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ABSTRACT Group Key Exchange (GKE) is required for secure group communication with high confi-
dentiality. In particular, a trusted authority can handle issues that happen by the malicious actions of group
members, but it is expensive to deploy and not suitable in a dynamic setting where the network requires
frequent membership status changes. To overcome these issues, we designed yet another quantum-resistant
constant-round GKE based on lattice without a trusted authority based on Apon et al.’s protocol
(PQCrypto 2019) by modifying their key computation phase. Then, we describe the novel dynamic
authenticated GKE (called DRAG) with membership addition/deletion procedures in Ring Learning with
Errors (RLWE) setting, while the former ones are built from Diffie-Hellman problem. Under the specific
adversary who can leak the long-term secret key from the party, we suggest a rigorous proof of DRAG in
the random oracle model based on the hardness assumption of RLWE problem and the property of Rényi
divergence. As a proof of concept, implementation details are described to meet level 1 NIST security. Our
implementation is reasonable for practical use since the total runtime to get a group secret key takes about
3 msec and it can be considered as a reference implementation of other quantum-resistant GKEs.

INDEX TERMS Authenticated group key exchange, key establishment, lattice-based cryptography, post
quantum cryptography, ring learning with errors (RLWE).

I. INTRODUCTION
These days, network topology is becoming more and more
complicated such as group chatting in instant messag-
ing applications, file sharing between multiple parties, etc.
Hence, secure communication between multiple parties is
required to keep the confidentiality of their messages.

Key establishment is a pre-determined protocol where two
or more parties make a shared secret for subsequent crypto-
graphic use [1]. This can be subdivided into key transport and
key agreement protocols. Key transport protocol enables one
party to create a secret value and securely transfer it to other
parties but key agreement protocol derives the shared secret of
two or more parties as a function of information contributed
by each party, so that no party can estimate the result.
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A group key exchange (GKE) protocol provides a set of
specific cryptographic procedures that establishes a group
secret key that is derived from group members. Compared
to secret sharing scheme, GKE protocol allows distinct keys
for distinct groups while secret sharing scheme starts with
a secret and divides it into pieces called shares. Information
exchanged between parties in GKE protocol is non-secret and
transferred over open channels, while shares are distributed
secretly. Each party individually computes the session key
in GKE protocol but pooling shares can be reconstructed
among K participants of all N parties where K ≤ N for
secret sharing scheme [1]. In general, GKE protocol consists
of three phases: key generation phase, intermediate value
broadcasting phase, and key computation phase.

Authenticated key exchange protocol authenticates the
identity of parties in the protocol to prevent any attacks like
the man-in-the-middle attack even in the presence of active
adversaries who controls the underlying communication by
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eavesdropping and modifying transmitted messages during
communication over a network.

To construct (authenticated) GKE protocol, we need to
define the computational power of a group member. If all
group members are assumed to have equal power, we need
to handle some disputes that happen by the malicious actions
of group members. To overcome this issue, a trusted author-
ity (TA) must be provided as a communication infrastructure,
but it is quite costly.

As the membership status of a party changes or remains
the same, we say GKE protocol is in either a static or a
dynamic setting. The static setting keeps membership status
for a long time while the dynamic setting provides frequent
membership status changes in a short time, i.e., any member
can join or leave the protocol at any time in a dynamic
setting. It is suitable to deploy a TA in a protocol in a static
setting, but hard to deploy a TA in a dynamic setting such as
resource-constrained environments like IoT. There have been
numerous publications on GKE protocols [2]–[20].

It is well-known that quantum algorithms like Shor’s algo-
rithm [21] can solve number-theoretic problems like integer
factorization and discrete logarithm problems including their
elliptic curve versions in polynomial time so that quantum
adversaries can break the cryptographic protocol like RSA,
Diffie-Hellman key exchange, or ECDSA. Since quantum
computers may be realized in a decade or so in a best-case
scenario, the National Institute of Standards and Technol-
ogy (NIST) has been soliciting standard post-quantum cryp-
tographic algorithms such as key exchange, encryption, and
signature schemes. (Authenticated) GKE protocol is out of
the scope of this competition. Beyond NIST post-quantum
algorithm standardization, there are a few publications on
post-quantum GKE protocols. Ding et al. [22] constructed
the first lattice-based GKE protocol and Yang et al. [15]
and Apon et al. [16] independently suggested constant-round
lattice-based GKE protocols, where constant-round means
that the number of phases for each party does not change
regardless of the number of group members.

While Ding et al. and Apon et al.’s protocols do not rely
on a TA to agree on a group secret key among the group
members, Yang et al.’s protocol requires the role of a TA that
calculates the group secret key by getting the ephemeral key
of each party and sends it to each party.

However, to the best of our knowledge, there exists no
post-quantum dynamic GKE in the open literature regard-
less of the existence of TA. Our goal is to design a
novel post-quantum constant-round dynamic GKE protocol
from Ring Learning with Errors (RLWE) without a TA
and provide implementation details with pseudocode as a
proof of concept that can be a reference implementation of
other quantum-resistant group key exchange protocols since
there are no public-domain implementation result to our
understanding.

The organization of this paper is as follows: We introduce
the basic terminologies including notations and definitions
used to design our protocol in Chapter II. Previous works and

a security model of GKE are given in Chapter III and IV,
respectively. Our key idea to design a novel dynamic GKE
protocol is discussed in Chapter V and a full description
with a detailed procedure is given in Chapter VI. Then, we
give a rigorous security proof of our dynamic (authenticated)
GKE protocol in Chapter VII. We compare our dynamic
authenticated GKE protocol with the previously known
lattice-based GKE protocols and give implementation details
in Chapters VIII and IX, respectively. Finally, the conclusion
is summarized in Chapter X with future work.

II. PRELIMINARIES
A. NOTATIONS AND DEFINITIONS
Let Z be the set of integers and [N ] = {0, 1, 2, · · ·N − 1}.
For a set A, xi← A denotes a uniformly random sampling of
xi ∈ A. Let χ (E) stand for the probability of a set E of events
to occur under distribution χ . We set Supp(χ ) = {ε : χ (ε) 6=
0} and let Ē be the complement of an event set E . Let f (a, b)
be a function f on a and b. A function g(x) is negligible when
g(x) ≤ x−c for all c > c0 when c0 is large enough.
Given a polynomial p, (p)j denotes the j-th coefficient

of p. log(x) and exp(x) are notations for log2(x) and ex ,
respectively. P[0, 1, · · · , k] = {P0,P1, · · · ,Pk} means an
array of parties where Pi denotes the i-th party of a group. λ is
a computational security parameter used as a security level of
a cryptographic primitive and ρ denotes a statistical security
parameter used in Gaussian distributions.

B. RING LEARNING WITH ERRORS
We set public parameters R, q, χ, l for RLWE problem as
below:

1) R = Z[x]/(f (x)) is a polynomial ring where f (x) is an
irreducible polynomial,

2) q is a positive integer modulus defining a quotient ring
Rq = R/qR = Zq[x]/(f (x)),

3) χ = (χs;χe) is a pair of noise distributions over Rq
where χs is a secret-key distribution and χe is an error
distribution concentrated on small elements,

4) and u is the number of samples that are given to the
adversary.

Decisional RLWE problem [23] is defined as to distinguish
whether samples {ai, bi} are either (1) RLWE instances, i.e.,
bi = ais + ei ∈ Rq with uniform ai ∈ Rq, secret key s← χs
and error e← χe or (2) uniformly sampled from Rq × Rq.

AdvRLWEn,q,χs,χe,u(B) denotes the advantage of adversary B for
decisional RLWE and AdvRLWEn,q,χs,χe,u(t) denotes the maximum
advantage of any adversary B in time t . If χ = χs = χe,
we write AdvRLWEn,q,χ,u for simplicity.

C. RÉNYI DIVERGENCE
For two discrete probability distributions P and Q with
Supp(P) ⊆ Supp(Q), their Rényi divergence is defined as

RD2(P||Q) =
∑

x∈Supp(P)

P(x)2

Q(x)
.
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Rényi divergence measures the closeness of two prob-
ability distributions and widely used in cryptographic
research [23]–[26]. We introduce some important results
related to Rényi divergence.
Proposition 1 [26]: For discrete distributions P and Q

with Supp(P) ⊆ Supp(Q), let E ⊆ Supp(Q) be an arbitrary
event. We have

Q(E) ≥ P(E)2/RD2(P‖Q).

Intuitively, the proposition says that if RD2(P‖Q) is
bounded by some polynomial, then any event set E that
occurs with negligible probability Q(E) under Q also occurs
with negligible probability P(E) under P.
Lemma 1 [26]: Let ν, q, λ ∈ Z and fix a bound βRényi and

σ with βRényi < σ < q. Let e ∈ Z satisfying |e| ≤ βRényi.
Then,

RD2((e+ DZ,σ )ν ||DνZ,σ ) ≤ exp(2πν(βRényi/σ )
2)

where χ t means that we sample ν times independently from
distribution χ . Moreover, if we take σ = �(βRényi

√
ν/ log λ)

with security parameter λ, we can deduce RD2((e +
DZ,σ )ν ||DνZ,σ ) ≤ poly(λ).

D. GENERIC KEY RECONCILIATION MECHANISM
The concept of a key reconciliation mechanism was first
introduced by Ding et al. [22] to handle error between two
approximately agreed ring elements in their lattice-based
key exchange protocol. Since then, this mechanism has been
widely used in several publications on lattice-based two-party
key exchange protocol [27]–[31].

Based on Apon et al.’s paper [16], we describe a generic
key reconciliation mechanism that is performed between two
parties in the key computation phase.

A key reconciliation mechanism KeyRec = (recMsg,
recKey) allows two parties to derive the same shared secret
key from approximately agreed ring elements. One of two
participants runs recMsg taking the security parameter λ and
a ring element b ∈ Rq and outputs rec and a key k ∈ {0, 1}λ.
The other participant runs recKey taking rec and a ring
element b′ ∈ Rq and outputs a key value k ′ ∈ {0, 1}λ such
that k = k ′ if b′ is close to b.
A key exchange protocol works correctly when two par-

ticipants have the same shared secret key (i.e. k = k ′).
To hold this equality, b and b′ have to be sufficiently close.
In particular, if b − b′ is bound by some value βRec, two
participants share the same shared secret key from the output
of KeyRec except with negligible probability.

Security is defined by the indistinguishability between
shared secret key k , the result of key exchange, and a uni-
formly random value. Formally, an attacker A is computa-
tionally infeasible to distinguish two distributions,

{(rec, k) : b← Rq; (rec, k)← recMsg(1λ, b)}
λ∈N,

{(rec, k ′) : b← Rq; (rec, k)← recMsg(1λ, b);
k ′← {0, 1}λ}λ∈N

For a fixed value of λ, we denote the advantage of
adversary A in distinguishing these two distributions by
AdvKeyRec(A), and the maximum advantage of any such
adversary running in time t by AdvKeyRec(t).

III. PREVIOUS WORKS
A. CONSTANT-ROUND GROUP KEY EXCHANGE
Burmester and Desmedt [7] proposed the first constant-round
GKE protocol (hereinafter, BD94). In BD94, all participants
in a protocol are assumed to form a ring topology to generate a
group secret key and every group member participates in key
generation with equal privilege during the protocol execution.
This property is called contributory. Just and Vaudenay [32]
proposed an authenticated GKE protocol by combining the
idea from BD94 and a public key signature scheme. This
protocol is more efficient than BD94 from the view of com-
munication bandwidth but requires four-round to generate the
group secret key.

A compiler proposed by Katz and Yung (hereinafter,
Katz-Yung compiler) [5] can convert any unauthenticated
GKE protocol into an authenticated one. They also suggested
an authenticated GKE protocol by applying Katz-Yung com-
piler to BD94.

For dynamic GKE, Kim et al. [33] suggested a two-round
authenticated GKE protocol for an ad-hoc network, in which
no TA is involved. In their protocol, XOR operation is intro-
duced into the generation of the group secret key to reduce
the computational cost of each group member. For a dynamic
setting, the computation and communication overheads of
each group member rely on the number of joining/leaving
members rather than relying on the number of previous group
members.

Dutta and Barua [6], [34] proposed a two-round authen-
ticated GKE protocol (hereinafter, DB05), which is con-
structed by combining a variant of BD94 and a signature
scheme modified from [5]. For a dynamic setting, the mem-
bership addition procedure generates a new group secret key
bymaking a new ring topologywith the joiningmemberswith
the support of the previously agreed group members. For the
membership deletion procedure, a new ring topology with the
remaining members is formed to run the protocol.

B. SECURITY MODEL OF GROUP KEY EXCHANGE
Bresson et al. [2] suggested the first formal security model
called BCPQ model for authenticated GKE protocols in a
static setting. In their paper, they defined AKE security and
mutual authentication (MA) security. AKE security guaran-
tees that an active adversary who does not participate in the
session cannot distinguish a group secret key from a random
number.MA security ensures that only legitimate participants
can compute an identical session group secret key.

After that, Katz and Yung [5] revised this model to compile
unauthenticated GKE protocol into authenticated GKE proto-
col. They proved the security of BD94 [7] in the presence of
a passive adversary who can only eavesdrop on messages and
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make a compiler from unauthenticated GKE to authenticated
GKE with an active adversary. After that, Katz and Shin [35]
proposed another compiler that can transform an implicitly
secure authenticated GKE into a secure authenticated GKE
resistant to insider attacks, with the universally-composable
(UC) model.

For a dynamic setting, Bresson et al. [3], [4] suggested
two formal security models for authenticated GKE protocols
depending on the power of corruption and the presence of
MA security.

A strong corruptionmodel enables an adversaryA to reveal
the long-term secret key as well as the ephemeral keys or
internal states of the protocol but a weak corruption model
only leaks the long-term secret key of the party while the
ephemeral keys or internal states of protocol participants are
not corrupted.

C. LATTICE-BASED KEY EXCHANGE
Ding et al. [22] suggested the first lattice-based key exchange
protocol in 2012 by modifying Diffie-Hellman key exchange
protocol [36] into RLWE setting. Following this research,
numerous publications [15], [16], [27]–[31], [37]–[48] have
looked at the construction and implementation of key
exchange protocols based on lattices, but most of them are
only designed for two-party key exchange.

For lattice-based GKE protocol, Diffie et al. [36]
suggested the natural extension to GKE protocol (here-
inafter, DXL12.G) based on their key exchange protocol
using the GKE compiler by Bresson et al. [3]. After that,
Yang et al. [15] proposed the first provably-secure (authen-
ticated) GKE protocol (hereinafter, YMZ15) based on the
hardness of LWE/RLWE assumption and security property
of secure sketch in the random oracle model. For the secure
sketch, TA is necessary and YMZ15 is said to be not
contributory.

Recently, Apon et al. [16] proposed the first constant-round
authenticated GKE protocol (hereinafter, ADGK19) based
on the hardness of RLWE assumption, without TA.
ADGK19 uses Katz-Yung compiler for authentication and is
contributory since they adopt the protocol in [7].

IV. SECURITY MODEL
We describe the adversary model by Bresson et al. [3], which
is suitable for our dynamic authenticated GKE protocol since
their model covers authenticated GKEwith a dynamic setting
with a weak corruption model.

Let P = P [0, 1, · · · ,N − 1] be a set of N parties. Any
subset ofP wishes to establish a group secret key.We identify
the execution of protocols for (authenticated) GKE or addi-
tion/deletion of a party or a set of parties as different sessions.
We assume that the adversary never participates as a party in
the protocol.

This adversary model allows concurrent execution of the
protocol. The interaction between adversaryA and the proto-
col participants only happens via oracle queries.

We denote a set of session identity and partner identity of
the party P as sidiP and pidiP, respectively. For an instance
(Uj, ij) ∈ S where Uj is the j-th party and ij is the counter
value that counts the number of queries that Uj is requested
by the given protocol or the adversary, we define sidijUj = S =

{(U0, i0), · · · , (Ul−1, il−1)} and pidijUj = U [0, 1, · · · , l − 1]
whenU [0, 1, · · · , l − 1] wish to agree on a group secret key.
Let S, S1, and S2 be three sets of instances defined as:

S = {(U0, i0), · · · , (Ul−1, il−1)},
S1 = {(Ul, il), · · · , (Ul+k−1, il+k−1)}, and
S2 = {(Ul0 , il0 ), · · · , (Ulj−1 , ilj−1 )}

whereU [0, 1, · · · , l + k − 1] is any non-empty subset of P .
We assume that the adversary has full control over all

communications in the network. All information that the
adversary can get is written in a transcript since a transcript
consists of all public information flowing across the network.
The following oracles describe adversary’s interaction with
the protocol participants:
• Send(U , i,m): This oracle models an active attack
where the adversary has full control of communication.
The output is the reply by (U , i) upon the receipt of
message m. The adversary can initiate the protocol with
partners U [0, 1, · · · , l − 1] where l ≤ N , by invoking
Send(U , i,U [0, 1, · · · , l − 1]).

• Execute(S): This oracle models passive attacks where
the attacker eavesdrops on an honest execution of the
protocol and outputs the transcript of the execution.
A transcript consists of all messages exchanged.

• Join(S, S1): This oracle models the addition of S1 to S,
where all parties in S and S1 are in P . For S,
Execute oracle has already been queried. The output
is a transcript generated by the honest execution of the
membership addition procedure. If Execute(S) is not
preprocessed, the adversary gets no output.

• Leave(S, S2): This oracle models the removal of S2 ⊆ S
from S where all parties are in P . Similar to Join(S, S1),
if Execute(S) is not preprocessed, the adversary gets no
output. Otherwise, the membership deletion procedure
is invoked. The adversary obtains the transcript from the
honest execution of the membership deletion procedure.

• Reveal(U , i): This oracle models the misuse of the
group secret key. This query outputs the group secret key
skiU for a session with an instance (U , i).

• Corrupt(U ): This oracle models (perfect) forward
secrecy. This query outputs the long-term secret key of
party U .

• Test(U , i): We can query this oracle only once during
the adversary’s execution. A bit b ∈ {0, 1} is chosen
uniformly at random. The adversary gets sk if b = 1
and a random group secret key sk′ if b = 0. This oracle
checks the adversary’s ability to distinguish a real group
secret key from random.

An adversary who can access for Execute, Join,
Leave, Reveal, Corrupt and Test oracles is considered
‘‘passive’’ while an ‘‘active’’ adversary has full access to the
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above-mentioned oracles including Send oracle. (For a static
case, Join or Leave queries do not need to be considered.)

The adversary can ask Send, Execute, Join, Leave,
Reveal and Corrupt queries several times, but Test query is
asked for only once for a fresh instance. An instance (U , i) is
fresh if none of the following occurs:
(1) the adversary queried Reveal(U , i) or Reveal(U ′, j)

with U ′ ∈ pidiU ,
(2) the adversary queried Corrupt(U ′) (with U ′ ∈

pidiU ) before a query of the form Send(U , i, ?) or
Send(U ′, j, ?) where U ′ ∈ pidiU .

The adversary outputs a guess b′. Then, the adversary wins
the game if b = b′ where b is the bit chosen from Test oracle.
Let Succ denote the event that the adversary A wins the

game for a protocol XP. We define AdvA,XP := |2·Pr[Succ]−
1| to be the advantage that adversary A has in attacking the
protocol XP.
The protocol XP provides secure unauthenticated/

authenticated GKE (KE/AKE) security if there is no polyno-
mial time passive adversaryAp and active adversaryAa with
a non-negligible advantage, respectively.

Let t be the running time for A and qE , qJ , qL , qS be
the number of queries to Execute, Join, Leave, Send
oracles respectively. AdvKE

XP(t, qE ) is the maximum advan-
tage of any passive adversary Ap attacking protocol XP
and AdvAKE

XP (t, qE , qS ) and AdvAKE
XP (t, qE , qJ , qL , qS ) are the

maximum advantage of any active adversary Aa attacking
protocol XP.

V. METHODOLOGY
Before giving a detailed description of our dynamic GKE
protocol based on RLWE, we give a key idea to modify
ADGK19 into a dynamic GKE protocol. For that, we check
the relationship between BD94 and DB05. Given two public
parameters, a groupG of prime order q and a generator g ∈ G,
BD94 and DB05 in a static setting are described as below:

- Phase a1[KeyGen]
Each party Pi generates a ‘‘random’’ value ri ∈ Zq
as his/her secret key and broadcasts his/her public key
zi = gri to all other parties.

- Phase a2[BroadIntValue]
Each party Pi calculates an intermediate value Xi =
(zi+1/zi−1)ri and broadcasts Xi to all other parties.

- Phase a3[KeyComp]
• BD94:
Each party Pi outputs bi = zi−1Nri · XiN−1 ·
Xi+1N−2 · · ·Xi+N−2 as a shared key.

• DB05:
Each party Pi calculates Yi,i+1 = Xi+1zi+1ri and
Yi,i+j = Xi+jYi,i+(j−1) for j = 2 to N − 1, then
outputs bi =

∏N−1
j=0 Yi,i+j as a shared key.

All elements after computation are in G since a
group is closed under addition and scalar multiplication.
Phases a1 and a2 can be interpreted as key generation phase
and intermediate value broadcasting phase, respectively.

After computation, each party Pi receives the value zj or Xj
where i 6= j.
For key computation phase in Phase a3, DB05 requires

pre-computation on the value Yi,j for each Pi, which results
in a simpler expression for each bi. The group secret key bi
becomes g

∑N−1
i=0 riri+1 for both BD94 and DB05.

Similarly, by modifying the key computation phase
of ADGK19, we show that yet another unauthenticated
GKE protocol can be designed and also extended to dynamic
GKE protocol. Given two public parameters, a ring Rq and a
ring element a ← Rq, ADGK19 and our basic construction
for static GKE protocol are described as below:

- Phase b1[KeyGen]
Each party Pi generates a ‘‘small’’ secret value si ∈ Rq
as his/her secret key and ‘‘small’’ noise ei ∈ Rq and
broadcasts his/her public key zi = asi + ei to all other
parties.

- Phase b2[BroadIntValue]
Each party Pi calculates an intermediate value Xi =
(zi+1 − zi−1) si + e′i where ‘‘small’’ noise e′i ∈ Rq is a
‘‘small’’ noise and broadcasts Xi to all other parties.

- Phase b3[KeyComp]
• ADGK19:
Each party Pi outputs bi = Nzi−1si + (N − 1)Xi +
(N − 2)Xi+1 + · · · + Xi+N−2.

• Our basic construction:
Each party Pi calculates Yi,i = Xi + zi−1si and
Yi,i+j = Xi+j + Yi,i+(j−1) for j = 1 to N − 1, and
then outputs bi =

∑N−1
j=0 Yi,i+j.

All elements after computation are in Rq since a ring is
closed under addition and ring multiplication. For key com-
putation phase in Phase b3, our basic construction requires
pre-computation on the value Yi,j with a simpler expression
for each bi like DB05.
Like two-party key exchange protocol from lattice, the out-

put bi will be a
∏N−1

i=0 sisi+1 + erri for both ADGK19 and
our basic construction with an error erri. However, sim-
ilar to the two-party case, we can obtain the shared key
by a key reconciliation mechanism when erri is small
enough.

VI. OUR DYNAMIC (AUTHENTICATED) GKE
In this chapter, our (authenticated) GKE protocol with static
and dynamic membership is described by replacing modular
exponentiations and multiplications in DB05 into ring multi-
plication and ring addition in RLWE setting.

For the static setting, we set KeyRec =
(
recMsg, recKey

)
as a subroutine. Note that there are two security parameters
for security analysis, λ and ρ, where λ is used for security
proof and ρ is used for correctness check.

A. UNAUTHENTICATED STATIC GKE
In the static setting, given Rq = Zq [x] /(xn + 1) and a ←
Rq, all parties calculate the intermediate values Xi and Yi,j
and agree on ‘‘close’’ values b0 ≈ b1 ≈ · · · ≈ bN−1 after
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key computation phase (Phase b3). Then, party PN−1 runs
recMsg from KeyRec to allow all parties to get a common
value k = k0 = k1 = · · · = kN−1.
Since we only show that k is difficult to compute for a

passive adversary in the security proof, we need to hash k
using random oracleH to get the group secret key sk, which is
indistinguishable from random. A detailed description of our
unauthenticated GKE, called STUG (STatic constant-round
Unauthenticated GKE), is in Protocol 1.

Protocol 1 STUG(P [0, 1, · · · ,N − 1] , a,H, σ1, σ2)
Phase c1[KeyGen]
For each party Pi for i = 0 to N − 1, do the following in
parallel.

1) Computes zi = asi + ei where si, ei← χσ1
2) Broadcasts zi

Phase c2[BroadIntValue]
For i = 0 to N − 1, do the following in parallel.

1) If i = 0, party P0 samples e′0 ← χσ2 and otherwise,
party Pi samples e′i← χσ1

2) Each party Pi broadcasts Xi = (zi+1 − zi−1) si + e′i
Phase c3.1[KeyComp.PN−1] For party PN−1,

1) Samples e′′N−1 ← χσ1 and computes YN−1,N−1 =
XN−1 + zN−2sN−1 + e′′N−1

2) For j = 1 to N − 1, computes YN−1,(N−1)+j =
X(N−1)+j + YN−1,(N−1)+(j−1)

3) Calculates bN−1 =
∑N−1

j=0 YN−1,(N−1)+j
4) Runs recMsg() to output (rec, kN−1) =

recMsg(bN−1)
5) Broadcasts rec and gets the group secret key as

skN−1 = H(kN−1)
Phase c3.2[KeyComp.Pi] For party Pi (i 6= N − 1),
1) Computes Yi,i = Xi + zi−1si
2) For j = 1 to N −1, computes Yi,i+j = Xi+j+Yi,i+(j−1)
3) bi =

∑N−1
j=0 Yi,i+j

4) Runs recKey() to output ki = recKey (bi, rec) and
gets the group secret key as ski = H(ki)

B. AUTHENTICATED STATIC GKE
To design authenticated GKE called STAG (STatic
constant-roundAuthenticatedGKE), we need to add a digital
signature scheme DSig = (K,S,V) where K is the key
generation with output (ski, pki) for each party Pi, S outputs
a signature δi for a message mi, and V outputs whether the
input signature is valid.

Following DB05 [6], at the start of the session, Pi does
not need to know the entire session identity set siddiPi . As the
protocol proceeds, we build this set from partial session
identity set psiddiPi . Initially, psiddiPi = {(Pi, di)} and after
completing the procedure, psiddiPi becomes equal to the full
session identity set siddiPi . We assume that all parties know
their partner identity piddiPi .

From STUG, we concatenate a broadcasting messagemi =
Pi | 1 | zi and its signature δi = S(mi) in Phase d1 and
m′i = Pi | 2 | Xi | di and δ′i = S(m′i) in Phase d2. Then, each
party checks the validity of the signature before proceeding to
the next phase. This extension can guarantee that a message
is delivered without any modification. A detailed description
of STAG is given in Protocol 2.

Protocol 2 STAG(P [0, 1, · · · ,N − 1] , a,H,S, σ1, σ2)
Phase d1[KeyGen]
For each party Pi for i = 0 to N − 1, do the following in
parallel.

1) Sets partial session-identity psiddiPi = {Pi, di}
2) Computes zi = asi + ei where si, ei← χσ1

3) Sets mi = Pi | 1 | zi and δi = S(mi)
4) Broadcasts mi | δi

Phase d2[BroadIntValue]
For each party Pi for i = 0 to N − 1, do the following in
parallel.

1) Verifies δi−1 of mi−1 and δi+1 of mi+1 and pro-
ceeds only if both signatures are valid (otherwise,
aborts)

2) If i = 0, party P0 samples e′0 ← χσ2 and otherwise,
party Pi samples e′i← χσ1

3) Computes Xi = (zi+1 − zi−1) si + e′i
4) Sets m′i = Pi | 2 | Xi | di and δ′i = S(m′i) and

broadcasts m′i | δ
′
i

Phase d3.1[KeyComp.PN−1] For party PN−1,
1) Verifies all δ′j ofm

′
j where j 6= N −1 and proceeds only

if both signatures are valid (otherwise, aborts)
2) Extracts dj from m′j and sets psiddN−1PN−1

=

psiddN−1PN−1

⋃
{(Pj, dj)}

3) Samples e′′N−1 ← χσ1 and computes YN−1,N−1 =
XN−1 + zN−2sN−1 + e′′N−1

4) For j = 1 to N − 1, computes YN−1,(N−1)+j =
X(N−1)+j + YN−1,(N−1)+(j−1)

5) Calculates bN−1 =
∑N−1

j=0 YN−1,(N−1)+j
6) Runs recMsg(·) to output (rec, kN−1) =

recMsg(bN−1)
7) Broadcasts rec and gets the group secret key as

skN−1 = H(kN−1)
Phase d3.2[KeyComp.Pi] For party Pi (i 6= N − 1),
1) Verifies all δ′j of m

′
j where j 6= i and proceeds only

if both signatures are valid (otherwise, aborts)
2) Extracts dj from m′j and sets psiddiPi =

psiddiPi
⋃
{(Pj, dj)}

3) Computes Yi,i = Xi + zi−1si
4) For j = 1 to N −1, computes Yi,i+j = Xi+j+Yi,i+(j−1)
5) bi =

∑N−1
j=0 Yi,i+j

6) Runs recKey() to output ki = recKey (bi, rec) and
gets the group secret key as ski = H(ki)
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C. DYNAMIC GKE
1) MEMBERSHIP ADDITION PROCEDURE
In DB05, membership addition can be described as a ring
topology that consists of joining members and three previ-
ously agreed group members P0,P1, and PN−1, while a new
secret key of P1 is the group secret key from the previously
agreed group.

We cannot directly adopt this technique in our membership
addition procedure U.Join since the group secret key sk does
not belong to Rq. Instead, we define another function H1,
which outputs a value from the distribution χσ1 , and apply
H1(sk) ∈ Rq as a new secret key of U1 = P1.
If there areM parties in the setP[N ,N+1, · · · ,N+M−1]

who wish to join the group P[0, 1, · · · ,N − 1] who already
shared the group secret key sk, we can make a new ring
that consists of three parties P0,P1,PN−1 from previously
agreed parties P[0, 1, · · · ,N − 1] and all parties from the set
P[N ,N + 1, · · · ,N + M − 1]. P1 chooses the previously
agreed group secret key sk as ephemeral key s1.
After making the new ring topology, we follow the proce-

dure of STUG to make a new shared key. A detailed descrip-
tion of U.Join is given in Procedure 1.

For authenticated membership addition procedure A.Join,
the extended definition for partial session-identity is given as
psiddiPi = psiddiPi

⋃
{{(Pj, dj) | j = 1 to N − 2} if Pi(i =

0, 1, or N ≤ i ≤ N + M − 1) verifies δ
′

1 of m′1. This
extension is clear since the ephemeral keys s1 and z1 are
from the group secret key sk of the previously-agreed group
P [0, 1, · · · ,N − 1]. Then, we achieve a common session
identity siddiPi = {(Pj, dj) | j ∈ [N +M ]} for parties in
P[0, 1, · · · ,N + M − 1] while Dutta-Barua only provides
a common session identity siddiUi = {(Uj, dj) | j ∈

[
N
]
} for

parties in U [0, 1, · · · ,N − 1] where N = M + 3.
Since the signature generation and verification of A.Join

follow the same procedure as STAG, we omit the detailed
description of A.Join.

2) MEMBERSHIP DELETION PROCEDURE
Let the set of parties Pl1 ,Pl2 , · · ·PlD want to leave the
group P [0, 1, · · · ,N − 1]. Then, the new group becomes
U = P [0, · · · , l1 − L] ∪ P [l1 + R, · · · , l2 − L] ∪ · · · ∪
P [lD + R, · · · ,N − 1]. Instead of li − 1 and li + 1, li − L
and li + R is used since there might be consecutive par-
ties who want to leave the group P [0, 1, · · · ,N − 1]. E.g.,
if Pl,Pl−1,Pl−2, · · · ,Pl−(j−1) are consecutive parties who
want to leave, then Pl−L = Pl−j.
After making a new group U , we simply relabel orders

to make a new array U [0, 1, · · · ,N − D− 1] of the
parties in the protocol and run U.Leave procedure for
U [0, 1, · · · ,N − D− 1] based on the remaining parties and
run STUG protocol. For authenticated version A.Leave, STAG
protocol is applied instead of STUG protocol.
Our dynamic GKE protocols DRUG (Dynamic constant-

Round Unauthenticated GKE) and DRAG (Dynamic
constant-Round Authenticated GKE) consist of three

Procedure 1 U.Join(P [0, 1, · · · ,N − 1] ,P[N ,N + 1, · · · ,
N +M − 1])
Phase e1[RingGen]
Rearrange the order with a new array of N = M + 3 parties

1) U0 = P0,U1 = P1,U2 = PN−1, s0 = s0, s1 =
H1(sk), s2 = sN−1 and for 1 ≤ i ≤ N − 3,Ui+3 =
PN−1+i

2) Let U [0, 1, · · · ,N − 1] be a new ring that becomes an
input of STUG protocol in Phase e2

Phase e2[KeyComp.New]
Run STUG protocol for the ring structure with the members
from U [0, 1, · · · ,N − 1]
1) Group U [0, 1, · · · ,N − 1] runs STUG
2) Ui calculates zi during key generation phase (Phase c1)

of STUG and broadcasts zi
3) U0 and U2 sends z1 and z3 to all parties in

P [2, · · · ,N − 2]
4) Ui calculatesX i during intermediate value broadcasting

phase (Phase c2) of STUG and sends X i to all parties
in P [0, · · · ,N +M − 1]

5) After the key computation phase (Phases c3.1 and
c3.2) of STUG, UN−1 sends rec to all parties in
P [0, · · · ,N +M − 1]

Phase e3[KeyComp.Prev]
For party Pi (2 ≤ i ≤ N − 2),
1) Computes Y i,2 = X2 + z2s1 = X2 + z2 ·H1(sk)
2) For j = 1 to N − 2, computes Y i,2+j = X2+j +

Y i,2+(j−1)
3) b′i =

∑N−1
j=0 Y i,j

4) Runs recKey(·, ·) to output k i = recKey
(
bi, rec

)
and

gets the group secret key as ski = H(k i)

procedures, (STUG, U.Join,U.Leave) and (STAG, A.Join,
A.Leave), respectively.

VII. SECURITY
In this chapter, we check the correctness of our protocol
and give a full security proof using the security model
by Bresson et al. [3]. Our proof techniques are used similarly
to ADGK19 [16] and DB05 [6].

We adopt ‘‘unpredictability-based’’ security analysis
(i.e., given the transcript, it is infeasible to determine the real
group secret key) instead of the ‘‘indistinguishability-based’’
one (i.e., given the transcript, the real group secret key should
be indistinguishable from random) to apply the characteristic
of bounded Rényi divergence.

But instead of applying Katz-Yung compiler for authenti-
cated GKE with active adversary AAKE, the security model
of Bresson et al. [3] is considered to give a full security
analysis of the dynamic case. Hence, our authenticated GKE
protocol also achieves forward secrecy, and is almost fully
symmetric and constant-round without additional rounds to
achieve AKE security, compared to ADGK19.
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A. CORRECTNESS PROOF
The correctness of GKE protocol is guaranteed if all parties
agree on the group secret key. In Theorem 1, we give a con-
dition that our GKE is correct. Most parts of our correctness
proof follow the correctness proof of ADGK19 but there is
some modification on error bound.

Note that padding the signature to the broadcasting mes-
sages does not change the size of the error and both member-
ship addition and deletion procedures use the ring topology
and the computation process is exactly the same as STUG.
Hence, if we show the correctness of STUG, it is obvious that
our dynamic and authenticated protocols satisfy the correct-
ness condition.

Lemmas 2 and 3 are restated from ADGK19 [16].
Lemma 2 [16]: Given si for all i defined in the group

key exchange protocol, fix c =
√

2ρ
π log(e) and let boundρ

be the event that for all i ∈ [N ] and all coordinate j ∈ [n],
|(si)j|, |(ei)j|, |(e′i)j|, |(e

′′

N−1)j| ≤ cσ1 except |(e′0)j| ≤ cσ2.
Then

Pr[boundρ] ≥ 1− 2ρ .

Proof: Since the complementary error function satisfies
erfc(x) = 2

π

∫
∞

x exp(−t2)dt ≤ exp(−x2),

Pr[v← DZq,σ ; |v| ≥ cσ + 1]

≤ 2
∞∑

x=bcσ+1e

DZq,σ (x)

≤
2
σ

∫
∞

cσ
exp(
−πx2

σ 2 )dx

=
2
π

∫
∞

√
π
σ

(cσ )
exp(−t2)dt ≤ exp(−c2π ).

Then, there are 3nN samplings from DZq,σ1 and n samplings
from DZq,σ2 in STUG. Under the assumption that 3nN + n ≤
exp(c2π/2),

Pr[boundρ] = (1− Pr[v← DZq,σ1; |v| ≥ cσ1 + 1])3nN

· (1− Pr[e′0← DZq,σ2; |v| ≥ cσ2 + 1])n

≥ 1− (3nN + n) · exp(−c2π )

≥ 1− exp(c2π/2)

≥ 1− 2−ρ .

Lemma 3 [16]: Given boundρ defined in Lemma 2,
let productsi, ej be the event that for all v-th coordinate,∣∣(si · ej)v∣∣ ≤ √nρ3/2σ 2

1 . Then

Pr[productsi·ej | boundρ] ≥ 1− n · 2 · 2−2ρ .

Proof: Note that for l ∈ [n], (si)l denotes the
l-th coefficient of si and si =

∑n−1
l=0 (si)lX

l . Since we take
Xn+ 1 as modulus of R, (siej)l =

∑n−1
k=0(si)k (ej)

∗
l−kX

l where
(ej)∗l−k is (ej)l−k if l-k ≥ 0 and − (ej)l−k otherwise. Thus,

under boundρ , specifically |(si)l |, |(ej)l | ≤ cσ1 where

c =
√

2ρ
π ·log(e) , by Hoeffding’s inequality [49],

Pr[|(siej)l | ≥ γ | boundρ]

= Pr

[∣∣∣∣∣
n−1∑
k=0

(si)k (ej)l−k

∣∣∣∣∣ ≥ γ | boundρ

]

≤ 2 · exp

(
−2γ 2

n(2c2σ 2
1 )

2

)
.

(Note that (si)k (ej)l−k is an independent random variable with
mean 0 in interval [−c2σ 2

1 , c
2σ 2

1 ].) If γ =
√
nρ3/2σ 2

1 ,

Pr[|(siej)l | ≥ γ | boundρ] ≤ 2 · exp(−ρ
3

2 c4
) ≤ 2−2ρ+1.

Thus, with a union bound,

Pr[productsi, ej | boundρ] = Pr[∀l, |(siej)l | ≤
√
nρ3/2σ 2

1 ]

≥ 1− n · 2 · 2−2ρ .

Theorem 1: For a fixed ρ, and assume that

(N − 1)N/2 ·
√
nρ3/2σ 2

1 + (N (N + 1)/2+ N ) σ1
+ (N − 2)σ2 ≤ βRec.

Then all participants in a group agree on the group secret key
except with a probability of at most 2−ρ+1.

Proof: We claim that all parties calculate the same value
except with negligible probability. To hold this, ki = kN−1
holds for all i ∈ [N ] and j ∈ [n] j-th coefficient of |bN−1 −
bi| ≤ βRec. After very careful computation,

bN−1 − bi = Ne′′N−1 +
N−1∑
j=0

(N − j)(e′N−1+j − e
′
i+j)

+

N−2∑
j=0

(N−1−j){(eN+jsN−1+j − eN−1+jsN+j)

− (ei+j+1si+j − ei+jsi+j+1)}.

Now observe how many terms are in bN−1 − bi. There are at
most (N−1)N/2 terms in the form of si·ej, at mostN (N+1)/2
terms in the form of e′k sampled from χσ1 , at mostN−2 terms
of e′0 sampled from χσ2 , and N terms of e′′N−1.
Let productALL be the event that for all terms in the form of

si · ej. Each coefficient of this form is bounded by
√
nρ3/2σ 2

1 .
Under an assumption that 2n(N − 1)N/2 ≤ 2ρ ,

Pr[productALL |boundρ] ≤
(N − 1)N

2
· n · 2−2ρ+1 ≤ 2−ρ

by Lemma 3. Denote fail by the event that at least one of
parties does not agree on the group secret key. Given a
condition that (N − 1)N/2 ·

√
nρ3/2σ 2

1 + (N (N + 1)/2 +
N )σ1 + (N − 2)σ2 ≤ βRec,

Pr[fail] = Pr[fail |boundρ] · Pr[boundρ]
+ Pr[fail |boundρ] · Pr[boundρ]

≤ Pr[productALL |boundρ] · 1+ 1 · Pr[boundρ]
≤ 2 · 2−ρ
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by Lemma 2 and the above inequality. Therefore, all
parties agree on the group secret key except with a
probability 2 · 2−ρ .

From the result of Theorem 1, the number of error terms
in STUG is smaller than ADGK19. Then, the probability
PrSTUG

[
AbortKey

]
of the event AbortKey that error between

bi’s exceeds βRec in STUG is smaller than the probability
PrApon

[
AbortKey

]
in ADGK19. Thus, STUG has a higher

probability to output the agreed group secret key between
protocol participants and so does DRAG.

B. SECURITY PROOF
Theorems 2, 3 and 4 show that our dynamic key exchange
protocols DRUG = (STUG, U.Join,U.Leave) and DRAG =
(STAG, A.Join,A.Leave) are secure in the random oracle
model based on hardness of RLWE assumption. All proofs
are given in Appendices A, B, and C.
Theorem 2: For unauthenticated GKE protocol STUG,

2N
√
nλ3/2σ 2

1 + (N − 1)σ1 ≤ βRényi and σ2 =

�
(
βRényi

√
n/ log λ

)
. Then,

AdvKE
STUG(t, qE ) ≤ 2−λ+1

+

√
AdvExp-1 ·

exp
(
2πn(βRényi/σ2)2

)
1− 2−λ+1

where AdvExp-1 = N ·AdvRLWEn,q,χσ1 ,3
(t1)+AdvKeyRec(t2)+

qE
2λ ,

t1 = t +O(N · tring), and t2 = t +O(N · tring) such that tring
is the maximum time required to make operations in Rq.

Proof: See Appendix A.
For Theorem 3, qE and qS are the maximum number of

Execute and Send queries, respectively, that an adversary for
STAG may ask for.
Theorem 3: The authenticated GKE protocol STAG is

secure against an active adversary under RLWE assumption,
achieves forward secrecy and satisfies the following:

AdvAKE
STAG(t, qE , qS )≤AdvKE

STUG(t
′, qE+

qS
2
)+ |P|AdvDSig(t

′)

where t ′ ≤ t + (|P|qE + qS )tSTAG when tSTAG is the time
required for execution of STAG by any one of the protocol
participants.

Proof: See Appendix B.
For Theorem 4, qE , qS , qJ and qL are the maximum num-

ber of Execute, Send, Join and Leave queries that an adver-
sary for DRAG may ask for.
Theorem 4: The dynamic authenticated GKE protocol

DRAG is secure against an active adversary under RLWE
assumption, achieves forward secrecy and satisfies the
following:

AdvAKE
DRAG(t, qE , qJ , qL , qS )

≤ AdvKE
STUG(t

′, qE +
qJ + qL + qS

2
)+ |P|AdvDSig(t

′)

where t ′ ≤ t + (|P|qE + qJ + qL + qS )tDRAG when tDRAG is
the time required for execution of DRAG by any one of the
protocol participants.

Proof: See Appendix C.

TABLE 1. Comparison with other lattice-based (authenticated)
GKE protocols.

VIII. COMPARISON WITH OTHER PROTOCOLS
A comparison between DRAG and other previously known
lattice-based GKE protocols [15], [16], [22] is given
in TABLE 1. For computational complexity, we ignore ring
addition/deletion, or scalar multiplication due to its rel-
atively smaller computing power, and only consider the
following:

Samp total number of Gaussian samplings
R.Mult total number of ring multiplication computed
Sign total number of signatures generated
Verify total number of verification

From TABLE 1, we define a round as the number
of interactions where one party sends their message to
another.

DXL12.G requires N − 1 rounds to have N approxi-
mately agreed ring elements and one round to obtain the
group secret key by key reconciliation. For each party,
there are N Gaussian samplings (one secret sampling and
N − 1 error samplings) and N − 1 ring multiplications.
YMZ15 provides the minimum communication rounds but
Yang et al.’s protocol has TA which causes more secu-
rity issues such as a single point of failure. Moreover, this
protocol does one more computation for the secure sketch,
which requires huge computing power. Neither DXL12.G
and YMZ15 specify a digital signature scheme in the
paper.

For ADGK19 and DRAG, both provide scalability with-
out TA. DRAG remains three rounds to make the group
secret key of authenticated GKE while ADGK19 requires
four rounds to apply Katz-Yung compiler. The number of
Gaussian sampling and ring multiplications are 3N + 1 and
2N + 1, respectively, for both protocols. However, DRAG
expects a smaller number of signature verification since we
only verify the signatures from the neighborhood.

By modifying modular exponentiation and multiplication
in DB05 into ring multiplication and ring addition in RLWE
setting, we design the first lattice-based dynamic group key
exchange protocol in the open literature, to the best of our
knowledge.
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TABLE 2. Parameter choice.

IX. IMPLEMENTATION
We instantiate and implement DRUG for two purposes: to
provide the proof of concept and check the performance
of our protocol. Since DRUG is a 3-round GKE protocol
from RLWE assumption with a generic key reconciliation
mechanism, we instantiate DRUG with one of the previ-
ous key reconciliation mechanisms whose implementation
is open in public domain. We implement STUG considering
the network topology and membership addition/deletion pro-
cedures based on the source code of STUG. Then, we ana-
lyze the test results from our implementation. Pseudocode
of our implementation is given in Appendix D. The full
reference source code is available in our GitHub address
(https://github.com/hansh17/DRAGKE).

A. INSTANTIATION
1) RESTRICTIONS ON THE PARAMETERS
To instantiate DRUG, we should consider the restrictions
for choosing parameters. There are three restrictions from
security analysis and performance requirements.

Considering Theorems 1 and 2, we set a statistical security
parameter ρ = 256 that is related to the correctness and
a computational security parameter λ = 128 that ensures
level 1 NIST security that is as hard as breaking AES128.
λ = 128 is selected for a practical reason since λ = 256,
which ensures level 5NIST security that is as hard as breaking
AES256, requires more than a day to make a precomputed
table for sampling.

2) PARAMETER SELECTION
Some ring parameters, such as the dimension n and the
modulus q, are highly dependent on the implementation of
the basic ring operations. Generally, n can be a power of two
as cyclotomic rings are used for RLWE. q can be any integers
since decisional RLWE is hard over a prime cyclotomic ring
with any modulus.

We chose the key reconciliation mechanism of Bos et al.’s
protocol (BCNS) [28] where n = 1024, q = 232−1, and σ1 =
8/
√
2π for the reasonable level of security. To maximize

the number of group members in DRUG, N , we select other
parameters as N = 6, σ2 = 14, 198, 340/

√
2π , βRec =

229 − 1, and βRényi = 5, 664, 317 where βRec = q/8,
as shown in TABLE 2.

B. NETWORK TOPOLOGY
In our parameter settings, up to six peers can participate
in DRUG. Each peer broadcasts the computed intermediate
values to all other peers in DRUG.
To make broadcasting easy, we deployed an arbiter-based

network for communication. Different from TA who has a

dedicated role in a protocol, an arbiter is a designated party
who all group members have agreed on in the initialization
phase that does broadcasting, being independent of the pro-
tocol. The role of an arbiter is similar to a public bulletin
board, except that the arbiter actively broadcasts the received
message to the other peers while the public bulletin board is
queried by the peers. Since any peer can behave as an arbiter
in a fully connected network, we pick PN−1 as the arbiter for
simple implementation.

In summary, the roles of an arbiter are as follows: i) partic-
ipates in a protocol ii) receives public information such as zi
or Xi from a peer in DRUG, and broadcasts the information
to the other peers iii) runs the key reconciliation mechanism
and broadcasts rec to other peers (since we selected PN−1 as
the arbiter).

The roles of peers (P0,P1, · · · and PN−2) are as follows:
i) participates in a protocol ii) calculates and sends public
information to the arbiter iii) calculates the group secret key
from the data received from the arbiter.

C. OUR TESTS
We conducted three tests to verify correctness (Test 0) and
performance (Tests 1 and 2). The test environment is as
follows: Intel(R) CPU i5-8250, RAM 8GB, and OS Ubuntu
v16.04.5 LTS. Since we use a virtual machine, only a partial
power of the computer is used for performance evaluation.
We use two processors with a 100% execution cap for CPU
and 4GB for RAM. gcc v5.4.0 is used as a compiler with
−O3 optimizations.

1) TEST 0: VERIFYING THE SUCCESS OF KEY EXCHANGE
In Test 0, we verified that peers can successfully exchange
the group secret key using our implementation. We built
two executable programs; one for the arbiter and the other
for peers who are not an arbiter. These executable programs
support all three modes (static, join and leave) with the −m
option. An index of the peer and the number of members
before and after the dynamic operations can be provided.
Our programs are configured to run on a local environment

to exclude network latencies while measuring time on the
subsequent tests. Each peer is deployed in one independent
process, and communication between peers and the arbiter
is done by sockets toward the localhost. Small modifications
would allow programs to communicate through an actual
network; in the actual network, the values such as the peer
indices should be determined before a protocol is given as
the argument. In Fig. 1, we can observe that a group of
four outputs the same value as the agreed group secret key.
Figs. 2 and 3 demonstrate that the U.Join and U.Leave pro-
cedures were done without errors.

2) TEST 1: PERFORMANCE CHECK ON COMPONENTS
In Test 1, we checked the runtime and cycles of each oper-
ation and function of our implementation. TABLE 3 shows
the performance of each operation on average after running
200 times.
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FIGURE 1. Group secret key of STUG (N = 4).

FIGURE 2. U.Join procedure in DRUG (N = 4 → N = 5).

FIGURE 3. U.Leave procedure in DRUG (N = 5 → N = 4).

TABLE 3. Average runtime and cycles of each operation.

As we can see in TABLE 3, random sampling from χσ2
takes a longer time than random sampling from χσ1 . This
is a result of the difference in size of σ1 = 8/

√
2π and

σ2 = 14, 198, 340/
√
2π . The ring polynomial addition run-

ning time is almost 0, but the ring polynomial multiplication
running time is 185 µsec. Therefore ring polynomial mul-
tiplication and random sampling is an important factor in
performance as we stated in Chapter VIII.

TABLE 4 shows the performance of each function.
We measure the computational time for zi, Xi, reconcile,
and the group secret key. As we can see in TABLE 4,
computing X0 takes longer than computing Xi due to the
sampling from χσ2 . Even though only one peer, P0, samples
values from χσ2 , its runtime is much longer than random sam-
plings from χσ1 or ring polynomial multiplications. Hence,
random sampling from χσ2 is another important factor in
measuring the performance of DRUG.
To claim that the performance of DRUG is reason-

able compared to other previous key exchange protocols,
we compare our protocol with the previously standardized
two-party key exchange protocols like Diffie-Hellman key

TABLE 4. Average runtime and cycles of each function.

TABLE 5. Performance evaluation of U.Join and U.Leave.

exchange (DH), MQV [50], and their elliptic curve variants
(ECDH, ECMQV). For the sake of simplicty, we limit
the comparison with the Crypto++ library [51]. Given the
128-bit security level, key size should be 3072 bit for DH
and MQV and 283 bit for elliptic curve variants. The run-
time of our protocol takes around 3 msec which is com-
parable to the runtime of Diffie-Hellman-like key exchange
protocols, which takes around 2 to 3 msec. Our protocol
is faster than elliptic curve variants whose runtime requires
around 6 to 8 msec. We increase the security without losing
efficiency by adopting RLWE setting since most of current
key exchange protocols can be totally broken by quantum
adversaries.

3) TEST 2: PERFORMANCE CHECK ON DYNAMIC
OPERATIONS
In Test 2, we checked the total runtime ofU.Join andU.Leave
procedures. The measurement was performed when the num-
ber of group members changes from four to five and five to
four. The whole procedure of GKE is measured, i.e., the pro-
tocol ends when all peers calculate a group secret key. Since
the calculation in each phase is performed in parallel, we add
the longest time for calculation in each phase.

In TABLE 5, U.Join procedure takes 3,168 µsec and
U.Leave procedure takes 2,956 µsec, which is reasonable for
practical use.

X. CONCLUSION AND FUTURE WORK
In this paper, we deal with the novel construction of
quantum-resistant constant-round dynamic authenticated
GKE protocol. Former dynamic GKE protocols rely on
number-theoretic problems such as Diffie-Hellman prob-
lem which is vulnerable to quantum computing attacks.
To make a quantum-resistant dynamic GKE protocol, under-
lying number-theoretic problems should be replaced by other
quantum-resistant ones like RLWE problem.

The main contributions of this paper are as follows:

• We designed a novel constant-round dynamic authen-
ticated GKE protocol from RLWE with quantum
resistance.
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• DRAG is theoretically more efficient than the previ-
ous constant-round authenticated GKE protocol from
RLWE in regard to the computational complexities and
communication round.

• We provided implementation details with pseudocode,
as a proof of concept, to meet level 1 NIST security
(128-bit AES security) in Ubuntu v16.04.5 LTS.

After checking the distinctive features between BD94 and
DB05 in a static unauthenticated setting, we found that
they differ only in key computation phase, Also, DB05 sup-
ports a group to agree on the group secret key with
a dynamic setting. Similarly, we designed yet another
quantum-resistant constant-round GKE protocol in a static
setting bymodifying the key computation phase of ADGK19.
Then, a novel construction of a quantum-resistant constant-
round dynamic authenticated GKE protocol is proposed
in a dynamic setting with the quantum-resistant digital
signature with the existential unforgeability under cho-
sen message attack. For membership addition/deletion
procedures, our protocol is built from RLWE set-
ting, while the former ones are from Diffie-Hellman
problem.

We consider the adversary model by Bresson et al. [3] that
covers a dynamic authenticated GKE protocol with a weak
corruption model and suggested a rigorous security proof
in the random oracle model. Compared to ADGK19, our
dynamic authenticated GKE protocol, DRAG, requires fewer
computational complexities and a smaller communication
round for authenticated GKE.

Our implementation is claimed to be practical with suitable
parameter selection since the total runtime to get the group
secret key takes about 3msec. This result can be considered as
a reference implementation of other quantum-resistant GKE
protocols.

As future work, the vulnerability of DRAG to key
reuse attacks [52]–[54] is required to be addressed.
Another challenge is to reduce the size of q for better
performance.

.

APPENDIX A PROOF OF THEOREM 2
Proof: Let A be an adversary that breaks the STUG

protocol. From this, we construct an adversary B that
solves RLWE problem with a non-negligible advantage.
Since we do not have any long-term secret key in STUG,
Corrupt can be ignored and the protocol achieves the forward
secrecy.

Let Query be the event that kN−1 is among the adver-
saryA’s random oracle queries and Pri

[
Query

]
be the prob-

ability of Query in Experiment i.
Then, by a sequence of experiments, we show that an

efficient adversary who queries the random oracle in Ideal
experiment can query the random oracle in Exp0 experiment.
For Ideal experiment, the input kN−1 is chosen at uniformly
random while kN−1 is chosen by the honest execution of
STUG in Exp0 and Exp1 experiments.

Experiment 0: This is the original experiment that is equal
to the procedure of STUG.

Exp0 :=



a← Rq; si, ei← χσ1;

: (T, sk)

zi = asi + ei for i ∈ [N ] ;
e′0← χσ2;

e′i← χσ1 for 1 ≤ i ≤ N − 1;
Xi = (zi+1 − zi−1)si + e′i for
i ∈ [N ] ;

e′′N−1← χσ1;

YN−1,N−1 = XN−1
+zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j
+YN−1,(N−1)+(j−1);
bN−1 =

∑N−1
j=0 YN−1,(N−1)+j;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1,X0,X1,
· · · ,XN−1, rec)


Since Pr [A wins] =

1
2
+ AdvKE

STUG(t, qE ) = Pr0
[
Query

]
+

Pr0[Query] ·
1
2
,

AdvKE
STUG(t, qE ) ≤ Pr0

[
Query

]
.

Experiment 1:Replace X0 with X ′0 = −
∑N−1

i=1 Xi+e′0. The
rest are the same as the previous experiment.

Exp1 :=



a← Rq; si, ei← χσ1;

: (T, sk)

zi = asi + ei for i ∈ [N ] ;
e′0← χσ2;

e′i← χσ1 for 1 ≤ i ≤ N − 1;

X ′0 = −
∑N−1

i=1 Xi + e′0;
Xi = (zi+1 − zi−1)si + e′i for
1 ≤ i ≤ N − 1;

e′′N−1← χσ1;

YN−1,N−1 = XN−1
+zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j
+YN−1,(N−1)+(j−1);

bN−1 =
∑N−1

j=0 YN−1,(N−1)+j;
(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1,X0,X1,
· · · ,XN−1, rec)


Lemma 4: Given two distributions of X0 and X ′0,

if 2N
√
nλ3/2σ 2

1 + (N − 1)σ1 ≤ βRényi, then

Pr0
[
Query

]
≤ 2−λ+1

+

√
Pr1

[
Query

]
·
exp

(
2πn(βRényi/σ2)2

)
1− 2−λ+1

using the property of Rényi divergence.
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Proof: Let X0,X ′0 be the random variables in experi-
ments Exp0 and Exp1, respectively. Error and main can be
defined as

Error =
N−1∑
i=0

(siei+1 − siei−1)+
N−1∑
i=1

e′i

and

main = z1s0 − zN−1s0 − Error,

respectively. Then,

X0 = main+ Error+ e′0 and X ′0 = main+ e′0

where e′0 ← σ2. We check whether Rényi divergence
between two distributions of X0 and X ′0 is small using
Lemma 1. Let boundError be the event that for all partici-
pants j, Errorj ≤ βRényi. Then,

∣∣Errorj
∣∣ =

∣∣∣∣∣∣
(
N−1∑
i=0

(siei+1 − siei−1)+
N−1∑
i=1

e′i

)
j

∣∣∣∣∣∣.
Set c =

√
2λ

π log e and let bound be the event that
∣∣(e′0)j∣∣ ≤

cσ2,
∣∣(si)j∣∣ , ∣∣(ei)j∣∣ , ∣∣(e′′N−1)j∣∣ ≤ cσ1, and

∣∣(e′i)j∣∣ ≤ cσ1 for all
i > 0 and j.
From Lemmas 2 and 3, Pr

[
bound

]
≥ 1 − 2−λ and

Pr[
∣∣(siej)v∣∣ ≤ √nλ3/2σ 2

1 | bound] ≥ 1− 2−2λ+1.
With a union bound,

Pr[∀j :
∣∣Errorj

∣∣ ≤ 2N
√
nλ3/2σ 2

1 + (N − 1)σ1 | bound]

≥ 1− 4N · n · 2−2λ.

Assuming 4Nn ≤ 2λ, we derive that Pr
[
boundError

]
≥

1−2−λ+1 and RD2
(
Error+χσ2‖χσ2

)
≤exp(2πn(βRényi/σ )2)

from Lemma 1. Thus,

Pr0
[
Query

]
≤ Pr0

[
Query | boundError

]
+ Pr0

[
boundError

]
≤ Pr0

[
Query | boundError

]
+ 2−λ+1

≤

√
Pr1

[
Query | boundError

]
· exp

(
2πn(βRényi/σ2)2

)
+ 2−λ+1

≤

√
Pr1

[
Query

]
·
exp

(
2πn(βRényi/σ2)2

)
Pr1

[
boundError

] + 2−λ+1

≤

√
Pr1

[
Query

]
·
exp

(
2πn(βRényi/σ2)2

)
1− 2−λ+1

+ 2−λ+1

From second to third inequality, the property that Rényi
divergence is bounded is used.

For the rest of the proof, we will show that

Pr1
[
Query

]
≤ N · AdvRLWEn,q,χσ1 ,3

(t1)+ AdvKeyRec(t2)+
qE
2λ
.

Experiment 2: Replace z0 with the uniform element in Rq.
The rest are the same as the previous experiment.

Exp2 :=



a, z0← Rq;

: (T, sk)

si, ei← χσ1 and zi = asi + ei

for 1 ≤ i ≤ N − 1;

e′0← χσ2;

e′i← χσ1 for 1 ≤ i ≤ N − 1;

X ′0 = −
∑N−1

i=1 Xi + e′0;

Xi = (zi+1 − zi−1)si + e′i for
1 ≤ i ≤ N − 1;

e′′N−1← χσ1;

YN−1,N−1 = XN−1
+zN−2sN−1 + e′′N−1;

YN−1,(N−1)+j = X(N−1)+j
+YN−1,(N−1)+(j−1);

bN−1 =
∑N−1

j=0 YN−1,(N−1)+j;

(rec, kN−1) = recMsg(bN−1);

sk = H(kN−1);

T = (z0, z1, · · · , zN−1,X0,X1,

· · · ,XN−1, rec)


Between Experiment 1 and Experiment 2, one RLWE
instance is replaced by a random value. Hence,

∣∣Pr2 [Query
]
− Pr1

[
Query

]∣∣ ≤ AdvRLWEn,q,χσ1 ,1
(t1)

where t1 = t + O(N · tring) and tring is the time required to
perform operations in Rq.
Since

AdvRLWEn,q,χσ1 ,1
(t1) ≤ AdvRLWEn,q,χσ1 ,2

(t1)

≤ AdvRLWEn,q,χσ1 ,3
(t1),∣∣Pr2 [Query

]
− Pr1

[
Query

]∣∣ ≤ AdvRLWEn,q,χσ1 ,3
(t1).

Experiment 3: Replace z0 into z2 − r1 and X1 into
r1s1 + e′1 where r1 ← Rq. The rest are the same as the
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previous experiment.

Exp3 :=



a, r1← Rq;

: (T, sk)

si, ei← χσ1 and zi = asi + ei
for 1 ≤ i ≤ N − 1;

z0 = z2 − r1;
e′0← χσ2;

e′i← χσ1 for 1 ≤ i ≤ N − 1;
X ′0 = −

∑N−1
i=1 Xi + e′0;

X1 = r1s1 + e′1;
Xi = (zi+1 − zi−1)si + e′i for

2 ≤ i ≤ N − 1;
e′′N−1← χσ1;

YN−1,N−1 = XN−1
+zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j
+YN−1,(N−1)+(j−1);
bN−1 =

∑N−1
j=0 YN−1,(N−1)+j;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1,X0,X1,
· · · ,XN−1, rec)


Since both z0 and z2 − r1 are uniform,

Pr3
[
Query

]
= Pr2

[
Query

]
.

Experiment 4: Replace z1,X1 with the uniform element
in Rq. The rest are the same as the previous experiment.

Exp4 :=



a, r1, z1← Rq;

: (T, sk)

si, ei← χσ1 and zi = asi + ei
for 2 ≤ i ≤ N − 1;

z0 = z2 − r1;
e′0← χσ2;

e′i← χσ1 for 2 ≤ i ≤ N − 1;
X ′0 = −

∑N−1
i=1 Xi + e′0;

X1← Rq;
Xi = (zi+1 − zi−1)si + e′i for
2 ≤ i ≤ N − 1;

e′′N−1← χσ1;

YN−1,N−1 = XN−1
+zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j
+YN−1,(N−1)+(j−1);
bN−1 =

∑N−1
j=0 YN−1,(N−1)+j;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1,X0,X1,
· · · ,XN−1, rec)


Between Experiment 3 and Experiment 4, two RLWE

instances are replaced by two independent random values.
Hence,∣∣Pr4 [Query

]
− Pr3

[
Query

]∣∣ ≤ AdvRLWEn,q,χσ1 ,2
(t1)

≤ AdvRLWEn,q,χσ1 ,3
(t1)

where t1 is the time to solve RLWE problem which is the sum
of t and some minor overhead O(tring) for simulation.
Experiment 5: Replace z0 into the uniform element in Rq.

The rest are the same as the previous experiment.

Exp5 :=



a, z0, z1← Rq;

: (T, sk)

si, ei← χσ1 and zi = asi + ei
for 2 ≤ i ≤ N − 1;

e′0← χσ2;

e′i← χσ1 for 2 ≤ i ≤ N − 1;
X ′0 = −

∑N−1
i=1 Xi + e′0;

X1← Rq;
Xi = (zi+1 − zi−1)si + e′i for
2 ≤ i ≤ N − 1;

e′′N−1← χσ1;

YN−1,N−1 = XN−1
+zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j
+YN−1,(N−1)+(j−1);
bN−1 =

∑N−1
j=0 YN−1,(N−1)+j;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1,X0,X1,
· · · ,XN−1, rec)


Since both z0 and z2 − r1 are uniform,

Pr5
[
Query

]
= Pr4

[
Query

]
.

Similarly, we can design the distribution of (T, sk) in
Experiment 3j, 3j+ 1, 3j+ 2 as below:
Experiment 3j: Replace zj−1 with zj+1 − ri and Xi into

rjsj+e′i where rj← Rq. The rest are the same as the previous
experiment.

Exp3j :=



a, rj← Rq;

: (T, sk)

si, ei← χσ1 and zi = asi + ei
for j ≤ i ≤ N − 1;

z0, · · · , zj−2← Rq;
zj−1 = zj+1 − rj;
e′0← χσ2;

e′i← χσ1 for j+ 1 ≤ i ≤ N − 1;
X ′0 = −

∑N−1
i=1 Xi + e′0;

X1, · · · ,Xj−1← Rq;
Xj = rjsj + e′j;
Xi = (zi+1 − zi−1)si + e′i for
j+ 1 ≤ i ≤ N − 1;

e′′N−1← χσ1;

YN−1,N−1 = XN−1
+zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j
+YN−1,(N−1)+(j−1);
bN−1 =

∑N−1
j=0 YN−1,(N−1)+j;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1,X0,X1,
· · · ,XN−1, rec)


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Experiment 3j+1: Replace zj,Xj with the uniform element
in Rq. The rest are the same as the previous experiment.

Exp3j+1 :=



a, rj← Rq;

: (T, sk)

si, ei← χσ1 and zi = asi + ei
for j+ 1 ≤ i ≤ N − 1;

z0, · · · , zj−2, zj← Rq;
zj−1 = zj+1 − rj;
e′0← χσ2;

e′i← χσ1 for j+ 1 ≤ i ≤ N − 1;
X ′0 = −

∑N−1
i=1 Xi + e′0;

X1, · · · ,Xj← Rq;
Xi = (zi+1 − zi−1)si + e′i for
j+ 1 ≤ i ≤ N − 1;

e′′N−1← χσ1;

YN−1,N−1 = XN−1
+zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j
+YN−1,(N−1)+(j−1);
bN−1 =

∑N−1
j=0 YN−1,(N−1)+j;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1,X0,X1,
· · · ,XN−1, rec)


Experiment 3j+ 2: Replace zj−1 with the uniform element

in Rq. The rest are the same as the previous experiment.

Exp3j+2 :=



a← Rq;

: (T, sk)

si, ei← χσ1 and zi = asi + ei
for j+ 1 ≤ i ≤ N − 1;

z0, · · · , zj← Rq;
e′0← χσ2;

e′i← χσ1 for j+ 1 ≤ i ≤ N − 1;
X ′0 = −

∑N−1
i=1 Xi + e′0;

X1, · · · ,Xj← Rq;
Xj = rjsj + e′j;
Xi = (zi+1 − zi−1)si + e′i for
j+ 1 ≤ i ≤ N − 1;

e′′N−1← χσ1;

YN−1,N−1 = XN−1
+zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j
+YN−1,(N−1)+(j−1);
bN−1 =

∑N−1
j=0 YN−1,(N−1)+j;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1,X0,X1,
· · · ,XN−1, rec)


With the similar argument of Experiments 3, 4 and 5,

the following inequalities are satisfied:

Pr3i
[
Query

]
= Pr3i−1

[
Query

]∣∣Pr3i+1 [Query
]
− Pr3i

[
Query

]∣∣ ≤ AdvRLWEn,q,χσ1 ,3
(t1)

Pr3i+2
[
Query

]
= Pr3i+1

[
Query

]

Experiment 3N − 3: Set zN−2 = r2,XN−1 = r1 sN−1+
e′N−1, z0 = r1 + r2 where r1, r2← Rq. The rest are the same
as the previous experiment.

Exp3N−3 :=



a, r1, r2← Rq;

: (T, sk)

sN−1, eN−1← χσ1;

z0 = r1 + r2;
zi← Rq for 1 ≤ i ≤ N − 3;
zN−2 = r2;
zN−1 = asN−1 + eN−1;
e′0← χσ2;

e′N−1← χσ1;

X ′0 = −
∑N−1

i=1 Xi + e′0;
Xi← Rq for 1 ≤ i ≤ N − 2;
XN−1 = r1sN−1 + e′N−1;
e′′N−1← χσ1;

YN−1,N−1 = XN−1
+zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j
+YN−1,(N−1)+(j−1);
bN−1 =

∑N−1
j=0 YN−1,(N−1)+j;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1,X0,X1,
· · · ,XN−1, rec)


Since r1, r2 are uniform, so is z0 = r1 + r2. For both
Experiment 3N − 4 and 3N − 3, zN−2 and z0 are uniform.
Then,

Pr3N−3
[
Query

]
= Pr3N−4

[
Query

]
.

Experiment 3N − 2: Replace zN−1,XN−1, zN−2sN−1 +
e′′N−1 with the uniform element in Rq. The rest are the same
as the previous experiment.

Exp3N−2 :=



a, r3← Rq;

: (T, sk)

zi← Rq for i ∈ [N ] ;
e′0← χσ2;

X ′0 = −
∑N−1

i=1 Xi + e′0;
Xi← Rq for 1 ≤ i ≤ N − 1;
YN−1,N−1 = XN−1 + r3;
YN−1,(N−1)+j = X(N−1)+j
+YN−1,(N−1)+(j−1);
bN−1 =

∑N−1
j=0 YN−1,(N−1)+j;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1,X0,X1,
· · · ,XN−1, rec)


Between Experiment 3N − 3 and Experiment 3N − 2, three
RLWE instances are replaced into random. Hence,∣∣Pr3N−2 [Query

]
− Pr3N−3

[
Query

]∣∣ ≤ AdvRLWEn,q,χσ1 ,3
(t1).

Experiment 3N − 1: Replace YN−1,N−1,YN−1,(N−1)+j,
bN−1 with the uniform element in Rq. The rest are the same
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as the previous experiment.

Exp3N−1 :=



a← Rq;

: (T, sk)

zi← Rq for i ∈ [N ] ;
e′0← χσ2;

X ′0 = −
∑N−1

i=1 Xi + e′0;
Xi← Rq for 1 ≤ i ≤ N − 1;
YN−1,(N−1)+j← Rq for j ∈ [N ] ;
bN−1← Rq;
(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1,X0,X1,
· · · ,XN−1, rec)


For both Experiment 3N − 2 and Experiment 3N − 1,
YN−1,N−1,YN−1,(N−1)+j, and bN−1 are all uniform since r3
is uniform in Experiment 3N − 2. Then,

Pr3N−1
[
Query

]
= Pr3N−2

[
Query

]
.

Experiment 3N: Replace kN−1 with the uniform element
k ′N−1 in {0, 1}

λ. The rest are the same as the previous experi-
ment.

Exp3N :=



a← Rq;

: (T, sk)

zi← Rq for i ∈ [N ] ;
e′0← χσ2;

X ′0 = −
∑N−1

i=1 Xi + e′0;
Xi← Rq for 1 ≤ i ≤ N − 1;
YN−1,(N−1)+j← Rq for j ∈ [N ] ;
bN−1← Rq;
(rec, kN−1) = recMsg(bN−1);
k ′N−1← {0, 1}

λ
;

sk′ = H(k ′N−1);
T = (z0, z1, · · · , zN−1,X0,X1,
· · · ,XN−1, rec)


Between Experiment 3N − 1 and Experiment 3N , kN−1

from recMsg(bN−1) are replaced into random. Hence,∣∣Pr3N [Query
]
− Pr3N−1

[
Query

]∣∣ ≤ AdvKeyRec(t2)

where t2 is the time to break KeyRec which is the sum of t
and some minor overhead O(tring) for simulation.
Since an adversary attacking STUG makes at most qE

queries to the random oracle, Pr1
[
Query

]
=

qE
2λ

, which is
negligible in λ.
From Experiment 1 to Experiment 3N , we have

Pr1
[
Query

]
≤ N · AdvRLWEn,q,χσ1 ,3

(t1)+ AdvKeyRec(t2)+
qE
2λ
.

as expected.
With the Lemma 4 and AdvKE

STUG(t, qE ) ≤ Pr0
[
Query

]
,

we derive the result of the theorem.

APPENDIX B PROOF OF THEOREM 3
Proof: From an adversaryA′ that attacks STAG, we con-

struct an adversaryA that attacks STUG. We divide the event
Succ that A′ wins the security game defined in Chapter IV

into the one that A′ can forge a signature and the one that A′
cannot forge a signature.

For the former case, we claim that the probability of event
Forge that the adversary can forge a signature is bounded by
|P|AdvDSig(t ′) where |P| is the number of participants.
Suppose event Forge occurs. Then,A′makes a query of the

type Send(V , i,m) wherem is either of the formm = Pi | 1 |
zi or of the form m = Pi | 2 | Xi | di with V(pkPi ,m, δm) = 1
where δm is not output by any instance of Pi on the
message m.
We construct an algorithm F that forges a signature for

a signature scheme DSig using A′. Given a public key pk ,
F chooses a random party P ∈ P and sets pkP = pk .
The other public/secret keys are honestly generated. Then, F
simulates all queries of A′ and obtains the proper signatures
with respect to pkP from its signing oracle. If A′ outputs a
valid message/signature pair with respect to pkP = pk for
any party P ∈ P , F outputs this pair as a forgery. The

success probability of F is equal to
Pr[Forge]
|P|

and hence,

Pr[Forge] ≤ |P|AdvDSig(t ′).
For the latter case, we claim that A can simulate oracle

queries of A by its own oracles. Suppose A′ makes an Exe-
cute query with an instance {(P0, i0), · · · , (Pk , ik )}. Then,A
defines a set of instances S = {(P0, i0), · · · , (Pk , ik )} and
sends S to Execute oracle to obtain a transcript T of STUG.
Then, (S,T ) are added to the set tlist which stores session
identity/transcript pairs. A outputs a transcript T ′ of STAG
by expanding T and returns T ′ to A′.
For Send query in A′, we have two types of Send

queries since for each instance (P0, i0), there is a first send
query Send0 to start a new session and the other send
queries with a message/signature pair. With an instance
{(P0, i0), · · · , (Pk , ik )}, Send0(Pj, ij{P0, · · · , (Pk )} \ Pj) for
each 0 ≤ j ≤ k . A defines S = {(P0, i0), · · · , (Pk , ik )}
and sends S to Execute oracle to obtain a transcript T of
STUG. Then, (S,T ) is added to tlist. For other send queries,A
verifies the query according to Protocol 2. If the verifications
fail, A aborts an instance (Pj, ij). Otherwise, A finds (S,T )
from tlist such that (Pj, ij) ∈ S and from T , it finds the
appropriate message with respect to (Pj, ij) in A′ and returns
the public information to A′.

For Reveal and Test queries in A′, if a session is termi-
nated properly with an instance (Pj, ij), T ′ is well defined.
Then, A finds (S,T ) where (Pj, ij) ∈ S and runs Reveal and
Test queries for a transcript T . Then, the result is sent to A′.

If Forge occurs, the success probability becomes
1
2
since

A aborts the instance and outputs a random value.

AdvASTUG = 2|PrA[Succ]−
1
2
|

= 2 |PrA′ [Succ ∧ Forge]

+PrA′ [Succ ∧ Forge]−
1
2
|

= 2 |(PrA′ [Succ]− PrA′ [Succ ∧ Forge])

+ (PrA′ [Succ | Forge] PrA′ [Forge])−
1
2
|
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Pseudocode 1 Calculating Public key zi
1: function calc_pk(a)
2: F (Phase c1) Creating RLWE public key zi
3: s← sample1() F Sampling from χσ1
4: e← sample1() F Sampling from χσ1
5: result ← a ∗ s+ e
6: return s, result
7: end function

Pseudocode 2 Calculate Augmented Public key Xi
1: function calc_aug_pk(i,N , z, s)
2: F (Phase c2) Calculating Xi
3: e′← null
4: if i = N − 1 then F Peer N − 1
5: e′← sample1() F Sampling from χσ1
6: result ← z0 − zN−2
7: else if i = 0 then F Peer 0
8: e′← sample2() F Sampling from χσ2
9: result ← z1 − zN−1
10: else F Peers 1 to N − 2
11: e′← sample1() F Sampling from χσ1
12: result ← zi+1 − zi−1
13: end if
14: result ← result ∗ s+ e′

15: return result
16: end function

Pseudocode 3 Calculate Reconciliation rec and skN−1
1: function calc_recon(N , z,X , s)
2: F (Phase c3.1) Calculate skN−1, rec for the peer
N − 1

3: e′′← sample1() F Sampling from χσ1
4: tmp← zN−2 ∗ s+ XN−1 + e′′

5: YN−1← tmp
6: for j = 0 to N − 2 do
7: tmp← tmp+ Xj
8: Yj← tmp
9: end for
10: result ← 0
11: for j = 0 to N − 1 do
12: result ← result + Yi
13: end for
14: rec, kN−1← recMsg(result)
15: return rec,H(kN−1)
16: end function

= 2 |PrA′ [Succ]− PrA′ [Succ ∧ Forge]

+
1
2
PrA′ [Forge]−

1
2
|

≥ 2 |PrA′ [Succ]− 1|

− |PrA′ [Forge]− 2 PrA′ [Succ ∧ Forge]|
≥ AdvA

′

STAG − PrA′ [Forge].

Pseudocode 4 Calculate the Group Secret key ski of U.Join
for Joining Members
1: function calc_session_key ski(i,N ,X , s, rec)
2: F (Phase c3.2) Calculating ski
3: tmp← zmod(N+i−1,N ) ∗ s
4: tmp2← Xi
5: for j = 0 to N − 1 do
6: tmp← tmp+ tmp2
7: Ymod(i+j,N )← tmp
8: tmp2← Xmod(i+j+1,N )
9: end for
10: result ← 0
11: for j = 0 to N − 1 do
12: tmp← Yj
13: result ← result + tmp
14: end for
15: returnH(recKey(result, rec))
16: end function

Pseudocode 5 Calculate the Group Secret key ski of U.Join
for the Previous Group Members
1: function calc_remain_session_key(i,N ,X , s, rec)
2: F (Phase e3) Calc. ski (join, peers 2 to N − 2)
3: tmp← z2 ∗ s1
4: tmp2← X2
5: for j = 0 to N − 1 do
6: tmp← tmp+ tmp2
7: Ymod(2+j,N )← tmp
8: tmp2← Xmod(3+j,N )
9: end for
10: result ← 0
11: for j = 0 to N − 1 do
12: tmp← Yj
13: result ← result + tmp
14: end for
15: returnH(recKey(result, rec))
16: end function

Then,Amakes Execute queries for each Execute and Send0
queries in A′. Since a session has at least two instances,
the number of Execute queries inA is at most qE+

qS
2
. Thus,

AdvAKE
STAG(t, qE , qS )≤AdvKE

STUG(t
′, qE+

qS
2
)+|P|AdvDSig(t

′).

APPENDIX C PROOF OF THEOREM 4
Proof: Similar to Theorem 3, we separate the event

Succ that adversaryA′ wins into two cases: one with forging
a signature and the other without forging. Then, we design
how to answer Execute, Join, Leave and Send queries from
DRAG using Execute queries from STUG.

From an adversary A′ which attacks DRAG, we construct
an adversary A who attacks STUG.
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Pseudocode 6 Arbiter for STUG and U.Leave
1: procedure Arbiter_leave_or_static(N2,N1)
2: F N2 peers after leave, N1 peers before leave
3: F N1 is not used in this procedure.
4: establish connections with peers
5: assign an index i of each peer
6: k ← N2
7: sk−1, zk−1← calc_pk (s)
8: step← 0
9: while step < 4 do
10: for i = 0 to N2 − 2 do
11: receive index of peer i
12: if rec is not calculated and X is available then
13: skN2−1, rec← calc_recon(k, z,X , sk−1)
14: end if
15: send step of peer i
16: if step = 1 then
17: Xk−1← calc_aug_pk(k − 1, k, z, sk−1)
18: end if
19: if step = 0 then
20: receive public key zi
21: break
22: else if step = 1 then
23: send all public keys z
24: receive augmented pub key Xi
25: break
26: else if step = 2 then
27: send all augmented public keys X
28: break
29: else F step = 3
30: send rec
31: end if
32: save that the step is completed with peer i
33: if the step is completed with all peers then
34: step← step+ 1
35: end if
36: end for
37: end while
38: print skN2−1
39: end procedure

For the former case, the proof is the same as Theorem 3 and
we obtain that Pr[Forge] ≤ |P|AdvDSig(t ′).

For the latter case, we claim that A can simulate all oracle
queries ofA′ by its own oracles. Execute query inA′ can be
returned as the same procedure of the proof of Theorem 3.

For Send query in A′, we have two special types of Send
queries as the join send query SendJ and the leave send query
SendL to initiate Join and Leave queries in A′.

We define three lists Tlist, Jlist and Llist to store the result
from Execute, Join and Leave queries as a set.

If a set SJ = {(Pk+1, ik+1), · · · , (Pk+l, ik+l)} of unused
instances wants to join the group S = {(P0, i0), · · · , (Pk , ik )},
A′ sends SendJ (Pj, ij, {P0, · · · , (Pk )}) for each k + 1 ≤ j ≤

Pseudocode 7 Peer for STUG and U.Leave
1: procedure Peer_leave_or_static(N2,N1)
2: F N2 peers after leave, N1 peers before leave
3: F N1 is not used in this procedure.
4: establish connection to the arbiter
5: k ← N2
6: while step < 4 do
7: send index of peer i
8: receive step
9: if step = 0 then
10: si, zi← calc_public_key(a)
11: send the public key zi
12: else if step = 1 then
13: receive all public keys z
14: Xi← calc_aug_pk(i, k, z, si)
15: send the augmented public key Xi
16: else if step = 2 then
17: receive all augmented public keys X
18: else F step = 3
19: receive rec
20: ski← calc_session_key(i, k, si, rec)
21: end if
22: end while
23: print ski
24: end procedure

k + l to initiate Join(S, SJ ) query. A finds whether S is in
Tlist with (S,T ), Jlist with (S ′, S ′′,T ) where S = S ′ ∪ S ′′ or
Llist with (S ′, S ′′,T ) where S = S ′ \ S ′′. If nothing is found,
A runs Execute oracle to get a transcript T and store (S,T )
into Tlist. When transcript T is found, A runs Reveal oracle
to obtain sk and simulates a membership addition procedure
A.Join to obtain a transcript T ′. Then, (S, SJ ,T ′) is added
to Jlist.

Similarly, when a set SL of unused instances wants to
leave the group S = {(P0, i0), · · · , (Pk , ik )},A′ sends SendL
for each party in SL to initiate Leave(S, SL) query. Then,
(S, SL ,T ′) is added to Llist.

For Join(S, SJ ) and Leave(S, SL) queries in A′, A finds
(S, SJ ,T ) in Jlist and (S, SJ ,T ) in Llist for a transcript T ,
respectively. Then, the result is sent to A′.
Both Reveal and Test queries in A′ can be returned with

the same procedure in the proof of Theorem 3.

If Forge occurs, the success probability becomes
1
2
since

A aborts the instance and outputs a random value. Then,

AdvASTUG ≥ AdvA
′

DRAG − PrA′ [Forge].

Then, A makes Execute queries for each Execute, SendJ ,
SendL , and Send0 query in A′. A session has at least two
instances, and the number of Execute queries for non-special

Send queries is at most
qS − qJ − qL

2
. Hence, the number of
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Pseudocode 8 Arbiter for U.Join
1: procedure arbiter_join(N2,N1)
2: F N2 peers after join, N1 peers before join
3: Establish connections with peers
4: index ← the array of indices of peers
5: for i = 2 to N1− 2 do F The 3 peers performing join
6: index[i]←−1
7: end for
8: k ← N2 − N1 + 3
9: sk−1, zk−1← calc_pk (s)
10: step← 0
11: while step < 4 do
12: for i = 0 to N2 − 2 do
13: receive index of peer i
14: if rec is not calculated and X is available then
15: skN2−1, rec← calc_recon(k, z,X , sk−1)
16: end if
17: send step of peer i
18: if step = 1 then
19: Xk−1← calc_aug_pk(k − 1, k, z, sk−1)
20: end if
21: if step = 0 then
22: if index[i] = −1 then
23: break
24: end if
25: receive public key zindex[i]
26: if i = 1 then
27: receive secret key s1
28: end if
29: break
30: else if step = 1 then
31: send all public keys z
32: if index[i] = −1 then
33: break
34: end if
35: receive augmented public key Xindex[i]
36: break
37: else if step = 2 then
38: send all augmented public keys X
39: break
40: else F step = 3
41: send rec
42: if index[i] = −1 then
43: send secret key s1
44: end if
45: end if
46: save that the step is completed with peer i
47: if the current step is completed with all peers

then
48: step← step+ 1
49: end if
50: end for
51: end while
52: print skN2−1
53: end procedure

Pseudocode 9 Peer for U.Join
1: procedure peer_join(N2,N1)
2: F N2 peers after join, N1 peers before join
3: establish connection to the arbiter
4: j← received index[i] on the arbiter side
5: k ← N2 − N1 + 3
6: while step < 4 do
7: send index of peer i
8: receive step
9: if step = 0 then
10: if 2 <= i <= N1 − 2 then
11: continue F Existing peers do nothing
12: end if
13: sj, zj← calc_public_key(a)
14: send the public key zj
15: if i = 1 then
16: send the secret key s1
17: end if
18: else if step = 1 then
19: receive all public keys z
20: if 2 <= i <= N1 − 2 then
21: continue F Existing peers do nothing
22: end if
23: Xj← calc_aug_pk(j, k, z, sj)
24: send the augmented public key Xj
25: else if step = 2 then
26: receive all augmented public keys X
27: else F step = 3
28: receive rec
29: if 2 <= i <= N1 − 2 then
30: receive the secret key s1
31: ski ←

calc_remain_session_key(i, k,X , s1, rec)
32: else
33: ski← calc_session_key(j, k, sj, rec)
34: end if
35: end if
36: end while
37: print ski
38: end procedure

Execute queries in A is at most qE +
qS + qJ + qL

2
. Thus,

AdvAKE
DRAG(t, qE , qJ , qL , qS )

≤ AdvKE
STUG(t

′, qE +
qJ + qL + qS

2
)+ |P|AdvDSig(t

′).

APPENDIX D PSEUDOCODE OF THE IMPLEMENTATION
See Pseudocode 1–9.
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