderr, ”strftime returned 07);
exit (EXIT_FAILURE) ;

if (argc = 1 || strcmp(argv[1l],”local”) != 0){
sprintf(log_path ,”/root/replay_log/%s_%s.txt” ,startTime , g_szMyIP);
int log_fd = open(log_path ,ORDWR|O.CREAT|O_TRUNC,0644) ;
dup2(log-fd ,1);
dup2(log-fd ,2);
close (log-fd);

printf(”let’s start! %s, %llu\n” ,g-szMyIP ,t);

start () ;

pthread_mutex_lock(&mutex) ;
if (doRun = 1){
doRun = 0;
}
pthread _mutex_unlock(&mutex) ;

pthread_join (p-thread ,(void s*%)&status);

return 0;

PCAP Replayer - /root/workspace/replay_worker /worker.cpp

#—x— coding: utf—8 —x—

from struct import x

from pprint import pprint
import os

import operator

from multiprocessing import Pool
import glob

from datetime import =x

import os

import time

isLittleEndian = True

fifos = {}
ipMaps = {}
base_timel970 = datetime(1970,1,1)

basetime_set = False

— 55 —

basetime = datetime(1998,6,1,11,55,29,518704)
basenowtime = datetime.utcnow ()+timedelta (seconds=5)
speed = 240

valids = set ()

def parselP (ip):

a = ip>>24 & OxFF
b = ip>>16 & OxFF
¢ = ip>>8 & OxFF

d = ip&O0xFF

return a,b,c,d

def parselP2(ip):
return ’.’.join (map(str ,parselP (ip)))

def makelP(a,b,c,d):
return a<<24 | b<<16 | c<<8 | d

def makelP2(pk):
a,b,c,d = pk

return makelIP (a,b,c,d)

def makelP3(ipStr):
return makelP2(map(int ,ipStr.split(’.’)))

class PcapHeader:

999 9

typedef struct pcap-hdr_s {

guint32 magic_number; /* magic number x*/

guintl6 version_major; /# major version number x/

guintl6 version_minor; /+ minor version number x/

gint32 thiszone; /% GMT to local correction =/

guint32 sigfigs; /+ accuracy of timestamps x*/

guint32 snaplen; /+ max length of captured packets, in octets =/
guint32 network; /+ data link type x*/

} pcap-hdr_t;
g fmt = ” IHHiIII”
calcsize = calcsize (g-fmt)
def __init__(self ,stream):
global isLittleEndian
hdrRaw = stream.read(self.calcsize)
hdrMagic = unpack(”<L” ;hdrRaw [:4]) [0]
if hdrMagic = 0xd4c3b2al:
isLittleEndian = False
elif hdrMagic = Oxalb2c3d4:
isLittleEndian = True
else:
print (’unvalid magic code’)

return

if isLittleEndian:
self .fmt = "<"’4self.g_fmt

— 56 —

else:
self . fmt = ">"4self.g_fmt

hdrPack = unpack(self.fmt,hdrRaw)
self .magic = hdrPack[0]
self.versionMajor = hdrPack[1]
self.versionMinor = hdrPack [2]
self.zone = hdrPack[3]
self.sigfigs = hdrPack [4]

self .snaplen = hdrPack[5]

self .network = hdrPack [6]

class PcapData:

999 9

typedef struct pcaprec_hdr_s {

guint32 ts_sec; /* timestamp seconds x/

guint32 ts_usec; /* timestamp microseconds x/

guint32 incl_len; /* number of octets of packet saved in file x/
guint32 orig_len; /* actual length of packet =/

} pcaprec_hdr_t;

99 9

g_fmt = ” 117
calcsize = calcsize (g-fmt)
def __init__(self ,stream):

global isLittleEndian
if isLittleEndian:

self . fmt = "<"+self.g_fmt
else:

self .fmt = ”>"+4self.g_fmt

hdrPack = unpack(self.fmt,stream.read(self.calcsize))

self.tsSec = hdrPack[0]
self.tsUsec = hdrPack[1]
self.incl_len = hdrPack[2]
self.len = hdrPack [3]

if self.len != self.incl_len:
print ("%d + %d’%(self.len , self.incl_len))
rawData = stream.read (self.incl_len)

if self.incl_len < self.len:
rawData = rawData[: self.len]
elif self.incl_len > self.len:
rawData += b’\x00 *(self.len—self.incl_len)

#self.rawdata = rawdata
self.frame = FrameData(rawData)

self .remainData = rawData[len(self.frame) :]

def __len__(self):

return self.len + self.calcsize
class FrameData:

299 9

struct MAC{

— 57 —

u8 dest [6];
u8 src[6];
ul6 etherType;

}

299

calcsize = 6+6+2

def __init__(self ,rawData):
self.dest = rawData[0:6]
self.src = rawData[6:12]
self . protocol = rawData[12:14]

self.ip = None

if self.protocol = b’\x08\x00’: #IP
self.ip = IPData(rawData[14:])
self.valid = self.ip.valid

else:

self.valid = False

def __len__(self):
if self.valid:

return self.calcsize + len(self.ip)
return self.calcsize

class IPData:
e
u8 Version(4bit) + HeaderLength(4bit)[32«length]
u8 DSCP
ul6 totalLength
ul6 identification
ul6 flags(3bit) + fragmentOffset (13 bit)
u8 TTL
u8 protocollD
ul6 checksum
u32 srclP
u32 destIP
u8 options []
calcsize = 20
def __init__(self, rawData):
packed = unpack (”>BBHHHBBHII” ,rawData [: self . calcsize])
#print (7. join (7{:02z} 7.format(ord(c)) for c¢ in rawData[: self.calcsize]))
v_1 = packed[0]
self._v_l = v_1
#print (v_1l)
self.version = v_.l >> 4
self . headerLength = v_1 & OxF
self.valid = False
self .opt = b’

if self.headerLength > 5:

self.opt = rawData[self.calcsize:self.headerLengthxd—self.calcsize]

if self.version != 4:

self.valid = False

— H8 —

return

self .DSCP = packed [1]
self.totalLen = packed[2]
self.obolsatedID = packed [3]

f_f = packed[4]
flags = f_f >> 13

if flags&0Ox4 != 0:
self.valid = False
return

self .df = flags&0x2 != 0

self .mf = flags&0Ox1l != 0

self . fragOffset = f_f & Ox1FFF
self .rawFrag = f_f

self.tt]l = packed[5]
self.protocol = packed [6]
self.checksum = packed [7]
self.srcIP = packed [8]
self.destIP = packed[9]

self.data = rawData[self.headerLength«4:self.totalLen]

if self.protocol in (1,6,17):

self.valid=True

if self.protocol = 1: #CMP
self . portInfo = ICMPData(self.data)
elif self.protocol = 6: #TCP
self . portInfo = TCPData(self.data)
elif self.protocol = 17: #UCP
self .portInfo = UDPData(self.data)
if self.portinfo.type — ’'X’:

self.valid=False

def __len__(self):
if self.valid:
return self.totalLen

return 0

class TCPData:
ul6 Source port
ul6 Destination port
u32 seq
u32 ack
ul6 dataoffset and flags
ul6 window size
ul6 checksum
ul6 urgent pointer

299

calcsize = 20

— 59 —

def __init__(self, rawData):

if len(rawData) < self.calcsize:
self .type = "X”
return

packed = unpack (”>HHIIHHHH” ,rawData [: self.calcsize])

self.srcPort = packed [0]

self.destPort= packed [1]

self.seq = packed [2]

self.ack = packed[3]

self.ctrl = packed [4]

self.win = packed [5]

self.check = packed[6]

self.urgent = packed [7]

self.data = rawData[self.calcsize :]

self .type = "T”

class UDPData:
ul6 Source port
ul6 Destination port
ul6 length

ul6 checksum

2999

calcsize = 8
def __init__(self, rawData):
if len(rawData) < self.calcsize:
self . type = "X”
return
packed = unpack(”>HHHH” ,rawData [: self.calcsize])
self.srcPort = packed[0]
self.destPort= packed [1]
self.length = packed[2]
self.checksum = packed [3]
self.data = rawData[self.calcsize :]

self .type = "U”

class IGRPData:

99 9

299

def __init__(self, rawData):
self .type = "G”
self.srcPort = —1
self.destPort = —1

class ICMPData:
u8 type
u8 code
ul6 checksum
ul6 partl
ul6é part2

999 9

— 60 —

calcsize = 8
def __init__(self ,rawData):
if len(rawData) < self.calcsize:
self .type = "X”
return
self .type = 7 1”
self .srcPort = —1
self.destPort = —1
packed = unpack(”>BBHHH” ,rawData [: self.calcsize])
self.itype = packed[0]
self.code= packed [1]
self.check = packed[2]
self.partl = packed[3]
self.part2 = packed[4]
[

self.data = rawData[self.calcsize :]

tmptarget = makeIP3(’10.172.15.134"7)

def work(job):
#filename = ’../Dataset/DARPA1998/weekx/dayx/outside .tcpdump’

global basetime_set , basetime

filename = job

paths = ’/’.join (filename.split (’\\’)).split(’/")
objSrc = {}

nowlocal = datetime.now ()

nowstr = nowlocal.strftime ("%YYadod YHAS *)
with open(filename ,’rb’) as fp,\
open(’/root/replay_log/%s_replay .txt %nowstr, ’wt’) as fpLog:

filesize = os.path.getsize (filename)
pcapHdr = PcapHeader (fp)

cnt = 0
done = 0

while fp.tell () + PcapData.calcsize < filesize:

newPacket = PcapData(fp)
#pprint (vars (newPacket))
cnt 4= 1
if ¢cnt%100000 =— O:
print ("%s/%s : %d’%(paths[—3],paths[—2],cnt))

if not newPacket.frame.valid:
continue

srcIP = newPacket.frame.ip.srclIP
destIP = newPacket.frame.ip.destIP

if not srcIP in valids or not destIP in valids:

continue

—61 —

srcIP = ipMaps[srcIP]
destIP = ipMaps[destIP]

intime = datetime.utcfromtimestamp (newPacket.tsSec+0.000001*xnewPacket.tsUsec)

if not basetime_set:

basetime_set = True
basetime = intime
fixtime = basenowtime#(intime—basetime)/speed + basenowtime == basenowtime

basetime_str = basetime.strftime (*%YVadod SHAILS)

fixtime_str = basenowtime.strftime ('%YVafod YHMAS *)

fpLog. write ("%s\t—>\t%s\t%d\n’%(basetime_str ,fixtime_str ,speed))
else:

fixtime = (intime—basetime)/speed + basenowtime
fix_sec = (fixtime—base_timel970).total_seconds ()
fix_usec = fixtime.microsecond

if fixtime > datetime.utcnow ()+timedelta(seconds=10):

#pass
time.sleep (1)

newPacket

f

i

newPacket . frame

f.ip

t = i.portlnfo

buff = pack(’=IIBHBBHHBBII’ , fix_sec , fix_usec ,i.DSCP,i.obolsatedID ,
i.mf,i.df,i.fragOffset ,i.rawFrag,i.ttl ,ord(i.portInfo.type),
srcIP ,destIP)

if i.portInfo.type — 'T’:

buff +=pack(’=HHIHHH’ ,t.srcPort ,t.destPort,t.seq,t.ack,t.ctrl,
t.win,t.urgent)

buff 4=t .data

elif i.portInfo.type — ’'U’:
buff +=pack(’=HHH’ ,t.srcPort ,t.destPort,t.length)
buff 4=t .data

elif i.portInfo.type — ’'1’:
buff +=pack(’=BBHH’ ,t.itype,t.code,t.partl ,t.part2)
buff 4=t .data

else:

continue

print intime ,fixtime ,len(buff)

fd = fifos [srcIP]

os.write (fd ,pack(’=I",len(buff)))
os.write (fd, buff)

#done+=1

—62 —

#if done >100:
break

print ("%s total : %d’%(filename ,cnt))
return '%s/%s ' %(paths[—3],paths[—2]),0bjSrc

def _main():

global speed, valids, ipMaps

ipInSrc = {}

speed = 60

print (’prepare IP Map’)

for line in open(’/root/ipInSrc1998_ipmap_full.txt’,’ rt’):
vals = line.split (’\t’)
if len(vals)<2: continue
vals [0] = vals[0].strip ()
vals [1] = vals[1].strip ()
origlP = makeIP3(vals [0].strip())
newIP = makeIP3(vals[1].strip())
ipMaps [origIP] = newlIP

print (’openfifo’)

for line in open(’/root/6_target.txt’):
vals = line.split (’\t’)

if len(vals)<2: continue

origlP = makeIP3(vals[0])
valids.add (origIP)

newIP = ipMaps[origlIP]
#if newIP==tmptarget:
fd = os.open(’/tmp/netreplay/fifo_%s %parselP2 (newlIP) ,os .OWRONLY| os.OSYNC)
fifos [newIP] = fd
print (’valids %d ’%len(valids))
print (’stack 10sec’)

workQueue = sorted (glob.glob(’/root/DARPA1998/week6/day */*.tcpdump ’))
#work (workQueue [0])
print (workQueue)

for val in workQueue:

work (val)

for ip, fifo in fifos.items():
endsig = pack(’=i’,—1)

os.write (fifo ,endsig)

print (’wait 10sec’)
time . sleep (30)

for ip, fifo in fifos.items():

os.close (fifo)

— 63 —

if __name__. = ’__main__":

start
_main (
end =

print

= datetime .now()

)

datetime .now ()

"time %d’%(end—start).total_seconds ()

PCAP Reader- /root/PycharmProjects/DumpOn/dumpon.py

— 64 —

Summary

Improving Detection Capability
of Flow-based IDS in SDN

dlol8 & 27 AASHE WA& AHgstal Aot

YEYZ Tge YEYIY 7550 45, A2 Wl HEYAE Sdsto] Telst= 3
oA YEY] F27} 367
a2y el A FAE 71E Y packet-based IDSE £ B¢, YEYZ] 718 HH £
Fstr] 2ol A FA7E o Aol Sl

sFlow, NetFlow®} -2 flow 7|9t Zt5& 53t flow-based IDS= A3t HEL IANAE o &2

Kl
%0,
2
N,
i
1o
fo
S
ol
ol
N
M
rd
i)
v
i)
=

T
=)
1o
ol
N,
HA
S
ko
U
i,
ko)

—

RS

i
Jdo

flow 719 BUE Bolq 225 AW ol s 34 D7} Hsd, TR YEHIIAE uad
&40/ IDSE TAY 5 A Hlc

T, How-based detection 32 RASHE ©] SA7} 9lek. 2elx|] ghe worm virus7})
T 91g A%, IDS2 ARe TACR AT 4 gLout, packeto] FH7} 71557 7] i, e
2 Jo] o] sfofyt St

wpaba], 2 =R A= 7|8 YIEQ I 2 A Software Defined Network (SDN)& ©o]-85to] 22 HE

off tsiA WA= 2E7] o1 aL, Honeypotdt go] 54 JHE $Hdh= HHE ALF

[]_n..

92 AL AGFAA, GAG B ehA 28] BAlo] Hs e ARE BEG 5 UL She WES
Ak} flow-based IDSE o] §5te] A ol Po) TS Saqstar, Aol YA A9 ol 7o
packet:& packet-based IDSE BUj| 4 J] thall A AHAIEE ATHE o], FAo] that B4 o] 7Psotz s Sk,

EG SEAQ tg T 5 9l DS 9T Bt ohjet gA@ AU Aol Jbsd IPSEAE 28 of

At 4ol AF= flste] SDN HEEZ 24 POXE ARSI, MininetE ©]-8-5f 1,30071]

wE7 AEH g AEHES T4tk TET HAE W= B8 Dataset] packet dumpE o] §:3}e]

Sia]o]: IDS, SDN, Flow-based Detection, Hybrid IDS

— 65 —

R

T} e of o] 27]71A]

8714

wot ofue}, A7A2A 0| Bt

=R A

S}
ol

G

U
=

e

=
]é, ‘5‘1]'—‘:@

O

%, Khalid Telman Huseynov, %|2h-&

, Aminanto Erza Muhamad A= A 9 1A, A3 A&y e

!
mmo

Tor

o

o Ee= & 79E Avld, Com-

ot

f1A1 o]

=4t SDNoj| s

ol
o

oleloe e E- 50

=

fort Mhalangaol| A A}

2, 4139 A7} 17

o|

— 66 —

ol

o] 5 %

19904 64 2

E-mail & & Letrhee@kaist.ac.kr

9
2006. 3. —2009. 2. Aztusew
2009. 2. -2013. 2. S=AE|EY AirEt (B.S.)
2013. 3. -2015. 2. §t=sly|&Y AAsat (M.S.)

3 g
2011. 9. - 2011. 12. Z=ysr|&d 2749 712 dutxw
2012. 3. -2012. 6. e |Ed T2 Y 71 dutxw
2012. 9. - 2012. 12. @2uer|ed T2 089 712 dutzw
2013. 3.-2013. 6. Rt=shrjed ZEOHY 7)x dutEw
2013. 3.-2013. 6. J=AS|EY HEHES/NE dutxw
2013. 9. - 2013. 12. Z=Wer|&d 209 712 dutxw
2013. 9. - 2013. 12. S=As|&Y VFAEES dutxw
2014. 3.-2014. 6. IS EY HHHS/NE dutxw

— 67 —

AT 3 A

2013. 3. - 2013. 10. Securing SCADA Protocols for Nuclear Plants

2013. 4. - 2013. 12. Intrusion Detection System for Critical Infrastructures

2013. 8. —2015. 2. A RH <1 2]Z(Bio-inspired Algorithm)& &85t E417]4 A+

2014. 8. — 2015. 2. Intrusion Detection System for Critical Infrastructures Using Big Data Analytics

e R

o] F4, HA¥x, “SCADAS DNP3 Z2EZO| &qfE AR 75", 2013 JHHEOSHEU RO =7

A AR pp.66-T1, 2013.9.27. £AFTetw, At - [LS]
o154, AWE, “Swarm Intelligence o 85+ A4 B2 A 2810 WA Bla”, AR B 58] 57

S+&1] 3] (CISC-W13), 2013.12.6-7. ofFojstn, 4~

Dongsoo Lee, HakJu Kim, Kwangjo Kim, and Paul D. Yoo, “Simulated Attack on DNP3 Protocol
in SCADA System”, 2014 Symposium on Cryptography and Information Security (SCIS 2014), Jan.
21-24, 2014, Kagoshima, Japan

HFE, o, “escar 39| T& T A= AEA Het 7|e FF A7, TRHEET}SA] A

247 A 23 pp. 7 - 2014.4.20

P, o154, WEFNA BLH FYRA WY L AX”, 55 (295
o4, 1%, “SDNOA Flow 719 He &2 Axde] g2 4% A4

= A8t 3] (CISC-W’14), 2014.12.06. FHFosta, A&

— 68 —

	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Overview of Intrusion Detection System
	Motivation
	Organization

	Related Work and Background
	Intrusion Detection Method
	Signature-based Detection
	Anomaly-based Detection
	Packet-based Detection
	Flow-based Detection

	Data Set for Intrusion Detection
	Method of Gathering Data
	Public Labeled Data Set for an IDS

	Software Defined Network(SDN)
	SDN Overview
	OpenFlow
	Flow-based Detection using SDN

	Our Proposed IDS Scheme
	Goals and their Solutions
	Detection of Insider Attack
	Analysis of Malicious Packets
	Prevention or Mitigation of Attacks

	IDS Structure
	Flow Information Logger
	Flow-based IDS
	Packet-based IDS
	Packet Information Logger

	Working Scenario
	Initial Phase
	Flow-based IDS Phase
	Packet-based IDS Phase
	Wrap-up Phase

	Implementation

	Evaluation
	Testbed Configuration
	Test Environment
	Testbed Topology
	System under Test

	Evaluation Criteria
	Result
	Detection Overhead
	Detection Result
	Amount of Packet Analysis Result

	Discussion

	Concluding Remark
	References
	Appendices
	Source Code of IDS Module on POX
	Source Code of Testbed Initialization on Mininet
	Source Code of PCAP Replayer

	Summary (in Korean)

