
Blockchain-based Decentralized Key
Management System with Quantum Resistance?

Hyeongcheol An1, Rakyong Choi2, and Kwangjo Kim1,2

1 Graduate of School of Information Security,
2 School of Computing,

Korea Advanced Institute of Science of Technology (KAIST),
Daejeon, Republic of Korea

{anh1026, thepride, kkj}@kaist.ac.kr

Abstract. The blockchain technique was first proposed called Bitcoin
in 2008 and is a distributed database technology. Public Key Infrastruc-
ture(PKI) system, which is one of the key management systems, is a
centralized system. There is a possibility of single point failure in cur-
rently used centralized PKI system. Classical digital signature algorithm;
ECDSA has used the well-known cryptocurrencies such as Bitcoin and
Ethereum. Using the Shor’s algorithm, it is vulnerable to an attack by
the quantum adversary. In this paper, we propose a blockchain-based
key management system using quantum-resistant cryptography. Since it
uses a GLP digital signature scheme, which is a secure lattice-based dig-
ital signature scheme. Therefore, our construction is based on quantum-
resistant cryptography, it is secure against the attack of a quantum adver-
sary and ensures long-term safety. In addition, we design a decentralized
blockchain structure with extended X.509 certificate, and it is secure for
the single point of failure.

Keywords: blockchain · quantum-resistant · key management system.

1 Introduction

IBM developed a quantum computer with 5-qubit in 2016 and a new quantum
computer with 50-qubit in Nov. 2017. The research team of IBM has developed
a quantum computer that allows the public to simulate a quantum computer
through an IBM Q Experience [9]. Therefore, the emergence of the quantum
computer is not theoretical but becomes practical. Public key cryptosystems,
such as Diffie-Hellman (DH) key exchange protocol and RSA, are based on the
difficulty of Discrete Logarithm Problem (DLP), Elliptic Curve DLP (EC-DLP),
and Integer Factorization Problem (IFP). However, DLP and IFP can be solved

? This work was supported by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2017-0-00555,
Towards Provable-secure Multi-party Authenticated Key Exchange Protocol based
on Lattices in a Quantum World)

2 H. An et al.

within the polynomial time by Shor’s algorithm [16] using the quantum com-
puter. If universal quantum computers can be feasible, public key cryptosystems
whose difficulties are based on the number theoretic problem will be broken in
a polynomial time. Therefore, we need a secure public key cryptosystem against
the quantum adversary. Post Quantum Cryptography (PQC) plays an impor-
tant roles in building a secure cryptosystem against both classical and quantum
adversaries.

A public-key cryptosystem needs Public Key Infrastructure (PKI), which
guarantees the integrity of all user’s public keys by binding them with its owner.
The currently used PKI system is X.509 v3 [19] as recommended by the in-
ternational standards. However, the X.509 PKI system has disadvantages such
as centralization, single point failure, and fully trusted Certificate Authority
(CA). CA is a trusted third party whose signature on the certificate guarantees
the authenticity of the public key with each entity. Therefore, the currently used
centralized PKI system has problems with availability, due to the centralized CA.
The most famous cryptocurrency, Bitcoin [15] is the first decentralized virtual-
currency. Bitcoin uses blockchain, which is a transaction database (or distributed
ledger) shared by all peer nodes. With the transaction of the blockchain, anyone
can find each block of information in the transaction history. Therefore, each
peer node operates both client and server on their network at the same time,
since the blockchain technique is decentralized.

In this paper, we propose QChain, a quantum-resistant decentralized PKI
system with extended X.509 certificate. To construct QChain, we combine the
blockchain and lattice-based cryptography which is one of PQC primitives. QChain
is a practical method for managing public key cryptography in a decentralized
manner.

2 Related Work

2.1 Blockchain-based PKI

Emercoin(EMC) [10] is cryptocurrency, which is used for blockchain-based PKI
system. EMCSSH integrates between the OpenSSH and EMC blockchain, pro-
viding decentralized PKI. EMC blockchain is based on both Proof-of-Work and
Proof-of-Stake consensus protocol and forked from Peercoin. EMC uses the SHA-
256 hash function, and it is not secure against the quantum adversaries by
Grover’s algorithm [5].

Matsumoto et al. suggest the Ethereum-based PKI system called IKP [14].
IKP’s decentralized nature and smart contract system allow open participation
offer incentives for vigilance over CAs, and enable financial resourse against
misbehavior. However, there are some security issues for Ethereum platform.
In addition, IKP uses the quantum-resistant hash function called Ethash [17].
Ethereum is based on ECDSA signature algorithm, which is not secure against
the quantum adversaries.

Yakubov et al. propose the blockchain-based PKI management framework
[18] in 2018. They design a blockchain-based PKI, which modifies the X.509

Title Suppressed Due to Excessive Length 3

certificates. X.509 v3 certificate standard consists of extension fields, which are
reserved for extra information. They modify X.509 v3 certificate and design
hybrid X.509 certificate, which consists of blockchain name, CA key and subject
key identifier, and hashing algorithm in the extension field. This work is based
on smart contract in Ethereum.

Certcoin [3] is the public and decentralized PKI system using blockchain tech-
nique and based on Namecoin. In revocation phase, they did not use Certificate
Revocation List (CRL). They consider that Certcoin uses RSA accumulators,
which is insecure against the quantum adversaries.

2.2 Lattice-based Signature Scheme

Compared to the PQC primitives lattice-based primitives are faster and have
smaller signatures size than others. In general since ring-LWE-based digital sig-
natures can provide the smallest time-data complexity compared with others.
Akleylek et al. proposed the ring-LWE based signature scheme called Ring-

TESLA [1]. Secret key consist of a tuple of three polynomials (s, e1, e2)
$←− Rq,

e1 and e2 with small coefficients. Polynomial a1, a2
$←− Rq, and computes b1 =

a1s+ e1 mod q and b2 = a2s+ e2 mod q. To sign the message m, signing algo-

rithm samples y
$←− Rq . Then, computes c′ = H(bv1ed,q, bv2ed,q,m) and polyno-

mial z = y+sc. Signature value is a tuple of (z, c′). To verify signature (z, c′) with
message m, verification algorithm computes H(ba1z− b1ced,q, ba2z− b2ced,q,m).

Güneysu et al. [6,7] published the GLP signature scheme based on ring-LWE

problem. Polynomial ring defines Rpn = Zq[X]/(Xn+1) and Rp
n

k defines subset

of the ring Rpn . Rp
n

k consists of all polynomials with coefficients in the range
[−k, k]. To sign message µ, it needs cryptographic hash function H with range
Dn

32. For n ≥ 512 consists of all polynomials of degree n − 1 that have all zero
coefficients except for at most 32 coefficient that is ±1. First, we need to read 5-
bit (r1r2r3r4r5) at a time. If r1 is 0, put −1 in position r2r3r4r5. Otherwise, put
1 in position r2r3r4r5. In Section 3.1, we will describe modified GLP signature
scheme.

Fig. 1. Full Structure of QChain

anh10
강조

4 H. An et al.

3 Our Approach

Our proposed quantum-resistant PKI scheme is based on the ring-LWE prob-
lem. In this section, we describe the full structure of QChain in detail. We
construct QChain, which is quantum-resistant PKI using blockchain. In the fol-
lowing sections, we describe the structure of scheme and modified GLP signature
scheme. We integrate the modified GLP signature scheme, that is first approach
in blockchain. QChain uses the extension field of X.509 v3 certificate. Therefore,
there is an advantage that it can be compatible with existing X.509 certificate
standards.

3.1 Modified GLP Signature

GLP signature scheme is known to be faster than GPV [4] and LYU [12] scheme
which belong to lattice-based signature scheme, and is believed to be secure
against side-channel attacks till now. We has briefly described the GLP signature
scheme in Section 2.2. In order to increase its performance, we modify the GLP
signature scheme by integrating Number Theoretic Transformation (NTT) [8]
like Algorithm 1. Let Rkq be a subset of the ring Rq, and that consists of all
polynomials with coefficients in the range [−k, k].

Algorithm 1: Modified GLP Signature

Signing Key : r1, r2
$←− χσ

Verification Key: a
$←− Rq, â← NTT(a), r̂1 ← NTT(r1), r̂2 ← NTT(r2),

t̂← âr̂1 + r̂2
Hash Function : H : {0, 1}∗ → Dn

32

1 Sign(µ,a, r1, r2)
2 begin

3 y1,y2
$←− Rkq ;

4 c← H(ay1 + y2, µ); ĉ = NTT(c);
5 ẑ1 ← r̂1 ∗ ĉ + ŷ1; ẑ2 ← r̂2 ∗ ĉ + ŷ2;
6 z1 ← NTT−1(ẑ1); z2 ← NTT−1(ẑ2);

7 if z1 /∈ Rk−32
q or z2 /∈ Rk−32

q then
8 go to line 3;
9 else

10 return (z1, z2, c);

11 Verify(µ, z1, z2, c,a, t)
12 begin

13 if z1, z2 ∈ Rk−32
q then

14 c 6= H(az1 + z2 − tc, µ);
15 return reject;

16 else
17 return success;

anh10
강조

Title Suppressed Due to Excessive Length 5

3.2 Structure of QChain

Figure 1 shows the full structure of QChain. We use ring-LWE encryption
scheme, which is quantum-resistant primitive in QChain. More precisely, the
public key encryption scheme is based on ring-LWE by Lyubashevsky et al. [13]
which is secure against the quantum adversaries.

Figure 2 shows extended certificate for QChain. In the structure of QChain,
each block consists of the previous hash, nonce, timestamp, a centralized public
key of the user, hash value of the block, and Merkle hash tree. Users can com-
municate with the application data using the public key cryptosystem based on
ring-LWE scheme. QChain certificate contain the following fields:

Fig. 2. Extended Certificate for QChain

- Version Number: X.509 standards has three kinds of version. Version 1 is
default format, and if the Initiator Unique Identifier or Subject Unique Iden-
tifier is present, that must use version 2. For more extension of certificates,
the version must be used 3.

- Signature: This field includes signature algorithm and certificate signature.
It covers all other field values and signs the certificate.

- CRL Distribution Point: This field includes a list of which establishes
a CRL distribution points. Each distribution point contains a name and
optionally reasons for revocation and the CRL issuer name, specifically, block
leader.

- Asserted Data: This field consists of the previous hash value, Merkle root,
block number. Previous hash value is based on the previous block.

If the leader is a malicious node, the certificate is abolished and a new leader
is elected. Thus, it prevents malicious node of the leader. The leader has a CRL,
and the user confirms revocation of the public key in the leader’s CRL. The
previous leader transfers the CRL and its hash value to the next leader when
the leader changes.

6 H. An et al.

3.3 QChain Scheme

The polynomial ring definesRq = Zq[X]/(Xn+1). The error distribution χσ uses
a discrete Gaussian distribution with standard deviation σ. For efficient encryp-
tion time, we use NTT operations. The NTT is commonly used in the implemen-
tation of lattice-based cryptography. NTT operation denotes ẑ = NTT(z). Cryp-

tographic nonce and random number are randomly selected nonce
$←− {0, 1}n and

rand
$←− {0, 1}n. We denote the hash function and signature algorithm H() and

Sign(), respectively. The public and private key denote pk and privK, respec-
tively. For a polynomial g = Σ1023

i=0 giX
i ∈ Rq, we define

NTT(g) = ĝ =

1023∑
i=0

ĝiX
i where, ĝi =

1023∑
j=0

γjgjω
ij

where, ω = 49, γ =
√
ω = 7. The function NTT−1 defines the inverse of NTT

function.

NTT−1(ĝ) = g =

1023∑
i=0

ĝiX
i where, gi = n−1γ−i

1023∑
j=0

ĝjω
ij

where, n−1 mod q = 12277, γ−1 mod q = 8778, ω−1 mod q = 1254.
The QChain scheme is described as follows:

• QChain.Setup(1λ): Choose security parameter λ and output a parameter
n, q, and σ =

√
16/2 ≈ 2.828 [2].

• QChain.KeyGen(n, σ): Polynomial r1 and r2 sampled from the Gaussian
distribution use NTT operation in polynomial multiplication and addition.

r1,i, r2,i ← χσ; y1,i, y2,i
$←− Rkq ; ai

$←− Rq; âi ← NTT(ai);

r̂1,i ← NTT(r1,i); r̂2,i ← NTT(r2,i); ŷ1,i ← NTT(y1,i); ŷ2,i ← NTT(y2,i);

p̂i ← r̂1,i − âi ∗ r̂2,i; t̂i ← âi ∗ r̂1,i + r̂2,i;

The public key is (âi, p̂i, t̂i) ∈ pki and the private key is (r̂1,i, r̂2,i, ŷ1,i, ŷ2,i) ∈
privKi for user i.
• QChain.GenesisBlock.Setup(): The genesis block is the first block of QChain.
We also call it block 0, which is hardcoded into the software of our system.
The genesis block does not have previous hash value. Therefore, we use {0}n
for previous hash value in genesis block. We fix i = 210 in genesis block.

nonce
$←− {0, 1}n; randi

$←− {0, 1}n;where, 0 ≤ i ≤ 210

• QChain.GenesisBlock.Merkle(): We construct Merkle hash tree using ran-
dom number randi, timestamp, hash function H(), and the signature algo-
rithm Sign(). In genesis block, we fix pki = randi, IDi = i, and Usernamei =
i. Then, we compute the top hash value Hroot using each hash value of leaf
nodes.

Title Suppressed Due to Excessive Length 7

• QChain.GenesisBlock.Final(): We finally construct the genesis block in this
final algorithm. To make a previous hash of block 1, QChain needs a hash
value. Previous hash value computes as follows:

HBlock0 = H(({0})n||nonce||timestamp||Hroot)

• QChain.User.Setup(pki, Hroot): In the user setup algorithm, it is similar to
QChain.GenesisBlock.Setup() algorithm. The user setup algorithm operates
as follows:

Previous hash← HBlock0;

nonce
$←− {0, 1}n; pki ← User public key ∈ {0, 1}n;where, 0 ≤ i ≤ l ≤ 210

• QChain.User.Add(IDi, Usernamei, privKi, Certi): After the genesis block
has been made by the QChain.User.Setup() algorithm, we add information
about the user’s public keys as follows:

H(IDi); H(Usernamei); (r̂1,i, r̂2,i, ŷ1,i, ŷ2,i)← privKi;

y1,i ← NTT−1(ŷ1,i); y2,i ← NTT−1(ŷ2,i);

(âi, p̂i)← pki; ai ← NTT−1(âi);

ci ← H(aiy1,i + y2,i, IDi); ĉi ← NTT(c)

r1,i ← NTT−1(r̂1,i); r2,i ← NTT−1(r̂2i);

Sign(IDi, ai, r1,i, r2,i);

Using IDi and Usernamei, we compute each hash and signature value. The
output signature value is (z1,i, z2,i, ĉi). Then, we construct Merkle hash tree
same as genesis block process. The maximum users of each block are 210. Be-
cause we restrict the maximum depth of Merkle hash tree due to the memory
complexity. The Sign() algorithm is a modified GLP signature scheme.
• QChain.User.Verify(IDi, pki, Sign(Certi)): To verify the public key pki and
Sign(Certi) of the user, using the verify algorithm V erify(). The user verify
algorithm runs as follows:

âi, t̂i ← pki; ai ← NTT−1(âi); ti ← NTT−1(t̂i);

z1,i, z2,i, ĉi ← Sign(IDi); ci ← NTT−1(ĉi);

V erify(IDi, z1,i, z2,i, ci, ai, ti);

Using public parameters pki and Sign(IDi), we can easily verify the user.
• QChain.User.Enc(pki,m): To encrypt a message m ∈ R2, the encryption
algorithm runs as follows:

(âi, p̂i, t̂i)← pki; (ai, pi, ti)← (NTT−1(âi),NTT
−1(p̂i),NTT

−1(t̂i));

e1, e2, e3 ← χσ; ê1 ← NTT(e1); ê2 ← NTT(e2); m̂← m ·
⌊q

2

⌋
;

(ĉ1, ĉ2)← (âi ∗ ê1 + ê2, p̂i ∗ ê1 + NTT(e3 + m̂));

8 H. An et al.

Then, we can generate (ĉ1, ĉ2) and the ciphertext is c = (ĉ1, ĉ2) using a user
public key pki and message m.
• QChain.User.Dec(privKi, c): To decrypt message c = (ĉ1, ĉ2), decryption
algorithm as follows:

r̂2,i ← privKi; (ĉ1, ĉ2)← c;m′ ← NTT−1(ĉ1 ∗ r̂2 + ĉ2);m← Decode(m′);

Decode() is an error reconciliation function. In QChain.Enc() function, we
encode the message m. To decode the message m′, we use Decode() function.
The Decode() function defines as follows:

Decode(m) :=

⌊
2

q
·m · bq/2c

⌉
·
⌊q

2

⌋

Fig. 3. A typical use case of QChain to setup secure communication

Figure 3 illustrates a typical use case of QChain to setup secure communica-
tion. The first QChain operator initiates genesis block (block 0). The operator
has five-step algorithms. QChain.Setup() sets the parameter of QChain.KeyGen()
makes a public and a private key of users. Then, QChain.Genesis Block.Setup(),
QChain.GenesisBlock.Merkle(), and QChain.GenesisBlock.Final() algorithms oper-
ate to generate the genesis block. To register the public key, users set QChain.User.
Setup() algorithm and they can register the public key with algorithm QChain.User.
Add(). They can also verify the public key with algorithm QChain.User.Verify().
Using this algorithm, users can challenge to QChain for verifying the anonymous
user. QChain will answer if it is an authenticated user or not. Finally, through
algorithms QChain.User.Enc() and QChain.User.Dec(), users can communicate
application data securely with each other.

Title Suppressed Due to Excessive Length 9

4 Security Analysis

4.1 Generic Attack

Grover et al. suggest the database search algorithm called Grover’s algorithm [5].
Our construction uses n1-bit hash function. To break hash function, the com-
plexity of brute-force attack is O(

√
2n1). Attacking a lattice-based cryptosystem,

which has n2-bit security key dimension with a finding shorest lattice vector
using sphere-sieve also requires 20.268n2+O(n2)-bit complexity [11]. Due to the
ring-LWE problem is as hard as the worst case, so there is a decrease in at-
tack amount as square root complexity despite the attack using the quantum
computer. However, Shor’s algorithm cannot attack our QChain construction.
The encryption algorithm and digital signature of QChain are not based on
IFP or DLP problems. Therefore, our construction is secure against Shor’s al-
gorithm. The attack complexity in a generic attack using a quantum computer
is min(O(2

n1
2), 20.268n2+O(n2)).

Using the classical computing attack, the hash function is secure if QChain
uses the SHA3 hash function. Therefore, we can assume that the complexity of
the hash function is O(2n1). The attack complexity of signature is 20.298n2+O(n2)

[11]. Thus, total attack complexity in a generic attack using a classical com-
puter is min(O(2n1), 20.298n2+O(n2)). However, the attack complexity of RSA
and ECDSA is O((log n)2(log log n)(log log log n)) using Shor’s algorithm [16].

4.2 Feature Analysis

PKI system is required as register key or domain, update and look up, and
revocation of the public key.

i) Connection: QChain can keep offline states except initiating genesis block.
On the other hand, X.509 v3 PKI system which is used for current inter-
national standard must keep online states in TTP-server side. If TTP of
X.509 v3 PKI system is offline, the user cannot verify that the public key is
authenticated or not.

ii) Non-repudiation: QChain has the block which consists of user’s public keys
with their signatures. The user cannot deny their public information such as
public key and user ID. X.509 v3 PKI system has a certificate which consists
of a public key, username, and signature. Therefore, the user cannot deny
their certificate.

iii) Revocation: The complexity of revocation is O(log2(n)). QChain also uses
a timestamp for each block and user’s information. By using a timestamp
for each block, the QChain operator can specify the time to expire on each
block. Since the timestamp is used for each user, the QChain operator can
determine the expiration time according to the characteristics of the user.
Compared with QChain, X.509 v3 PKI system stores revocation in the user’s
certificate. The X.509 v3 PKI system also creates and uses CRL. Similarly,
QChain can manage the revocation list by CRL.

10 H. An et al.

iv) Scalability: QChain increases linearly with scalability. Therefore, the com-
plexity is O(n). The advantage with QChain is that it does not need to
increase the number of TTP servers even if the number of users and public
information increases. However, the X.509 v3 PKI system must increase the
computing power of the server in order to add the user’s public information,
because TTP of X.509 v3 PKI system stores and authenticates the user’s
public information.

v) Trust Model: The main point of QChain is decentralized service for PKI
system. Therefore, QChain does not need TTP where X.509 v3 PKI system
must have TTP. Due to the existence of TTP, X.509 v3 PKI system has a
problem of single point failure.

4.3 Comparision with Related Work

We compare the features between our construction and related work, such as
Certcoin, IKP, and Emercoin. Table 1 shows the comparison of QChain and re-
lated work. In dependence on existing cryptocurrency system, Certcoin is based
on Namecoin, which is forked from Bitcoin. Emercoin [10] is also based on Peer-
coin. Lastly, IKP [14] is based on Ethereum smart contract platform.

Table 1. Comparison of QChain and Related Work

System QChain Certcoin [3] IKP [14] Emercoin [10]

Dependence

N
Namecoin

Ethereum
Peercoinon Existing

(fork of Bitcoin) (fork of Bitcoin)Cryptocurrency
System

Extending
Y Y N N

X.509 Certificates

Signature
GLP ECDSA ECDSA RSA

Scheme

Complexity on

20.268n+O(n) polynomial-time1 polynomial-time1 polynomial-time1Signature using
Quantum Computer

Hash Function
Not

SHA256 Ethash SHA256
Specific

Revocation Method
CRL,

Timestamp Smart Contract
Update

Timestamp by Administrator

1: O((logn)2(log logn)(log log logn))

We extend the X.509 v3 certificate with extension fields. Certcoin also ex-
tends the same approach. However, IKP and Emercoin do not use X.509 cer-
tificate. Instead, they use smart contract and makes new blocks, respectively.

Title Suppressed Due to Excessive Length 11

Therefore, it cannot be applied currently used PKI standard. QChain only uses
GLP digital signature scheme, which is one of the post-quantum primitives.
Other construction uses ECDSA and RSA digital signature. In other words,
Certcoin, IKP, and Emercoin are not secure against quantum adversaries. In
revocation method, our construction is based on CRL and timestamp. Utiliz-
ing CRL is the most efficient method of public key revocation. In addition, we
use the timestamp to assist CRL. Unlike our construction, Certcoin uses only
timestamps without CRL, which makes the disadvantage. Therefore, user needs
to manually update a new certificate when the user needs to revoke the public
key. IKP and Emercoin revoke by CA in the same way of current PKI standard
as a smart contract.

5 Concluding Remarks

This paper proposes QChain, which is a decentralized PKI system that uses the
blockchain technique based on the ring-LWE scheme. QChain provides a quan-
tum resistant PKI system secure against the quantum adversaries who will ap-
pear in the near future by combining the blockchain technique and one of PQC
primitives, lattice-based cryptography. Our construction uses extended X.509
certificate. Therefore, we can easily integrate current X.509 standards. For an
efficient design of QChain, we use the NTT operations in polynomial multiplica-
tion and addition. We also modify the GLP signature scheme, which is based on
the ring-LWE problem for the NTT operations. The generic attack on QChain
is described for both quantum and classical adversaries. We consider the best-
known generic attack algorithm, such as Grover’s algorithm and sphere-sieve
algorithm. Finally, we compare the currently used X.509 v3 PKI system with
our QChain in feature analysis.

As future work, several directions should be explored from here. First, we
will implement QChain as an open source project. Our implementation needs
the consensus algorithm in the validating blocks. QChain is designed to release
single-point of failure in the current X.509 v3-based key management system,
that works like a kind of decentralized PKI. Thus, QChain can fit the consortium
or private blockchain applications. In the practical implementation, SHA3 or
other secure and efficient hash functions can be considered.

References

1. Akleylek, S., Bindel, N., Buchmann, J., Krämer, J., Marson, G.A.: An efficient
lattice-based signature scheme with provably secure instantiation. In: International
Conference on Cryptology in Africa–AFRICACRYPT’16. pp. 44–60. Springer
(2016)

2. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Proceedings of the forty-fifth annual ACM symposium
on Theory of computing–STOC’13. pp. 575–584. ACM (2013)

anh10
강조

anh10
강조

anh10
강조

12 H. An et al.

3. Fromknecht, C., Velicanu, D., Yakoubov, S.: A decentralized public key infrastruc-
ture with identity retention. In: Cryptology ePrint Archive, Report 2014/803
(2014), http://eprint.iacr.org/2014/803

4. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the fortieth annual ACM sympo-
sium on Theory of computing. pp. 197–206. ACM (2008)

5. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing–
STOC’96. pp. 212–219. ACM (1996). https://doi.org/10.1145/237814.237866,
http://doi.acm.org/10.1145/237814.237866

6. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: A signature scheme for embedded systems. In: Conference on Cryptographic
Hardware and Embedded Systems–CHES’12. pp. 530–547. Springer (2012)

7. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryp-
tography: A signature scheme for embedded systems. In: Conference on Cryp-
tographic Hardware and Embedded Systems–CHES’12. vol. 7428, pp. 530–547.
Springer (2012)

8. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records
for lattice-based signatures. In: International Workshop on Post-Quantum
Cryptography–PQCrypto’13. pp. 67–82. Springer (2013)

9. IBM Research: IBM Q experience. https://www.research.ibm.com/ibm-q/ (2018),
[Online; accessed 20-Mar.-2018]

10. Khovayko, O.: Emercoin. https://emercoin.com (2018), [Online; accessed 15-May.-
2018]

11. Laarhoven, T., Mosca, M., Van De Pol, J.: Finding shortest lattice vectors faster
using quantum search. Designs, Codes and Cryptography 77(2-3), 375–400 (2015)

12. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 738–
755. Springer (2012)

13. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques–EUROCRYPT’10. pp. 1–23. Springer (2010)

14. Matsumoto, S., Reischuk, R.M.: IKP: Turning a PKI around with
blockchains. In: Cryptology ePrint Archive, Report 2016/1018 (2016),
http://eprint.iacr.org/2016/1018

15. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
16. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-

toring. In: Proceedings, Annual Symposium on Foundations of Computer Science–
FOCS’94. pp. 124–134. IEEE (1994)

17. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151 (2014)

18. Yakubov, A., Shbair, W., Wallbom, A., Sanda, D., et al.: A blockchain-based
PKI management framework. In: The First IEEE/IFIP International Workshop on
Managing and Managed by Blockchain (Man2Block) colocated with IEEE/IFIP
NOMS 2018, Tapei, Tawain 23-27 April 2018 (2018)

19. Yee, P.: Updates to the internet X. 509 public key infrastructure certificate and
certificate revocation list (CRL) profile (2013)

