
Copyright c©2017 The Institute of Electronics,
Information and Communication Engineers

SCIS 2017 2017 Symposium on
Cryptography and Information Security

Naha, Japan, Jan. 24 - 27, 2017
The Institute of Electronics,

Information and Communication Engineers

Timing and Fault Attacks on Lattice-based Cryptographic Libraries

Hyeongcheol An∗ Sungsook Kim † Jeeun Lee † Rakyong Choi † Kwangjo Kim ∗†

Abstract: Lattice-based cryptography is based on mathematical hard problem such as Learning
with Error(LWE) and Ring-Learning with Error(Ring-LWE). These problems can be used for Fully
Homomorphic Encryption(FHE) which attracts a lot of attention in the field of cloud computing
environment and big data processing. On the other hand, side-channel attacks on a lot of cryptographic
libraries have been tried except lattice-based cryptosystems. We first try to timing attack in lattice-
based cryptographic libraries such as FHEW and HElib. Timing attack is simple and relatively easy
to approach than other hardware-based side-channel attacks. In this paper, we compare and analyze
four lattice-based open cryptographic libraries such as FHEW, HElib, Λ ◦ λ, and LatticeCyrpto. In
particular, aftter checking the time traces of the FHEW and HElib libraries, we investigate to determine
if timing and fault attacks are feasible. As a countermeasure against timing attacks, we present a
method for a padding to make of a message constant time encryption.

Keywords: Timing Attack, Fault Attack, Lattice-based Cryptographic Library

1 Introduction

Public key cryptosystems such as RSA and Diffie-
Hellman (DH) are based on the difficulty of Integer
Factoring Problem(IFP) or Discrete Logarithm Prob-
lem(DLP). However, by using a quantum computer,
IFP and DLP can be solved within the polynomial
time by Shor’s algorithm [1]. Therefore, we need for
a replacement for the current public key cryptosystems
against the quantum computer attack. A lattice-based
cryptography is known as one of the post-quantum
cryptographies. We focus on lattice-based cryptogra-
phy which is based on mathematical hard problem such
as Learning with Error(LWE) and Ring-Learning with
Error(Ring-LWE). In addition, lattice-based cryptog-
raphy can be used not only for encryption and decryp-
tion but also for digital signatures and key exchange
protocols. Therefore, we investigate the cryptographic
features of four libraries such as FHEW[2], HElib[3],
Λ ◦ λ[4], and LatticeCyrpto [5].

In addition, Homomorphic Encryption(HE) technol-
ogy plays an important role in keeping personal infor-
mation in the cloud computing environment and big
data processing. HE can be divided into Fully Ho-
momorphic Encryption(FHE) and Somewhat Homo-
morphic Encryption(SHE) satisfying the homomorphic
property for all operations and specific operations, re-
spectively. The homomorphic properties are that the
operations on ciphertext are also matched to the one
of plaintexts so that the ciphertext can be computed

∗ Grauate School of Information Security, KAIST. 291,
Daehak-ro, Yuseong-gu, Daejeon, South Korea 34141.
{anh1026, kkj}@kaist.ac.kr

† School of Computing, KAIST. 291, Daehak-
ro, Yuseong-gu, Daejeon, South Korea 34141.
{kusino, jeeun.lee, thepride, kkj}@kaist.ac.kr

without decryption. Therefore, this advantage leads to
handle data without exposing sensitive personal infor-
mation in cloud computing environment. Since the pro-
cess of big data processing and decoding in the server
environment is unnecessary, the amount of computa-
tion of the server can be reduced.

On the other hand, side-channel attacks on a lot of
cryptographic libraries have been tried except lattice-
based cryptosystems. We first try to timing attack
in lattice-based cryptographic libraries such as FHEW
and HElib. Timing attack is simple and relatively easy
to approach compared to hardware-based side-channel
attacks.

In this paper, we compare and analyze four lattice-
based open-source cryptographic libraries such as FHEW,
HElib, Λ◦λ, and LatticeCyrpto. Also, we check whether
timing and fault attacks are possible for two lattice-
based libraries such as FHEW and HElib libraries and
suggest a solution with constant operation time for ar-
bitrary message length.

1.1 Outline of the Paper

In Section 2, we introduce the well-known lattice-
based hard problems and HE. Section 3 introduces two
publications which tried to attack lattice-based prob-
lem or cryptographic primitives by using power and
faults attacks. Then, we compare and analyze four dif-
ferent lattice-based cryptographic open-source libraries
such as FHEW, HElib, Λ ◦ λ, and LatticeCrypto li-
braries in Section 4. In Section 5, we perform tim-
ing and fault attacks on FHEW and HElib libraries.
Then, we give our constant time encryption with mes-
sage padding to prevent against timing attack and con-
cluding remarks in Sections 6 and 7, respectively.

1



2 Lattice-based Cryptography

In this section, the well-known lattice-based prob-
lems and the HE based on these problems will be de-
scribed in brief.

2.1 Lattice-based Problems

A lattice Λ can be defined as a discrete subgroup of
Rm with its basis B. A basis B of Λ is a set of linearly
independent vectors B = {b1,b2, · · · ,bm} which spans
the lattice Λ and B = (b1|b2| · · · |bm) is called a basis
matrix of the lattice Λ.

One of the hardness of lattice problem is the worst-
case hardness assumption. Of them, Shortest Vector
Problem(SVP) is to find the shortest nonzero lattice
vector to a given vector. Closest Vector Problem(CVP)
is to find the closest lattice vector to a given vector. On
the other hand, there are average-case hardness prob-
lems which can be reduced to the worst-case hardness
problem in lattice, e.g., Short Integer Solution(SIS) and
LWE problems.

LWE problem is a different to efficiently distinguish
vectors created from a noisy set of linear equations be-
tween uniformly random vectors. Solving LWE prob-
lem is approximately as hard as solving SVP problem.
LWE application serves as a versatile problem used in
construction of cryptographic primitives. However, a
drawback of using LWE is large key size. On the other
hands, Ring-LWE problem requires an algebraic vari-
ant of LWE, which operates over elements of polyno-
mial rings instead of vectors.

2.2 Homomorphic Encryption

HE[6] is a form of encryption which allows specific
types of computations to be carried out on cipher-
texts and generates an encrypted result which, when
decrypted, matches the result of operations performed
on the plaintexts:

Hk(m1) ◦Hk(m2) = Hk(m1 ◦m2) (1)

where, Hk(m1) is HE of message, m1 using key, k and
◦ is a specific homomorphic operation.

FHE scheme [7] is that given ciphertexts that en-
crypt m1, ...,mt, anyone can output a ciphertext that
encrypts f(m1, ...,mt) for any desired function f , as
long as that function can be effectively computed.

All HE schemes based on lattice are from Gentry’s
seminal paper[7]. Encryption scheme has a noise pa-
rameter which is attached to each ciphertext thus en-
cryption outputs a ciphertext with a noise. So, de-
cryption works as long as the noise is less than some
threshold. However this noise grows with every opera-
tion, resulting decryption error reaches in some bound.
This yields SHE scheme that can handle only low-depth
circuits. SHE can be modified into FHE by bootstrap-
ping.

Bootstrapping is a technique for refreshing cipher-
text of SHE. After refreshing by bootstrapping, the ci-
phertext is still encrypted form of plaintext with low

error. Lattices are a good way for bootstrapping since
their complexity is very low and some algebraic opera-
tions from the polynomial rings are very efficient. So,
many studies about lattice-based cryptographic library
with low–cost bootstrapping have been done.

In BGV[8], the essence of the modulus–switching
technique means that an evaluator, who does not know
the secret key s but instead of only knows a bound
on its length, can transform a ciphertext c modulo q
into a different ciphertext modulo p while preserving
correctness. Here p is smaller than q.

3 Previous Work

Even though lots of researches on lattice-based cryp-
tography have been studied for various cryptographic
applications, no extensive effort has been executed in
analyzing their vulnerabilities from many side channel
attacks.

In this section, we introduce two publications which
tried to attack lattice-based problem or cryptographic
primitives by using power and faults attacks.

3.1 Simple Power Attack on Ring-LWE

Park et al.[9] proposed an idea to execute Simple
Power Analysis (SPA) attack to break a public-key
cryptosystem [10] based on Ring-LWE problem.

This attack is assumed that the operations for public
key encryption and decryption were implemented in 8-
bit micro-controller with limited computing power and
memory such as Internet–of–Things(IoT) devices.

Simple Power Analysis(SPA) attack initiated by Kocher
et al.[11] in 1999 needs to sample visually interpreting
power traces, or graphs of electrical activity over time.
Differential Power Analysis(DPA) attack is a more ad-
vanced form of analysis which can allow an attacker to
compute the intermediate values within cryptographic
computations by statistically analyzing data collected
from multiple cryptographic operations.

Ring-LWE cryptosystem is divided into three poly-
nomial –time algorithms, namely, key generation(), en-
cryption(), and decryption(). In encryption(), Number
Theoretic Transform(NTT) algorithm is applied in er-
ror polynomials e1, e2, and e3, and an original message
m. In decryption, Inverse NTT(INTT) is applied by of
key and a ciphertext to recover m. NTT is very useful
to Ring-LWE cryptosystems based for their implemen-
tation. INTT contains modulus calculus (modulus q
which is security parameter can have 7,681 and 12,289
for 128-bit and 256-bit level security, respectively.). We
can narrow down the range of each coefficients of a se-
cret key by just checking if modulus computation is
executed or not. And this difference can be identified
by comparing power consumption. After dlog2 qe itera-
tion are executed, all of coefficients of a secret key, that
is an entire secret key, can be revealed.

Their attack is claimed to be a kind of chosen cipher-
text attack which is to exploit a vulnerability on de-
cryption operation when Ring-LWE cryptosystem us-
ing NTT is implemented in 8-bit microcontroller.

2



Algorithm 1 describes the brief decrypting oper-
ation in LPR[10] before decoding. Note that step 8
in Algorithm 1 is a conditional check. If m[i] ≥ q,
an additional modulus operation is required. From this
operational differences, they claimed an idea to extract
a secret key r with SPA attack.

Algorithm 1: Decrypting operation in LPR

Input : Ciphertext c1, c2, Secret Key r
Output: Encoded plaintext m

1 for i=0 to n− 1 do
2 c1[i]← r[i] · c1[i]
3 if c1[i] ≥ q then
4 c1[i]← c2[i] mod q
5 else
6 m[i]← c1[i] + c2[i]
7 end
8 if m[i] ≥ q then
9 m[i]← m[i] mod q

10 end

11 end
12 return m;

Figure 1 shows difference of power traces depending
on modulus operation or not. The solid and dotted
curves in Figure 1 represent the power trace of execut-
ing and non-executing modulo operation, respectively.

Figure 1: Difference of power traces

3.2 Fault Attack on Lattice-based Signatures

Bindel et al. [12] investigated the vulnerability and
resistance of three lattice-based signature schemes(BLISS
[13], Ring-TESLA[14] and GLP[15]) from three kinds
of fault attacks such as randomizing, skipping, and ze-
roing faults.

They explored this vulnerabilities and suggest their
countermeasures during the key generation, digital sign-
ing, and verification algorithms.

(i) A randomization fault attack changes the value
of a target variable in sub-algorithm randomly.
Though attackers do not know the value of a
target variable, attackers can know that it was
changed within a certain range after fault attack.
The following is a randomization attack of the
secret polynomial.

The signature of a message m is σ = f(z, c),
where z = s · c + y, y is random and c contains
hashed value of m with some public informations.
If one coefficient of the private key(s) is changed,
σ′ = f(z′, c), where z′ is a new value changed by
coefficient of s by fault attack. The difference be-
tween the original hashed value and the faulted
hashed value can reveal the coefficient of private
key s.

(ii) Skipping fault attack is to skip or ignore the se-
lected lines of the program code. For example,
during key generation in GLP, the public key is
computed as follows : first a and s are multiplied
and saved in the value b (b = as). Afterwards,
the error e is added to b (b = b+ e). Hence, skip-
ping the second operation yields b = as and an
attacker can easily recover secret key s by Gaus-
sian reduction.

(iii) Zeroing fault attack assumes that attackers can
set a whole or a part of a variable. For example,
attackers can zerorize all the coefficients of the
secret polynomial. If this zeroing is done during
key generation, it induce s = 0, hence the value
b = e mod q is returned and attackers can un-
derstand the error polynomial e. Only knowing
e can generate forged signatures in GLP without
private information which is a kind of universal
forgery of a signature scheme.

Their research showed that all examined signature
schemes and their implementations are vulnerable to
all three kinds of considered fault attacks. Bindel et
al. [12] summarized the comparison of three scheme
with respect to their vulnerability as shown in Table
1. They also suggested some countermeasures of each
attack, emphasizing that we have to be pre–cautious
against all three kinds of attacks, not only one.

Table 1: Comparison of three schemes with respect to
their vulnerability to three attacks
Fault Attack Algorithm GLP BLISS Ring-

TESLA

Rand. of secret S • • ◦
Rand. of error S ◦ ◦ ◦
Rand. of modulus S ◦ ◦ ◦
Rand. of randomness S ◦ ◦ ◦
Skip of mode-reduction KG ◦ - ◦
Skip of addition KG • • •
Skip of rejection S (•) (•) (•)
Skip of addition S • ◦ ◦
Skip of mod-reduction S ◦ - ◦
Skip of correct-check V • • •
Skip of size-check V • • ◦
Zero. of secret KG • - ◦
Zero. of randomness S • • •
Zero. of hash value S ◦ ◦ ◦
Zero. of hash polynomial V • • •
Rand.: randomization, Skip.: skipping, Zero.: zeroing.
Key generation(KG), Signature generation(S), and verify(V)
•: vulnerable, ◦: not vulnerable, -: not applicable
(•): vulnerable with a huge number of needed faults

3



4 Lattice-based Cryptographic Library

In this section, we introduce four lattice-based cryp-
tographic libraries such as HElib, FHEW, Λ ◦ λ, and
LatticeCrypto.

4.1 HElib Library

HElib library[16] is written in C++ and uses the
NTL library[17] and GMP library[18]. It implements
HE, specifically the BGV encryption scheme[8].

This library has two levels. In the lower level, HE-
lib is the cryptosystem itself that means the hardware
platform of homomorphic computations. The platform
defines a set of operations that can be applied homo-
morphically and specify their evaluation cost. The
higher level contains the algorithm over the platform
e.g., routing algorithms, simple linear functions, and
polynomial evaluation. This algorithms are necessary
for bootstrapping.

HElib library is divided into two layers (Math layer
and Crypto layer). Figure 2 shows a block diagram of
the HElib library. In Math layer, bluestein and CMod-
ulus class are used to compute polynomials in FFT us-
ing NTL library whereas PAlgebra and PAlgebraMod
class are for encoding and decoding operations. The
main part of Math layer is DoubleCRT class that ma-
nipulates polynomials in Double-CRT representation.

The Crypto layer implements actual BGV homomor-
phic cryptosystem. This layer can also be partitioned
into the Ctxt module implements ciphertext and ho-
momorphic operations. FHE module implements the
keys and key-switching matrices. KeySwitching mod-
ule implements some strategies for deciding how key-
switching matrices generate.

Since Gentry proposed FHE with bootstrapping, dras-
tic changes were made in FHE scheme. Gentry used
bootstrapping procedure to reset noise of ciphertexts
thus keeping on computing encrypted data. Though
many different FHE was suggesed, their common con-
cept still prefers to using bootstrapping. Recent boot-
strapping implementation of FHE is HElib library of
Halevi and Shoup which requires about 6 - 30 min.

Figure 2: A block diagram of the HElib library

4.2 FHEW Library

FHEW library[19] is introduced by Ducas and Mic-
ciancio in 2015. This library uses C and C++ language
and has less than 600 lines which are much simpler com-
pared to other libraries (HElib library is about 20,000
lines). And this library uses the Fastest Fourier Trans-
form in the West (FFTW library) to compute FFT for
faster computation.

FHEW library reduces the time for bootstrapping
procedure dramatically, about 0.6 sec (note that HE-
lib library takes 6 min at least and even though this
was much better than previous implementations at that
time). For efficient HE, they developed two new tech-
niques:

(i) A new, cheap NAND gate.

It starts from LWE encryption with message space
Zt(t > 2). And the main idea is to use differ-
ent message space, for input space Z4 and output
space Z2. This advantage is that the cost of com-
puting Homomorphic NAND is negligible (similar
to a single private key cryptographic operation).
Also, noise grows only by a small constant factor
and simplifies the task done by the Refreshing
procedure which will be described later.

In LWE encryption, a set of encryptions of m
with an error e < E is denoted by LWEs(m,E).
And FHE bootstrapping requires strong Refresh-
ing like Eq. (2).

LWEs(m, e)→ LWEs(m, e
′), e′ � e. (2)

By using new homomorphic NAND gate, new re-
fresh function LightRefresh is suggested as Eq.
(3).

LWE2
s (m, q/4)→ LWE4

s (m, q/16) (3)

where the previous refresh function(bootstrapping)
is Eq. (4).

LWE2
s (m, q/4)→ LWE2

s (m,E), E � q (4)

Therefore it relaxes the requirement on the Re-
freshing procedure, potentially making the over-
all scheme faster.

(ii) A simpler Refreshing procedure using a ring struc-
ture.

This is based on the general approach by Alperin-
Sheriff and Peikert [20] and a ring variant of HE
by Gentry et al. [21]. And their main idea is
to implement arithmetic mod q in the exponent.
Using a ring structure in encryption operation
allows that each cyclic group element is encoded
by a single ciphertext, rather than a vector of

4



Table 2: Comparison the lattice-based cryptographic libraries
Library HElib FHEW Λ ◦ λ LatticeCrypto
Publication 2013 2014 2015 2016
Based Library NTL, GMP FFTW3 None None
Language C and C++ C and C++ Haskell and C++ C and Assembly
Error Sampling Discrete Gaussian

Distribution
Discrete SubGaus-
sian Distribution

Continuous Gaus-
sian Distribution

Discrete Gaussian
Distribution

Platform Linux Linux Windows, Linux Windows, Linux
Hard Problem Ring-LWE Ring-LWE, LWE Ring-LWE Ring-LWE

ciphertexts. In general we can get generic Ω̃(n)
speed-up from ring structure. From this idea,
they claimed that an additional Ω̃(log3 q) speed-
up by embedding can be achevied. And error af-
ter bootstrapping can be reduced by O(

√
n log n).

Using two techniques above, both homomorphic NAND
and refreshing operations take 0.61 sec on a single stan-
dard 64-bit core running at 3GHz.

4.3 Λ ◦ λ Library

Λ ◦ λ library[22] is written in Haskell and C ++
language, and most of the code is written in Haskell
which is a general-purpose purely functional program-
ming language with the advantage that the length of
the code is relatively short. The number of entire
source code line is 4,991 lines, which means that the
source code is about 7 times shorter than HElib library.

This library consists of four layers[22] in total, namely,
Integer layer, Tensor layer, Cyclotomic layer, and Cryp-
tography layer. Integer and Tensor layers implement
the necessary computation function to increase the com-
putation speed in the encryption and decryption oper-
ations. Cyclotomic layer implements Ring-LWE-based
lattice cryptography and Gaussian error sampling al-
gorithm. Cryptography layer implements the HE. This
includes GSW and BGV used in HElib and FHEW li-
braries, and additionally implements GHS[23].

Λ ◦ λ library uses a continuous Gaussian distribu-
tion in the error sampling algorithm. In general, the
discrete Gaussian distribution is used in the error sam-
pling process of the Ring-LWE scheme.

4.4 LatticeCrypto Library

Microsoft’s LatticeCrypto library[24] does not need
NTL or GMP libraries on other libraries, and is im-
plemented using C and assembly language. Hence,
this library works well in Windows and also in Linux
platform. However, this library designs for only key
exchange protocol. Therefore, this library cannot be
applied to various cryptographic primitives such as en-
cryption or decryption and also digital signature. Com-
pared to the NewHope[25] key exchange protocol, the
count of computation is reduced by about 1.4 times[24].
This is because NTT reduces the computational com-
plexity by using a new modular reduction method.

Table 2 shows in brief comparison of the lattice-based
cryptographic libraries.

5 Timing and Fault Attacks

In this section, we perform timing and fault attacks
of the FHEW and HElib libraries among four libraries
examined in Section 4. This is because the Λ ◦ λ li-
brary is written in Haskell. We excluded this library
from the experiment because we cannot establish the
same environment for our experiment. Also, Lattice-
Crypto library is excluded from our experiment due
to its limited operation such as key exchange protocol
only.

5.1 Experimental Setup

The experimental environment is as follows: Intel(R)
CPU i7-5500, RAM 16GB and test on Ubuntu v16.04.
The compiler also uses gcc v5.4.0. We download refer-
ence FHEW and HElib libraries in GitHub.

5.2 Experimental Result

5.2.1 FHEW Library

First, we measure the time in the reference FHEW
library. Second, we measure the time while changing
the value of the Gaussian distribution to 0 or 1. Finally,
we measure the time by changing the value of a random
polynomial’s each coefficient from minimum value 0 or
maximum value 29 − 1. Also, we test the different key
size such as n = 500 in LWE scheme and N = 1, 024
in Ring-LWE scheme. FHEW library is implemented
only single bit encryption. We experiment with two
kinds of secret keys such as LWE and Ring-LWE.

Therefore, we first fix the length of the message, and
adjust the parameters to check how to affect the exe-
cution time. Table 3 shows the result in FHEW library
timing measurement. Since the encryption time is flat
to our experimental setup, we operate 1,000,000 en-
cryptions to each set and add all the execution times.
In Table 3, there is no significant time difference ob-
tained even when the sampling value of the Gaussian
distribution is fixed and changing a[i]. The time dif-
ference is not clearly identified when the experiment is
performed by modify the values of a[i].

Therefore, we try the time difference according to
the message length. Because FHEW library supports
single bit operations, we should call the encryption
function multiple times if the message length increases.
Since the maximum input size is 32-bit, we increase
the message length to 32-bit. Figure 3 shows the time
difference of FHEW library when message length is

5



Table 3: Timing measurement in FHEW library
Test Set Original GaussDist=0 GaussDist=1 a[i]=0 a[i]=29 − 1

Plaintext Input (1-bit) 0 1 0 1 0 1 0 1 0 1

Summed Enc. time of (1) (Sec) 2.463 2.485 2.479 2.476 2.463 2.484 2.482 2.478 2.467 2.466
Summed Enc. time of (2) (Sec) 2.564 2.510 2.512 2.814 2.502 2.532 2.502 2.606 2.525 2.541

(1): Using LWE key, (2): Using Ring-LWE key
a[i]: random monic polynomial’s each ith coefficient value

Figure 3: Time difference of FHEW (1 to 10-bit)

changed from 1-bit to 10-bit. In addition, Figure 4
shows the length of the message in 10-bit increments,
measured up to the maximum input size of 32-bit. We
find that the execution time increases linearly.

Figure 4: Encryption time of FHEW (10 to 32-bit)

5.2.2 HElib Library

In HElib library, we measure the time difference in
evaluation operation by changing degrees of message
polynomial. The experiment performs to measure the
time by increasing the degree from 1 to 20. In HElib
library, we input a random message. The parameter
values are fixed in plaintext size pr = 32 = 9, and cir-
cuit depth L = 11. Figure 5 shows the evaluation time
difference according to degrees of message polynomial.
Unlike FHEW library, we check that increasing the de-
gree of message polynomial does not increase the time
linearly.

However, this result cannot be applied to get the
plaintext or secret key directly.

Figure 5: HElib timing result

5.3 Analysis of Time Traces

In general, if a secret key or plaintext is exposed
from time traces, this can be generated by logical if()
statement. In logical if() statement, we can easily check
additional operations. Therefore, we can expose the
secret key or plaintext. Algorithm 2 does not have a
logical if() statement in the encryption.

Algorithm 2: FHEW original Encrypt()

Input : const SecretKey sk, int Message m
Output: Ciphertext ct

1 ct = (m mod 4) ∗ q/4+Sample(GaussDist.);
2 for i < 500 do
3 a[i]=rand()mod q;
4 return ct = ct+ (a[i] · sk[i]) mod q ;

5 end
6 return Ciphertext ct;

If no logical if() statement, encryption performs the
same operation on all secret keys and plaintext. How-
ever, in our experiment, the clock speed of Intel(R) i7
5500 CPU is 2.4GHz at normal state and 3.0GHz at
turbo boost state. A single 500-bit multiplication op-
eration is performed within about 0.87µs during the
turbo boost state. For encryption operation of FHEW
library, we multiply secret key and random polynomial.
After this, the sum of the message and the sampling
value adds from the previous value. Therefore, the mes-
sage and the secret key are combined by multiplication.

We use gettimeofday() as time measurement function
in Linux. This function can measure time up to ms.
However, the actual operation time is less than ms,
so we cannot confirm the timing difference experiment

6



that we tried. To summarize, if a logical if() state-
ment exists and each operation is different, a timing
attack can be made using the difference in operation
time. However, FHEW and HElib libraries do not have
a logical if() statement, so we cannot check the time
differences in these two libraries.

5.4 Fault Attack

Three kinds of fault attacks is suggested by Section
3.2. We apply those fault attacks in FHEW and HElib
libraries. Randomizing fault attack is occurred by spe-
cific discrete Gaussian distribution with bounded error,
like GLP and BLISS. However, FHEW and HElib li-
braries use general discrete Gaussian distribution, like
Ring-TESLA. We expect that randomizing fault attack
will not be applied to FHEW and HElib libraries.

Skipping and zeroing fault attacks can be applied to
FHEW and HElib libraries beacause these libraries are
public open source, e.g., skipping Sample(GaussDist.)
in Step 1, Algorithm 2 can reveal secret key using
Gaussian reduction.

6 Making Constant Time Encryption

Here, we discuss a method for padding the message.
In order to make a constant time encryption despite of
arbitrary message length.

6.1 Message Padding

The time difference according to the message length
of FHEW library can expose the length information
of plaintext. Therefore, we propose message padding
to prevent this problem. Algorithm 2 describes the
FHEW original Encrypt() code. As mentioned Section
5, the original code of FHEW library supports only
single bit operation. Therefore, we propose message
padding in order not to leak information about message
length. Algorithm 3 is the pseudo code of FHEW
library with message padding. The maximum length of
the message is limited to 32-bit, which is the maximum
input size of FHEW library.

Algorithm 3: Message padding in FHEW

Input : const SecretKey sk, int Message m
Output: Ciphertext ct[n]

1 for i < 500 do
2 m = m mod 10;
3 c[i] = m;

ct[i] = (c[i] mod 4)∗q/4+Sample(GaussDist.);
4 a[i]=rand()mod q
5 return ct[i] = ct[i] + (a[i] · sk[i]) mod q ;

6 end
7 return Ciphertext ct[n];

6.2 Comparison with Original FHEW Library

We compare the computation time with the original
FHEW library using the message padding in Section
6.1. Figure 6 shows comparison with original FHEW

library and message padding. The encryption time in-
creases linearly in the original FHEW library. How-
ever, after message padding, a constant computation
time regardless of message length will take. Since we
have the message padding for 32-bit, encryption time
increases than before the padding.

Figure 6: Comparison with Original FHEW Library

7 Concluding Remarks

In this paper, we compare four lattice-based crypto-
graphic libraries. We also analyzed two libraries, HElib
and FHEW libraries, in order to execute timing attack
on FHEW and HElib libraries. Thus, we can mod-
ify the values of Gaussian distribution and a random
polynomial in FHEW library but cannot get the def-
inite time difference. However, FHEW library imple-
ments only single bit operation. We proposed mes-
sage padding to prevent information leakage on mes-
sage length. As a result, we confirm the experiment
with constant time for the arbitrary message. We en-
counter some limitations. It is difficult to encrypt the
variable message length. Also, there is a disadvantage
that the length of the input message is limited to 32-bit
when message padding is implemented.

Also, we analyze the result that there is no time dif-
ference. In General, the time difference in timing attack
occurs in a logical if() statement. Since the logical if()
statement does not use in these libraries, we found that
there is no difference in operation time.

As future work, we will experiment a resource-constra-
ined to make the time differences to be identified easily.

Acknowledgements

This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea
government(MSIP) (No. NRF-2015R1A2A2A01006812).

References

[1] P. W. Shor, “Algorithms for quantum computa-
tion: Discrete logarithms and factoring,” in Pro-

7



ceedings, 35th Annual Symposium on Foundations
of Computer Science, FOCS 1994, pp. 124–134,
IEEE, 1994.

[2] “FHEW library.” https://github.com/lducas/FHEW/.

[3] “HElib library.” https://github.com/shaih/HElib/.

[4] “Λ◦λ library.” https://github.com/cpeikert/Lol/.

[5] “LatticeCrypto library.”
https://www.microsoft.com/en-us/research/
project/lattice-cryptography-library/.

[6] X. Yi, R. Paulet, and E. Bertino, Homomorphic
encryption and applications. Springer, 2014.

[7] C. Gentry, “A fully homomorphic encryption
scheme,” in Ph.D Thesis, Stanford University,
2009.

[8] Z. Brakerski, C. Gentry, and V. Vaikuntanathan,
“(Leveled) Fully homomorphic encryption with-
out bootstrapping,” in Proceedings of the 3rd In-
novations in Theoretical Computer Science Con-
ference, ITCS 2012, pp. 309–325, ACM, 2012.

[9] A. S. Park, Y. S. Won, and D. G. Han, “Chosen ci-
phertext SPA attack on Ring-LWE cryptosystem,”
in Conference on Information Security and Cryp-
tography - winter, Yonsei Univ., 12. 03. 2016. (in
Korean).

[10] V. Lyubashevsky, C. Peikert, and O. Regev,
“On ideal lattices and learning with errors over
rings,” in Proceedings, Annual International Con-
ference on the Theory and Applications of Cryp-
tographic Techniques, EUROCRYPT 2010, pp. 1–
23, Springer, 2010.

[11] P. Kocher, J. Jaffe, and B. Jun, “Differential power
analysis,” in Advances in Cryptology, CRYPTO
1999, pp. 388–397, Springer, 1999.

[12] N. Bindel, J. Buchmann, and J. Kramer,
“Lattice-based signature schemes and their
sensitivity to fault attacks,” in Cryptology
ePrint Archive, Report 2016/415, 2016.
http://eprint.iacr.org/2016/415.

[13] L. Ducas, A. Durmus, T. Lepoint, and V. Lyuba-
shevsky, “Lattice signatures and bimodal gaus-
sians,” in Advances in Cryptology, CRYPTO 2013,
pp. 40–56, Springer, 2013.

[14] S. Akleylek, N. Bindel, J. Buchmann, J. Krämer,
and G. A. Marson, “An efficient lattice-based
signature scheme with provably secure instanti-
ation,” in International Conference on Cryptol-
ogy in Africa, AFRICACRYPT 2016, pp. 44–60,
Springer, 2016.

[15] T. Güneysu, V. Lyubashevsky, and
T. Pöppelmann, “Practical lattice-based cryp-
tography: A signature scheme for embedded
systems,” in International Workshop on Crypto-
graphic Hardware and Embedded Systems, CHES
2012, pp. 530–547, Springer, 2012.

[16] S. Halevi and V. Shoup, “Algorithms in HElib,” in
Advances in Cryptology, CRYPTO 2014, pp. 554–
571, Springer, 2014.

[17] “NTL library.” http://www.shoup.net/ntl/.

[18] “GMP library.” http://www.gmplib.org.

[19] L. Ducas and D. Micciancio, “FHEW: bootstrap-
ping homomorphic encryption in less than a sec-
ond,” in Proceedings, Annual International Con-
ference on the Theory and Applications of Crypto-
graphic Techniques, EUROCRYPT 2015, pp. 617–
640, Springer, 2015.

[20] J. Alperin-Sheriff and C. Peikert, “Faster boot-
strapping with polynomial error,” in Advances
in Cryptology, CRYPTO 2014, pp. 297–314,
Springer, 2014.

[21] C. Gentry, A. Sahai, and B. Waters, “Ho-
momorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in Advances in Cryptology,
CRYPTO 2013, pp. 75–92, Springer, 2013.

[22] E. Crockett and C. Peikert, “Λ ◦ λ: A func-
tional library for lattice cryptography,” in Cryp-
tology ePrint Archive, Report 2015/1134, 2015.
http://eprint.iacr.org/2015/1134.

[23] C. Gentry, S. Halevi, and N. P. Smart, “Fully
homomorphic encryption with polylog overhead,”
in Proceedings, Annual International Conference
on the Theory and Applications of Cryptographic
Techniques, EUROCRYPT 2012, pp. 465–482,
Springer, 2012.

[24] P. Longa and M. Naehrig, “Speeding up
the number theoretic transform for faster
ideal lattice-based cryptography,” in Cryptol-
ogy ePrint Archive, Report 2016/504, 2016.
http://eprint.iacr.org/2016/504.

[25] E. Alkim, L. Ducas, T. Pöppelmann,
and P. Schwabe, “Post-quantum key ex-
change - a new hope,” in Cryptology
ePrint Archive, Report 2015/1092, 2015.
http://eprint.iacr.org/2015/1092.

8


