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Abstract

Public Key Cryptosystems (PKC) were first introduced by Diffie and

Hellman [10]. The advantages of PKC have been proved through various

applications. A traditional application of PKC is to issue a digital signature

on a document. In PKC, a person has a key pair which contains a public

key and the corresponding private key. Using the private key, a person can

produce digital signatures on documents to prove that those documents are

indeed generated by him. Anyone can easily verify the signatures on those

documents using the public key of that person. Thus, the integrity of the

documents is protected by the digital signatures on those documents.

A threshold digital signature scheme requires a certain number of people

to produce digital signatures on documents. In other words, the secret key

used to sign documents is distributed (in pieces) among some people. To sign

a document a certain number of people (threshold value) have to cooperate

in order to construct the digital signature on the document.

A blind digital signature scheme, first proposed by Chaum [8], is an impor-

tant cryptographic component in many applications. Using a blind signature

scheme, a user can get signature on a message from a signer without reveal-

ing the message content. Both types of signature are playing important roles
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in cryptography as well as practical applications such as e-cash and e-voting

systems.

In this thesis, we construct a new threshold blind digital signature based

on pairings without a trusted third party, which combines the notions of a

threshold digital signature and a blind digital signature. A threshold blind

digital signature allows possession of a private key to be distributed among

a group of signers while a user can get a signature on a message without

revealing the message content. Threshold blind digital signatures have various

applications. For example, using such signatures we can design protocols for

secure distributed electronic banking, or secure electronic voting with multiple

administrators. Our scheme operates on Gap Diffie-Hellman (GDH ) group,

where CDH problems are hard while DDH problems are easy. For instance,

we use pairings that could be built from Weil pairing or Tate pairing. With

this construction, the scheme is more efficient than previous ones with respect

to signature size while keeping the same level of security. We prove that the

proposed signature scheme is secure against the well known attacks if CDH

problem is intractable in the random oracle model. We also compare this

scheme with other threshold blind signature schemes. To the best of our

knowledge, we claim that our scheme is the first threshold blind signature

using pairings with provable security in the random oracle model.
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Chapter 1

Introduction

1.1 Digital signatures

Authenticity, or proving origin, of the electronic documents is very important

in the electronic applications. In the symmetric cryptosystems, Message Au-

thentication Codes (MACs) can ensure authenticity as well as integrity of the

documents. In MAC algorithms, one uses a secret key to generate a MAC of

a document then sends both the MAC and the document to the verifiers. To

verify the correctness of the issued MAC on a given document, the verifiers

need to know the secret key used to generate that MAC. The problem here

is how the producer of the MAC can transfer the secret key to the verifiers

securely? With the invention of the public key cryptosystems, or the asym-

metric cryptosystems, the verifying authenticity of the electronic documents

can be done easily. The similar notion to the MACs is called the digital

signatures. In the public key cryptosystems, a user possesses a key pair: a

private key, which is known by the user only, and a corresponding public key,

which is known by everyone (i.e., by publishing the user’s public key into a

directory). To produce a digital signature, the signer uses his private key

to sign a document and sends the document along with its signature to the

verifiers. The verifiers can get the signer’s public key easily from a public key

directory, and use this public key to verify the signature on the document.

Because of the uniqueness of a key pair in the public key cryptosystems, if

the signature is really issued by the signer, the verifiers can use the signer’s
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public key to verify the signature successfully, and vice versa.

As the handwriting signatures, the digital signatures also must have prop-

erties such as easy to issue, easy to verify and difficult to forge. Since the

notion of the digital signatures is realized, there are many proposals of the

public key cryptosystems and their corresponding digital signature schemes,

such as ElGamal, Schnorr, RSA, etc. In addition, the digital signatures also

have been designed to have various properties to support different applica-

tions. We can find in literature many types of the digital signatures, for

example group signatures, multisignatures, threshold signatures, blind signa-

tures, and so forth. In this thesis, we deal with the threshold blind digital

signature which combines two types of well known digital signatures, i.e.,

threshold digital signatures [9], [12], [13], [14], [15] and blind digital signature

[28], [29]. The practical applications of threshold blind digital signatures are

e-voting, e-payment systems, etc.

1.2 Threshold blind digital signatures

A threshold signature scheme distributes the signing abilities to a group of

signers such that a digital signature on a message cannot be produced by a

predetermined number of signers. With this property, misbehavior caused

by a single dishonest signer will be eliminated in many applications. For

example, in the e-voting system managed by a single administrator [24], the

administrator has full power to validate any vote. If the administrator is

dishonest, he can change any vote that he wants for some purposes. In these

situations, we want to have multiple administrators to authorize votes, while

the system is working correctly.

A blind signature scheme, on the other hand, gives users ability to get a

digital signature from a signer without revealing the message content. This

property is very important for implementing e-voting, e-commerce, and e-

payment systems, etc. For instance, when a buyer purchases merchandize
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from a shop, the buyer gets a bank’s signature on the payment given to the

shop and keeps secret what merchandize is from the bank.

Figure 1.1: A threshold blind signature scheme in an e-voting system with

multiple administrators

A threshold blind signature combines a threshold signature and a blind

one to exhibit both properties. Therefore, a threshold blind signature, while

giving user ability to get signature on a message without revealing its con-

tent, still maintains the shared secret key to be distributed among signers.

This type of signature can be applied in any application for blind signatures

(e.g. e-cash, e-voting) where the signing secret key needs to be distributed

to enhance security level. An example is illustrated in Figure 1.1. This is an

e-voting system with multiple administrators. In this system, a voter selects

his candidate then blinds his selection. The voter then requests the autho-

rize vote system to validate his vote. The authorize vote system needs at

least t administrators to perform this work. With this configuration, a single
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administrator problem is eliminated. Moreover, the security of the system is

improved, that is even several secret keys are compromised, the system is still

working correctly.

There are several studies on this type of signature schemes such as in [19]

and [20]. Both papers have proposed the threshold blind signature scheme

based on the discrete logarithm problem and have used the Okamoto-Schnorr

blind signature scheme as the underlying signature scheme. However, the

scheme [19] has shown better performance than that of the scheme [20].

1.3 Our contributions

In this thesis, we propose a new threshold blind signature scheme based on

pairings. As mentioned above, the previous threshold blind digital signature

schemes [19], [20] are based on the discrete logarithm problem over finite

fields. They both were built from the Okamoto-Schnorr blind digital signature

[28] using secret sharing techniques. Working on an elliptic curve over finite

field, our proposed signature scheme has achieved efficiency in terms of the

signature size compared to the previous schemes [19] and [20]. This is the

first contribution of this thesis.

Recently, the Okamoto-Schnorr signature scheme and its blind version

were proved to be breakable under Generalized Birthday acttack [33]. There-

fore, any signature scheme based on these types of signature schemes will be

insecure. Our constructed signature scheme is based on CDH problem which

is intractable in GDH group, and we also prove security of our construction

in a formal way. This is our second contribution.

To the best of our knowledge, our proposed scheme is the first thres-

hold blind digital signature scheme using pairing and provably secure in the

random oracle model.
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1.4 Outline of the thesis

Chapter 2 introduces some background on the bilinear pairings and the cryp-

tographic primitives that we use in our proposed scheme. We define the

notions of security as well as the security model in Chapter 3. Chapter 4

presents our proposed threshold blind signature scheme. Chapter 5 comes

up with the security proof of the proposed scheme. In Chapter 6, we will

evaluate performance of our scheme and compare with other schemes as well.

Chapter 7 will be given our conclusions and suggestions for future work.
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Chapter 2

Background and related work

2.1 Concepts of bilinear pairings

We summarize some concepts of bilinear pairings using similar notations used

by Zhang and Kim [34] which were used to design ID-based blind signature

and ring signature based on pairings.

Let G1 and G2 be additive and multiplicative groups of the same prime

order q, respectively. Let P be a generator of G1. Assume that the discrete

logarithm problems in both G1 and G2 are hard. Let ê : G1 ×G1 → G2 be a

pairing which satisfies the following properties:

1. Bilinear : ê(aP, bP ′) = ê(P, P ′)ab for all P, P ′ ∈ G1 and all a, b ∈ Z.

2. Non-degenerate: If ê(P, P ′) = 1 ∀P ′ ∈ G1 then P = O.

3. Computable: There is an efficient algorithm such as [2] to compute

ê(P, P ′) for any P, P ′ ∈ G1.

To construct the bilinear pairing, we can use the Weil pairing or Tate

pairing associated with supersingular elliptic curves.

Under such group G1, we can define the following hard cryptographic

problems:

– Discrete Logarithm (DL) Problem: Given P, P ′ ∈ G1, find an

integer n such that P = nP ′ whenever such integer exists.
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– Computational Diffie-Hellman (CDH) Problem: Given a triple

(P, aP, bP ) ∈ G1 for a, b ∈ Z
∗
q, find the element abP .

– Decision Diffie-Hellman (DDH) Problem: Given a quadruple

(P, aP, bP, cP ) ∈ G1 for a, b, c ∈ Z
∗
q, decide whether c = ab (mod

q) or not.

– Gap Diffie-Hellman (GDH) Problem: A class of problems where

the CDH problems are hard but the DDH problems are easy. That

is, given a triple (P, aP, bP ) ∈ G1 for a, b ∈ Z
∗
q, find the element abP

with the help of the DDH oracle, which can answer whether a given

quadruple (P, aP, bP, cP ) ∈ G1 is a Diffie-Hellman quadruple or not.

Groups, where the CDH problems are hard but the DDH problems are

easy, are called Gap Diffie-Hellman (GDH ) groups. Details about GDH

groups can be found in [5], [6], [17], and [25].

2.2 Blind digital signature scheme

The blind digital signature was first introduced by Chaum [8] to provide

anonymity without revealing message contents. Basically, we can understand

a blind signature scheme as a cryptographic protocol involving two parties, a

user A and a signer B. The user A wants to get a signature of the signer B

on a message M . Firstly, A blinds M into M ′ and then sends M ′ to B. B

generates signature σ′ on M ′ and returns σ′ to A. Receiving σ′, A unblinds

σ′ into σ and outputs σ as the signature on the message M . By this way, A

can protect content of M from B. In addition, whenever B is given a pair of

(M,σ), B cannot determine when or for whom he signed that message. This

concept is very important in electronic payment systems, electronic voting

systems. For example, in the electronic cash systems, a buyer represents a

user, an electronic coin represents a document need to be signed and a bank
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represents a signer. In the payment transactions, if the user wants to spend

a coin, he needs the signature of the bank on that coin, but he does not want

to let the bank know the purpose of the spent coin. With the help of the

blind signature schemes, the user can blind that coin and requests the bank

to sign on it. After that, the user can spend the coin while the bank cannot

determine how the coin is spent. Since Chaum’s proposal [8], there are many

Figure 2.1: Blind signatures in e-cash system

intensive researches [3], [28], [29] dealing with the blind digital signatures as

well as their security.

2.3 Blind signature scheme based on GDH

problem

Recently, Boldyreva [7] introduced a blind digital signature scheme based on

Gap Diffie-Hellman problem and proved its security. For our threshold blind
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signature scheme, we build a blind version of the signature scheme in [6],

which is similar to that of [7], defined as follows:

Let G1 be GDH group of prime order q. Public information is I =

(q, P,H) where P is a generator of G1 and H : {0, 1}∗ → G1 is an one-way

hash function. The new blind GDH signature scheme BGS = (BK,BS,BV),

where BK,BS, and BV are key generation, blind signing and verification pro-

tocols, respectively, is defined as:

¦ BK(I): Pick randomly s
R
←− Z

∗
q and compute Q ← sP . The algo-

rithm will return the public key pk and the secret key sk, where pk =

(q, P,H,Q), and sk = s.

¦ BS(I, sk,M): The user wants a message M ∈ {0, 1}∗ to be signed

“blindly”.

– The user picks a random number r
R
←− Z

∗
q and computes a blind

message M ′ of the message M , M ′ = r · H(M). He sends M ′ to

the signer.

– The signer signs on M ′, σ′ = s ·M ′ and sends back σ′ to the user.

– Receiving σ′, the user unblinds it and gets the signature of the

message M , σ = r−1 · σ′ and outputs (M,σ).

¦ BV(pk,M, σ): If VDDH(P,Q,H(M), σ) = 1 then return 1 else return 0,

where VDDH(·) is an efficient algorithm which solves the DDH problem

in G1.

The blind signature scheme based on GDH problem works as depicted on

Figure 2.2

2.4 Threshold scheme

In the traditional public key cryptosystems, an individual (a server or a per-

son) keeps the secret key and performs all secret-key-related operations such

9



User Signer

-

¾

r ∈R Z∗
q

M ′ = r ·H(M) M ′

σ′
σ′ = s ·M ′

σ = r−1 · σ′

σ is the signature on M

Figure 2.2: Blind signature scheme based on GDH problem

as decrypting ciphertext encrypted by the corresponding public key, issuing

a digital signature. In some scenarios, it can be dangerous since the secret

key holder is very powerful. The threshold scheme can be used in these situa-

tions to distribute the secret information to several parties to increase security

level. The concept of a threshold scheme was first introduced by Shamir [30].

In the (t, n)-threshold scheme, a secret information D is divided into n pieces

D1, D2, . . . , Dn such that:

1. Knowledge of any t or more Di pieces makes D easily computable;

2. Knowledge of any t− 1 or fewer Di pieces leaves D uncomputable.

As mentioned above, the (t, n)-threshold scheme enables possession of

the secret key to be distributed to n parities in a public key cryptosystem.

Consequently, only t or more parties can decrypt a ciphertext encrypted by

the corresponding public key or produce a digital signature on a message.

With fewer t parties, the decryption of the ciphertext cannot be done.

Threshold schemes are very suitable to applications in which the secret

need to be shared among parties such as electronic cash, electronic voting,

fault-tolerant applications, or trust distribution, etc. For example, in Public

Key Infrastructure (PKI), Root Certification Authority (CA) is the most

10



powerful entity. Root CA certifies a public key of every lower level CA by

using its own secret key digitally signed on the public keys of the lower level

CAs. If the Root CA’s secret key is kept by only individual, it will be very

risky when this key is compromised. An adversary, who steals this secret key

by some ways, can make certificates for any illegal CA for his benefit. If a

(t, n)-threshold scheme is applied in this scenario, the Root CA’s secret key

will be distributed to n parties. Compromising up to t−1 parties will not help

the adversaries to recover the original secret key. Therefore, the adversaries

cannot make any illegal certificate in this case.

Many researches on the threshold schemes and the additional security

aspects were found in [9], [12], [13] [19], [20], [26], [27], and [31]. The original

threshold scheme proposed by Shamir [30] requires a dealer to distribute the

shared secrets to the parties. Later, Feldman [11], Pedersen [26], [27] proposed

a threshold cryptosystem without a TTP. In these schemes, each party acts

as a dealer to choose the secret key and distribute it verifiably to other parties.

Subsequently, a group of the honest parties is formed and the group members

recover their secret shares. Using Pedersen’s protocol [27], Gennaro et al. [13]

proposed the Distributed Key Generation (DKG) protocol which is based on

the discrete logarithm problem. In this thesis, we use the DKG protocol as

one of components to build our new threshold blind signature scheme.

2.5 Distributed Key Generation

The DKG protocol defined in [13] is a secret sharing protocol without any

TTP (dealer). DKG works as a main component of the threshold cryptosys-

tems. Feldman [11] proposed a verifiable secret sharing (VSS) protocol based

on the discrete logarithm problem. However, his protocol has been shown

to have a security flaw, since an adversary can influence the distribution of

the result of his protocol to a non-uniform distribution. Next, by utilizing

Feldman’s VSS protocol, Pedersen [26] proposed the first DKG protocol. Re-

11



cently, Gennaro et al. in [13] carried out a secure DKG protocol with the

complete security proof. We now describe this DKG protocol briefly. The

secure DKG protocol is as follows:

Generating r:

1. Each player Li Pedersen-VSS of a random value ri as a dealer:

(a) Li chooses two random polynomials fi and f
′
i over Zq of degree

t− 1 where:

fi(x) = ai0 + ai1x+ · · ·+ ait−1x
t−1

and

f ′
i(x) = bi0 + bi1x+ · · ·+ bit−1x

t−1

Let ri = ai0 = fi(0) and r′i = bi0 = f ′
i(0). Li broadcasts Cik =

gaikhbik mod p, for k = 0, . . . , t − 1. Li computes the shares sij =

fi(j) mod p, s
′
ij = f ′

i(j) mod p, for j = 1, 2, . . . , n and sends (sij

and s′ij) secretly to player Lj.

(b) Each player Lj verifies the shares (sij, s
′
ij). Lj checks if

gsijhs
′

ij =
t−1∏

k=0

(Cik)
jk

mod p. (2.1)

If the check fails for an index i, Lj broadcasts a complaint against

Li.

(c) Each player Li who received a complaint defends himself by broad-

casting the value (sij, s
′
ij) that satisfies Eq. (2.1).

(d) Any player who either received more than t − 1 complaints, or

answered wrong value to a complaint is disqualified.

2. Let H0 := {Lj|Lj is a not disqualified player}.

12



3. The distributed secret value r is not explicitly computed by any party

but it equals r =
∑

j∈H0
ri. Each player Li sets his share of the secret

as si =
∑

j∈H0
sij mod q.

Extracting y = gr mod p:

1. Each player Lj ∈ H0 broadcasts Ajk = gajk mod p, for k = 0, . . . , t− 1

2. Each player Lj verifies the values broadcasted by other players in H0,

namely, for each i ∈ H0, Lj checks if

gsij =
t−1∏

k=0

(Aik)
jk

mod p. (2.2)

If the check fails for an index i, Lj complains against Li by broadcasting

the value (sij, s
′
ij) that satisfies Eq. (2.1) but does not satisfy Eq. (2.2).

3. For players Li who received at least one valid complaint, i.e., value which

satisfies Eq. (2.1) but does not satisfy Eq. (2.2), the other players run

the reconstruction phase of Pedersen’s VSS to compute ri, fi(·), Aik for

k = 0, . . . , t − 1 in the clear. For all players in H0, set yi = Ai0 = gri

mod p. Compute y =
∏

i∈H0
yi mod p.
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Chapter 3

Definitions of security

In this chapter, we present the security model as well as the security definitions

of the threshold blind signature scheme.

3.1 Standard model and Random oracle model

Like every cryptographic scheme, a digital signature scheme after being pro-

posed need to be shown to be secure. There are two common formal methods

which are used to prove security of cryptographic schemes. One is using the

standard model and the other is using the random oracle model.

3.1.1 The standard model

The standard model, or the complexity-based model, is a preferred approach,

mathematical cryptography. In this model, one starts by assuming an under-

lying well-defined problem to be hard, that is the problem is widely believed to

be very hard. For example, integer factoring problem and discrete logarithm

problem are hard problems. Then, the showing security of a cryptographic

scheme turns out to verify that if there exists an attacker who can success-

fully attack the scheme, then one can construct an attacker who can break

the presumed hardness. In other words, one may state that: if the hardness

assumption is correct, the cryptographic scheme is secure.
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3.1.2 The random oracle model

The random oracle model was first introduced by Bellare and Rogaway [1].

To analyze a cryptographic scheme in the random oracle model, one assumes

that a cryptographic hash function behaves like a random function (random

oracle), that is, this function always outputs the same random bit string for

the same input value. All parties, including participants and adversaries,

have access the random oracle. Using this assumption, one should prove the

security of the scheme. Although it is less preferable to the standard model,

a proof of security in the random oracle model is still acceptable when it is

difficult to achieve the proof in the standard model. In this thesis, we have

also proved security of our threshold blind digital signature scheme in the

random oracle model.

3.2 Chosen-target CDH problem and assump-

tion

To construct and prove security of cryptographic schemes, one normally has to

base on a reasonable computational assumption. As in [25], the assumptions

can be categorized into three types. The first type is the intractability of

inverting problem such as factoring a composite number, inverting of RSA

function, computing the discrete logarithm problem and computing the Diffie-

Hellman problem. The second one is the intractability of the decision problem

such as the decision Diffie-Hellman problem. And the last one is a new class

of problems called Gap problems proposed by Okamoto and Pointcheval [25].

An example is Gap Diffie-Hellman problem mentioned in Chapter 2. In this

thesis, our proposed signature scheme works on a GDH group where the

DDH problem is easy, therefore we cannot use the DDH problem to build the

security proof. Instead of that, the security of our proposed scheme is based

on a variant of the CDH problem, namely the chosen-target CDH (CT-CDH)
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problem.

The CT-CDH problem is analogous to the chosen-target RSA inversion

problem [3] based on which the security proof of Chaum’s blind RSA digital

signature scheme is performed. The difference is only the computational

assumption. The chosen-target RSA inversion problem is as follows:

Let a randomly-generated RSA key pair be pk = (N, e), sk = (N, d) where

N = pq for p and q are two large primes, e is a random element of Z
∗
φ(N),

ed ≡ 1 mod φ(N) with φ(·) is the Euler’s phi-function. An adversary, who is

given pk, has access to the “target” oracle which returns random targets in Z
∗
N

and the RSA inversion oracle (·)d mod N (i.e., can compute (·)d mod N).

The assumption states that there is no polynomial-time adversary who can

invert any subset of targets such that the number of queries of the adversary

to the RSA inversion oracle is strictly less than the number of queries he has

made to the target oracle.

By the similar technique in [7], we propose a chosen-target problem and

define our assumption as follows:

Definition 3.1 (CT-CDH) Let G1 be GDH group of prime order q and P

be a generator of G1. Let s be a random element of Z
∗
q and Q = sP . Let

H : {0, 1}∗ → G1 be a random hash function. The adversary B is given

input (q, P,Q,H) and has access to the target oracle TG1
that returns a ran-

dom point Ui in G1 and the helper oracle cdh-s(·). Let qT and qH be the

number of queries B made to the target oracle and the helper oracle, re-

spectively. The advantage of the adversary attacking the chosen-target CDH

problem Advct−cdh
G1

(B) is defined as the probability of B to output a set of l

pairs ((V1, j1), (V2, j2), . . . , (Vl, jl)), for all i = 1, 2, . . . , l ∃ ji = 1, 2, . . . , qT

such that Vi = sUji where all Vi are distinct and qH < qT .

The chosen-target CDH assumption states that there is no polynomial-time

adversary B with non-negligible Advct−cdh
G1

(B).
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3.3 Secure threshold blind signature scheme

In this section, we introduce a communication model as well as the detail

security definitions of the secure threshold blind signature scheme.

3.3.1 Communication Model

We assume that there are n players {L1, L2, . . . Ln} participating our proto-

col. Each player connects to other by secure point-to-point channels. All

players are connected by a broadcast channel in which when a player sends a

broadcast message, all other players can receive the message and know exactly

from whom the message was sent.

In our communication model, there exists an adversary who can corrupt

up to t− 1 of the n players. An adversary can be static or adaptive. A static

adversary corrupts players at the beginning of the protocol and an adaptive

adversary can choose players to corrupt during protocol execution. We only

consider the static adversary in this thesis.

3.3.2 Definitions

Similar to the constructions of other threshold signature schemes [12], [19],

[20], our proposed threshold blind signature scheme is constructed from an

underlying signature scheme, namely the blind signature scheme BGS =

(BK,BS,BV). Therefore, the security notion of corresponding (t, n)-threshold

blind digital signature scheme is also changed a bit.

Firstly, we consider the blind signature BGS. Unlike the standard dig-

ital signatures, the notion of security of the blind signatures differs in two

properties. The first property of the blind signatures is “blindness”, which

means during the blind signing protocol, the signer learns nothing about the

messages that the user wants to get signature on. The second property is

“against one-more-forgery” [29], [28], meaning that after the user has inter-
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acted with the signer ` times to get the blind signatures, the user should not

obtain more than ` signatures. We can understand this property intuitively

in the electronic cash scenario: a buyer (a user) could not get more money

than the amount that a bank (a signer) gave him.

Definition 3.2 (Secure BGS) Let BGS = (BK,BS,BV) be a blind digital

signature scheme. An adversary A is given the public key pk output from BK

and other public information. A acts as a user to run the blind signing proto-

col. After ` interactions with the signer, A outputs a set of message-signature

pairs. The advantage of A attacking the blind signing protocol Advblind
BGS

(A) is

defined as the probability that A can output a set Σ of valid message-signature

pairs, such that ` < |Σ|.

We say that the blind signature scheme BGS is secure against one-more-

forgery under chosen message attack if there does not exist a polynomial-time

adversary A with non-negligible advantage Advblind
BGS

(A).

A (t, n)-threshold blind signature scheme TBS = (T BK, T BS, T BV) for

BGS consists of three protocols with the set of players {L1, L2, . . . , Ln}, which

are described as follows:

• T BK is a distributed key generation protocol performed by n players

{L1, L2, . . . , Ln}. In this protocol, each player takes the public input I,

returns the public key Q. The private output of each player Li is si,

the implicit secret key corresponding to the public key Q of n players is

s. If (s,Q) has same distribution with the output of BK, T BK is said

to be complete successfully.

• T BS is a distributed signature generation protocol performed by a sub-

set of players, taking input a blind message M ′, a public input I and a

private input si. The output is a message-signature pair (M,σ). T BS

completes successfully if the output (M,σ) is the same as the output of

BS when the same message M is given, for all M ∈ {0, 1}∗
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• T BV is identical to BV since the outputs from T BS and BS are the

same.

Now we come up with the definition of the secure threshold blind digital

signature. The definition includes both unforgeability (against one-more-

forgery attack) and robustness. However, an attacker can corrupt up to t− 1

of players, where 2t− 1 ≤ n.

Definition 3.3 (Secure TBS) Let TBS = (T BK, T BS, T BV) be the (t, n)-

threshold blind digital signature scheme, where 2t− 1 ≤ n. TBS is the robust

secure threshold blind digital signature scheme if:

1. Unforgeability. No polynomial-time adversary who corrupts at most t−1

players, with non-negligible probability, can do one-more forgery under

chosen message attack, that is an adversary cannot produce more than

` signatures after executing T BS protocol ` times with messages of his

choices.

2. Robustness. Even there exists an polynomial-time adversary who can

corrupt up to t − 1 players, both T BK and T BS protocols complete

successfully.

¥ Method of proving security of the threshold digital signature

scheme. Normally, to show the security of the threshold digital signature

scheme, one can show that the underlying signature scheme is secure and the

corresponding threshold digital signature scheme is simulatatble [12]. Even

the proving method originally is used to prove the security of the threshold

signature scheme where the underlying signature scheme is a standard one,

it still can be applied to our proof. We explain how to utilize this method

to prove security of our threshold blind digital signature scheme TBS, where

the blind digital signature scheme BGS presented in Section 2.3 used as the

underlying signature scheme. Intuitively, we can understand this proving
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method as follows. If the TBS scheme is simulatable, then given an adversary

ATBS who makes one-more-forgery attack on TBS successfully, we then are

able to construct an adversary ABGS who can make one-more-forgery attack

on BGS successfully. We can see that when the underlying signature scheme

is changed, the attacking method is also changed. However the basic idea

of the proving method is unchanged: we can construct an adversary attack-

ing the underlying signature scheme given an attacker of the corresponding

threshold signature scheme if the threshold scheme is simulatable. We have

the definition of simulatable condition for the TBS is as follows:

Definition 3.4 (Simulatable) A threshold blind digital signature scheme

TBS = (T BK, T BS, T BV) is simulatable if:

1. The T BK protocol simulatable: there exists a simulator that on the

input the public key Q, the public output from T BK, can simulate the

view of the adversary on execution of T BK protocol.

2. The T BS protocol simulatable: there exists a simulator that on the input

the public key Q, the message M , the information of t − 1 corrupted

players, and the signature on M , can simulate the view of the adversary

on execution of T BS protocol which outputs the signature on M .

20



Chapter 4

The proposed scheme

In this chapter, we present in detail our propose threshold blind signature

scheme TBS = (T BK, T BS, T BV).

4.1 Key Generation Protocol T BK

The Key Generation protocol T BK makes use of DKG proposed in [13], but

we use elliptic curve notions for the discrete logarithm problem, as described

in Section 2.1.

Let G1 be GDH group and P and P ′ be the generators of G1 (i.e., P
′ = αP

for some α ∈ Zq, P and P ′ have same order, and the computing α given P

and P ′ is infeasible). Denote n players involving in the T BK protocol as

{L1, L2, . . . , Ln}. The public key and the secret key of this group of players

are Q and s, respectively. The public share of the player Li is Qi and the

corresponding secret share is si, for i = 1, 2, . . . , n.

Each player Li behaves as follows to generate a shared secret.

G1. At first, Li sends its information.

– Select randomly (uniformly distributed as in [27]) ai0 and bi0 ∈ Z
∗
q,

keep them secret.

– Pick up randomly two polynomials fi(x) and f
′
i(x) over Zq of de-

gree at most t− 1 such that fi(0) = ai0 and f
′
i(0) = bi0. Let

fi(x) = ai0 + ai1x+ · · ·+ ai,t−1x
t−1
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and

f ′
i(x) = bi0 + bi1x+ · · ·+ bi,t−1x

t−1.

The above polynomials are kept secret by each player.

– Compute and broadcast Cik = aikP + bikP
′ for k = 0, 1, . . . , t− 1;

send fi(j) and f
′
i(j) secretly to each player Lj for j = 1, 2, . . . , n; j 6=

i.

G2. Li receives information from other players.

(a) After receiving fj(i) and f ′
j(i) from Lj for j = 1, 2, . . . , n; j 6= i,

the player Li verifies fj(i) and f
′
j(i) by checking

fj(i)P + f ′
j(i)P

′ ?
=

t−1∑

k=0

ik · Cjk (4.1)

If Eq.(4.1) is verified to be false, Li broadcasts a complaint against

Lj.

(b) Each player Lj, who received a complaint from player Li, broad-

casts the values fj(i) and f
′
j(i) satisfying Eq.(4.1).

(c) Each player marks as disqualified any player that either:

– received more than t− 1 complaints at (a), or,

– answered to a complaint in (b) with values that make invalid

Eq.(4.1).

G3. Build the set of non-disqualified players by denoting this by HP which

means a set of honest players.

G4. Computes the secret share si =
∑

k∈HP
fk(i).

G5. Each player Li ∈ HP broadcasts aikP for k = 0, 1, . . . t− 1.
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– Player Li verifies the value broadcasted by other players in HP,

for each j ∈ HP , verify:

fj(i)P
?
=

t−1∑

k=0

ik · ajkP (4.2)

If the check fails for an index j, player Li sends a complaint against

Lj by broadcasting values fj(i) and f ′
j(i) which satisfies Eq.(4.1)

but does not satisfy Eq.(4.2).

– For player Lj, who receives at least one valid complaint as above,

the other players will use Pedersen’s VSS to reconstruct the values

of aj0, fj(x) and ajkP for k = 0, 1, . . . , t − 1. Each player in HP

sets the public key of group as Q =
∑

i∈HP
ai0P .

After execution of the Key Generation protocol, the public key of group of

players is Q = sP . The corresponding secret key s =
∑n

i=1 ai0 is distributed

to n players but does not appear explicitly in the protocol. Each player has

the secret share si with the corresponding public share Qi = siP . For the

sake of convenience, we assume that there are n players in the set HP of the

honest players.

4.2 Signature Generation Protocol T BS

Let M be a message to be signed, and H : {0, 1}∗ → G1 be an one-way

hash function. The public key from the T BK protocol is Q = sP , where s

is the implicit secret key constructed by n signers via the threshold scheme.

Suppose that a user A wants to get a signature on the message M blindly

from t signers. Denote t signers as S.

S1. User A chooses randomly (uniformly distributed) r ∈ Z
∗
q and blinds

the message M by computing M ′ = rH(M). A broadcasts M ′ to all

players.
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S2. Signer Li, after receivingM
′, computes a partial signature σi and broad-

casts it, where σi = siωiM
′ and ωi =

∏
j∈S
j 6=i

j

j−i
.

Any subset of players or a combiner can verify σi by computing

ê(σi, P )
?
= ê(ωiM

′, Qi) (4.3)

If Eq.(4.3) does not hold for the player Li, Li is requested to send the

correct σi. Otherwise, the combiner computes σ
′ =

∑
i∈S σi and sends

back σ′ to the user A.

S3. User A unblinds σ′ to get the signature on M .

σ = r−1σ′ (4.4)

Figure 4.1 depicts the signature generation protocol.

User Signeri

-

¾

r ∈R Z∗
q

M ′ = rH(M) M ′

σ′

ωi =
∏

j∈S
j 6=i

j

j−i

σi = siωiM
′

ê(σi, P )
?
= ê(ωiM

′, Qi)

σ′ =
∑

i∈S σi

σ = r−1 · σ′

σ is the signature on M

Figure 4.1: Threshold blind signature scheme - T BS protocol
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4.3 Signature Verification Protocol T BV

The signature σ on a message M is accepted if and only if:

ê(σ, P ) = ê(H(M), Q) (4.5)

4.4 Correctness

We now present the correctness of our signature scheme. Firstly, the correct-

ness of the signature scheme must involve the correctness of the verification

of Eq.(4.3) in the T BS protocol. That means the partial signature σi is valid

if the i-th signer is honest. We have:

ê(σi, P ) = ê(ωiM
′, Qi)

= ê(ωiM
′, siP )

= ê(ωisiM
′, P )

Secondly, we verify the correctness of the threshold blind signature scheme.

The scheme signature σ has a form:

σ = r−1
∑

i∈S

σi

= r−1
∑

i∈S

si
∏

j∈S
j 6=i

j

j − i
·M ′ (4.6)

= r−1rsH(M) (4.7)

= sH(M)

We can derive Eq.(4.7) from Eq.(4.6) by Lagrange interpolation.

The verification using Eq.(4.5) gives us:

ê(σ, P ) = ê(H(M), Q)

= ê(H(M), sP )

= ê(sH(M), P )
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Hence, if σ is the valid signature on M , the verification always holds.
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Chapter 5

Security analysis

In this chapter, we discuss about the security aspects of our proposed scheme

by describing the blindness, the robustness and the unforgeability of the sig-

nature scheme. We give complete security proof of our proposed threshold

blind signature scheme using the definitions introduced in the previous chap-

ter.

5.1 Blindness

The blindness of the proposed threshold blind signature scheme is shown by

the following theorem:

Theorem 5.1 (Blindness) The threshold blind digital signature scheme TBS

exhibits the blind property.

Proof: By the similar method in [7], we can show that the proposed signature

scheme is blind. Since r is chosen randomly from Z
∗
q, therefore M

′ = rH(M)

is also a random element in the group G1. Thus signers only receive the

random information from the user and there is no way to know the original

message. The signers also cannot link between the information they received

and the message-signature pair which is output by the user. ¥
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5.2 Robustness

The robustness of the proposed signature scheme is shown by the following

theorem:

Theorem 5.2 The threshold blind signature scheme TBS is robust for an

adversary who can corrupt t−1 signers among n signers such that n ≥ 2t−1

signers.

Proof: As in [27], every signer chooses randomly a secret ai0 uniformly

distributed in Z
∗
q during T BK protocol. Therefore, even there exists an ad-

versary who can corrupt up to t − 1 signers among n ≥ 2t − 1 signers, any

subset of t signers constructs the unique secret key s uniformly distributed

in Z
∗
q, thus the public key Q is uniformly distributed in G1 too. That means

T BK completes successfully in case at most t− 1 signers are corrupted.

In the T BS protocol, every partial signature σi is verified by the corre-

sponding public key Qi = siP . Even at most t− 1 signers can be corrupted,

the adversary still needs partial signatures from other signers to form t valid

signature shares. With t valid signature shares, the signature σ = sH(M) can

be produced by Eq.(4.4) at step S3 of T BS, and its correctness was shown in

Section 4.4. Therefore, the T BS protocol completes successfully too. Thus

we prove TBS to be robust. ¥

5.3 Unforgeability

To show the unforgeability of the threshold digital signature, one can show

that the underlying signature scheme is unforgeable and the corresponding

threshold digital signature scheme is simulatatble [12]. We utilize this method

to prove the unforgeability of our threshold blind digital signature scheme

TBS as mentioned in Section 3.3.2. The proving process consists two steps:
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showing the simulatable condition of TBS as given in Definition 3.4 and show-

ing that BGS signature scheme is unforgeable.

First, we consider the simulatable condition. The similatable condition

means that there exists a probabilistic polynomial-time simulator which can

simulate the view for every probabilistic polynomial-time adversary A. In

other word, it is polynomially indistinguishable the view of A in running of

T BK and T BS protocols from the output produced by the simulator. Since

T BK protocol has utilized DKG [13] which is simulatable and proved secure

in presence of an adversary who can corrupt up to t − 1 players, we only

consider the simulator for T BS protocol. Denote the view of the adversary

A during T BS as VIEWA(T BS(s1, s2, . . . , sn, (M,Q)), σ). We construct a

simulator SIM which interacts with A to generate the signature shares of

the honest players. Without loss of generality [12], we can assume that A

corrupts the first t− 1 players, and SIM knows all the secret shares but the

last one (i.e., SIM knows st, st+1, . . . , sn−1 and does not know sn). The input

to SIM is a public key Q, a messageM , a signature σ onM and secret shares

s1, s2, . . . , st−1 of the corrupted signers. The SIM works as follows:

1. SIM chooses r′ ∈ Z
∗
q randomly (uniformly distributed).

2. SIM interacts with A and computes the partial signature on behalf of

the honest players σ′
i = r′siωiH(M) for t ≤ i ≤ n− 1.

3. For the player Ln, whose share SIM does not know, SIM computes the

partial signature as σ′
n = r′σ−

∑
i∈H1

σ′
i where H1 is any subset of t− 1

players.

Let SIM(M,Q, s1, s2 . . . , st−1, σ) be the information produced by the

above simulator SIM. The following theorem shows the simulatable condi-

tion of the T BS protocol:

Theorem 5.3 VIEWA(T BS(s1, s2 . . . , sn, (M,Q), σ)) and

SIM(M,Q, s1, s2, . . . , st−1, σ) have the same probability distribution.
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Proof: By comparing the information produced by SIM and T BS protocol

we have:

1. Both the protocol and the simulator choose a blind factor randomly

from Z
∗
q, r in T BS and r

′ in SIM. The probability distribution of r and

r′ are the same.

2. All partial signatures produced by T BS contain the blind factor r and

the shared secret si, 1 ≤ i ≤ n. The simulator SIM also produces the

partial signatures σ′
i for t ≤ i ≤ n and can verified t − 1 partial sig-

natures of the corrupted signers (controlled by A). The correctness of

the partial signatures produced by the corrupted signers can be verified

using their public information output from T BK protocol. All partial

signatures produced by SIM except σ′
n contain the blind factor r

′ and

the shared secrets which are uniformly distributed. The partial signa-

ture σ′
n is computed from any set of the t− 1 partial signatures which

are embedded the blind factor and the shared secrets. Hence, σn also

has the right distribution. Therefore, the view of A in the running of

T BS and the one in the interaction with SIM are polynomially indis-

tinguishable.

This completes the proof. ¥

Now, we consider the blind signature presented in Section 2.3.

Under the assumption that the CT-CDH problem is hard for all groups

where the CDH problem is hard, including the GDH groups, we will show in

the random oracle model the blind signature proposed in Section 2.3 is secure

by the following theorem:

Theorem 5.4 If the chosen-target CDH assumption is true in the group G1

then the blind signature scheme BGS is secure against one-more forgery under

chosen message attack in the random oracle model.
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Proof: Let A be a polynomial time adversary attacking BGS against one-

more-forgery under chosen message attack. We will construct a polynomial

time adversary B solving the CT-CDH problem such that Advblind
BGS,I(A) =

Advct−cdh
G1

(B).

The adversaryA has access to a blind signing oracle cdh-s(·) and a random

hash oracle H(·). Then the adversary B can solve the chosen-target CDH

problem by simulating A. Firstly, B provides pk = (q, P,H,Q) to A and B

has to simulate the random hash oracle and the blind signing oracle for A.

Each time A makes a new hash oracle query which differs from the pre-

vious ones, B will forward to its target oracle and return the reply to A. B

stores the pair query-reply in the list of those pairs. If A’s query is the same

as the previous ones, B will take and send the corresponding reply which B

has stored before.

If A makes a query to the blind signing oracle, B will forward to its helper

oracle cdh-s(·) and returns the answer to A.

At some point, the adversary A produces a list of message-signature pairs

((M1, σ1), (M2, σ2), . . . , (Ml, σl)). B can find Mi in the list stored hash oracle

query-reply for i = 1, 2, . . . , l. Let ji be the index of the found pair, then B

can output its list as ((σ1, j1), (σ2, j2), . . . , (σl, jl)).

In the view of A, the above simulation and the real protocol are indistin-

guishable and easily we can see that B is successful only if A is successful.

Therefore, we have Advblind
BGS,I(A) = Advct−cdh

G1
(B). ¥

Theorem 5.5 The threshold blind signature scheme TBS is secure against

one-more forgery under chosen message attack in the random oracle model if

the chosen-target CDH assumption is true in the group G1.

Proof: The proof can be easily derived from Theorems 5.3 and 5.4. ¥

Theorem 5.6 The threshold blind digital signature scheme TBS is a robust

secure (t, n)-threshold blind digital signature scheme.
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Proof: The proof of the theorem comes immediately from Theorems 5.2 and

5.5. ¥

32



Chapter 6

Comparison with other schemes

This chapter evaluates performance of the proposed scheme. The following

tables show the comparison of computation in the Signature Generation pro-

tocol with that of other schemes.

Operation KKL01 scheme LJY99 scheme Our scheme

Am 2t+ 1 2t+ 1 0

M t+ 5 2n− t+ 6 0

E 6 8 0

I 0 0 1

A N/A N/A 0

S N/A N/A 2

Table 6.1: Computation in the user side

In Tables 6.1 and 6.2, Am, M, E and I mean modular addition, multiplica-

tion, exponentiation and inversion, respectively. A and S denote point addi-

tion and scalar multiplication on an elliptic curve over a finite field. KKL01

and LJY99 schemes are the threshold blind signature schemes in [19] and [20]

based on discrete logarithm problems. N/A means Not Applicable.

For the comparison, we assume that the standard binary method is used

for the computing of the modular exponentiation and the scalar point mul-

tiplication in polynomial basis form. With q is a 140-bit prime and using
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Operation KKL01 scheme LJY99 scheme Our scheme

Am 2 2(n− t+ 1) 0

M 5 2n− 1 1

E 8 6 0

I 0 0 0

A N/A N/A t− 1

S N/A N/A 1

Table 6.2: Computation in the signer side

the well-known facts in [4], [23], we can roughly estimate the computation

cost of the proposed scheme compared to those of the previous ones, where

1S ≈ 1028M, 1A ≈ 14M, 1E ≈ 210M. And we also assume that the computa-

tion of modular additions is negligible.

In our proposed scheme, to produce a signature, a user needs to perform 1

modular inversion and 2 point multiplications. The computational overhead

is less efficient than those of KKL01 and LJY99 due to the heavy scalar

multiplications.

However, as being shown in Table 6.2, the computation cost in the signer

side of our scheme including the signature combination is more efficient com-

pared to those of KKL01 and LJ99. A signer has to compute 1 modular

multiplication, t − 1 point additions, and 1 scalar multiplication. The com-

putation cost in the signer side is lessened because there is only one scalar

multiplication performed. The verification of the partial signatures is done

in the signer side too.

Any verifier only needs to perform 2 pairing computations to verify the

signature σ.

Since our threshold blind signature scheme works on an elliptic curve,

the advantage of the scheme Compared to the previous schemes [19] and

[20] is the efficiency in the signature size as well as the signature shares.
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In fact, this size can be reduced into half if we use the point compression

techniques [16]. Moreover, since the underlying signature scheme is different,

the communication overhead in our scheme is reduced as well.
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Chapter 7

Conclusions and further work

In this thesis, we have studied the design and the analysis of secure digi-

tal signatures schemes, in particular, a blind digital signature scheme and

a corresponding (t, n)-threshold digital signature scheme. We have reviewed

previous works and then presented a new construction.

We have proposed a new robust secure threshold blind digital signature

scheme based on bilinear pairings. A threshold blind digital signature scheme

combines a threshold digital signature scheme and a blind one to get both

signature schemes’ properties. That is, a threshold blind digital signature

scheme distributes possessions of the secret key in a group of signers while

lets a user get signatures on messages without revealing messages’ content to

signers. Our construction is working on an elliptic curve over a finite field

and as far as we know, this is the first construction of a threshold blind digital

signature based on bilinear pairings in the literature.

To guarantee sound security of the construction, first we have identified

possible attacks and then established appropriated security model to prove

security of the construction. We have used the random oracle model as a

tool to show that any attacker, who corrupts up to t − 1 players and can

breaks the threshold blind digital signature scheme, can be transformed into

an efficient algorithm to solve the underlying problem, namely “chosen-target

CDH problem”. Finally, we have presented the security proof for all well-

defined security requirements.
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Our construction has also achieved an efficiency in signature size compared

to those of the previous schemes.

The proposed threshold blind signature scheme can be applied in any

application utilizing blind signatures and the secret key should be distributed

to enhance security. The typical example is an Internet voting system with

multiple administrators where votes are blind signed by several administrators

for validation purpose.

In future work, we can add proactive property to our signature scheme

using techniques [15], [14]. This property makes the signature scheme more

secure by coping with mobile adversary. Using DKG, we can achieve proactive

property more secure, since original techniques used insecure distribution

method as pointed out in [13].
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