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Abstract

Protection of software code against illegitimate modifications by its users

is a pressing issue to many software developers. Many software-based mecha-

nisms for protecting program code are too weak (e.g., they have single points

of failure) or too expensive to apply (e.g., they incur heavy runtime perfor-

mance penalty to the protected programs). In this thesis, We present and

explore a methodology that we believe can protect program integrity in a

more tamper-resilient and flexible manner. we describe a dynamic integrity

verification mechanism designed to prevent modification of software. The

mechanism makes use of multi-blocking encryption technique so that no hash

value comparison is needed and if the program was altered, the program will

not exit in a traceable way. We also make use of common virus techniques to

enhance our security. Our mechanism operates on binaries that can be applied

to all PE format files like EXE and DLL. The overhead in runtime execution

and program size is reasonable as illustrated by real implementation.
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Chapter 1

Introduction

Every year software industry has to face a cost of several billion dollars due

to software piracy. Thirty-six percent of the software installed on comput-

ers worldwide was pirated in 2003, representing a loss of nearly $29 billion.

As soon as computers started to became popular unauthorized copying of

software started to be considered an important problem. Development of

computer communications brought the growth of BBS services distributing

pirated software. Today, other circumstances like the advances in code anal-

ysis tools and the popularity of Internet creates new opportunities to steal

software. Some of the money lost because of the software piracy is included

in the cost of legal software and therefore pirate copies are partially paid by

the legal users.

Software protection has recently attracted tremendous commercial inter-

est, from major software vendors to content providers including the movie and

music recording industries. Their digital content is either at tremendous risk

of arriving free on the desktops of millions of former paying customers, or on

the verge of driving even greater profits through new markets. The outcome

may depend in large part on technical innovations in software protection,

and related mechanisms for digital rights management (DRM) - controlling

digital information once it resides on a platform beyond the direct control

of the originator. Privacy advocates are interested in similar mechanisms for

protecting personal information given to others in digital format. Related

activities include Microsoft’s heavy investment in a next generation trusted
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hardware platform (Palladium) [40], and the recent award by the U.S. Air

Force Research Laboratory of a US$1.8M research contract involving soft-

ware obfuscation [38].

Today’s complex software is of much value to its creator. Whether that

be a company with many products, or the only product of a small company.

Software piracy is a major economic problem. Great losses to software pro-

ducers are due to unauthorized use and distribution of their products. Of

much concern is the protection of this software, such that it will always re-

tain the functionality which its creators intended, always protect the intellec-

tual property embedded in the program, and thwart attempts to make illegal

copies of the program. Typically, the adversary creates modified versions of

the software, which disable authentication code like serial number checking,

and then illegally redistributed to the public.

Most of the software that is produced today has either weak protection

mechanisms (serial numbers, user/password, etc.) or no protection mecha-

nisms at all. This lack of protection is essentially derived from the user resis-

tance to accept protection mechanisms that are inconvenient and inefficient.

In Bruce Schneier words: “The problem with bad security is that it looks

just like good security”. Many commercial software protection tools claim

to achieve total security with software techniques. Most of these tools sold

without consideration of its quality or its ability to fulfil its vendor’s claims.

Theoretic approaches to the formalization of the problem have demonstrated

that a solution that is exclusively based in software is unfeasible [1, 18].

In order to prevent tampering attacks, tamper-proofing [2, 5, 6, 12, 16, 22,

25, 26, 37] code should detect if the program has been altered and causes the

program to fail when tampering is evident. There have been several different

approaches proposed in an effort to deal with such attacks, but most of the

commercially available defenses rely on reactive measures. Almost anyone

will agree that software should be protected, but little is agreed upon as to

how this should be done. At the root of the problem is the need for a solution
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that relies on proactive measures, which ultimately means modifications to

the way software is made. Furthermore, a solution that requires no new

software design paradigms (from a software engineer’s viewpoint) and is fully

automated is highly desirable.

Software protection falls between the gaps of security, cryptography and

engineering, among other disciplines. Despite its name, software protection

involves many assumptions related to hardware and other environmental as-

pects. A significant gulf currently exists between theory and practice. Incon-

sistencies have arisen in the relatively sparse (but growing) open literature as

a result of differences in objectives, definitions and viewpoints. All of these

issues provide research opportunities.

1.1 Proactive Solutions

In order to take a proactive approach, one must be able to either determine

that the program has been altered, or make any alterations impossible. Tam-

per resistance and code obfuscation attempt to address these requirements.

What is of much interest, as we will see later, is that these two approaches

can be combined for a robust and tamper-resistant solution.

In order for a program to detect whether or not it has been altered requires

that the program check itself every time it is run. Because it must be checked

at runtime, the most obvious solution is to insert tamper-proofing code into

the program itself.

The other approach is to render a program unintelligible to its adversary

through obfuscation. The basic premise being, that if you don’t know what

you are looking at, then it is impossible to intelligently alter the code. One

problem that arises from this approach is that it is possible to obfuscate a

program to such a degree, that even the creator can no longer tell what he/she

is looking at. This can cause major problems when one must debug software

through the use of stack dumps, assembly traces, and/or memory inspection.

3



One would argue that the solution to this problem would be to debug the

code prior to obfuscation, but this may not be possible. After a piece of

software is obfuscated and deployed, the end user may experience bugs that

were not seen during testing of the original code. Tracking down problems at

this stage may become impossible.

A tamper resistant approach that detects and/or subverts/corrects the

tampering actions in real time (concurrently with the program execution) is

desirable. Ultimately, a technique that will protect the software transparently,

without the user even knowing such actions are taking place, will succeed.

1.2 What We Are Up Against

Observation of the historical trends suggest that the attack methods appear to

be more mature than (lead in time) the security methods. Attacks use many

readily available tools which allow them to monitor network connections,

monitor a program’s instructions with debuggers, modify an operating sys-

tem’s kernel1, monitor address and memory busses, etc. It seems somewhat

ironic that the tools used to help design and implement complex software,

are the same tools used to attack it.

Much has been done to thwart network originated attacks, but little has

been done to thwart hardware and software based attacks on the intellectual

property embedded within a program. These attacks include modifications

to a program to skip crucial checks (such as license file/servers), or reverse

engineering of a key piece of a program’s functionality.

The anti-tamper techniques in general are designed to detect or sense

any type of tampering of a program. Once such tampering is detected, one of

many possible actions could be taken by the anti-tamper part of the software.

These actions could include disabling the software, deleting the software,

or making the software generate invalid results rendering it useless to the

tampering adversary.

4



1.3 Our Contributions

In this thesis, we initiate the use of multi-blocking encryption technique [2],

which was originally used to resist code observation, in integrity checking

and propose a multi-block hashing scheme. The mechanism behind multi-

blocking encryption is to break up a binary program into individually en-

crypted segments. We base on this mechanism to perform the integrity check-

ing. Roughly speaking, we will take the hash value of a block as the secret key

for decrypting the next block. The advantages of our approach include the

followings: No hash value checking is needed. If the program was altered, the

hash value is changed and therefore the next block cannot be decrypted prop-

erly. Due to the corruption of the next block, the program cannot continue

to run.

Also, using this dynamic multi-block hashing scheme, the integrity of the

software is kept checking during the program run-time execution. The ad-

versary (i.e., the software pirate) is unable to obtain a single point of failure.

Unlike the previous approaches that rely on branching instructions for check-

ing the hash values, in our approach, we do not have any such instructions.

The technique of bypassing the checking instructions is no longer feasible in

our approach. On the other hand, if the program was altered, the program

will not exit immediately. Therefore the adversary is very difficult to trace

back the problem. The feasibility of our suggested approach is realized by a

real implementation. Experimental results show that the overhead in runtime

execution as well as the increase in program size is reasonable.

1.4 Outline of The Thesis

The rest of the thesis is organized as follows.

In Chapter 2, we review some early literature on software protection and

discusses a selection of software protection approaches including software wa-
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termarking, software obfuscation, software tamper resistance, integrity veri-

fication and software diversity.

Then, we discusses the idea of our multi-block hashing scheme and its

security issues in Chapter 3.

In Chapter 4, we show the experimental results according to the implemen-

tation of our multi-blocking encryption technique to a software application.

Finally, we discuss the generalization of our approach and the conclusion

in Chapter 5.
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Chapter 2

Background and Related Work

There exists a wide range of tamper resistance methodologies. The following

discusses some of the more widely know approaches.

It is also important to keep in mind, that in order to increase the effec-

tiveness of tamper resistance, multiple approaches can be combined. One

should think carefully about how to combine different approaches, and strive

to mask the weaknesses of one, with the strengths of another. For example,

combining control ow monitoring with obfuscation can lead to a monitored

program that requires significant effort to reverse engineer(NP-complete) [37].

2.1 Watermarking

Watermarking consists of statically, or dynamically inserting signatures into

a program, which serve to identify the original owner. Static watermarks

never change, and are therefore subject to some level of reverse engineering.

Dynamic watermarks change with the program execution. Watermarks are

either extracted from a program’s image, or from the program execution

itself. Watermarking, as mention previously, is a reactive measure. Hence,

we will not be looking into watermarking as an effective technique. While

this performs a valuable function, the idea is to avoid the need for this all

together by making the program impossible to tamper with in the first place.

Good representatives of software watermarking methods are [11, 16, 32, 33,

34].
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Static watermarks evolved from the area of digital imaging. Watermarks

for images have been around for quite some time, and are fairly mature. This

idea has been used in program watermarking in a very simple way. First

watermark a small image. Then embed the image into the data section of a

program. This way, the image can be extracted from the program, and then

the watermark from the image. It is rather apparent that such a simplistic

approach is easily broken using standard binary editing tools.

Of more interest are the dynamic watermarks. For example, and Easter

Egg watermark is a watermark that is embedded into the functionality of

the program. When the program is given a particular input set, it performs

some action that is immediately visible to the user. A typical Easter Egg

watermark might display a logo, or force a program into a particular mode.

For example, the following will turn Microsoft Word97 into a pinball game:

1. Open a new document

2. Type the word “Blue”

3. Highlight the word “Blue”

4. Using the Format menu select Font

5. Choose Font Style Bold, Color Blue

6. Type “ ” (space) after word “Blue”

7. Using the Help menu select About

8. Ctrl-Shift-Left click the Word icon/banner

9. Use Z for left flipper, M for right flipper, and ESC to exit

Other dynamic watermarks include execution tracing and data structure

analysis, both producing no immediate output for the user, but instead relying

on monitoring a particular property of the program when given special input.

Because of the nature of these two watermarks, they do not work well with

most types of code obfuscation.
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2.2 Obfuscation

One way to protect a software program is to prevent tampering by increasing

the difficulty for hackers to attack the software. There are several techniques

that have been proposed in this direction. Code obfuscation [37] attempts to

transform a program into an equivalent one that is more difficult to manipu-

late and reverse engineer. One example is the Java byte code obfuscators. A

major drawback of all obfuscation approaches is that they are of necessity ad

hoc. Unless provably effective techniques can be developed, each obfuscation

is almost always immediately followed by countermeasures. In fact, Barak

et al. showed in [3] that it is inherently impossible to systematically obfus-

cate program codes. Another technique that can provide provable protection

against tampering is to encrypt programs and the program can be executed

without needing to decrypt them first. Sander and Tschudin proposed cryp-

tographic function [28], a way to compute with encrypted functions. They

identified a class of such encrypted functions, namely polynomials and ratio-

nal functions. Clearly not all programs fit into this category.

Code obfuscation attempts to make the task of reverse engineering a pro-

gram daunting and time consuming. This is done by transforming the original

program into an equivalent program, which is much harder to understand, us-

ing static analysis [7, 13, 15].

More formally, code obfuscation involves transforming the original pro-

gram P’ into a new program P’ with the same black box functionality. P’

should be built such that [12]:

I It maximizes obscurity, i.e., it is far more time consuming to reverse

engineer P’ when compared to P.

II It maximizes resilience, i.e., P’ is resilient to automated attacks. Either

they will not work at all, or they will be so time consuming that they will

not be practical.

III It maximizes stealth properties, i.e., P’ should exhibit similar statis-
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tical properties, when compared to P.

IV It minimizes cost, i.e., the performance degradation caused by adding

obfuscation techniques to P’ should be minimized.

Obfuscation techniques involve lexical, control and data transformations.

Lexical transformations alter the actual source code, such as Java code. This

transforms the original source code into a lexically equivalent form by man-

gling names and scrambling identifiers. Such transformations make it a daunt-

ing task to reverse engineer a program. A simple example would be to swap

the names of the functions add() and subtract(). (This would also involve

swapping every reference to these functions as well.) An even more interest-

ing approach would to replace add() with the function tcartbus() and replace

subtract() with the function sunim().

Control transformations alter the control flow of the program by changing

branch targets to an ambiguous state. The code for the program is shuffled

such that the original branch targets are no longer correct. During this shuf-

fling, the new targets are calculated, and code is inserted in place of the old

branch instruction to acquire its new target address.

Data transformations rearrange data structures such that they are not

contiguous. Data can be transformed all the way down to the bit level. Bit

interleaving is one example.

One particular obfuscation technique of interest is obscuring control flow

of a program. By obscuring branch target addresses, static analysis of a

control flow graph can be shown to be NP-hard [37]. Program address based

obfuscation is presented in [3].

Several researchers have published papers on software obfuscation us-

ing automated tools and code transformations [14, 15]. One idea is to use

language-based tools to transform a program (most easily from source code) to

a functionally equivalent program which presents greater reverse engineering

barriers. If implemented in the form of a pre-compiler, the usual portability

issues can be addressed by the back-end of standard compilers. For design
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descriptions of such language-based tools see [19, 27, 32]. Cohen [10] sug-

gested a similar approach already in the early 1990s, employing obfuscation

among other mechanisms as a defense against computer viruses. Cohen’s early

paper, which is strongly recommended for anyone working in the area of soft-

ware obfuscation and code transformations, contains an extensive discussion

of suggested code transformations [12, 13]. Wang [35] provides an important

security result substantiating this general approach. The idea involves in-

corporating program transformations to exploit the hardness of precise inter-

procedural static analysis in the presence of aliased variables [13], combined

with transformations degenerating program flow control. Wang shows that

static analysis of suitably transformed programs is NP-hard. Collberg et al.

[13] contains a wealth of additional information on software obfuscation, in-

cluding notes on: a proposed classification of code transformations (e.g., con-

trol flow obfuscation, data obfuscation, layout obfuscation, preventive trans-

formations); the use of opaque predicates for control flow transformations

(expressions difficult for an attacker to deduce, but whose value is known at

compilation or obfuscation time); initial ideas on metrics for code transforma-

tions; program slicing tools (for isolating program statements on which the

value of a variable at a particular program point is potentially dependent);

and the use of (de)aggregation of flow control or data (constructing bogus re-

lationships by grouping unrelated program aspects, or disrupting legitimate

relationships in the original program).

2.3 Tamper Resistance

Software obfuscation provides protection against reverse engineering [8, 9, 23,

31], the goal of which is to understand a program. Reverse engineering is a

typical first step prior to an attacker making software modifications which

they find to their advantage. Detecting such integrity violations of original

software is the purpose of software tamper resistance techniques. Software
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tamper resistance has been less studied in the open literature than software

obfuscation, although the past few years has seen the emergence of a number

of interesting proposals.

Tamper resistance is the art and science of protecting software or hardware

from unauthorized modification and distribution. Although hard to charac-

terize or measure, effective protection appears to require a set of tamper

resistance techniques working together to confound an adversary. Algorithms

like MD5 and CRC are commonly used for integrity checking of the soft-

ware. A common approach is to hash the whole block of software to obtain

a hash value. To check the integrity of that software, this hash value will be

compared with the hash value calculated based on the current copy of the

software before running. If the two hash values do not match, the software

has probably been modified and the program will be terminated. However,

this static hash value checking is easily bypassed by locating the hash value

comparison instruction and modifying the binary program code with existing

software debugging tools. This branching instruction that performs the hash

values comparison becomes a single point of failure.

Self-checking means (also called self-validation or integrity checking), while

running, program checks itself to verify that it has not been modified. We

distinguish between static self-checking, in which the program checks its in-

tegrity only once, during start-up, and dynamic self-checking, in which the

program repeatedly verifies its integrity as it is running. Self-checking alone

is not sufficient to robustly protect software. The level of protection from

tampering can be improved by using techniques that thwart reverse engineer-

ing, such as customization and obfuscation, techniques that thwart debuggers

and emulators, and methods for marking or identifying code, such as water-

marking or fingerprinting. These techniques reinforce each other, making the

whole protection mechanism much greater than the sum of its parts.

Fundamental contributions in this area were made by Aucsmith [2]. Auc-

smith defines tamper resistant software as software which is resistant to obser-
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vation and modification, and can be relied upon to function properly in hostile

environments. An architecture is provided based on an Integrity Verification

Kernel (IVK) which verifies the integrity of critical code segments. The IVK

architecture is self-decrypting and involves self-modifying code. Working un-

der similar design criteria (e.g. to detect single bit changes in software), Horne

et al. [21] also discuss self-checking code for software tamper resistance. At

run time, a large number of embedded code fragments called testers each test

assigned small segments of code for integrity (using a linear hash function and

an expected hash value); if integrity fails, an appropriate response is pursued.

The use of a number of testers increases the attacker’s difficulty of disabling

testers.

2.4 Integrity Verification

In the last few years, there have been active development of software obfus-

cation [13] and watermarking [11] but only a few researches have been done

in software integrity verification. Computing a hash value of code bytes is

a common integrity verification method [4, 5, 6, 24]. It examines the cur-

rent copy of the executable program to see if it is identical to the original

one by checking the hash values. The main drawback of this approach is

that the adversary can easily bypass the verification by locating the hash

value comparison instruction. Furthermore, since this method only verifies

the static shape of the code, it cannot detect run-time attacks, where the de-

bugger tools monitor the program execution and the adversary can identify

the instructions that are being executed and then modify them.

Hashing functions scan a block of the program, and use the data contained

therein as input to a mathematical equation. The simplest way of which would

be to sum all the numbers in a given block. When done, the output must

agree with the previously determined result. If they are not the same, this

block of the program has been altered.
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It is fairly obvious that such a scheme is easily broken, which has led to

more complex techniques. Some techniques may use values on the stack at

a crucial instant in time, or values in a register. Others perform complex

mathematical equations on overlapping sections of code. Horne et al. [21]

have implemented such a system, using linear hash functions, which overlap

and also hash the hashing functions as well. One of the strong points of

hashing is that you can have as many hashing functions as you want, all

performing a different hash fuction.

In order to detect run-time attacks, Chen and Venkatesan proposed obliv-

ious hashing [6] based on the actual execution of the code. This method

examines the validity of intermediate results produced by the program. It

is accomplish by injecting additional hashing codes into the software. These

hash codes are calculated by taking the results of previous instructions from

the memory. In other words, the hash values are calculated based on the dy-

namic shape (run-time states) of the program so as to make it more difficult to

attack. However, there is a practical constraint for binary-level code injection

and if the adversary can locate the instructions for hash value comparison,

bypassing is still possible.

Chang and Atallah [5] proposed another method that enhances the run-

time protection in which protection is provided by a network of execution

unit call guards. A guard regarded as a small code segment which performs

checksums on part of the binary code to detect if the software has been

modified. The guards are inserted into the software with different locations.

They are inter-related so as to form a network of guards that reinforce the

protection of one another by creating mutual-protection.

They also proposed the use of guards that actually repair attacked code.

Although a group of guards is more resilient against attacks than a single

branching instruction for comparing hash values, it only spreads out the single

attack point into different locations of the program. In other words, although

more complicated, bypassing instructions performed by the guards is still
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possible.

The above integrity checking techniques all involve hash value comparison,

which can be quite easily bypassed. Recently, Collberg and Thomborson [12]

discussed an innovative idea that suggests encrypting the executable, thereby

preventing anyone from modifying it successfully unless the adversary is able

to decrypt it. However, the details are not discussed in their paper and only

very little researches focusing on this kind of technology can be found. Our

suggested approach can be regarded as the same direction as the idea proposed

by them in which encryption is used instead of hash value comparison.

2.5 Diversity

Diversity is an idea which is part of the software folklore, but it appears to only

recently have received significant attention in the security community. The

fundamental idea is simple: in nature, genetic diversity provides protection

against an entire species being wiped out by a single virus or disease. The

same idea applies for software, with respect to resistance to the exploitation of

software vulnerabilities and program-based attacks. In this regard, however,

the trend towards homogeneity in software is worrisome: consider the very

small number of different Internet browsers now in use; and the number of

major operating systems in use, which is considerably smaller than 10 years

ago.

The value of software diversity as a protection mechanism against com-

puter viruses and other software attacks was well documented by Cohen [10]

in 1992-1993. The architecture of automated code transformation tools to

provide software obfuscation (see Section 2.2) can be modified slightly to

provide software diversity: rather than creating one new instance of a pro-

gram which is functionally equivalent to the original (and hard to reverse

engineer), create several or many. Here the difficulty of reverse engineering

or tampering with a single program instance is one security factor, but a
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more important factor is that an exploit crafted to succeed on one instance

will not necessarily work against a second. Forrest et al. [17] pursue this

idea in several directions, including simple randomizations of stack memory

to derail high-profile buffer-overflow attacks.

The idea of relying on diversity for improving the reliability and surviv-

ability of networks (e.g., see Wang [35] for contributions and references) has

gained recent popularity, subsequent to incidents of global terrorism. The

value of diversity for security and survivability was also recognized in the

1999 Trust in Cyberspace report [30], among others.

2.6 Types of Attacks

When one decides to prevent attacks on their software, they must first decide

what type of attack is of most concern to them. The following shows attacks

classified into three basic categories. The main distinction being that each of

these depend on the relative location of the origination of the attack [14, 20,

36, 39].

I Outside attackers attempting to gain entry over a networked connec-

tion. This is the most common type of attack today, and several preventive

measures are already in place.

II Executable code that is run on a target system, but not under the

direct control of the attacker, such as viruses and Trojan horses. This is a

fairly common attack which has several preventive measures already in place

as well.

III God Mode attacks: The attacker owns a copy of the software,

and has complete control over the system it is run on. This is one of most

damaging attacks in that it allows the theft of Intellectual Property, and the

execution of pirated software.

The God Mode attack model assumes that the attacker has full control

over the system, i.e., the attacker owns the system the program is running on,
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and has total access to the software and hardware in the system. The attacker

may choose to run binary analysis tools, software and hardware debuggers,

logic analyzers, etc..

IV Modifying the Testers One possible disabling attack is to modify

one or more testers so that they fail to signal a modification of the tested

code section.

V Temporary Modifications A dynamic attack might modify the code

so that it behaves anomalously and then restore the code to its original form

before the self-checking mechanism detected the change.
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Chapter 3

Proposed Scheme

We propose the use of multi-blocking encryption for the integrity verifica-

tion of software. In this chapter, we will first introduce the proposed multi-

blocking encryption, then followed by the hashing scheme. Its security issues

will also be discussed.

Multi-blocking encryption breaks up a binary program into individual

encrypted blocks. The program is executed by decrypting and jumping to

the executable block during the run-time process. When not being executed,

blocks are in encrypted form after applying this program protection technique,

therefore the adversary cannot modify the code statically, where the program

being disassembled is examined by the disassembler which is not able to

interpret the encrypted version of it.

3.1 Design Objectives

The fundamental purpose of a dynamic program self-checking mechanism is

to detect any modification to the program as it is running, and upon detection

to trigger an appropriate response. We sought a self-checking mechanism that

would be as robust as possible against various attacks while fulfilling various

non-security objectives.

Comprehensive and Timely Dynamic Detection The mechanism

should detect the change of a single bit in any non-modifiable part of the

program, as the program is running and soon after the change occurs. This
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helps to prevent an attack in which the program is modified temporarily and

then restored after deviant behavior occurs.

Separate, Flexible Response Separating the response mechanism from

the detection mechanism allows customization of the response depending

upon the circumstances, and makes it more difficult to locate the entire mech-

anism having found any part.

Modular Components The components of the mechanism are modular

and can be independently replaced or modified, making future experimenta-

tion and enhancements easier, and making extensions to other executables

and executable formats easier.

Platform Independence Although the initial implementation of our

self-checking technology is Intel x86-specific, the general mechanism can be

adapted to any platform.

Insignificant Performance Degradation The self-checking mechanism

should not noticeably slow down the execution of the original code and should

not add significantly to the size of the code.

Easy Integration We designed our self-checking technology to work in

conjunction with copy-specific static water marking and with other tamper

resistance methods such as customization. Embedding the self-checking tech-

nology in a program relies on source-level program insertions as well as object

code manipulations.

3.2 Proposed Multi-blocking Encryption

Based on the concept of multi-blocking encryption in [2], we propose to ap-

ply this technique in the following way: We propose to divide a program

into several different sized blocks (instead of equal sized blocks) according

to the flow of the program. Each block is encrypted with a different key,

which is illustrated in Figure 3.1. Let the program be P. If it can be broken

down in several blocks, each basic block has the property of being indepen-
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dent. This means that the block does not have any jump/branch instructions,

jumping/branching to other blocks. In other words, all the targets of the

jump/branch instructions are local within the block. In order to find out the

basic blocks, we first need to disassemble the executable program P to its ma-

chine code instructions accurately. There are two generally used techniques

for this: linear sweep and recursive traversal [31].

Figure 3.1: Different sized blocks encrypted by different keys

In general, it is convenient and feasible to store those keys inside the hard-

ware token [39] so that dumping of keys from the main memory is impossible.

The encryption can also be done inside the token. In our approach, we make

use of the hash values of the blocks to be the encryption keys, thus further

eliminate the necessity of storing the keys (see Section 3.4 for details).

3.3 Determining the Number of Blocks

The number of blocks ranges from the whole program (one-time encryption)

to one instruction per block. It is clear to see that in the extreme environment,

of which each block is one instruction, it can achieve the maximum-security

level. The instruction can be decrypted inside a special CPU as well. How-

ever, it is infeasible to put such heavy workload into the CPU itself. Thus,
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the number of blocks should be determined by striking a balance between the

level of security to be achieved and the speed of the program. Note also that

the blocks also depend on the actual control flow of the program.

3.4 Multi-block Hashing Scheme

In this section, we will describe our proposed multi-block hashing scheme.

Our objective is to prevent an adversary from modifying the software. As-

suming that a user has legal access to the software, he may try to tamper it

to remove authentication code so that it can be freely distributed for illegal

use.

Our scheme works as follows: We take the hash value of a basic block as

the secret session key for decrypting the next basic block according to the

flow of the program. As an initiate study, we focus on the programs of which

the control flow is a tree-like structure (as shown in Figure 3.2). We remark

that this kind of control flow is very common.

Figure 3.2: Tree structure of the program

Let the program be P and we consider any single path A. Let the path

be broken down in n basic blocks, b1, b2, · · · , bn such that the control flow

of the path A starts at b1 followed by b2 and then b3, etc. The blocks are

in encrypted form except the starting block b1. The jumping code to the

decryption routine is placed inside the basic blocks. The program controller,
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which implements the dynamic integrity verification, is stored at the end of

the original program as illustrated in Figure 3.3.

Figure 3.3: Structure of protected program

The entry point of the protected program is now set at the program

controller. Once the initial state has been set up, the original program

begins execution. Before the execution of bi, calculate the hash value of

bi−1, Hi−1 = Hash(bi−1). We treat the hash value Hi−1 as the secret ses-

sion key Ki−1(Ki−1 = Hi−1) for the decryption of the block bi, provided that

the number of bits for Ki−1 is compatible with the encryption algorithm. If a

hardware token was used, this can be implemented by using the C DeriveKey

API function of PKCS #11 [41]. C DeriveKey can derive a secret key from

a known data, Hi in our case. In order to illustrate the algorithm, we take

n = 3 in the following:

Algorithm : Multi − blocking integrity check (during program execution)

1. Before b2 starts to execute, the program jumps to the program con-
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troller to calculate H1 = Hash(b1), where b1 is in plaintext.

2. The secret key K1 is then derived from H1, e.g., K1 = H1.

3. The second block E(b2) is decrypted by K1 : b2 = DK1(E(b2)).

4. The decrypted block is moved to its original place, followed by the

execution of the decrypted codes.

Program Code

Basic block in plantext

Encrypted basic block

Program
Contoller

E(b2)

b1

Figure 3.4: Program Progress 1 - 4

5. Before b3 starts to execute, the program jumps to the program con-

troller to calculate H2 = Hash(b2).

6. The secret key K2 is derived from H2, e.g., K2 = H2.

7. The third block E(b3) is decrypted by K2 : b3 = DK2(E(b3)).

8. The decrypted block is moved to its original place, followed by the

execution of the decrypted codes.

In order to create different keys for encrypting different blocks, we use

different hash values to achieve this property. There is no ‘storage of keys’

Program Code

Basic block in plantext

Encrypted basic block
Program
Contoller

b2

E(b3)

Figure 3.5: Program Progress 5 - 8
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problem as the hash values are calculated dynamically during program exe-

cution. The above completes the treatment of a single path. For the whole

tree structure program P, we can apply the algorithm on all paths inside the

tree.

The adversary cannot modify the software statically as binary codes are

in encrypted form after protection. For dynamic modification, suppose an

adversary alters the running program in block bi which will produce a different

hash value Hi. Before the execution of bi+1, the hash value Hi is not the proper

decryption key Ki for block bi+1, the result from the decryption will then

produce rubbish code. Due to the corruption of the next block, the program

cannot continue to run properly and crashes. It is a great advantage that

the program will not halt its execution immediately after code modification.

When the tampered program crashes, the adversary will find it very difficult

to trace back the exit point.

Using this multi-block hashing method, no hash value comparison is present

and bypassing the checking is impossible. The scheme is constructed so that

any program state is in a function of all previous states. Therefore, the pro-

gram is guaranteed to fail if one bit of the protected program is tampered

with. The point of failure also occurs far away from the point of detection,

so that the adversary does not know how it has taken place.

3.5 Analysis of Multi-block Hashing Scheme

and Enhancement

We have described a dynamic software integrity verification scheme that made

use of multi-block encryption technique. In contract to common hash value

comparison schemes, this scheme does not use a single code block for integrity

checking. This makes the adversary difficult to bypass the checking in the

program.
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To attack the scheme, the adversary may find out the hash value of each

block by dynamic analysis. After finding out those hash values, he or she can

replace the tampered hash value with the correct one during program execu-

tion and the program can decrypt the next basic block properly. However,

the time taken by dynamic analysis is typically at least proportional to the

number of instructions executed by the program at runtime. In other words,

to attack our scheme, it takes a lot more effort than the attack for the pre-

vious schemes. In fact, we can further enhance the security of our approach

in order to prevent the adversary to find out the hash values. One effective

way to achieve this is to obfuscate the program codes. Some techniques are

discussed in [12]. The use of multi-blocking encryption in our mechanism is,

in fact, also one kind of obfuscation techniques.

On the other hand, we can also use the technique of code polymorphism

[19] to prevent this problem, which means that the program code is mutated

after each execution while preserving its semantics. Many computer viruses

use this technique to prevent the anti-virus engines from finding them out.

We use this idea to make our protection not noticeable by the adversary.

One possible implementation is to mutate each basic block bi after it has

been executed and thereby changing its hash value. We can use the new

hash value to re-encrypt the next block bi+1 and so on. This creates a new

version of the same program with identical block decomposition. Even if the

adversary can identify the hash values at the first time, those values cannot

be used for the next execution of the program as the hash values have been

mutated after the previous execution.

3.6 Comparison with Previous Schemes

Recently, there have been active development on software dynamic integrity

verification. To our knowledge, Aucsmith [2] was the first to introduce the

concept of multi-blocking encryption. The armored segment of code, which
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call integrity verification kernel (IVK). The IVK is divided into several equal

size blocks, which are encrypted by the same key. Blocks are exposed by

decryption as it is executed. The multi-blocking encryption technique used

in [2] is mainly used to resist code observation. In contrast to this approach,

we divided the original program into different size blocks, and calculated the

keys dynamically during program execution, encrypted the different blocks

with different keys. There is no ‘storage of keys’ problem as the hash values

are calculated dynamically during program execution. We make use of this

technique to resist code modification during program execution.

Unlike mechanism in [21], which consists of a number of testers that re-

dundantly test for changes in the executable code as it is running and report

modifications, our scheme detects the modification of codes by decrypting

the next block code, not depending on any tester. Whether encrypted blocks

can be decrypted properly, entirely depends on whether there is no modifi-

cation on software. Otherwise, the software can not run properly, sometimes

crashed, rather than exit in a traceable way. With this property, our scheme

can prevent single check point failure attack.

Also, Chang and Atallah [5] proposed another approach based on a dis-

tributed scheme, in which protection and tamper-resistance of program code

is achieved, not by a single security module, but by a network of (smaller)

security units that work together in the program. These security units, or

guards, can be programmed to do certain tasks (check summing the program

code is one example) and a network of them can reinforce the protection of

each other by creating mutual-protection. Although a group of guards are

more resilient against attacks than a single branching instruction for com-

paring hash values, it only spreads out the single attack point into different

locations of the program. In other words, although more complicated, by-

passing instructions performed by the guards is still possible. Our scheme

have similar inter-related structure, but achieved higher level security by pre-

venting static code analysis attack.
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In [6], Chen and Venkatesan proposed a novel software integrity verifi-

cation primitive, Oblivious hashing, which implicitly computes a fingerprint

of a code fragment based on its actual execution. Its construction makes it

possible to thwart attacks using automatic program analysis tools or other

static methods. This new method verifies the intended behavior of a piece

of code by running it and obtaining the resulting fingerprint. However, there

is a practical constraint for binary-level code injection and if the adversary

can locate the instructions for hash value comparison, bypassing is still pos-

sible. Since our multi-block hashing scheme decrypts necessary block during

program execution, it can avoid run-time attack.

We compared the above three schemes on software dynamic integrity ver-

ification with our scheme, with respect to the ability against certain attacks,

such as single check point failure attack, static code analysis attack, dump

memory attack and run-time attack. The results illustrated in Figure 3.6.

Protection
by Guards

Dynamic
Self-

Checking

Oblivious
Hashing

Our Scheme

-- -- O O

O -- O O

O O O O

X X X --

Single
Check Point

Failure
Attack

Static Code
Analysis
Attack
Dump

Memory
Attack

Run-time
Attack

  O: Completely against certain attack
  --: Partially against certain attack
  X: Vulnerable to certain attack

Figure 3.6: Comparison with Previous Schemes
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Chapter 4

Experimental Results

In this chapter, we want to find out the overhead in terms of program size

and execution time. We have implemented our multi-blocking encryption

technique to a software application (see Appendix for the main code of this

experiment): gzip [42] is a compression utility designed to be a replacement

for compress and the control flow is in a tree structure. The corresponding

binary object code is analyzed to determine the number of basic blocks to

be used and the blocks information is passed to the installation program, as

shown in Figure 4.1.

Figure 4.1: Installation of dynamic integrity verification scheme

We have applied the integrity verification scheme in one single path of

the tree structure, which is a subset of the whole tree structure program.

The program controller and information for each basic block are added to the

end of the object code automatically after passing through the installation

program. USB hardware token was used for encryption and hashing, which

conforms to the PKCS #11 [41] standard. Those basic blocks are encrypted

with AES and we use SHA-1 for hashing. The integrity verification scheme is
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then installed into the program and is ready to be run. The installation pro-

cess is automatic such that it is error free. The experiments were conducted

on a Pentium 1.5GHz CPU clock with 256MB RAM. We have used two files

to be compressed by the gzip program with the size 89.5KB and 1.01MB,

respectively.

4.1 Program Performance

We want to find out if the multi-block hashing would impose unreasonable

runtime overhead on the program. An experiment was conducted to measure

the runtime overhead of multi-block hashing versus number of blocks used

and the results are shown in Figure 4.2.

Figure 4.2: The average execution time of the protected gzip program with

different number of blocks used

We have identified 89 blocks for the experiments. The execution time of
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Windows programs may differ slightly every time the code is executed. We

chose to find an average execution time for the gzip program. While there

were many jumping between the original program and the program controller,

the run time overhead was reasonable. The execution time of the original

program was 0.0467s and 0.1367s, for zipping the 89.5KB and 1.01MB file,

respectively. It took only 1.07s for zipping the 1.01MB file with 70 blocks

used. The overhead is reasonable even the number of blocks used is large.

4.2 Program Size

The verification scheme installed gzip program size with different number of

blocks installed was shown in Figure 4.3.

Figure 4.3: gzip program size with different number of blocks used

The increase in size for storing information of each block is proportional

to the number of blocks identified in the program. It can be shown that
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the size overhead for 30 blocks used is only 5.6% compared with the original

program size, which is 89.5KB. It is relatively small as the program controller

is written in low level assemble language which can be easily manipulated the

object code of the gzip program.
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Chapter 5

Conclusion and Future Works

In this thesis, we have presented a dynamic software integrity verification

scheme that made use of multi-block encryption technique. The objective is

to prevent an adversary from modifying the software. The scheme is different

from previous integrity verification techniques in that no hash values com-

parison is required. This makes the adversary difficult to detach the checking

from the program. If the program was altered, the program will not terminate

in a traceable way with the help of debugging tools or other static analysis

methods.

We also propose the use of code polymorphism to enhance the security of

our scheme in case the adversary can trace out all hash values of each block.

The coding of the basic block is mutated every time after it is executed and

therefore its hash value is also changed. Even if the adversary can find out

the hash values, those values cannot be used for the next execution of the

program since the hash values have mutated during the previous execution.

One disadvantage of our scheme is that it only applies to programs with

a tree-like control flow. The scheme cannot handle the case when there are

several entry points entered to a single block. How to enhance our scheme to

make it work in programs with a network-like control flow is an interesting

topic for future study.

The dynamic integrity verification scheme can be applied to all Win32 PE

format files like EXE and DLL. The implementation of an automate instal-

lation program provides a convenience tool to install the dynamic integrity
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verification scheme where the modification of software is extremely difficult

and time consuming. The experimental results showed that the size overhead

is relatively small and the program execution overhead is reasonable.

The theoretical results to date on software obfuscation leave room for

software protection of considerable practical value. This should be of no

surprise-indeed, in a related area, the impossibility of building a program

to determine whether other software is malicious does not preclude highly

valuable computer virus detection technologies, and a viable (in fact, quite

lucrative) anti-virus industry.

We believe that it is still early in the history of research in the areas of

software protection and obfuscation, and that many discoveries and innova-

tions lie ahead-especially in the areas of software diversity (which seems to

be very little utilized presently), and software tamper resistance.

We expect to see more open discussion of specific techniques, and believe

that, similar to the history in the field of cryptography, the best way to ob-

tain an increased number of secure techniques is to involve public scrutiny,

peer evaluation, and open discussion in the literature. We see the past trends

of proprietary, undislosed methods of software obfuscation techniques anal-

ogous to the early days in cryptography, where invention and use of (weak)

unpublished encryption algorithms by novices was commonplace.

A factor in favour of those promoting software obfuscation, software tam-

per resistance, and related software protection methods is Moore’s law. As

computing cycles become yet faster and faster, and the availability and speed

of memory continue to increase, the computational penalties typically ex-

perienced in relation to many software protection approaches, will become

unimportant. (Again, this seems analogous to the execution of 512-bit RSA

being intolerably slow on a PC 20 years ago.)

As has been the case for some time, one of the greatest challenges in this

area remains the lack of analysis techniques, and metrics for evaluating and

comparing the strength of various software protection techniques. As a first
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step before obtaining such metrics, we believe more work is necessary in clari-

fying the exact goals of software tamper resistance, and the precise objectives

of attackers. We also believe there is a substantial research opportunity to fill

in the large gap between the practical and theoretical progress in this area.

For techniques of practical interest, we see opportunities to define models

and approaches better reflecting applications for which software protection of

short durations suffices.
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Appendix 

 
//The following is the main code for our experiment on gzip.exe 
//Environment: C++ Builder 6.0 
#include <vcl.h> 
#pragma hdrstop 
#include "Encrypt.h" 
//--------------------------------------------------------------------- 
#pragma resource "*.dfm" 
#include <stdio.h> 
#include <stdlib.h> 
#include <memory.h> 
#include <string.h> 
#include <mbstring.h> 
#include <windows.h> 
#include <Registry.hpp> 
#include <DateUtils.hpp> 
#include "bzlib.h" 
#include "fileenc.h" 
#include "prng.h" 
#include "SHA10.h" 
 
/* local error values   */ 
#define ERROR_USAGE              1 
#define ERROR_PASSWORD_LENGTH    2 
#define ERROR_OUT_OF_MEMORY      3 
#define ERROR_INPUT_FILE         4 
#define ERROR_OUTPUT_FILE        5 
#define ERROR_BAD_PASSWORD       6 
#define ERROR_BAD_AUTHENTICATION 7 
/* these values are for reporting gzip2 errors (7 - gzip2_error_value)  */ 
#define ERROR_BZ_SEQUENCE        8 
#define ERROR_BZ_PARAM           9 
#define ERROR_BZ_MEM            10 
#define ERROR_BZ_DATA           11 
#define ERROR_BZ_DATA_MAGIC     12 
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#define ERROR_BZ_IO             13 
#define ERROR_BZ_UNEXPECTED_EOF 14 
#define ERROR_BZ_OUTBUFF_FULL   15 
#define ERROR_BZ_CONFIG_ERROR   16 
 
/* the size of the local buffers for file handling  */ 
#define FILE_BUF_SIZE         1024 
 
/* error messages for user output   */ 
char *err_string[] = 
{ 
    "\nusage: encfile password infile outfile\n", 
    "\npassword is too short\n", 
    "\nmemory allocation has failed\n", 
    "\ncannot open the input file (%s)\n", 
    "\ncannot open the output file (%s)\n", 
    "\nbad password\n", 
    "\ndamaged file or incorrect password\n", 
    "\ngzip2 sequence error\n", 
    "\ngzip2 parameter error\n", 
    "\ngzip2 memory error\n", 
    "\ngzip2 data error\n", 
    "\ngzip2 magic data error\n", 
    "\ngzip2 input/output error\n", 
    "\ngzip2 unexpected end of file error\n", 
    "\ngzip2 full output buffer error\n", 
    "\ngzip2 configuration error\n" 
}; 
 
AnsiString last1; 
AnsiString SysDir; 
unsigned long e[5]; 
unsigned long e1[5]; 
int change = 0; 
 
#define filelen 1000980 
 
/* simple entropy collection function that uses the fast timer      */ 
/* since we are not using the random pool for generating secret     */ 
/* keys we don't need to be too worried about the entropy quality   */ 
 
int entropy_fun(unsigned char buf[], unsigned int len) 
{   unsigned __int64    pentium_tsc[1]; 
    unsigned int        i; 
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    QueryPerformanceCounter((LARGE_INTEGER *)pentium_tsc); 
    for(i = 0; i < 8 && i < len; ++i) 
        buf[i] = ((unsigned char*)pentium_tsc)[i]; 
    return i; 
} 
 
long filesize(FILE *stream) 
{ 
   long curpos, length; 
   curpos = ftell(stream); 
   fseek(stream, 0L, SEEK_END); 
   length = ftell(stream); 
   fseek(stream, curpos, SEEK_SET); 
   return length; 
} 
 
//--------------------------------------------------------------------- 
TPagesDlg *PagesDlg; 
//--------------------------------------------------------------------- 
__fastcall TPagesDlg::TPagesDlg(TComponent* AOwner) 
 : TForm(AOwner) 
{ 
} 
//--------------------------------------------------------------------------- 
void __fastcall TPagesDlg::Button4Click(TObject *Sender) 
{ 
   unsigned char *cp; 
   char new1='.'; 
   unsigned int new2; 
   new2=new1; 
   if (OpenDialog2->Execute()) 
   { 
      Edit4->Text=OpenDialog2->FileName; 
      if((cp = _mbsrchr(OpenDialog2->FileName.c_str(), new2)) && strcmp(cp, ".enc") == 
0) 
        
Edit5->Text=OpenDialog2->FileName.SetLength(OpenDialog2->FileName.Length()-4); 
      else 
        Edit5->Text=OpenDialog2->FileName; 
   } 
} 
//--------------------------------------------------------------------------- 
//Transfer------------------------------------------------------------------- 
void __fastcall TPagesDlg::Button3Click(TObject *Sender) 
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{ 
    FILE *inf, *outf; 
    unsigned char buf[FILE_BUF_SIZE], buf2[FILE_BUF_SIZE]; 
    unsigned char tmp_buf1[16], tmp_buf2[16], salt[16]; 
    fcrypt_ctx  zcx[1]; 
    bz_stream bz_ctx[1];            /* the gzip2 compression context    */ 
    int len, flen, err = 0; 
    unsigned char mode; 
    AnsiString new1,new2; 
    long iFileLength; 
    AnsiString outtemp; 
    char sysdir[255]; 
    AnsiString sysdriver; 
    memset(sysdir,0,255); 
    GetSystemDirectory(sysdir,255); 
    SysDir= sysdir; 
   AnsiString E,E1,Dir,Dir1; 
   int x; 
   char *pdir, *pE, *pE1; 
 
   if (Edit1->Text.IsEmpty()) 
   { 
       goto error_0; 
   } 
   E=""; 
   E1=""; 
   Dir =""; 
   Dir1 = Edit1->Text; 
   if(!((e[0]==e1[0])&&(e[1]==e1[1])&&(e[2]==e1[2])&&(e[3]==e1[3])&&(e[4]==e1[4]))) 
      Application->Terminate(); 
   else 
   { 
      for(int i=0; i<5; i++) 
      { 
         x = (e[i]<<24)>>24; 
         E=E+x; 
         x = (e1[i]<<24)>>24; 
         E1=E1+x; 
         x =(e[i]<<16)>>24; 
         E=E+x; 
         x = (e1[i]<<16)>>24; 
         E1=E1+x; 
         x = (e[i]<<8)>>24; 
         E=E+x; 
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         x = (e1[i]<<8)>>24; 
         E1=E1+x; 
         x = e[i]>>24; 
         E=E+x; 
         x = e1[i]>>24; 
         E1=E1+x; 
      } 
   } 
   pdir = new char[Dir.Length()+1]; 
   pE = new char[20+1]; 
   pE1 = new char[20+1]; 
   pdir = Dir1.c_str(); 
   pE = E.c_str(); 
   pE1 = E1.c_str(); 
   if(Dir1.Length()>=20) 
   { 
      for(int i=0;i<20;i++) 
      { 
         pdir[i]= pdir[i]^pE[i]; 
         pdir[i]= pdir[i]^pE1[i]; 
         Dir=Dir+String(pdir[i]); 
      } 
      Dir=Dir+Dir1.SubString(21,Dir1.Length()-20); 
   } 
   else 
   { 
      for(int i=0;i<Dir1.Length();i++) 
      { 
         pdir[i]= pdir[i]^pE[i]; 
         pdir[i]= pdir[i]^pE1[i]; 
         Dir=Dir+String(pdir[i]); 
      } 
   } 
 
    if((inf = fopen(Dir.c_str(), "rb")) == NULL) 
    { 
        err = ERROR_INPUT_FILE; goto error_0; 
    } 
 
    if (Edit3->Text == "") 
    { 
        goto error_1; 
    } 
    else if (Edit3->Text.Length() < 8) 
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    { 
        Edit3->Text= ""; 
        goto error_1; 
    } 
 
    if ((CheckBox2->Checked ==true) && (last1 =="")) 
    { 
        last1 = Edit3->Text; 
        Edit3->Text= ""; 
        goto error_1; 
    } 
 
    if ((last1 != "") && (Edit3->Text != last1)) 
    { 
        last1 = ""; 
        Edit3->Text= ""; 
        goto error_1; 
    } 
 
    new1 = ""; 
    do { 
       new1 = new1 + Edit3->Text; 
       }while (new1.Length() < 49); 
    if (new1.Length() < 64) 
       len = new1.Length(); 
    else 
       len = 51; 
 
    if((FileExists(Edit2->Text)) && (Edit1->Text != Edit2->Text)) 
    { 
        if (MessageDlg("File：" + Edit2->Text + "already exist, overwrite it ?", 
               mtCustom, TMsgDlgButtons() << mbYes << mbNo, 0) == mrNo) 
        { 
                err = ERROR_OUTPUT_FILE; goto error_1; 
        } 
    } 
    if((outf = fopen(Edit2->Text.c_str(), "wb")) == NULL) 
    { 
        err = ERROR_OUTPUT_FILE; goto error_1; 
    } 
    if(Edit1->Text == Edit2->Text) 
    { 
        err = ERROR_OUTPUT_FILE; goto error_2; 
    } 
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    if (CheckBox1->Checked != true) 
    { 
        Edit3->Text = ""; 
        last1 = ""; 
    } 
    else 
    { 
        last1 = ""; 
    } 
    Memo5->Lines->Add(Edit1->Text); 
    OKBottomDlg->Label1->Caption = "Processing，please wait..."; 
    OKBottomDlg->OKBtn->Enabled = false; 
    OKBottomDlg->Visible = true; 
    OKBottomDlg->Update(); 
    OKBottomDlg->BringToFront(); 
    mode = (len < 32 ? 1 : len < 48 ? 2 : 3); 
       /* use gzip2's default memory allocation    */ 
       bz_ctx->bzalloc = NULL; 
       bz_ctx->bzfree  = NULL; 
       bz_ctx->opaque  = NULL; 
        prng_ctx rng[1];    /* the context for the random number pool   */ 
        prng_init(entropy_fun, rng);                /* initialise RNG,  */ 
        prng_rand(salt, SALT_LENGTH(mode), rng);    /* the salt and     */ 
        err = BZ2_bzCompressInit(bz_ctx, 5, 0, 0);  /* compression      */ 
        if(err != BZ_OK) 
        { 
          err = 7 - err; goto error_2; 
        } 
        /* write the salt value to the output file  */ 
        fwrite(salt, sizeof(unsigned char), SALT_LENGTH(mode), outf); 
        /* initialise encryption and authentication */ 
#ifdef PASSWORD_VERIFIER 
        fcrypt_init(mode, new1.c_str(), (unsigned int)len, salt, tmp_buf1, zcx); 
        /* write the password verifier (if used)    */ 
        fwrite(tmp_buf1, sizeof(unsigned char), PWD_VER_LENGTH, outf); 
#else 
        fcrypt_init(mode, new1.c_str(), (unsigned int)len, salt, zcx); 
#endif 
        /* compress, encrypt and authenticate file  */ 
        while(len = (int)fread(buf, sizeof(unsigned char), FILE_BUF_SIZE, inf)) 
        { 
            bz_ctx->next_in = buf;  /* compress from buf to buf2    */ 
            bz_ctx->avail_in = len; 
            while(bz_ctx->avail_in > 0) 



 47

            {                       /* pass all input to compressor */ 
                bz_ctx->next_out = buf2; 
                bz_ctx->avail_out = FILE_BUF_SIZE; 
                err = BZ2_bzCompress(bz_ctx, BZ_RUN); 
                if(err != BZ_RUN_OK)    /* check for errors         */ 
                { 
                    err = 7 - err; goto error_2; 
                } 
                /* if there is output, encrypt, authenticate and    */ 
                /* write it to the output file                      */ 
                if(len = bz_ctx->next_out - buf2) 
                { 
                    fcrypt_encrypt(buf2, len, zcx); 
                    len = fwrite(buf2, sizeof(unsigned char), len, outf); 
                } 
            } 
        } 
        /* finish the compression operation     */ 
        bz_ctx->next_in = NULL; 
        bz_ctx->avail_in = 0; 
        do 
        {   /* load output buffer from compressor   */ 
            bz_ctx->next_out = buf2; 
            bz_ctx->avail_out = FILE_BUF_SIZE; 
            err = BZ2_bzCompress(bz_ctx, BZ_FINISH); 
            if(err != BZ_FINISH_OK && err != BZ_STREAM_END) 
            { 
                err = 7 - err; goto error_2; 
            } 
            /* encrypt, authenticate amd write any  */ 
            /* output to output file                */ 
            if(len = bz_ctx->next_out - buf2) 
            { 
                fcrypt_encrypt(buf2, len, zcx); 
                len = fwrite(buf2, sizeof(unsigned char), len, outf); 
            } 
        } 
        while   /* until the compressor end signal  */ 
            (err != BZ_STREAM_END); 
        if(BZ2_bzCompressEnd(bz_ctx) != BZ_OK) 
        { 
            err = 7 - err; goto error_2; 
        } 
        else 
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            err = 0; 
        /* write the MAC            */ 
        fcrypt_end(tmp_buf1, zcx); 
        fwrite(tmp_buf1, sizeof(unsigned char), MAC_LENGTH(mode), outf); 
        /* and close random pool    */ 
        prng_end(rng); 
        /* finish the compression operation     */ 
        bz_ctx->next_in = NULL; 
        bz_ctx->avail_in = 0; 
        do 
        {   /* load output buffer from compressor   */ 
            bz_ctx->next_out = buf2; 
            bz_ctx->avail_out = FILE_BUF_SIZE; 
            err = BZ2_bzCompress(bz_ctx, BZ_FINISH); 
            if(err != BZ_FINISH_OK && err != BZ_STREAM_END) 
            { 
                err = 7 - err; goto error_2; 
            } 
            /* encrypt, authenticate amd write any  */ 
            /* output to output file                */ 
            if(len = bz_ctx->next_out - buf2) 
            { 
                fcrypt_encrypt(buf2, len, zcx); 
                len = fwrite(buf2, sizeof(unsigned char), len, outf); 
            } 
        } 
        while   /* until the compressor end signal  */ 
            (err != BZ_STREAM_END); 
        if(BZ2_bzCompressEnd(bz_ctx) != BZ_OK) 
        { 
            err = 7 - err; goto error_2; 
        } 
        else 
            err = 0; 
        /* write the MAC            */ 
        fcrypt_end(tmp_buf1, zcx); 
        fwrite(tmp_buf1, sizeof(unsigned char), MAC_LENGTH(mode), outf); 
        /* and close random pool    */ 
        prng_end(rng); 
     } 
        OKBottomDlg->Label1->Caption = "     Finished! "; 
        OKBottomDlg->OKBtn->Enabled = true; 
 
error_2: 
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    fclose(outf); 
error_1: 
    fclose(inf); 
error_0: 
} 
//--------------------------------------------------------------------------- 
void __fastcall TPagesDlg::Button6Click(TObject *Sender) 
{ 
    FILE *inf, *outf; 
    unsigned char buf[FILE_BUF_SIZE], buf2[FILE_BUF_SIZE]; 
    unsigned char tmp_buf1[16], tmp_buf2[16], salt[16]; 
    fcrypt_ctx  zcx[1]; 
    bz_stream bz_ctx[1];            /* the gzip2 compression context    */ 
    int len, flen, err = 0; 
    unsigned char mode; 
    AnsiString new1; 
        if (Edit4->Text.IsEmpty()) 
    { 
        goto error_0; 
    } 
    if((inf = fopen(Edit4->Text.c_str(), "rb")) == NULL) 
    { 
        goto error_0; 
    } 
    if (Edit6->Text == "") 
    { 
        goto error_1; 
    } 
    else if (Edit6->Text.Length() < 8) 
    { 
        Edit6->Text = ""; 
        goto error_1; 
    } 
    new1 = ""; 
    do { 
       new1 = new1 + Edit6->Text; 
       }while (new1.Length() < 49); 
    if (new1.Length() < 64) 
       len = new1.Length(); 
    else 
       len = 51; 
    if((FileExists(Edit5->Text)) && (Edit4->Text != Edit5->Text)) 
    { 
        if (MessageDlg("File：" + Edit5->Text + "exist，Overwrite it ?", 
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               mtCustom, TMsgDlgButtons() << mbYes << mbNo, 0) == mrNo) 
        { 
                err = ERROR_OUTPUT_FILE; goto error_1; 
        } 
    } 
    mode = (len < 32 ? 1 : len < 48 ? 2 : 3); 
    /* use gzip2's default memory allocation    */ 
    bz_ctx->bzalloc = NULL; 
    bz_ctx->bzfree  = NULL; 
    bz_ctx->opaque  = NULL; 
        /* we need to know the file length to avoid reading the MAC */ 
        fseek(inf, 0, SEEK_END); 
        flen = ftell(inf); 
        fseek(inf, 0, SEEK_SET); 
        mode &= 3; 
        /* initialise decryption, authentication and decompression  */ 
        err = BZ2_bzDecompressInit(bz_ctx, 0, 0); /* decompression  */ 
        if(err != BZ_OK) 
        { 
            err = 7 - err; goto error_2; 
        } 
        /* recover the password salt     */ 
        fread(salt, sizeof(unsigned char), SALT_LENGTH(mode), inf); flen -= 
SALT_LENGTH(mode); 
#ifdef  PASSWORD_VERIFIER 
        fcrypt_init(mode, new1.c_str(), (unsigned int)len, salt, tmp_buf2, zcx); 
        /* recover the password verifier (if used)  */ 
        fread(tmp_buf1, sizeof(unsigned char), PWD_VER_LENGTH, inf); flen -= 
PWD_VER_LENGTH; 
        /* check password verifier  */ 
        if(memcmp(tmp_buf1, tmp_buf2, PWD_VER_LENGTH)) 
        { 
            err = ERROR_BAD_PASSWORD; //fclose(outf); 
remove(Edit5->Text.c_str()); 
            OKBottomDlg->Label1->Caption = "     Wrong Password! "; 
            OKBottomDlg->OKBtn->Enabled = true; 
            OKBottomDlg->Visible = true; 
            OKBottomDlg->Update(); 
            OKBottomDlg->BringToFront(); 
            goto error_1; 
        } 
#else 
        fcrypt_init(mode, new1.c_str(), (unsigned int)len, salt, zcx); 
#endif 
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    if((outf = fopen(Edit5->Text.c_str(), "wb")) == NULL) 
    { 
        goto error_1; 
    } 
    if(Edit4->Text == Edit5->Text) 
    { 
        err = ERROR_OUTPUT_FILE; goto error_2; 
    } 
    if (CheckBox3->Checked != true) 
        Edit6->Text = ""; 
   OKBottomDlg->Label1->Caption = "Processing, Please wait..."; 
   OKBottomDlg->OKBtn->Enabled = false; 
   OKBottomDlg->Visible = true; 
   OKBottomDlg->Update(); 
   OKBottomDlg->BringToFront(); 
        flen -= MAC_LENGTH(mode);   /* avoid reading the MAC        */ 
        len = (flen < FILE_BUF_SIZE ? flen : FILE_BUF_SIZE); 
        /* decrypt the file     */ 
        while(len = (int)fread(buf, sizeof(unsigned char), len, inf)) 
        { 
            /* decrypt a block                                      */ 
            flen -= len; 
            fcrypt_decrypt(buf, len, zcx); 
            bz_ctx->next_in = buf; 
            bz_ctx->avail_in = len; 
            while(bz_ctx->avail_in > 0) 
            {                       /* pass all input to compressor */ 
                bz_ctx->next_out = buf2; 
                bz_ctx->avail_out = FILE_BUF_SIZE; 
                err = BZ2_bzDecompress(bz_ctx); 
                if(err != BZ_OK && err != BZ_STREAM_END) 
                { 
                    err = 7 - err; goto error_2; 
                } 
                /* write any output from decompressor               */ 
                if(len = bz_ctx->next_out - buf2) 
                    fwrite(buf2, sizeof(unsigned char), len, outf); 
            } 
            len = (flen < FILE_BUF_SIZE ? flen : FILE_BUF_SIZE); 
        } 
        /* complete the decompression operation and write any       */ 
        /* output that results                                      */ 
        bz_ctx->next_in = NULL; 
        bz_ctx->avail_in = 0; 
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        while(err != BZ_STREAM_END) 
        { 
            bz_ctx->next_out = buf2; 
            bz_ctx->avail_out = FILE_BUF_SIZE; 
            err = BZ2_bzDecompress(bz_ctx); 
            if(err != BZ_OK && err != BZ_STREAM_END) 
            { 
                err = 7 - err; goto error_2; 
            } 
            if(len = bz_ctx->next_out - buf2) 
                fwrite(buf2, sizeof(unsigned char), len, outf); 
        } 
        if(BZ2_bzDecompressEnd(bz_ctx) != BZ_OK) 
        { 
            err = 7 - err; goto error_2; 
        } 
        else 
            err = 0; 
        /* calculate the MAC value          */ 
        fcrypt_end(tmp_buf2, zcx); 
        /* now read the stored MAC value    */ 
        fread(tmp_buf1, sizeof(unsigned char), MAC_LENGTH(mode), inf); 
        /* compare the stored and calculated MAC values */ 
        if(memcmp(tmp_buf1, tmp_buf2, MAC_LENGTH(mode))) 
        {   /* authentication failed        */ 
            err = ERROR_BAD_AUTHENTICATION; 
            fclose(outf); remove(Edit5->Text.c_str()); 
            /* delete the (bad) output file */ 
            OKBottomDlg->Label1->Caption = "     Process failure! "; 
            OKBottomDlg->OKBtn->Enabled = true; 
            goto error_1; 
        } 
        OKBottomDlg->Label1->Caption = "     Finished! "; 
        OKBottomDlg->OKBtn->Enabled = true; 
error_2: 
    fclose(outf); 
error_1: 
    fclose(inf); 
error_0: 
} 
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