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Abstract. Intrusion Detection System (IDS) has been becoming a vi-
tal measure in any networks, especially Wi-Fi networks. Wi-Fi networks
growth is undeniable due to a huge amount of tiny devices connected via
Wi-Fi networks. Regrettably, adversaries may take advantage by launch-
ing an impersonation attack, a common wireless network attack. Any IDS
usually depends on classification capabilities of machine learning, which
supervised learning approaches give the best performance to distinguish
benign and malicious data. However, due to massive traffic, it is diffi-
cult to collect labeled data in Wi-Fi networks. Therefore, we propose a
novel fully unsupervised method which can detect attacks without prior
information on data label. Our method is equipped by an unsupervised
stacked autoencoder for extracting features and a k-means clustering al-
gorithm for clustering task. We validate our method using a comprehen-
sive Wi-Fi network dataset, Aegean Wi-Fi Intrusion Dataset (AWID).
Our experiments show that by using fully unsupervised approach, our
method is able to classify impersonation attack in Wi-Fi networks with
92% detection rate without any label needed during training.

1 Introduction

The experts have already anticipated the growth of wireless network traffics [1].
Mobile traffics, including mobile 5G and Wi-Fi traffic are believed to increase
tremendously, in the next 10 years [1]. Unfortunately, as the traffic increases,
a number of malicious attacks by adversaries are have jumped accordingly [2].
An impersonation attack is one of common Wi-Fi attacks [3]. In this attack,
adversaries can impersonate themselves as legitimate clients to gain unautho-
rized access. The impersonation attack also has a severe impact due to allowing
unauthorized users to access the network as a security breach [4].

Intrusion Detection System (IDS) become a promising countermeasure for
network attacks by leveraging machine learning application occasionally. Ma-
chine learning, based on data label availability, can be divided into two ap-
proaches: supervised and unsupervised learning. A supervised learning needs
prior information about the class label data. The supervised learning fits for the
classification task, including attack detection. In the latter case, an unsupervised



2 M.E. Aminanto and K. Kim

learning learns without any prior information about the class label of raw data.
Therefore, the unsupervised learning fits for clustering task, which makes an ef-
ficient way to group similar data. In terms of attack detection, we may leverage
unsupervised approach by claiming the outlier data from big clusters as attacks,
since benign data usually form a big cluster. Besides that, unsupervised learning
is suitable for huge Wi-Fi networks as labeling training data may be infeasible.

There are numerous famous unsupervised learning methods such as k-means
clustering [5], Principal Component Analysis (PCA) [6] and Independent Com-
ponent Analysis (ICA) [7]. The key characteristics of the three methods are: &
number of class partitioning, orthogonal transformation and reveal hidden inde-
pendent factors, respectively [8]. However, since we are facing huge and complex
Wi-Fi data, the three traditional unsupervised learning methods are insufficient
because the data might be not well distributed [9]. In order to overcome this
problem, we venture to transform raw data into another form of data, which can
lead to better unsupervised learning result.

One acceptable candidate for the transformations is Stacked Autoencoder
(SAE) which transforms original features into more meaningful representation
by reconstructing its input with the decoder. It provides an efficient way to
validate that the important information in the data has been captured. The SAE
as a deep learning method, can be efficiently used for unsupervised learning on
a complex dataset. By stacking several unsupervised feature learning layers, and
greedy method training for each layer, we can consider extracted features on each
hidden layer as a new space with better form for clustering task. However, SAE
is originally designed for capturing complex information in lower-dimensional
features than the original features, not for clustering task. Therefore, we see SAE
for assisting traditional clustering algorithm to achieve better clustering result.
We then forward the newly formed features from non-linear SAE transformation
into k-means clustering algorithm to improve k-means clustering performance.

We implement and test our work using a comprehensive Wi-Fi network
benchmark dataset, called AWID dataset [3]. Besides this dataset, Kolias et
al. [3] also tested a series of existing machine learning models on the dataset
in a heuristic manner. The lowest detection rate is observed on impersonation
attack by detection rate of 22% only while our proposed approach outperforms
on impersonation attack detection achieving a detection rate of 92%. Clearly, the
novel way of combining deep learning transformation and traditional k-means
clustering method improves the performance of impersonation attack detector
and can be further generalized for different attack types in large scale Wi-Fi
networks.

This paper is organized as follows: Section 2 reviews several related work.
We provide our proposed approach along preliminaries in Section 3. Section 4
gives our experimental results and analysis. Conclusion and future work of this
paper will be suggested in Section 5.
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2 Related Work

There are several previous work which leverages deep learning techniques as a
clustering method. Song et al. [9] proposed an autoencoder-based data cluster-
ing. They mapped original data space to a new space using autoencoder, which
is more suitable for clustering, and claimed that by applying a non-linear trans-
formation, the data become compact with respect to their corresponding cluster
center in the new space. They modified original autoencoder by adding two new
objective functions during training: minimize reconstruction error and distance.
Comparing with Song et al. [9] which needs to modify the original autoencoder,
our proposed method does not need to modify the original autoencoder and im-
proves traditional clustering algorithm. While Saito et al. [10] proposed similar
work by mapping the input data to an embedded space, using autoencoder. They
concatenated the learned representations of all intermediate layers. All features
learned by each neural network layer were used to generate a combined repre-
sentation which is useful for effective cluster analysis. Different from Saito et al.
[10], we leverage unsupervised k-means clustering algorithm instead of super-
vised k-Nearest Neighbor (k-NN) classification algorithm. We also use a single
hidden layer only without concatenation of all hidden layers to maintain the
process still lightweight.

A lot of proposed approaches for detecting impersonation attacks [11], [12],
[13] and [14]. [11], [12] and [13] were designed to detect one particular imperson-
ation attack by adding or modifying specific protocols. However, in particular,
Aminanto and Kim [14] proposed one general model that can detect an im-
personation attack by reducing the features dimensionalities and adopting SAE
at final stage. Unfortunately, their approach needs data labels which is super-
vised learning algorithm. Therefore, we propose a fully unsupervised approach
for coping with huge and complex Wi-Fi network traffics.

3 Owur Approach

In this Section, we briefly describe our novel fully unsupervised deep learning-
based Wi-Fi impersonation attack detector. For clarity, we firstly introduce pre-
liminaries about SAE and k-means clustering, and then explain how the overall
scheme works for detecting attacks.

3.1 Stacked Autoencoder (SAE)

An autoencoder is a symmetric neural network model as shown in Fig. 1, which
belongs to unsupervised learning in the sense that a model could be built from
non-labeled data. To extract new-lower dimensional features, autoencoder uses
an encoder-decoder paradigm as shown in Fig. 1, which can capture relevant
data from the original data. The encoder is a function that maps an input X to
a representation layer H as expressed by Eq. (1).
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Representation Layer Layer

Fig. 1. Autoencoder network with symmetric input-output layers

H=s; (WX+bf) (1)
, where sy is a non-linear activation function, in this case of a logistic sigmoid,

1
sf(t) = gy where ¢ is the function input. The W and by denote a weight

matrix for features and a bias vector for encoding, respectively. The decoder
function expressed in Eq. (2) maps representation layer H back to a reconstruc-
tion X’ as an output.

X" =s4,(VH +by) (2)

, where s, is the activation function of the decoder, which is a sigmoid function
too. The V and b, denote a weight matrix for features and a bias vector for
decoding, respectively. Autoencoder training phase finds optimal parameters § =
{W,V,bs, by} which minimize the reconstruction error E between the input data
X and its reconstruction output X’ on a training set as shown in Eq. (3).

N K
1 2
L= N 7;1 ; (X]/cn - an) + A Qweights + 5 : Qsparsity (3)

, where N and K denote the total number of training data and the number of
variables for each data, respectively. {2eights r€presents Lo regularization, while
£2sparsity denotes sparsity regularization, which evaluates how close the average
output activation value and the desired value. The coefficient of Lo regularization
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term A\ and the coefficient of sparsity regularization term 3 are specified during
autoencoder training.

Autoencoder can be used as a deep learning technique by unsupervised greedy
layer wise pre-training algorithm as depicted in Fig. 2, which is called Stacked
Autoencoder (SAE). In this algorithm, all layers except the last layer are initial-
ized in a multi-layer neural network. Each layer is then trained in an unsupervised
manner as autoencoder which constructs new representations of the input.
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Fig. 2. Stacked Autoencoder (SAE) network with three hidden layers

The final layer implements the softmax for the classification the deep neural
network. Softmax function is a generalized term of the logistic function that
squashes the K-dimensional vector v € R¥ into K-dimensional vector v* &
(0,1)® which adds up to 1. The softmax layer minimizes the loss function, which
is the cross entropy function.

3.2 K-means Clustering

K-means clustering algorithm groups all observations data into k clusters itera-
tively until convergence will be reached. In the end, one cluster contains similar
data since each data enters to the nearest cluster. K-means algorithm assigns a
mean value of the cluster members as a cluster centroid. In every iteration, it cal-
culates the shortest Euclidean distance from an observation data into any cluster
centroid. Besides that, the intra-variances inside the cluster are also minimized
by updating the cluster centroid iteratively. The algorithm would terminate when
convergence is achieved, which the recent clusters are the same as the previous
iteration clusters [8].
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Fig. 3. Our proposed scheme contains feature extraction and clustering tasks

Algorithm 1 Pseudocode of Fully Unsupervised Deep Learning
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: procedure START
function DATASET PREPARATION(Raw Dataset)
for each data instance do
Convert into integer value
Normalization z; = #%
end for
Balance the normalized dataset
return InputDataset
end function
function SAE(InputDataset)

for each data instance do
Compute H = sy (WX + by)
Compute X' = s4 (VH + by)
n=1
0; = {le Vi, bfi’ b.‘]z}
end for
InputFeatures < Wy
end for
return InputFeatures
end function
Initialize clusters and k=2
function k-MEANS CLUSTERING(InputFeatures)
return Clusters
end function
Plot confusion between Clusters and target classes
end procedure

for i=1 to h do > h=2; number of hidden layers

Minimize E = % ZN Zk{{:l (Xl,cn - an)z + A -Qwe,'igh,ts + 8- Qspav‘sity

> 274 Jayer, 50 extracted features

> two clusters: benign and malicious
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3.3 Fully Unsupervised Deep Learning

In this subsection, we describe our novel fully unsupervised deep learning-based
IDS for detecting impersonation attacks. There are two main tasks, feature ex-
traction and clustering tasks. Fig.3 shows our proposed scheme which contains
two main tasks in cascade. We use a real Wi-Fi networks-trace, AWID dataset
[3], which contains 154 original features. Before the scheme starts, normalizing
and balancing process should be done in order to achieve best training perfor-
mance. Algorithm 1 explains the procedure of the proposed scheme in detail.

The scheme starts with two cascading encoders, and the output features from
the second layer then forwarded to the clustering algorithm. The first encoder
has 100 neurons as the first hidden layer while the second encoder comes with 50
neurons only. We follow a common rule for choosing the number of neurons in a
hidden layer by using 70% to 90% of the previous layer. In this paper, we define
k=2 since we consider two classes only. The scheme ends by two clusters formed
by k-means clustering algorithm. These clusters represent benign and malicious
data.

4 Evaluation

We evaluate the proposed scheme on AWID dataset. We firstly show the effective-
ness of leveraging second layer representation of SAE training result compared
to original data. We implement SAE and k-means clustering algorithm using
MATLAB R2016b running on an Intel Xeon E-3-1230v3 CPU @3.30 GHz with
32 GB RAM. We verify our proposed scheme by comparing the proposed scheme
with the previous work. We introduce the dataset has been used and evaluation
metrics in the next subsections.

4.1 Dataset

We use AWID dataset as a benchmark dataset since the dataset might become a
common benchmark dataset for wireless network research due to its comprehen-
siveness and real world-alike characteristics. Regarding the number of classes,
the dataset has two types of attack classes: “ATK” and “CLS”. The “ATK”
dataset consists of 16 classes including one benign class, while the “CLS” data
contains four classes only. The 16 classes of the “ATK” dataset can be classified
to four attack categories in the “CLS” dataset. In this paper, we use the “CLS”
dataset which contains benign, impersonation, injection and flooding classes.
However, we consider two classes only among four classes. Besides that, the
AWID dataset is also divided into two types based on the size of data instances
included, namely, full and reduced datasets. There are 1,795,595 data instances
in the full dataset, with 1,633,190 and 162,385 benign and attack instances,
respectively. While the reduced dataset contains only 575,643 instances, with
530,785 and 44,858 benign and attack instances, respectively. In this paper, we
used the reduced “CLS” AWID dataset for the sake of simplicity.
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The dataset expresses the nature of a network, where the number of be-
nign instances is larger than attack instances [3]. The ratio between benign and
attack instances are 10:1 and 11:1 for training and test datasets, respectively.
This situation might cause a bias during training, and infer machine learning
performance. Therefore, we balance the dataset for training purpose. The ratio
between benign and attack instances then become 1:1 for both balanced training
and test datasets. The benign instances are randomly reduced into 163,319 data
instances for training dataset while 53,078 data instances for test dataset.

The AWID dataset not only consists of discrete data but also continuous
and symbolic data types, with flexible value ranges. This situation might con-
fuse any machine learning during training. The dataset preparation should be
done in advance, which contains two main tasks: mapping symbolic-valued at-
tributes to integer values and normalizing tasks. First, target classes would be
mapped to integer type: 1 for benign instances and 2 for impersonation attack.
Second, symbolic attributes, such as a receiver, destination, transmitter, and
source address, would be mapped to integer values with a minimum value of 1
and a maximum value of ¢, where 4 is the number of all symbols. Third, some
attributes that have a hexadecimal data type, such as WEP Initialization Vector
(IV) and Integrity Check Value (ICV), need to be cast into integer values too.
Also, there are some attributes left with a continue data type, like timestamps.
Last, the dataset also contains a question mark (“?”) for unavailable values for
the corresponding attributes. The question marks are assigned to zero value.
After all attribute values are cast into integer values, each of the attributes is
linearly normalized between zero and one. Eq. (4) shows the normalizing formula:

x; — min(x)

(4)

, where z; denotes the normalized value, x; refers to the corresponding attribute
value, and min(z) and max(z) are the minimum and maximum values of the
attribute, respectively.

-~ maz(z) — min(z)

4.2 Evaluation Metrics

We use several metrics that commonly used for measuring IDS performance [15]:
classification accuracy (Acc), Detection Rate (DR), False Alarm Rate (FAR).
Acc shows the overall effectiveness of an algorithm. DR, also known as Recall,
refers to the number of attacks detected divided by the total number of attack
instances in the test dataset. FAR is the number of normal instances classified
as an attack divided by the total number of normal instances in the test dataset.
F score measures a harmonic mean of precision and recall, where Precision
shows the number of attacks compared to the total of classified instances as an
attack. Intuitively, our goal is to achieve a high Acc, DR, Precision and Fi
score, and at the same time, maintain low FAR. The above measures can be
defined as shown in Egs. (5), (6), (7), (8) and (9):

TP+TN

A =
“TTPYTN+FP+FN

()



Improving Detection of Wi-Fi Impersonation by Fully Unsupervised DL 9

TP
DR = Recall = m (6)
FpP
FAR= o FP @)
. TP
Precision = W (8)

Precision - Recall
F=9.
! Precision + Recall )

, where True Positive (TP) is the number of intrusions correctly classified as an
attack. True Negative (TN) is the number of normal instances correctly classified
as a benign packet. False Negative (FN) is the number of intrusions incorrectly
classified as a benign packet. False Positive (FP) is the number of normal in-
stances incorrectly classified as an attack.

4.3 Experimental Results

We implement our proposed scheme as shown in Algorithm 1. There are two
hidden layers in the SAE network with 100 and 50 neurons accordingly. The
encoder in the second layer fed with features formed by the first layer of encoder.
The softmax activation function is implemented in the final stage of the SAE
in order to optimize the SAE training. The 50 features extracted from the SAE
are then forwarded to k-means clustering algorithm as an input. We use random
initialization for k-means clustering algorithm. However, we set a certain value
as a random number seed for reproducibility purpose. We compare clustering
results from three inputs: original data, features from the first hidden layer of
the SAE and features from the second hidden layer of the SAE as shown in Table
1.

Table 1. The evaluation of our proposed scheme

l Input ‘DR(%)‘FAR(%)\ACC(%)‘Precision(%)\Fl (%)l

Original data | 100.00 57.17| 55.93 34.20| 50.97
15% hidden layer | 100.00 57.48| 55.68 34.08| 50.83
2" hidden layer| 92.18 4.40| 94.81 86.15| 89.06

We observe the limitation of a traditional k-means algorithm, which unable
to clusters complex and high dimensional data of AWID dataset, as expressed
by 55.93% of accuracy only. Although 100 features coming from the 1%¢ hidden
layer achieved 100% of detection rate, the false alarm rate is still unacceptable
with 57.48%. The k-means algorithm fed by 50 features from the 2"4 hidden
layer achieved the best performance among all as shown by the highest F; score
(89.06%) and Acc (94.81%), also the lowest F AR (4.40%). Despite a bit lower
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detection rate, our proposed scheme improves the traditional k-means algorithm
in overall by almost twice F; score and accuracy.

Fig. 4 shows cluster assignment result in Euclidean space, by our proposed
scheme. Black dots represent attack instances, while gray dots represent benign
instances. The location of cluster centroid for each cluster is expressed by X
mark.
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Fig. 4. Cluster assignment result in Euclidean space by our proposed scheme

We also compare the performance of our proposed scheme against two related
previous work by Kolias et al.[3] and Aminanto and Kim [14] as shown in Table
2. Our proposed scheme is able to classify impersonation attack instances with
a detection rate of 92.18% while maintaining low FAR, 4.40%. Kolias et al. [3]
tested various classification algorithms such as Random Tree, Random Forest,
J48, Naive Bayes, etc., on AWID dataset. Among all methods, Naive Bayes algo-
rithm showed the best performance by correctly classifying 4,419 out of 20,079
impersonation instances. It achieved approximately 22% DR only, which is un-
satisfactory. Aminanto and Kim [14] proposed another impersonation detector
by combining Artificial Neural Network (ANN) with SAE. They successfully im-
proved the IDS model for impersonation attack detection task by achieving a
DR of 65.18% and a FAR of 0.14%. In this study, we leverage SAE for assisting
traditional k-means clustering with extracted features. We still have a high false
alarm rate, which leads to a severe impact of IDS [16]. However, we can accept
false alarm rate value about 4% since we use fully unsupervised approach here.
We can adjust the parameters and cut the FFAR down, but, less FAR or high DR
remains a tradeoff for users and will be discussed in further work. We observe
the advantage of SAE for abstracting a complex and high dimensional data to
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assist traditional clustering algorithm which is shown by reliable DR and F}
score achieved by our proposed scheme.

Table 2. Comparison with previous work

l Method [DR(%)[FAR(%)[ Acc(%) [ Precision(%)[Fi(%)]
Kolias et al.[3] 22.01 0.02| 97.14 97.57| 35.92
Aminanto and Kim [14]| 65.18 0.14| 98.59 94.53| 77.16
Our proposed scheme 92.18 4.40| 94.81 86.15| 89.06

5 Conclusion and Future Work

In this paper, we improve traditional k-means clustering algorithm by proposing
a novel fully unsupervised-based intrusion detection system incorporating deep
learning technique, a stacked autoencoder. We implement SAE to achieve high
level abstraction of complex and huge Wi-Fi network data. The SAE has impor-
tant features: model-free and learnability on large-scale data, which is suitable
for the open nature of Wi-Fi networks where attackers can easily impersonate
as legitimate users. We believe that the extracted features by SAE are in the
new space that can improve clustering algorithm performance. Our experiments
show significant improvements compared to previous work with notably 94.81%
of accuracy.

In the near future, we will further investigate and propose a method to reduce
false alarm rate in order to achieve a reliable IDS. In addition, we will discuss
using deep learning techniques, especially stacked autoencoder as an outlier de-
tection for detecting unknown attacks.
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