
Copyright c©2019 The Institute of Electronics,
Information and Communication Engineers

SCIS 2019 2019 Symposium on
Cryptography and Information Security

Shiga, Japan, Jan. 22 - 25, 2019
The Institute of Electronics,

Information and Communication Engineers

Generic Analysis of E-voting Protocols by Simplified Blockchain

Seunggeun Baek ∗ Nabi Lee ∗ Kwangjo Kim ∗

Abstract: Upon blockchain technology gains popularity, lots of attempts have been made to adopt
this into all ICT systems. One notable example is to apply blockchain to e-voting protocols. However,
careful analysis on the requirements and side effects should be scrutinized before the adoption of the
new technology. We analyze whether blockchain-based e-voting protocols still satisfy their security
requirements, by deriving generic transformations from blockchain-based e-voting protocols to classical
e-voting protocols, while preserving the knowledge set for the public. Compared to classical e-voting
protocols, we claim that blockchain-based e-voting protocols have generically weaker confidentiality
and generically stronger universal verifiability, judged by the point of our generic analysis.

Keywords: blockchain, e-voting

1 Introduction

Voting is said to be the foundation of democracy to
make consensus to solve conflicts efficiently in a group,
an organization, and a country, etc. Electronic voting
(e-voting) has a long history of research to provide elec-
tions with convenience and reliability. To fulfill such
demands, there have been several approaches over the
cyberspace to apply cryptographic tools or cutting edge
technology.

As blockchain technology emerges, voters expect that
data integrity in e-voting systems can be kept with
100% correctly by applying blockchain technology, which
can be useful to create persistant records that are ex-
tremely difficult to tamper with [19]. However, differ-
ent from cryptographic voting protocols, many blockchain-
based voting protocols [2, 8, 9, 10, 12, 15, 18, 21, 22] are
designed and implemented, sometimes without proper
care of the security requirements. In this paper, we
suggest simplified blockchain model for abstraction of
blockchain. Through the generic transformations un-
der simplified blockchain model, we demonstrate how
the adoption of blockchain affects the e-voting proto-
cols in the context of the requirements, deducing which
point the blockchain-based e-voting is strong or not.

Protocol Comparison We compare protocols in the
context of a given requirement as follows:

Definition 1. For a requirement r and sets of e-voting
protocols X and Y , X has generically stronger r com-
pared to Y (or, Y has generically weaker r compared
to Y) if ∀y ∈ Y , ∃x ∈ X such that if y satisfies r, x
satisfies r.

∗ Graduate School of Information Security, KAIST. 291, Daehak-
ro, Yuseong-gu, Daejeon, South Korea 34141. baek449, but-
terfly2, kkj @kaist.ac.kr

1.1 Our Contribution

Simplified Blockchain Model We constructed sim-
plified blockchain model to interpret blockchain in the
generic domain.

Generic Transformations We derive generic trans-
formations between blockchain-based e-voting proto-
cols and classical e-voting protocols, based on simplified
blockchain model.

Requirement Analysis From the generic transfor-
mations, we claim that transformed e-voting proto-
cols have generically weaker confidentiality and gener-
ically stronger universal verifiability compared to orig-
inal protocols.

1.2 Outline of the Paper

In Section 2, we recall previous approaches related to
this paper. In Sections 3 and 4, we introduce generic
voting phases and the simplified blockchain model, re-
spectively, which is the major tool we use to develop
generic arguments. In Sections 5 and 6, we provide
generic transformations between blockchain-based e-
voting protocols to public bulletin-board-based proto-
cols that preserve confidentiality and universal verifia-
bility requirements of e-voting, respectively. We pro-
vide some examples of transformation in Section 7.

2 Previous Approaches

The e-voting protocol is considered to be a set of au-
tomatic procedures in which ballots cast by voters are
stored and counted in the system. Classically, crypto-
graphic voting is the mainstream of the voting protocol
research, which mostly relies on various cryptographic
primitives. While cryptographic voting protocols con-
struct provable security to fulfill cryptographic require-
ments, blockchain-based protocols utilize the structure
of blockchain to ensure the integrity of the votes.

1

2.1 Cryptographic E-Voting Protocols

Chaum et al. [3] proposed Scantegrity voting proto-
col, which combines end-to-end (E2E) systems’ crypto-
graphic ideas with the familiarity of the current paper-
based system. The protocol thus provides security guar-
antees for E2E systems but is unobtrusive to voters.

Civitas [4] is the first e-voting protocol that is coercion-
resistant, universally and individually verifiable, and
suitable for remote voting. Civitas uses zero-knowledge
proof during key generation and decryption, achieving
provable security on the random oracle model.

Lee et al. [14] proposed a receipt-free mixnet-based
e-voting protocol by using the re-encryption technique
and designated verifier re-encryption proof (DVRP).

On the other side, researchers have studied to mit-
igate instances exploiting vulnerabilities of protocols.
Lee and Shahandashti [16] gave a survey of existing at-
tacks against E2E e-voting protocols such as protocols
based on Chaumian mix-nets and homomorphic mix-
nets [13], and so on. They reconfirmed that integrity
and privacy, especially coercion resistance are crucial
security requirements of e-voting systems.

2.2 Applications of E-voting

Cortier et al. [5] analyzed a voting system used for
electing political representatives and in citizen-driven
referenda in the Swiss canton of Neuchatel via ProVerif.
The authors showed that the Neuchatel protocol guar-
antees privacy and ensures cast-as-intended and recorded-
as-cast verifiability against dishonest voting servers.

This study is closely related to the analysis of the
Norwegian protocol [7], which was used in September
2011 and September 2013 for municipal and county
elections in Norway. Norwegian protocol focused on
ballot privacy by explaining general lemmas regarding
equivalence. Both papers are significant as they pro-
posed a formal analysis of protocols used in real world.

2.3 Blockchain-based Voting Protocols

Zhao and Chan [22] suggested a e-voting protocol in
2015, which is the first approach to combine e-voting
with blockchain, especially Bitcoin. As a deposit-based
protocol, they introduce a penalty scheme for dishonest
behavior of voters without a central authority(CA). In
the protocol, a masked vote for each voter is generated
via zero-knowledge proof. A transaction for the masked
vote is recorded on the blockchain, so that the winner is
guaranteed to receive the prize digitally and any nodes
deviating from the protocol will lose the deposit.

Lee et al. [15] proposed an blockchain based e-voting
protocol working on Bitcoin, which emphasizes the role
of a trusted third party between an authenticating CA
and a voter. Bistarelli et al. [2] presented an E2E
voting-system based on Bitcoin using anonymous Ker-
beros for identification and authentication. The au-
thors described a solution that is fully covered with the
current Bitcoin network using a permissioned blockchain.

McCorry et al. [18] proposed the implementation of a
decentralized and self-tallying internet voting protocol,

called Open Vote Network (OVN), tested on Ethereum
testnet with 40 simulated voters. Compared to previ-
ous blockchain e-voting protocols, OVN does not de-
pend on any trusted authority to count the tally and
consists of a decentralized two-round protocol designed
for supporting small-scale boardroom voting.

Hanifatunnisa and Rahardjo [9] proposed database
recording of voting results using blockchain. Record-
ing hash values of the voting results makes the voting
system more secure and reliable.

Hjalmarsson et al. [12] evaluated some of the popular
blockchain frameworks and proposed an e-voting sys-
tem using smart contracts on private blockchain. Ex-
onum, Quorum and Geth are smart contracts consid-
ered for implementing and deploying the system.

Hardwick et al. [10] proposed an e-voting scheme
based on blockchain technology to store cast ballots so
that the blockchain acts as a transparent ballot box.
Also, every voter is responsible for filtering fraudulent
votes because they can audit and verify cast ballots.

Dagher et al. [8] proposed a blockchain-based voting
system named BroncoVote. BroncoVote implements
a university-scaled voting framework using Ethereum
based on smart contract and cryptographic techniques
including homomorphic encryption.

Yu et al. [21] proposed a platform-independent vot-
ing system with smart contracts, making the protocol
independent on a CA for tallying and result announc-
ing. The authors employ Paillier homomorphic encryp-
tion [20] to count ballots without leaking candidate in-
formation. The protocol is simulated with 1 million
voters to evaluate scalability.

3 Voting Phases

A voting protocol involves many parties listed here.

• CA: Central authority

• RG: Registrars

• P : A set of entities (may include non-eligible en-
tities for voting)

• VE : A set of eligible voters

• VReg: A set of registered voters

• B: A storage of cast ballots, i.e. a ballot box

• T : A set of tallyers

Here, we define some generic voting phases using the
popular conventions as follows:

3.1 Registration Phase

The registration phase requires a CA (the holder of
VE), the registrars, and the target person who wants
to participate in the vote.

2

Algorithm 1 Generic Registration Phase

Input: CA, RG, p ∈ P
Output: tp or ⊥

1: x← data(p)
2: if (eligibilityCheck(CA, p, VE) = ⊥) then
3: return ⊥
4: end if
5: if (convince(CA,RG, p) = ⊥) then
6: return ⊥
7: end if
8: VReg ← VReg ∪ {p}
9: tp, x← makeToken(RG, p, x)

10: return tp, x

Line 3 in Algorithm 1 indicates the situation that
the CA rejects registration as p is not eligible. In this
case, p will formally claim to the CA if p ∈ VE actually
and p wants to vote. Meanwhile, in protocols which
CA = RG, convince(CA,CA, p) always return >.

If the convincing process is done without any prob-
lem, p is registered to VReg and an eligibility token tp is
issued for p. For privacy, many protocols import blind
signature schemes in data and makeToken.

3.2 Vote Casting Phase

The vote casting phase requires registered voters p
and a storage of submitted votes B. Voters make bal-
lots containing their selections and eligibility tokens be-
fore casting ballots to B.

Algorithm 2 Generic Vote Casting Phase

Input: B, p ∈ VReg, selectionp
Output: φ

1: b← makeBallotp(selectionp)
2: B ← B ∪ {b}
3: return

The integrity of B should be ensured during this pro-
cess, so that anyone should not be able to modify the
contents in B. The protocol may use a public B; B acts
as a public bulletin board. Later we will provide con-
versions from public blockchain-based voting protocols
to bulletin boards.

3.3 Tallying Phase

The tallying phase requires tallyers T as well as the
cast ballots B and the registered voters list VReg.

Algorithm 3 Generic Tallying Phase

Input: T , B, VReg

Output: result
1: triggerTallyP (T,B)
2: B′ ← prepareTally(T,B)
3: a← []
4: for b ∈ B′ do
5: a← count(a, b)
6: end for
7: return announce(T, P, a)

Some blockchain-based protocols, especially proto-
cols using self-tallying smart contracts, are designed so
that everyone can tally the ballots with transparency.
This means T is equal to P and announce(T, P, a) does
nothing as everyone already knows the result a.

4 Simplified Blockchain Model

Blockchain can be modelled as an append-only dis-
tributed ledger of which integrity is assured by consen-
sus algorithms among all participating nodes. In the
low-level of blockchain, node management determines
network and mining aspects of participating nodes. Con-
sensus algorithms such as Proof of Work(PoW), etc.
ensure that each participating node has a common shared
ledger.

These low-level aspects of blockchain are diverse ac-
cording to the concrete implementations, making no
significant functional abstractions for blockchain. There-
fore, we utilize the following simplified blockchain model
as a high-level generic abstraction of blockchain.

4.1 Simplified Blockchain as an Append-only
Storage

Blockchain commonly has two interactions with users.
A user may read the data recorded in the blockchain, or
append new data into the previous block of blockchain.

Definition 2. A simplified blockchain BC is defined
by

BC :=

RBC ⊂ R
readP : T → R ∪ {⊥}
appendP : R→ T ∪ {⊥} ,

(1)

where R is a set of records, P is a set of parties, T is
a set of tags, RBC indicates records possessed by the
simplified blockchain, read and append are the read
and append oracles.

Tags provide metadata of records; for example, the
block number is a kind of tags for records inside the
blocks. The read oracle read returns corresponding
record of the given tag, while the append oracle append
writes new record in the simplified blockchain.

In the case of private blockchain, read and append
oracles first check that the party triggered the oracle
has the suitable privilege, and return the failure sym-
bol ⊥ to deny the action. For public blockchain, read
returns ⊥ only when the tag is invalid.

Note that the simplified blockchain structure is sim-
ilar to the structure of bulletin board, which is defined
as below:

Definition 3. A bulletin board BB is defined by

BB ←

RBB ⊂ R
readP : T → R ∪ {⊥}
writeP : R→ T ∪ {⊥}
deleteP : T → {>,⊥} ,

(2)

3

while the rewriting oracle rewriteP : T,R → T ∪ {⊥}
can be implemented by the concatenation of delete and
write.

When a bulletin board is public so that any enti-
ties can read, the delete oracle does not have to exist.
The reason is, assuming no one forgets the knowledge
on the records he or she already possessed, the delete
oracle is only meaningful if an entity newly acquires
read permission on the bulletin board. Now the set-
ting is identical with the high-level view of simplified
blockchain; this is why we can replace a bulletin board
readable by the public managed by a honest CA into a
public simplified blockchain, and vice versa. Such no-
tions of public bulltin board have been used for crypto-
graphic e-voting constructions, like the notion proposed
by Hauser and Haenni [11] using Get and Post instead
of read and write.

Depending on the writing privilege, a public bulletin
board writeable by the public or some specific entities
can be replaced by a permissionless blockchain or a
permissioned blockchain, respectively.

4.2 Simplified Blockchain as a Smart Contract
Platform

Blockchain is often used as a platform uploading and
executing smart contracts. For the sake of simplicity,
one may distinguish smart contract instructions from
the other records written in the blockchain.

Definition 4. A simplified blockchain with smart con-
tract BC ′ is defined by

BC ′ :=

RBC′ ⊂ R
contract ⊂ R
readP : T → R ∪ {⊥}
appendP : R→ T ∪ {⊥} ,

(3)

where contract is a sequence of instructions.

Common smart contract based e-voting protocols in-
clude self-tallying protocols and deposit-based proto-
cols. Self-tallying protocols perform tallies on the pub-
lic space without dedicated tallyers. Deposit-based pro-
tocols require voters cryptocurrency deposits in order
to ensure honest behavior.

4.3 Record-independence

For the protocols using the capabilities of blockchain
structure, we define record-independence of a blockchain-
based protocol V in simplified blockchain model.

Definition 5. A protocol V over blockchain BC with
records Rinit at the start of the protocol is record-
independent if ∀p ∈ P, t ∈ tags(Rinit), V does not
execute read(p, t).

Informally, a protocol V is record-independent if all
aspects in V do not have dependency on the state of
blockchain written prior to the initiation of the proto-
col. Deposit-based e-voting protocols are not record-
independent since they should query cryptocurrency

balances of the voters, executing read on past trans-
actions of the voters.

5 Confidentiality Requirements

Confidentiality requirements are constraints on a set
of knowledge of each participating parties of the voting
protocol, for the sake of our simplicity in the paper.
Confidentiality requirements include, but are not lim-
ited to, following specific requirements.

Privacy An adversary should not be able to guess
which entity the voters voted, in more advantage than
guessing with the final results only. To break the re-
quirement, the adversary uses the public records and
the private knowledge which the adversary holds.

Coercion Resistance Voters should not be able to
prove which votes they cast to any other entity. This
is crucial to prevent vote coercion and vote buying.
Receipt-freeness is one of the properties required to
achieve coercion resistance. To break the requirement,
the adversary uses public records, the private knowl-
edge the adversary holds, and the knowledge of the
victim voter.

Intuitively, operations on records either on a pub-
lic bulletin board or public blockchain do not affect
the private knowledge of each party. Knowledge of
public parties on the records seems identical regard-
less of whether bulletin boards or blockchains are used.
Therefore, we can predict no confidentiality difference
in both protocols.

5.1 Record-dependent Protocols

We first assert that blockchain-based protocols which
are not record-independent might be vulnerable them-
selves against the confidentiality requirements. This is
because the dependencies to the past records of blockchain
becomes side knowledge of an adversary which may in-
fringe the confidentiality of voting.

For example, consider a deposit-based e-voting pro-
tocol that requires some cryptocurrency in the balance
for every voter. Voters would already have done some
transactions to own cryptocurrency to participate in
the vote, and these records can be accessed by the
public. Any entities who had transactions with victim
voters before, such as the exchange markets, may be-
come adversaries who relate the voting account to the
real identity of the victim. Recent technologies such as
transaction graph analysis can bypass defensive miti-
gations such as cryptocurrency laundry to some extent.

5.2 Generic Transformations

To claim that blockchain-based e-voting protocols
have no confidentiality advantage over normal e-voting
protocols, we suggest generic compilers that transform
record-independent blockchain-based voting protocols
into classical e-voting protocols, under our simplified
blockchain model.

4

Simplified Blockchain without Smart Contract
Algorithm 4 describes how to make a public bul-
letin board based e-voting protocol using a simplified
blockchain-based protocol invoking read and append
oracles.

Algorithm 4 Conversion from Simplified Blockchain

Input: V (readp(t), appendp(r))
Output: A public bulletin board based protocol

1: BB ←

RBB = φ

read′P : T → R ∪ {⊥}
writeP : R→ T ∪ {⊥}
deleteP : T → {>,⊥}

2: return V (read′p(t), writep(r))

This conversion is simple; one may establish a pub-
lic bulletin board and replace read and append oracle
invocations into the read and write functions, respec-
tively.

Simplified Blockchain with Smart Contract

Definition 6. An emulator EBB(c) of a smart contract
c on a bulletin board BB is a virtual entity which exe-
cutes instructions corresponding to each smart contract
function upon request.

The emulators are executed by the manager of the
bulletin board, typically the CA. For each instruction
i in a smart contract c, EBB(c) on a public bulletin
board BB may convert the instructions in Table 1.

Algorithm 5 describes how to transfer each func-
tion from the layer of smart contract into the layer of
the CA’s protocol emulations. The resulting bulletin
board should store the initial state of the contract, and
each element of the smart contract becomes a corre-
sponding emulator call in the protocol emulations.

In order to perform conversion, the emulator should
be able to simulate most of the operations of smart
contracts on the instruction level. The only exception
is to allow the access to the environment dependent
on the blockchain state before the protocol starts, as
the execution of the protocol should be independent
to the previous state of the blockchain. For instance,
cryptocurrency balance is one such record; balance cal-
culation and value transfer are the affected operations.
From the record-independence of a protocol, we can
safely predict that such operations will not occur in
smart contracts to be successfully emulated.

Through these transformations, one can generically
derive classical e-voting protocols using record-independent
protocols in simplified blockchain model. For protocols
that are record-dependent, we already have pessimistic
predictions for the confidentiality of such protocols.
Therefore, we claim that “confidentiality of blockchain-
based e-voting is generically weaker than confidentiality
of classical e-voting protocols, in the simplified blockchain
model.”

Algorithm 5 Conversion of Smart Contracts

Input: V (readp(t), appendp(r), contract)
Output: A public bulletin board based protocol, with

additional actions for public

1: BB ←

RBB = contract.initialState

read′P : T → R ∪ {⊥}
writeP : R→ T ∪ {⊥}
deleteP : T → {>,⊥}

2: for contract function f in contract do
3: f ′ ← EBB(contract).f .
4: BB.writep(Complete description of f ′)
5: Replace each call of f in V into:
6: Procedure {
7: p requests CA to trigger f ′.
8: BB.writeCA(f ′||p)
9: BB.writeCA(State of EBB(contract))

10: result← f ′()
11: if result = ⊥ then
12: BB.writeCA(“Failure”)
13: else
14: BB.writeCA(State of EBB(contract))
15: end if
16: }
17: end for
18: return V (read′p(t), writep(r))

The public bulletin board, which is produced after
the transformation, may require honesty of the CA as
the manager. Corruption of the CA does not degrade
the confidentiality, since modification and deletion of
records posted on the bulletin board only drops the
amount of knowledge of each parties on the records. A
malicious CA may post some personal knowledge; the
CA is also capable of posting the same knowledge even
on blockchain-based voting protocols.

6 Verifiability Requirements

6.1 Universal Verifiability

Universal Verifiability states that an outsider should
be able to verify whether the final result is derived from
public voting records. Universal verification is done by
the public, using public records including ballots cast
by voters. As a necessary condition, public data should
not be modified by the attackers to ensure universal
verifiability. We cannot simply make transformations
from blockchain to non-blockchain protocols just like
prior arguments, because they introduce additional as-
sumptions on the honesty of the CA who manages the
bulletin board. Obviously, a malicious CA breaking
this assumption may degrade the integrity significantly.
From the perspective of blockchain as a decentralized
public bulletin board, the following ‘inverse’ transfor-
mation safely removes the CA managing the bulletin
board who might be adversarial.

5

Table 1: Construction of emulator EBB

Smart Contract Instructions Emulator’s Instructions
Arithmatic and logic operations No modifications

Control flow No modifications

Stack, memory, and storage instructions
Converted to invocation of BB’s oracles,

while maintaining storage in BB
Block information query Conversion to read oracles in BB

Environmental instructions (Unused in record-independent protocols)
Use of Public Keys Mapped into corresponding entities

Algorithm 6 Conversion to Simplified Blockchain

Input: V (readp(t), writep(r), deletep(t))
Output: A blockchain based protocol

1: BC ←

RBC = φ

read′P : T → R ∪ {⊥}
appendP : R→ T ∪ {⊥}

2: b(t)← (t = ⊥)?⊥ : >
3: delp(t)← b(appendp(invalidate(readp(t))))
4: return V (read′p(t), appendp(r), delp(t))

Therefore, one may conclude that the universal veri-
fiability of blockchain-based e-voting protocols is gener-
ically stronger than classical e-voting protocols.

6.2 Individual Verifiability

Individual verifiability states that a voter should be
able to verify whether his/her ballot is correctly in-
cluded in tallying procedures. Individual verification is
done by the voters, using both public records and their
private knowledge.

Cortier and Lallemand [6] show that privacy implies
individual verifiability for piecewise-tallying e-voting
protocols. As the authors claim that piecewise-tallying
“is satisfied by most voting schemes”, one may pre-
dict that individual verifiability of blockchain-based e-
voting protocols is generically weaker than classical e-
voting protocols.

7 Practical Transformations

7.1 Blockchain as an Append-only Storage

Liu and Wang’s protocol [17] involves a voter Alice,
a vote organizer Bob, and an inspector Carol. The
protocol utilizes a blind signature scheme {C, S′, C ′}
satisfying S′B(m) = C ′A(S′B(CB(m))) for all message m
and parties A and B, to ensure validity of ballots. The
protocol treats blockchain as a ballot box, as well as
a storage for public communications. Ballot casting is
done by anonymous blockchain accounts to ensure pri-
vacy, while communications in ballot preparation are
done real-name for eligibility verification.

Algorithm 2 can be applied to let Alice cast her
vote, using BC and Alice as B and i in the algorithm.
The statement B ← B ∪ {b} can be implemented by
BC.appendAnonymous(b).

Algorithm 7 makeBallotAlice(selectionAlice)

Input: selectionAlice

Output: Ballot to cast
1: Create a vote string V with selectionAlice.
2: hV ← hash(V)
3: t← BC.appendAlice(hV , CAlice(hV))
4: Alice notifies t to Bob and Carol
5: tBob ← BC.appendBob(S

′
Bob(BC.readBob(t)))

6: tCarol ← BC.appendCarol(S
′
Carol(BC.readCarol(t)))

7: Bob and Carol notify tBob and tCarol to Alice.
8: sBob ← C ′Alice(BC.readAlice(tBob))
9: sCarol ← C ′Alice(BC.readAlice(tCarol))

10: return V ||sBob||sCarol

Algorithm 8 makeBallot′Alice(selectionAlice)

Input: selectionAlice

Output: Ballot to cast
1: Create a vote string V with selectionAlice.
2: hV ← hash(V)
3: t← BB.writeAlice(hV , CAlice(hV))
4: Alice notifies t to Bob and Carol
5: tBob ← BB.writeBob(S

′
Bob(BB.read

′
Bob(t)))

6: tCarol ← BB.writeCarol(S
′
Carol(BB.read

′
Carol(t)))

7: Bob and Carol notify tBob and tCarol to Alice.
8: sBob ← C ′Alice(BB.read

′
Alice(tBob))

9: sCarol ← C ′Alice(BB.read
′
Alice(tCarol))

10: return V ||sBob||sCarol

Upon application of the generic transformation in
Algorithm 4, BC is replaced to a public bulletin
board BB, transforming the protocol into Algorithm
8. We can assume that BB is managed by either Bob
or Carol. The statement B ← B ∪ {b} in Algorithm
2 can be implemented by BB.writeAnonymous(b).

7.2 Smart Contract-based Protocols

A protocol by Hjalmarsson et al. [12] implements the
functionalities of e-voting in smart contract form. This
protocol is record-independent as the contracts create
storages and any contract functions read or modify the
contents inside the storage. Therefore, the protocol
would be successfully converted through this generic
transformation.

This protocol stores voter lists in a Boolean array
voters, and candidate information in a structure ar-

6

ray candidates. For instance, ballot casting in this
protocol is done as follows:

function vote(uint candidate) public{
require(!voters[msg.sender]);

if(now >

candidates[candidate].expirationDate){
revert();

}
candidates[candidate].voteCount += 1;

voters[msg.sender] = true;

}
Note that voters request the contract function vote in-
crement partial tally of the candidate to vote, stored
in candidates[candidate].voteCount.

Through the transformation, each invocation of vote
by p will be converted using Algorithm 9 under glob-
ally defined emulator of vote and the storage tags
t1, t2, and t3 described in Algorithm 10.

Algorithm 9 Conversion of vote(candidate)

1: p requests CA to trigger vote.
2: BB.writeCA(vote||p)
3: BB.writeCA(“Before call:” ||BB.readCA(t1)
4: ||BB.readCA(t2)||BB.readCA(t3))
5: result← EBB(contract).vote(candidate)
6: if result = ⊥ then
7: BB.writeCA(“Failure”)
8: else
9: BB.writeCA(“After call:” ||BB.readCA(t1)

10: ||BB.readCA(t2)||BB.readCA(t3))
11: end if

Algorithm 10 Emulator of vote(candidate)

1: t1← tag(voters[p])
2: t2← tag(candidates[candidate].expirationDate)
3: t3← tag(candidates[candidate].voteCount)
4: EBB .vote← function (candidate){
5: if BB.read′CA(t1) then
6: return ⊥
7: end if
8: expire← BB.read′CA(t2)
9: if now() > expire then

10: return ⊥
11: end if
12: ct← BB.read′CA(t3) + 1
13: BB.rewriteCA(t3, ct)
14: BB.rewriteCA(t1, true)
15: return >
16: }

8 Discussion

8.1 General Requirements

We have compared confidentiality and verifiability,
which are the two key security requirements for e-voting,
to analyze benefits and inferior points of blockchain
usage in e-voting. However, more requirements of e-
voting exist which are rather non-cryptographic. As

the generic transformations do not give reasonable com-
parisons to non-cryptographic requirements, we qual-
itatively compare the requirements according to the
properties of blockchain.

We expect blockchain can enhance availability of e-
voting protocols, since a centralized e-voting system
has a single point of failure, the central server. Fault-
tolerance is one of the strong points of distributed sys-
tems such as blockchain. Unless large-scale attacks on
blockchain are deployed such as Apostolaki et al.’s par-
titioning attack [1], one can argue higher availability
over centralized configuration without blockchain.

Usability is the willingness of users to use a system
or not. Regardless of whether blockchain is used, us-
ability is one of the inherent problems of e-voting, cre-
ating discrimination by technology access. Scalability
is another common problem of e-voting as experimen-
tal evidences are not enough to host large-scale voting,
though some protocols claim scalability up to millions
of voters.

Different types of voting are used in different cir-
cumstances. This leads to a different priority of the
requirements for the choice of appropriate protocol in
a particular situation. For example, boardroom voting
revealing choices of voters can be done with less confi-
dentiality, while strong confidentiality is important for
presidential elections.

8.2 Future Works

The construction of the emulator on the bulletin
board should be more precisely defined with real-world
smart contract instructions such as EVM bytecodes.
We also leave quantitative estimation or comparison of
non-cryptographic requirements for future work.

Eliminating the possibilities of the Sybil attack by a
CA during the registration phase is one of the obsta-
cles e-voting protocols must overcome. One may imag-
ine some configurations which may prevent the Sybil
attack, such as a situation in which the CA should
convince representatives of all advocate parties of the
selections in the registration phase, to correctly regis-
ter people. However, this attack is out of scope in this
paper.

9 Conclusion

Based on the generic transformations on the simpli-
fied blockchain model, we demonstrate how the adop-
tion of blockchain affects the requirements of e-voting
protocols. One can make a classical e-voting protocol
having equivalent confidentiality using a protocol with
blockchain, meaning that blockchain-based e-voting pro-
tocols have generically weaker universal verifiability than
classical protocols. One can create an e-voting protocol
having equivalent universal verifiability using a classi-
cal e-voting protocol, meaning that blockchain-based
e-voting protocols have generically stronger universal
verifiability than classical protocols.

7

Acknowledgement

This work was partly supported by Institute for In-
formation & communications Technology Promotion
(IITP) grant funded by the Korea government (MSIT)
(No. 2017-0-00555, Towards Provable-secure Multi-
party Authenticated Key Exchange Protocol based on
Lattices in a Quantum World).

References

[1] Maria Apostolaki, Aviv Zohar, and Laurent Van-
bever. Hijacking bitcoin: Routing attacks on cryp-
tocurrencies. In Security and Privacy (SP), 2017
IEEE Symposium on, pages 375–392. IEEE, 2017.

[2] Stefano Bistarelli, Marco Mantilacci, Paolo San-
tancini, and Francesco Santini. An end-to-end
voting-system based on Bitcoin. In Proceedings
of the Symposium on Applied Computing, pages
1836–1841. ACM, 2017.

[3] David Chaum, Aleks Essex, Richard Carback,
Jeremy Clark, Stefan Popoveniuc, Alan Sherman,
and Poorvi Vora. Scantegrity: End-to-end voter-
verifiable optical-scan voting. IEEE Security &
Privacy, 6(3), 2008.

[4] Michael R Clarkson, Stephen Chong, and An-
drew C Myers. Civitas: Toward a secure voting
system. In Security and Privacy, 2008. SP 2008.
IEEE Symposium on, pages 354–368. IEEE, 2008.

[5] Véronique Cortier, David Galindo, and Mathieu
Turuani. A formal analysis of the Neuchâtel e-
voting protocol. In 2018 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pages
430–442. IEEE, 2018.

[6] Véronique Cortier and Joseph Lallemand. Voting:
You Can’t Have Privacy without Individual Veri-
fiability. PhD thesis, CNRS, Inria, LORIA, 2018.

[7] Véronique Cortier and Cyrille Wiedling. A for-
mal analysis of the Norwegian e-voting protocol.
Journal of Computer Security, 25(1):21–57, 2017.

[8] Gaby G Dagher, Praneeth Babu Marella, Matea
Milojkovic, and Jordan Mohler. BroncoVote: Se-
cure voting system using Ethereum’s blockchain.
2018.

[9] Rifa Hanifatunnisa and Budi Rahardjo.
Blockchain based e-voting recording system
design. In Telecommunication Systems Services
and Applications (TSSA), 2017 11th International
Conference on, pages 1–6. IEEE, 2017.

[10] Freya Sheer Hardwick, Raja Naeem Akram,
and Konstantinos Markantonakis. E-voting with
blockchain: An e-voting protocol with decen-
tralisation and voter privacy. arXiv preprint
arXiv:1805.10258, 2018.

[11] Severin Hauser and Rolf Haenni. A generic inter-
face for the public bulletin board used in UniV-
ote. In E-Democracy and Open Government (Ce-
DEM), Conference for, pages 49–56. IEEE, 2016.

[12] Friorik P Hjalmarsson, Gunnlaugur K Hreioars-
son, Mohammad Hamdaqa, and Gisli Hjalmtys-
son. Blockchain-based e-voting system. In 2018
IEEE 11th International Conference on Cloud
Computing (CLOUD), pages 983–986. IEEE,
2018.

[13] Shahram Khazaei, Björn Terelius, and Douglas
Wikström. Cryptanalysis of a universally verifi-
able efficient re-encryption mixnet. IACR Cryp-
tology ePrint Archive, 2012:100, 2012.

[14] Byoungcheon Lee, Colin Boyd, Ed Dawson,
Kwangjo Kim, Jeongmo Yang, and Seungjae Yoo.
Providing receipt-freeness in mixnet-based voting
protocols. In International Conference on Infor-
mation Security and Cryptology, pages 245–258.
Springer, 2003.

[15] Kibin Lee, Joshua I James, Tekachew G Ejeta,
and Hyoung J Kim. Electronic voting service using
block-chain. Journal of Digital Forensics, Security
and Law, 11(2):8, 2016.

[16] Peter Hyun-Jeen Lee and Siamak F Shahandashti.
Theoretical attacks on e2e voting systems. Real-
World Electronic Voting: Design, Analysis and
Deployment, page 219, 2016.

[17] Yi Liu and Qi Wang. An e-voting protocol based
on blockchain. IACR Cryptol. ePrint Arch., Santa
Barbara, CA, USA, Tech. Rep, 1043:2017, 2017.

[18] Patrick McCorry, Siamak F Shahandashti, and
Feng Hao. A smart contract for boardroom vot-
ing with maximum voter privacy. In International
Conference on Financial Cryptography and Data
Security, pages 357–375. Springer, 2017.

[19] Mike Orcutt. Why security experts hate that
blockchain voting will be used in the midterm elec-
tions, 2018. Accessed on Oct 11, 2018.

[20] Pascal Paillier. Public-key cryptosystems based
on composite degree residuosity classes. In Inter-
national Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 223–238.
Springer, 1999.

[21] Bin Yu, Joseph K Liu, Amin Sakzad, Surya
Nepal, Ron Steinfeld, Paul Rimba, and Man Ho
Au. Platform-independent secure blockchain-
based voting system. In International Conference
on Information Security, pages 369–386. Springer,
2018.

[22] Zhichao Zhao and T-H Hubert Chan. How to vote
privately using Bitcoin. In International Confer-
ence on Information and Communications Secu-
rity, pages 82–96. Springer, 2015.

8

