
Copyright c©2019 The Institute of Electronics,
Information and Communication Engineers

SCIS 2019 2019 Symposium on
Cryptography and Information Security

Shiga, Japan, Jan. 22 - 25, 2019
The Institute of Electronics,

Information and Communication Engineers

DHL: Dynamic Key Exchange from
Homomorphic Encryption based on Lattice

Rakyong Choi ∗ Kwangjo Kim ∗

Abstract: Group key exchange protocol produces a common secret key between n parties for secure
(group) communication in insecure channel over the internet. In ProvSec Workshop 2018, Choi and
Kim designed a novel multi-party key exchange protocol with homomorphic encryption in static setting.
In this paper, we discuss the limitation of their scheme and extend this protocol to dynamic setting for
managing group membership issue in terms of graph theory. We use the similar graph structure from
Kim et al.’s key management solution called Tree-based Group Diffie-Hellman (TGDH,) for necessary
algorithms providing dynamic key exchange from homomorphic encryption based on lattice problems.

Keywords: Key Exchange, Homomorphic Encryption, Dynamic Key Exchange, Tree-based Group
Key Exchange

1 Introduction

1.1 Background and Motivation

Communication between two parties over an insecure
channel requires a key exchange protocol to prevent any
attacks to read transmitted messages, including unau-
thorized access, accidental disclosure of the informa-
tion, etc. For secure transmission, a message should
be encrypted by an encryption key and sent from one
party to another. A challenge for this is how to share
the key between two parties securely. To solve this, we
must use key exchange protocols which identifies each
party to another, create and distribute the key among
them securely.

On the other hand, homomorphic encryption (HE)
supports some computation on encrypted data with-
out decryption key. After Gentry’s breakthrough pa-
per [1] in 2009, there are a number of research on HE
schemes based on lattices with Learning With Errors
(LWE) and Ring Learning With Errors (Ring-LWE)
problems [2–5] and schemes over integers with approx-
imate Greatest Common Divisor (GCD) problem [6,7].
HE is applicable to various areas using outsourcing
computation such as machine learning methods for en-
crypted data [8, 9] or two-party key exchange proto-
col [10].

In this paper, we suggest a generic approach to con-
struct a dynamic key exchange protocol from rich cryp-
tographic ingredients and give a post-quantum instan-
tiation.

1.2 Outline of the Paper

The rest of this paper is structured as follows: We
give the history of group key exchange protocol in Chap-

∗ School of Computing, KAIST. 291, Daehak-ro, Yuseong-gu,
Daejeon, South Korea 34141. {thepride, kkj}@kaist.ac.kr

ter 2. We give the definition of homomorphic encryp-
tion and basic operations from graph theory in Chap-
ter 3. In Chapters 4 and 5, we construct a multi-party
key exchange protocol in static and dynamic settings,
respectively. Then, Chapter 6 gives an instantiation
from HE based on lattice. In Chapter 7, we com-
pare our instantiation with previous quantum-resistant
multi-party key exchange protocols like Ding et al.’s
protocol [11], Boneh et al.’s protocol [12], and Choi
and Kim’s protocol [13]. Finally, we give a concluding
remark in Chapter 8.

2 Previous Work

2.1 Lattice-based Key Exchange

In 2012, Ding et al. [11] proposed the first lattice-
based key exchange protocol and Peikert [14] gave its
tweak which is efficient and more suitable as “drop-
in” replacement for current Internet standards. Bos
et al. [15] implemented the lattice-based key exchange
protocol in TLS protocol and NewHope protocol [16]
improved the performance of Bos et al.’s protocol [15]
with higher security level. Frodo protocol [17] was sug-
gested to remove the ring structure to reduce the possi-
ble risk in the hardness of the problem with more struc-
ture. The former practical protocols were designed in
the ring structure but Frodo was designed to rely its
security on the hardness of LWE problem without ring
structure.

Zhang et al. [18] designed the first authenticated key
exchange based on lattice similar to the well-known
HMQV protocol [19]. Kyber protocol [20] is yet an-
other authenticated key exchange protocol recently pro-
posed by Bos et al. This protocol is based on a vari-
ant of LWE problem called Module-LWE to enhance
the performance and they prove the security with the

1

Quantum-accessible Random Oracle Model (QaROM)
instead of classical Random Oracle Model (ROM).

Beyond these, there are many submissions on lattice-
based key exchange for NIST post quantum cryptogra-
phy standards.

2.2 Group Key Exchange

A group key exchange (GKE) protocol is a key ex-
change protocol in which a shared secret is derived from
n parties as a function of the information contributed
by each party. In 1996, Steiner et al. [21] extended
two-party Diffie-Hellman key exchange to group com-
munications with three natural multi-party cases. The
protocol has no a priori ordering of group members
and no synchronization as well. Then, they proposed a
protocol that considers the problem of key agreement
in a group setting with highly-dynamic group member
population [22]. It supports dynamic group operations
like adding and deleting group members. They con-
sider two types of GKE protocols as centralized one
and contributory one.

Kim et al. [23] proposed Tree-based Group Diffie-
Hellman (TGDH) key management solution by blend-
ing binary key trees with Diffie-Hellman key exchange
[24]. There are five initial operations: join, leave, merge,
partition, and key refresh. This protocol is dynamic
and guarantees group key secrecy, forward/backward
secrecy, fault-tolerance, and key independence under
passive adversary.

Krendelev and Kuzmin [10] recently proposed a two-
party key exchange protocol based on HE and recently,
Choi and Kim [13] proposed a multi-party key exchange
protocol based on HE with the graph structure.

For quantum-resistant multi-party key exchange pro-
tocols, Ding et al. [11] constructed the lattice-based
interactive multi-party GKE protocol and Boneh et
al. [12] showed how to use a cryptographic invariant
map to construct a non-interactive key exchange pro-
tocol in which n parties create a common secret key
without any interaction among the n parties. Then,
they constructed the multi-party non-interactive key
exchange protocol with cryptographic invariant maps
from isogenies. But, to the best of our knowledge,
there exists no dynamic key exchange protocol with
quantum-resistance.

3 Preliminaries

3.1 Notation

We denote vertices as italic small letters with tilde
(e.g., ũ, ṽ) and an edge between ũ and ṽ as ẽũ,ṽ = (ũ, ṽ).
The set of vertices and the set of edges are denoted as

Ṽ and Ẽ, respectively. Then, a graph G̃ =
(
Ṽ , Ẽ

)
is

a collection of vertices and edges. We say a vertex ũ is
incident to an edge e if ũ ∈ e.

We denote vectors as bold small letters (e.g., x, y)
and matrices as bold capital letters (e.g., A, B). Let
R and Z express the set of real numbers and the set

of integers, respectively and italic letters express real
numbers (e.g., a, b, c).

For any integer q ≥ 2, Zq denotes the ring of integers
modulo q and Zn×mq denotes the set of n×m matrices
with entries in Zq.

Let f(a, b) be a function f on a and b. We say a
function f : Z→ R+ is negligible when f = O(n−c) for
all c > 0 and denoted by negl(n). A function g(m) =
bmc is the floor function from R to Z such that g(m)
is the largest integer which is smaller than or equal to
m.

3.2 Homomorphic Encryption

In 1978, Rivest et al. [25] suggested the concept of
homomorphic encryption that supports some compu-
tation on encrypted data without the knowledge of the
secret key. A homomorphic encryption scheme is de-
fined as follows:

Definition 1. (homomorphic encryption) A homomor-
phic encryption scheme HE is a tuple of PPT algo-
rithms HE = (HE.Gen, HE.Enc, HE.Eval, HE.Dec) with
the following functionality:

HE.Gen(n, α) :
Given the security parameter n and an auxil-
iary input α, this algorithm outputs a key triple
(pk, sk, evk), where pk is the key used for encryp-
tion, sk is the key used for decryption and evk is
the key used for evaluation.

HE.Enc(pk,m) :
Given a public key pk and a message m, this al-
gorithm outputs a ciphertext c of the message m.

HE.Eval(evk, C, c1, · · · , cn) :
Given an evaluation key evk, a Boolean circuit
C, and pairs {ci}ni=1 where ci is either a cipher-
text or previous evaluation results, this algorithm
produces an evaluation output.

HE.Dec(sk, c) :
Given a secret key sk and a ciphertext or an eval-
uation output c, this algorithm outputs a message
m.

Depending on what kind of Boolean circuit the scheme
supports, we call an encryption scheme as multiplica-
tive (resp. additive) HE if it only supports multiplica-
tion (resp. addition).

Early work on HE was not practical but there are
many cryptographic algorithm tools that support HE
efficiently such as HElib, FHEW [26,27].

3.3 Basic Operations from Graph Theory

We define a graph G̃ as a pair of the set of vertices
Ṽ = {ṽ1, ṽ2, · · · , ṽn} and the set of edges Ẽ between
two vertices. Among many terminologies in graph the-
ory, we use vertex/edge addition, vertex/edge deletion,
and edge contraction. Since the process of vertex/edge
addition and vertex/edge deletion operations is clear,

2

we give a definition of edge contraction and graph mi-
nor.

Definition 2. (edge contraction) Let G̃ =
(
Ṽ , Ẽ

)
be

a graph containing an edge ẽ = (ũ, ṽ) with ũ 6= ṽ. Let
f be a function which maps every vertex in Ṽ \{ũ, ṽ} to
itself, and maps ũ and ṽ to a new vertex w̃. The edge

contraction of e makes a new graph G′ =
(
Ṽ ′, Ẽ′

)
,

where Ṽ ′ =
(
Ṽ \ {ũ, ṽ}

)
∪ w̃, Ẽ′ = Ẽ∪ ẽ, and for every

ṽ ∈ Ṽ , x̃′ = f(x̃) ∈ Ṽ is incident to an edge ẽ′ ∈ Ẽ if
and only if, the corresponding edge, ẽ ∈ Ẽ is incident
to x̃ in G̃.

Definition 3. (graph minor) Let G̃ =
(
ṼG, ẼG

)
and

H̃ =
(
ṼH , ẼH

)
be a graph. If H̃ can be formed from

G̃ by deleting vertices/edges and contracting edges, we
say that H̃ is called a minor of G̃.

We use these terms for membership addition and re-
vocation in dynamic setting.

4 Our Construction: Static Setting

4.1 Protocol in the Literature: HE-KE

In Figure 1, we state a methodology to build a (non-
interactive) multi-party key exchange protocol fro HE
by Choi and Kim [13] (HE-KE protocol). All parties
pre-share the master secret key sk from HE.Gen algo-
rithm of HE scheme HE . A circuit C can be public in
this protocol.

Assuming that the server is honest but curious, HE-
KE protocol runs as follows.

Figure 1: HE-KE protocol

Step 1. Each party pre-shares the master group key
sk ← HE.Gen(n, α) with each other.

Step 2. Make the Boolean circuit C with g leaf nodes.

Step 3. Each party makes ephemeral session key ki
and encrypts it with its public key pki, ci =
HE.Enc (pki, ki). (1 from Figure 1.)

Step 4. The server computes c = HE.Eval(evk, C, c1,
· · · , cg) with the Boolean circuit C and broad-
casts c. (2 and 3 from Figure 1, respectively.)

Step 5. Each party decrypts the evaluated value c and
get the session group key k = HE.Dec(sk, c).

Lemma 1. [13] If underlying homomorphic encryp-
tion HE is secure, HE-KE protocol is also secure, i.e.,
it satisfies session key security, known key security, and
key privacy.

4.2 System Model and Security Requirement

HE-KE protocol [13] suggests non-interactive prop-
erty by pre-sharing the master group key between each
party. But, in this protocol, the way each party pre-
shares the master secret key is unclear. Even more,
since there is no key refresh algorithm, we should as-
sume that the former group member is trustful so that
the adversary A doesn’t get the master secret key.

To resolve this, we assume that the server is fully
trustful so that the server distributes the ephemeral
key as well as the evaluated value of session group key
to each party for each membership event (e.g., join,
leave, merge, or partition). Compared to HE-KE pro-
tocol [13], the former group member cannot compute
the session group key in our protocol.

We assume that the adversary A can (i) send mes-
sages to some party, (ii) run the protocol to get the
appropriate session group key, and (iii) get some infor-
mation from a previous group member like the former
session group keys.

To check the security of our dynamic key exchange
protocol, one of the most important security require-
ments is key freshness. A key is called fresh if the
generated key is guaranteed to be new to prevent an
old key being reused by an adversary. To guarantee
key freshness, we have to prove the following security
requirements:

1. Group Key Secrecy
If all group members in the protocol are not cor-
rupted, it is computationally infeasible for a pas-
sive adversary to discover any session group key.

2. Forward Secrecy
Even after a passive adversary A has acquired
some session group keys, new session group keys
must remain out of reach of the adversary and
former group members.

3. Backward Secrecy
Even after a passive adversary A has acquired
some session group key, previously used session
group keys must not be discovered by the adver-
sary and new group members.

4. Key Independence
A passive adversary who knows a proper subset
of session group keys cannot discover any other
session group keys.

3

4.3 Parcel-S Protocol

In Figure 2, we give a methodology to build a GKE
protocol from HE called Parcel-S for static setting and
Parcel-D for dynamic setting, which supports the mem-
bership events. As discussed earlier, the server deliv-
ers the ephemeral key to all group members to provide
forward and backward secrecy. Then, the server broad-
casts the evaluated value of ciphertexts from group
members and the Boolean circuit C. Assume that we
have either XOR or AND operation in C.

All group members pre-share the master secret key
sk from HE.Gen algorithm of HE scheme HE . A circuit
C can be public in this protocol.

Under this condition, Parcel-S protocol runs as fol-
lows.

Figure 2: Parcel-S protocol

Step 1. Each party pre-shares the master group key
sk ← HE.Gen(n, α) with each other and the server
runs two-party key exchange protocol T KE with
each party to make the long-term secret keymski.
(1 from Figure 3.)

Step 2. Make the Boolean circuit C with g leaf nodes.

Step 3. Each party makes ephemeral session key ki
and encrypts it with its public key pki, ci =
HE.Enc (pki, ki). (2 from Figure 3.)

Step 4. The server computes c = HE.Eval(evk, C, c1,
· · · , cg) with the Boolean circuit C and broad-
casts c. (3 and 4 from Figure 3, respectively.)

Step 5. The server sends the ephemeral key epk to
each party encrypted by encryption scheme SKE
with secret key mski.

Step 6. Each group member decrypts the evaluated
value c and the ephemeral key epk. Then, each
group member gets the proper session group key
k = HE.Dec(sk, c)⊕ epk.

4.4 Security Analysis

In this section, we show the correctness and security
requirements given in the previous section.

Theorem 1. If underlying homomorphic encryption
scheme HE is valid, Parcel-S protocol is correct, i.e., it
outputs the valid session group key for each session.

Proof. In Step 4, the server can compute the evaluated
value c if HE is valid and HE.Eval(evk, C, c1, · · · , cg)
is well-defined. Then, each party can get the same
value from XOR operation between decryption of c and
ephemeral key epk.

Theorem 2. If underlying homomorphic encryption
scheme HE and two-party key exchange protocol T KE
are secure, Parcel-S protocol is also secure, i.e., it sat-
isfies group key secrecy, forward/backward secrecy, and
key independence.

Proof. Since HE is secure, each ciphertext and evalu-
ated value are indistinguishable from random. Thus,
all ciphertext ci of the ephemeral session key ki from
party ṽi are indistinguishable from random and so does
the ciphertext c of the session group key k, evaluated
value of all the ciphertext c′is. Hence, our construction
guarantees group key secrecy.

Since the server doesn’t have the information of the
pre-shared secret key sk, the server cannot know the
session group key k because the server doesn’t know the
decryption value of c. Likewise, the former(resp. new)
group members cannot know the new(resp. previous)
session group keys since they don’t know the ephemeral
key since T KE is secure. Thus, our protocol provides
forward secrecy and backward secrecy.

Thanks to the presence of ephemeral keys, we can
show the key independence as well.

5 Parcel-D Protocol

5.1 Membership Events

As discussed in Chapter 4, a dynamic setting needs
to provide key adjustment protocols to cope with any
membership changes. Parcel-D protocol includes algo-
rithms to support the following operations:

Join(ṽ′, C) :
When a new group member ṽ′ is added to the
group to participate in the group communication,
reconstruct the Boolean circuit CJoin.

Leave(ṽi, C) :
When a group member ṽi is removed from the
group communication, reconstruct the Boolean
circuit CLeave.

Merge(Ṽ ′, C, C ′) :
When some group Ṽ ′ is merged with the current
group, reconstruct the Boolean circuit CMerge.

Partition(Ṽj , C) :

When a subset of group members Ṽj are removed
from the group communication, reconstruct the
Boolean circuit CPartition.

4

After these membership events, we run Parcel-S pro-
tocol again to get a new session group key. Note that
for each membership event, the only change is the Boolean
circuit. A new member can get the same master group
key sk since only the existence of ephemeral keys pro-
vides forward/backward secrecy. For the remaining of
this chapter, we give the detail explanation on each
membership event algorithm.

5.2 Join Protocol

We assume the group has g members. The new mem-
ber ṽg+1 initiates the protocol by sending a ‘join’ re-
quest message to the server. If the server receives this
message, the server makes the long-term secret key with
ṽg+1. Then, it determines the splitting point in the cir-
cuit. The splitting point is the shallowest rightmost
node, where the joining of a new member does not
increase the depth of the circuit. If the circuit is a
fully balanced tree, it chooses a point with more XOR
operations in the path to the root node, to minimize
the complexity. In the splitting point, we put some
Boolean operation like XOR or AND. A new Boolean
circuit CJoin is constructed as follows:

1. Find the splitting point that does not increase the
depth of the circuit or minimize the complexity.

2. Add two vertices to the splitting point and con-
nect these vertices to the splitting point.

3. Put some Boolean operation to the splitting point.

4. Set the leaf nodes as the group members ṽ1, ṽ2, · · · ,
ṽg+1.

Figure 3 shows an example of Boolean circuit when
a new group member is joined to the group.

Figure 3: Join algorithm in Parcel-D protocol

5.3 Leave Protocol

Again, we start with g members and assume that
member ṽi leaves the group. When ṽi leaves, the server

first deletes the long-term secret key between the server
and ṽi.

From the original Boolean circuit C, the server finds
the leaf node marked as ṽi and its parent node. Then,
we construct a new Boolean circuit CLeave as follows:

1. Find the leaf node marked as ṽi and its parent
node w̃.

2. Remove ṽi node and contract an edge between
w̃ node and ṽi+1 node, where ṽi+1 node has the
same parent node w̃ with ṽi node. (Without loss
of generality, we may rename the group members
to satisfy this condition.)

3. Rename the leaf nodes as the group members
ṽ′1, ṽ

′
2, · · · , ṽ′g−1.

Figure 4 shows an example of Boolean circuit when
a group member leaves the group.

Figure 4: Leave algorithm in Parcel-D protocol

5.4 Merge Protocol

Network faults may partition a group into several
subgroups. In the meantime, they communicate inside
the subgroups only. After the network recovers, sub-
groups need to be merged into a single group. In this
case, since all group members already exist in the group
communication, we don’t need to make a new long-term
secret key between the server and each group member.

To build a new Boolean circuit, the server checks
the connecting point in the circuit C. The connecting
point is chosen similarly to the splitting node in Join
algorithm. We assume that the original group Ṽ con-
sists of g1 members and the merged group Ṽ ′ consists
of g2 members, where g1 ≥ g2. Then, a new Boolean
circuit CMerge is processed as follows:

1. Find the connecting point from a Boolean circuit
C that does not increase the depth of the circuit
or minimize the complexity.

2. Connect the edge ẽMerge between connecting point
from C and the root node of a circuit C ′, which
is the Boolean circuit of group Ṽ ′.

3. Contract the edge ẽMerge and put some Boolean
operation to the node after this edge contraction.

5

4. Set the leaf nodes as the group members ṽ1, ṽ2, · · · ,
ṽg1+g2 .

Figure 5 shows an example of Boolean circuit when
two groups merge.

Figure 5: Merge algorithm in Parcel-D protocol

5.5 Partition Protocol

Assume that a network fault causes a partition of the
group with g members. From the remaining member,
this event seems to be a concurrent ‘leave’ of multiple
members.

Starting from the leftmost leaf node of the Boolean
circuit C, we run Leave(ṽi, C) if ṽ ∈ Ṽj . But, instead of

removing all long-term secret keys of the vertices in Ṽj ,
the server keeps those long-term secret keys in separate
box.

5.6 Relation on Boolean Circuit

For all membership events, one Boolean circuit is the
minor of the other Boolean circuit. For addition event
like Join and Merge algorithms, an original circuit C is
the minor of the new circuits CJoin and CMerge. Sim-
ilarly, for revocation event like Leave and Partition al-
gorithms, new circuits CLeave and CPartition are the
minor of the original circuit C. With this property, we
can check the validity of the circuit after each member-
ship event.

6 Instantiation

6.1 GSW13 Encryption Scheme

Gentry et al. [4] describes a comparatively simple
fully homomorphic encryption (FHE) scheme based on
LWE problem. They propose a new technique for build-
ing FHE schemes with the approximate eigenvector
method. In GSW13 scheme, homomorphic addition
and multiplication are just matrix addition and mul-
tiplicatio since the secret key is an approximate eigen-
vector of the ciphertext matrix C, and the message µ
is the eigenvalue. We briefly introduce how the basic
GSW13 encryption scheme works.

BitDecomp(a) operates the binary representation of
given vector a, where bits are ordered from least
significant to most significant.

BitDecomp−1(a) is the inverse of BitDecomp algorithm.

Flatten(a) outputs BitDecomp (BitDecomp−1)(a) for a
vector a.

Powersof2(a) computes (a1, 2a1, · · · , 2l−1a1, · · · , ak, 2ak,
· · · , 2l−1ak) from a = (a1, · · · , ak).

GSW.Gen(params) generates the secret key s and pub-
lic key A.

GSW.Enc(pk, µ) encrypts a message µ ∈ Zq, sample
a uniform matrix R ∈ {0, 1}N×m and output
the ciphertext C = Flatten(µ)IN +BitDecomp(R ·
A) ∈ ZN×Nq .

GSW.Dec(sk,C) computes xi ← 〈ci,v〉 where ci is
the i-th row of C and v=(v1, v2, · · · , vl) = (1, 2,
· · · , 2l−1). Then, it outputs µ′ = dxi/vic.

GSW.Eval(C1, · · · ,Cn, C) simply computes the ma-
trix operation with the Boolean circuit C.

Note that no evaluation key is generated from GSW.Gen
algorithm.

6.2 DingKE Protocol

Ding et al. [11] gives two two-party key exchange
protocols based on lattice. Among them, LWE-based
key exchange protocol runs as follows:

Step 1. (Setup Phase) From the security parameter
n, q, α where q > 2 is prime, sample a uniformly
random matrix M← Zn×nq .

Step 2. (Key Exchange Phase)

• Alice: Choose a secret vector sA ← DZn,αq. Then,
Alice computes pA = MsA + 2eA mod q, where
eA ← χ. Send pA to Bob.

• Bob: Choose a secret element sB ← DZn,αq and
an error e′B ← DZ,αq. Then, compute KB = pTA ·
sB + 2e′B mod q and σ ← S(KB). Sample eB ←
DZn,αq and compute pB = MsB + 2eB mod q.

• Bob: Send (pB , σ) to Alice and obtain the shared
key SKB = E(KB , σ).

• Alice: Sample e′A ← DZ,αq and compute KA =
sTApB+2e′A mod q. Then, obtain SKA = E(KA, σ).

6.3 DHL Protocol

To instantiate a Dynamic key exchange protocol us-
ing HE scheme based on Lattice (DHL protocol), we re-
placeHE , T KE , and SKE with GSW13 scheme, DingKE
protocol, and a simple XOR operation, respectively.
Then, DHL protocol runs as follows:

6

Table 1: Comparison of quantum-resistant multi-party key exchange protocols

Method Ding et al. [11] Boneh et al. [12] Choi and Kim [13] Ours

Underlying Assumptiona LWE & Ring-LWE
assumption

Cryptographic
invariant maps
from isogenies

any HE scheme any HE scheme

Dynamic Settingb X X X O

Quantum Resistancec X O 4 d 4 d

a Cryptographic invariant maps from isogenies and protocols from LWE problem and Ring-LWE problem are all believed to be
quantum-resistant.
b O: protocol supports membership addition and revocation, X: protocol does not support them.
c O: quantum-resistant, X: vulnerable to quantum computing attacks.
d 4: our design is quantum-resistant if the underlying homomorphic encryption scheme was designed to be quantum-resistant.

Step 1. Each party pre-shares the master group key
sk ← GSW.Gen(n, α) with each other and the
server runs DingKE protocol with each party to
make the long-term secret key mski.

Step 2. Make the Boolean circuit C with g leaf nodes.

Step 3. Each party makes ephemeral session key ki
and encrypts it with its public key pki, ci =
GSW.Enc (pki, ki).

Step 4. The server computes c = GSW.Eval(C, c1, · · · , cg)
with the Boolean circuit C and broadcasts c.

Step 5. The server sends the ephemeral key epk XOR-
ed by the long term secret key mski.

Step 6. Each group member decrypts the evaluated
value c and the ephemeral key epk. Then, each
group member gets the proper session group key
k = GSW.Dec(sk, c)⊕ epk.

Note that we don’t need an evaluation key to run
GSW.Eval algorithm.

7 Comparison with Other Methods

In Table 1, we compare our construction with other
quantum-resistant multi-party key exchange protocols
like Ding et al.’s protocol [11], Boneh et al.’s protocol
[12], and Choi and Kim’s protocol [13].

Boneh et al.’s protocol misses the concrete design of
cryptographic invariant maps from isogeny while other
methods can be implemented. Also, our method can
become a quantum-resistant multi-party key exchange
protocol if we adopt any quantum-resistant HE scheme
from the literature, like [4], as we described in Chapter
6.

Our method can be extended to dynamic setting
while the other three methods only cover the static
setting.

8 Conclusion and Future Work

In this paper, we construct a novel method to design
a quantum-resistant dynamic key exchange protocol us-
ing HE scheme and compare it with other quantum-
resistant multi-party protocols. Our protocol is secure
against a passive adversary and it satisfies forward se-
crecy, backward secrecy, and key independence as well.
For this, we give a methodology to describe each mem-
bership event in a circuit in terms of graph minor.

As future work, we consider the implementation of
DHL protocol using some lattice-based libraries with
HE tools like HElib and FHEW [26, 27] and evaluate
the performance. Embedding multi-key HE scheme, to
avoid the additional key exchange protocol between the
server and the group member, is left for future work.

Acknowledgement

This work was supported by Institute for Information
& communications Technology Promotion (IITP) grant
funded by the Korea government (MSIT) (No. 2017-0-
00555, Towards Provable-secure Multi-party Authenti-
cated Key Exchange Protocol based on Lattices in a
Quantum World).

References

[1] C. Gentry, “Fully homomorphic encryption using
ideal lattices,” in Annual ACM on Symposium on
Theory of Computing, pp. 169–178, ACM, 2009.

[2] Z. Brakerski and V. Vaikuntanathan, “Efficient
fully homomorphic encryption from (standard)
LWE,” SIAM Journal on Computing, vol. 43,
no. 2, pp. 831–871, 2014.

[3] Z. Brakerski and V. Vaikuntanathan, “Fully ho-
momorphic encryption from ring-LWE and se-
curity for key dependent messages,” in Ad-
vances in Cryptology–CRYPTO 2011, pp. 505–
524, Springer, 2011.

[4] C. Gentry, A. Sahai, and B. Waters, “Ho-
momorphic encryption from learning with er-

7

rors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in Advances in Cryptology–
CRYPTO 2013, pp. 75–92, Springer, 2013.

[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan,
“(Leveled) fully homomorphic encryption without
bootstrapping,” ACM Transactions on Computa-
tion Theory (TOCT), vol. 6, no. 3, p. 13, 2014.

[6] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikun-
tanathan, “Fully homomorphic encryption over
the integers,” in Annual International Conference
on the Theory and Applications of Cryptographic
Techniques, pp. 24–43, Springer, 2010.

[7] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee,
T. Lepoint, M. Tibouchi, and A. Yun, “Batch
fully homomorphic encryption over the integers,”
in Annual International Conference on the The-
ory and Applications of Cryptographic Techniques,
pp. 315–335, Springer, 2013.

[8] J. H. Cheon, M. Kim, and K. Lauter, “Homomor-
phic computation of edit distance,” in Interna-
tional Conference on Financial Cryptography and
Data Security, pp. 194–212, Springer, 2015.

[9] R. Gilad-Bachrach, N. Dowlin, K. Laine,
K. Lauter, M. Naehrig, and J. Wernsing, “Cryp-
tonets: Applying neural networks to encrypted
data with high throughput and accuracy,” in
International Conference on Machine Learning,
pp. 201–210, 2016.

[10] S. Krendelev and I. Kuzmin, “Key exchange al-
gorithm based on homomorphic encryption,” in
Computer Science and Information Systems (Fed-
CSIS), 2017 Federated Conference on, pp. 793–
795, IEEE, 2017.

[11] J. Ding, X. Xie, and X. Lin, “A simple provably
secure key exchange scheme based on the learn-
ing with errors problem,” IACR Cryptology ePrint
Archive 2012/688, 2012.

[12] D. Boneh, D. Glass, D. Krashen, K. Lauter,
S. Sharif, A. Silverberg, M. Tibouchi, and
M. Zhandry, “Multiparty non-interactive key ex-
change and more from isogenies on elliptic curves,”
arXiv preprint arXiv:1807.03038, 2018.

[13] R. Choi and K. Kim, “A novel non-interactive
multi-party key exchange from homomorphic en-
cryption,” in ProvSec Workshop 2018, 2018.

[14] C. Peikert, “Lattice cryptography for the in-
ternet,” in International Workshop on Post-
Quantum Cryptography, pp. 197–219, Springer,
2014.

[15] J. W. Bos, C. Costello, M. Naehrig, and D. Ste-
bila, “Post-quantum key exchange for the TLS
protocol from the ring learning with errors prob-
lem,” in IEEE Symposium on Security and Pri-
vacy, pp. 553–570, IEEE, 2015.

[16] E. Alkim, L. Ducas, T. Pöppelmann, and
P. Schwabe, “Post-quantum key exchange-a new
hope,” in USENIX Security Symposium, pp. 327–
343, 2016.

[17] J. Bos, C. Costello, L. Ducas, I. Mironov,
M. Naehrig, V. Nikolaenko, A. Raghunathan, and
D. Stebila, “Frodo: Take off the ring! practi-
cal, quantum-secure key exchange from LWE,”
in ACM SIGSAC Conference on Computer and
Communications Security, pp. 1006–1018, ACM,
2016.

[18] J. Zhang, Z. Zhang, J. Ding, M. Snook,
and Ö. Dagdelen, “Authenticated key exchange
from ideal lattices,” in Advances in Cryptology–
EUROCRYPT 2015, pp. 719–751, 2015.

[19] H. Krawczyk, “HMQV: A high-performance
secure Diffie-Hellman protocol (extended ab-
stract),” in Advances in Cryptology–CRYPTO
2005, pp. 546–566, Springer, 2005.

[20] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyuba-
shevsky, J. M. Schanck, P. Schwabe, and D. Stehlé,
“CRYSTALS–Kyber: a CCA-secure module-
lattice-based KEM,” IACR Cryptology ePrint
Archive 2017/634, 2017.

[21] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-
Hellman key distribution extended to group com-
munication,” in Proceedings of the 3rd ACM con-
ference on Computer and communications secu-
rity, pp. 31–37, ACM, 1996.

[22] M. Steiner, G. Tsudik, and M. Waidner,
“CLIQUES: A new approach to group key agree-
ment,” in Distributed Computing Systems, 1998.
Proceedings. 18th International Conference on,
pp. 380–387, IEEE, 1998.

[23] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based
group key agreement,” ACM Transactions on In-
formation and System Security (TISSEC), vol. 7,
no. 1, pp. 60–96, 2004.

[24] W. Diffie and M. Hellman, “New directions in
cryptography,” IEEE transactions on Information
Theory, vol. 22, no. 6, pp. 644–654, 1976.

[25] R. L. Rivest, L. Adleman, and M. L. Dertouzos,
“On data banks and privacy homomorphisms,” in
Foundations of secure computation 4.11, pp. 169–
180, 1978.

[26] S. Halevi and V. Shoup, “Algorithms in HElib,” in
International Cryptology Conference, pp. 554–571,
Springer, 2014.

[27] L. Ducas and D. Micciancio, “FHEW: bootstrap-
ping homomorphic encryption in less than a sec-
ond,” in Annual International Conference on the
Theory and Applications of Cryptographic Tech-
niques, pp. 617–640, Springer, 2015.

8

