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Abstract: This paper introduces two designs to enhance the Boneh and Freemans linearly homo-
morphic signature over binary fields, to overcome the limitations to implement homomorphic signatures
to the real world scenario due to the heavy calculation and under multiple signers setting for a message.

Based on our concurrent work on classification on lattice-based trapdoor functions in SCIS 2017,
we modify some algorithms from the original signature. We design the linearly homomorphic ring
signature by adopting Wang and Sun’s sampling algorithm GenSamplePre() instead of the original
sampling algorithm SamplePre() by Gentry et al. Also, we adopt the mixing and vanishing technique
of trapdoors by Boyen to design more efficient linearly homomorphic signature scheme with short
signatures.
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1 Introduction

1.1 Background and Motivation

As the infrastructure of cloud systems increases, one
of uprising security challenges is how the cloud server
computes a function of encrypted messages without
decryption. Despite of numerous studies on fully ho-
momorphic encryption on lattices [1–3] to enable the
server to calculate any function of encrypted message
without decryption, there is another security issue in
cloud system as how the cloud server gives authenticity
for the function of encrypted message.

For authenticity of cloud systems, a signature is a
well-known cryptographic primitive. But, the cloud
server should have the power to generate the proper
signature for a computation of messages without per-
mission from the signer of each message as well. If the
signature satisfies this condition, we say that the sig-
nature has the homomorphic property. Especially, a
signature is called linearly homomorphic when it sup-
ports constructing the proper signature for the linear
combination of messages [4, 5] and fully homomorphic
when it supports constructing the proper signature for
any function of messages [6, 7].

But, there are limitations to implement homomor-
phic signatures to the real world scenario due to the
heavy calculation and under multiple signers setting
for a message.

1.2 Our Contribution

In the work of Choi and Kim in SCIS 2017 [8], they
summarize the characteristics of lattice-based trapdoor
functions and their preimage sampling algorithms using
a trapdoor. Based on their paper, we modify the algo-
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rithms from lattice-based linearly homomorphic signa-
ture over binary fields by Boneh and Freeman [4].

We first consider the linearly homomorphic ring sig-
nature over binary fields by adopting Wang and Sun’s
preimage sampling algorithm GenSamplePre() [9].

We let each member in the ring take their own pub-
lic key and secret key by trapdoor generation function
TrapGen() during the setup phase in the first design.
Then, we concatenate the public key of each member
to make the common public key. Then, in the sign-
ing phase, we modify the preimage sampling algorithm
from well-known SamplePre() to GenSamplePre().

This design can be used in the real world scenario
since some information on cloud system is signed by an
organization instead of an individual and there should
be at least two people to authenticate the message
where each person has his/her secret key. In this situa-
tion, we need multiple signers with different secret keys
for a single message and the corresponding signature is
valid only if all signers are trustworthy.

Also, we adopt the mixing and vanishing technique
of trapdoors introduced by Boyen [10] to design the lin-
early homomorphic signature scheme over binary fields
with short signatures so that we have more practical
linearly homomorphic scheme.

1.3 Related Work

In 2011, Boneh and Freeman [4] published their sem-
inal work on linearly homomorphic signature over bi-
nary fields based on lattices with new lattice-based
hard problems called k-SIS problem. Boneh and Free-
man [5] also suggested that some bounded homomor-
phic signature can be constructed using ideal lattices
from Gentry’s fully homomorphic encryption [1].

After Boneh and Freeman’s work, lattices have be-
come a main tool to make linearly and fully homomor-
phic signatures. Zhang et al. [11] introduced the notion
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of a homomorphic aggregate signature which doesn’t
need to have the same secret key to combine multiple
messages. Then, they suggested a linearly homomor-
phic aggregate signature using the random basis gen-
eration algorithm RandBasis() by Cash et al. [12] to
generate multiple secret keys.

Jing [13] separately suggested an efficient homomor-
phic aggregate signature with linear homomorphism as
they concatenate a public key of each signer and use
the extending trapdoor basis algorithm ExtBasis() by
Cash et al. [12]. Both Zhang et al. [11] and Jing’s [13]
contributions are making multi-key linearly homomor-
phic signatures.

Choi and Kim [14] used the same technique suggested
by Jing but pre-shared the message to multiple signers
of a message to get the linearly homomorphic multisig-
nature. This work suggested the first construction of
multi-key multi-party linearly homomorphic signatures
to the best of our knowledge.

Besides the linearly homomorphic signatures, Gor-
bunov et al. [6] suggested the first fully homomorphic
signature scheme with a homomorphic trapdoor func-
tion but there is only one secret key. Recently, Fiore et
al. [7] suggested a fully homomorphic signature scheme
with multi-key setting, i.e., there are multiple secret
keys.

1.4 Outline of the Paper

Section 2 gives a notation and a background on a
lattice and lattice-based cryptography from the defini-
tion of lattices and hard problems on lattices to lattice-
based algorithms for trapdoor generation and sampling.
Then, formal definition and security requirement of lin-
early homomorphic signature with detailed construc-
tion is given in Section 3.

We give the design of new linearly homomorphic sig-
natures in Section 4 and we give a concluding remark
with future work in Section 5.

2 Preliminaries

2.1 Notation

We denote vectors as small bold letters (e.g., x, y)
and matrices as big bold letters (e.g., A, B).

Let R and Z express the set of real numbers and the
set of integers, respectively and small alphabet letters
express real numbers (e.g., a, b, c).

For any integer q ≥ 2, Zq denotes the ring of integers
modulo q and Zn×mq denotes the set of n×m matrices
with entries in Zq. When A ∈ Zn×m1

q , B ∈ Zn×m2
q ,

we write the concatenation of A and B as [A | B] ∈
Zn×(m1+m2)
q .
Let f(a, b) be a function f on a and b. We say a

function f : Z→ R+ is negligible when f = O(n−c) for
all c > 0 and denoted by negl(n). A function g(m) =
dme is the ceiling function from R to Z such that g(m)
is the smallest integer which is greater than or equal to
m.

‖x‖ represents the Euclidean norm of x and ‖B‖
represents the maximum of Euclidean norms of the
columns of B. For instance, when B = {b1|b2| · · · |bm},
‖B‖ = maxi ‖bi‖. Then, we denote B̃ = (b̃1|b̃2| · · · |b̃m)
for the Gram-Schmidt orthogonalization of columns of
B and denote ‖B̃‖ = maxi ‖b̃i‖ for Gram-Schmidt norm
of B.

2.2 Lattices and Algorithm for Trapdoor Basis
Delegation

Briefly, lattices are a fascinating tool in modern cryp-
tography and a lattice Λ can be defined as a discrete
subgroup of Rm with its basis S. A basis S of Λ is a set
of linearly independent vectors S = {b1,b2, · · · ,bm}
which spans the lattice Λ and S = (b1|b2| · · · |bm) is a
basis matrix of lattice Λ.

Integer lattices are defined as a subgroup of Zm in-
stead of Rm. For a matrix A ∈ Zn×mq , we can denote
lattices as a set Λu

q (A) = {e ∈ Zm|A · e = u mod q}
and as a set Λ⊥q (A) = {e ∈ Zm|A ·e = 0 mod q} when
u = 0.

Lattice-based cryptography has a lot of advantages
that their security is based on the average-case hard-
ness problems like Small Integer Solution (SIS) prob-
lem and LWE(Learning With Errors) problem, which
remain secure against quantum computing attacks and
can be reduced to the worst-case hardness problem in
lattices like Shortest Vector Problem (SVP) and Clos-
est Vector Problem (CVP). Among them, SIS problem
is defined as below.

Definition 1. (SIS problem) Given a matrix A ∈
Zn×mq with m ≥ n log q and its corresponding lattice

Λ⊥q (A) = {e ∈ Zm|A ·e = 0 mod q, }, it is hard to find

a small vector e ∈ Λ⊥q (A), such that ‖e‖ ≤ β for some

β ≥
√
n log q and A · e = 0 (mod q), whose coefficients

are either −1, 0, or 1.

If we have the short “trapdoor” basis, all hard prob-
lems in lattice become solvable efficiently. Alwen and
Peikert [15] introduced the trapdoor generation algo-
rithm TrapGen(n,m, q) which generates a matrix A ∈
Zn×mq with its “trapdoor” matrix T ∈ Zm×m satisfying
the following functionality:

TrapGen(n,m, q) :
For the security parameter n, m = d6n log qe and
an integer q, this algorithm outputs a matrix A ∈
Zn×mq and its trapdoor T such that T is a basis

of Λ⊥q (A) with low Gram-Schmidt norm ‖T̃‖ ≤
30
√
n log q.

Without loss of generality, we assume that a matrix
A extracted from TrapGen(n,m, q) has a full rank. In
our construction, a matrix A and its trapdoor T are
used as a public key and a secret key, respectively.

Cash et al. [12] introduced the technique to randomly
generate the basis from the matrix and to extend the
basis to higher dimension in the concept of bonsai trees
using the following algorithms.
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RandBasis(T, s) :
For the trapdoor matrix T of A ∈ Zn×mq and

a parameter s ≥ ‖T‖ · ω(
√

log n), this algorithm
outputs a basis T′ for Λ⊥q (A) with ‖T′‖ ≤ s·

√
m.

ExtBasis(T, B) :
For the trapdoor matrix T of A ∈ Zn×mq and the

matrix B = A‖A′ ∈ Zn×(m+m′)
q , this algorithm

outputs a basis S for Λ⊥q (B) with ‖S̃‖ = ‖T̃‖ in
polynomial time, i.e., Gram-Schmidt norm of S
is equal to that of T.

The extending trapdoor basis algorithm ExtBasis(T,B)
can be implemented to get a short basis of the higher-
dimensional lattice from the lower-dimensional lattice.

2.3 Discrete Gaussian Distribution and Sam-
pling Algorithm

For any subset L ⊂ Zm, a Gaussian function on
Rm with center c and parameter γ can be defined as

ργ,c(x) = exp

(
−π‖x-c‖2

γ2

)
for any vector c ∈ Rm and

any positive parameter γ > 0 and a density function of
discrete Gaussian distribution on a subset L, center c,
and parameter γ can be defined as

DL,γ,c(x) =
ργ,c(x)∑

y∈L ργ,c(y)
.

For the simplicity, we denote ργ(x) and DL,γ(x) when
center c = 0.

Gentry et al. [16] proved that this distribution can

be sampled efficiently for γ ≥ ‖T̃‖ ·ω(
√

log n) where T
is a trapdoor matrix of an n-dimensional lattice Λ as
follows:

SamplePre(A, T, γ, u) :
For the matrix A ∈ Zn×mq , its trapdoor matrix
T ∈ Zm×mq , a real number γ > 0, and a vector
u ∈ Zn, this algorithm outputs a sample σ from a
distribution that is statistically close to DΛu

q (A),γ .

The smoothing parameter ηε(Λ) of Λ enables every
coset of Λ to get roughly equal mass in the following
Lemmas 1 and 2.

Lemma 1. [16] Let q be a prime and n,m be integers
with m > 2n log q. Let f be some ω(

√
logm) function.

Then, there is a negligible function ε(m) such that for
all but at most q−n fraction of matrix A ∈ Zn×mq , we

have ηε(m)(Λ
⊥
q (A)) < f(m).

Lemma 2. [4] Let Λ ⊂ Rn be a lattice. Suppose ρ ≥
ηε(Λ) for some negligible ε. Then, we have

Pr

[
0 ≤ ‖v‖ ≤ 2ρ

√
n

2π
: v← DΛu

q (A),γ

]
≥ 1−negl(n).

Lemma 1 declares that a sample vector from SamplePre
(A, T, γ,u) with proper parameters can be extracted

uniformly and Lemma 2 determines the upper bound
on the length ‖v‖ of a sample vector v from the Gaus-
sian distribution DΛu

q (A),γ .

Wang and Sun [9] suggested a new preimage sam-
pling algorithm GenSamplePre(AR,AS ,TS ,v, γ) to con-
struct a ring trapdoor function and a ring signature on
lattice. They use the idea of the lattice basis delegation
technique by Cash et al. [12].

Let k, k1, k2, k3, k4 be positive integers as k = k1 +
k2 + k3 + k4. We write AS = [AS1

| AS2
| AS3

| AS4
]

∈ Zn×kmq where ASi ∈ Zn×kimq for each i and AR =

[AS1
| AS3

] ∈ Zn×(k1+k3)m
q with its trapdoor TR. Then,

one can sample a preimage from a vector y as below:

GenSamplePre(AS ,AR,TR, γ,y) :

a. Sample eS2 ∈ Zn×k2mq and eS4 ∈ Zn×k4mq .

b. Let z = y − AS2es2 − AS4es4 and sam-

ple eR = [eS1
| eS3

] ∈ Zn×(k1+k3)m
q from

SamplePre(AR,TR, γ, z).

c. Output e = [eS1
| eS2

| eS3
| eS4

].

2.4 Lattice Mixing and Vanishing Technique

Boyen [10] proposed the general framework to en-
code all bits at once by lattice trapdoor mixing and
vanishing techniques.

He introduced a new trapdoor generation algorithm
TwoSideGen(1λ) by slightly modifying Cash et al.’s ex-
tending trapdoor basis algorithm ExtBasis(T,B), as
below:

TwoSideGen(1λ) :
For a security parameter λ, this algorithm out-
puts two random matrix A ∈ Zn×mq and R ∈
Zm×mq where A is uniform and R is from some
distribution R. Then, for some B ∈ Zn×mq , F =
[A | AR + B] ∈ Zn×2m

q and q defines the public
parameters of a two-sided function.

(F, q) is a trapdoor function that samples the preim-
age with a trapdoor for either A or B.

The characteristic of using a two-sided function is
that we use the firm preimage trapdoor TA that can
always sample the preimage in the real scheme, whereas
we use the fickle preimage trapdoor TB for a matrix
B which sometimes vanishes depending on a given mes-
sage. With TwoSideGen(1λ) algorithm, Boyen constructed
a signature BS to get shorter signatures as below:

B.KeyGen(1λ) :
Given a security parameter λ and corresponding
public parameters n = n(λ),m = m(λ), q = q(λ),

1. Use TrapGen(n,m, q) to extract a matrix A0

and its trapdoor TA0 .

2. Choose t+1 random matrix R0,R1, · · · ,Rt ∈
Zm×m from discrete Gaussian distribution
DZm,γ(x).
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3. Choose t uniformly random integers h1, h2,
· · · , ht ∈ Zq and fix h0 = 1 ∈ Zq.

4. Output a tuple (A0, {Ci = AiRi + hiB0}ti=0)
as a public key pk and TA0

as a secret key
sk.

B.Sign(sk,v) :
Given a secret key sk and a message v ∈ {0} ×
{0, 1}t,

1. Define Cv =
∑t
i=0(−1)v[i]Ci where v[i] is

the i-th value of the message v and let a
message-dependent matrix Fv = [A0 | Cv] ∈
Zn×2m
q .

2. Get the extending trapdoor basis TF of Fv

using ExtBasis(TA0
,Fv).

3. Sample a non-zero random vector d ∈ Λ⊥(Fv)
⊂ Z2m using SamplePre(Fv,TF,v, γ) and
output a signature σv = d.

B.Verify(pk,v, σ) :
Given a public key pk, a message v, and a signa-
ture σv,

1. Check that v is in {0} × {0, 1}t and σv is
a small non-zero vector, i.e., 0 < ‖σv‖ ≤
γ
√

2m.

2. Check that σv satisfies that[
A0 |

t∑
i=0

(−1)v[i]Ci

]
d = 0 mod q

3. If both are correct, accept the signature.
Otherwise, reject.

3 Linearly Homomorphic Signature

We restate the formal definition and security require-
ments of linearly homomorphic signature over binary
fields from Boneh and Freeman’s work [4]. Then, we
illustrate detailed construction.

3.1 Definition and Security Requirements

Boneh and Freeman [4] defined the linearly homo-
morphic signature over binary fields LHS as below:

Definition 2. (linearly homomorphic signature). A
linearly homomorphic signature LHS over F2 is a tuple
of PPT algorithms LHS = (Setup, Sign, Combine,
Verify) with the following functionality:

Setup(n, params) :
Given the security parameter n and other pub-
lic parameters params, this algorithm outputs a
public key pk and a secret key sk.

Sign(sk, id, v) :
Given a secret key sk, a tag id and a vector v,
this algorithm outputs a signature σ.

Combine(pk, id, {(αi, σi)}li=1) :

Given a public key pk, a tag id and pairs {(αi, σi)}li=1

where αi ∈ F2 = {0, 1} and σi is the signature of
a vector vi for each i, this algorithm outputs a
signature σ for a vector Σli=1αivi.

Verify(pk, id, y, σ) :
Given a public key pk, a tag id, a vector y and a
signature σ, this algorithm outputs either 0 (re-
ject) or 1 (accept).

To check the correctness, for each (pk, sk), we must
have

a. For all tags id and all vectors y, the verification
algorithm Verify(pk, id, y, σ) outputs 1 for all
valid signatures σ ← Sign(sk, id,y).

b. Whenever we operate a linear combination of some
vectors {vi}li=1, we can output the valid signa-
ture for that linear combination.

The security requirements of linearly homomorphic
signature are unforgeability and weakly context hiding
property as below:

Definition 3. (unforgeability). A linearly homomor-
phic signature is unforgeable if the advantage of any
PPT adversary A, in the following security game is
negligible in the security parameter n.

Setup :
The challenger C sets (pk, sk)← Setup(n,params),
then sends the public key pk to A.

Queries :
Proceeding adaptively, A specifies a sequence of

k-dimensional subspaces Vi with basis vectors {v(i)
j }

k

j=1
.

For each i, C chooses a tag idi ← {0, 1}n uni-
formly and gives idi with j signatures σij ←
Sign(sk, idi,v

(i)
j ) for j = 1, 2, · · · , k.

Output :
A outputs a tag id∗ ∈ {0, 1}n, a non-zero vector
y∗, and a signature σ∗.

A wins the game if the signature σ is valid and either
(1) id∗ 6= idi for all i, or (2) id∗ = idi for some i but
y∗ /∈ Vi .

Definition 4. (weakly context hiding). A linearly ho-
momorphic signature is weakly context hiding if the
advantage of any PPT adversary A, in the following
security game is negligible in the security parameter n.

Setup :
The challenger C sets (pk, sk)← Setup(n,params)
and sends both public key pk and secret key sk
to A.
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Challenge :
A outputs two k-dimensional vector spaces V0, V1

with basis vectors {v(0)
i }

k

i=1 and {v(1)
i }

k

i=1, re-

spectively and linear functions on both {v(0)
i })

k

i=1

and {v(1)
i }

k

i=1 which satisfies

fj

(
v

(0)
1 ,v

(0)
2 , · · · ,v(0)

k

)
= fj

(
v

(1)
1 ,v

(1)
2 , · · · ,v(1)

k

)
for all j = 1, 2, · · · , s.
C chooses b ∈ {0, 1} and a tag id ∈ {0, 1}n and
signs the vector space Vb with a tag id.
Then, C uses Combine(pk, id, {(αi, σi)}ki=1) al-
gorithm to derive signatures σj of the function

fj

(
v

(b)
1 ,v

(b)
2 , · · · ,v(b)

k

)
for all j = 1, 2, · · · , s.

A gets signatures σj . The function can be out
adaptively after choosing V0 and V1.

Output :
A outputs a bit b′.

A wins the game if b = b′.

3.2 Construction by Boneh and Freeman

We let the public parameters params=(N, k, L,m, q,
γ) where N = n is the dimension of vectors to be
signed, k is the dimension of the subspace to be signed
(k < n), L is the maximum number of signatures in
linear combinations, m(n,L) > n is an integer, q(n,L)
is an odd prime, and γ(n,L) is a real number.

With those parameters, Boneh and Freeman [4] pre-
sented the first linearly homomorphic signature over
binary fields with a tuple of PPT algorithms LHS =
(Setup, Sign, Combine, Verify) with the following
functionality:

Setup(n, params) :
Given a security parameter n and public param-
eters params=(N, k, L, m, q, γ),

1. (A, T) ← TrapGen(n,m, 2q) where a ma-
trix A ∈ Zn×m2q and its trapdoor basis T of

Λ⊥2q(A) satisfies that ‖T̃‖ ≤ 30
√
n log 2q.

2. Let H : {0, 1}∗ → Zn×m2q be a hash function,
viewed as a random oracle.

3. Output the public key pk ← (A, H) and the
secret key sk ← (A, H,T).

Sign(sk, id, v) :
Given a secret key sk ← (A, H,T), a tag id ∈
{0, 1}n and a vector v ∈ Fn2 ,

1. Set B← A‖H(id) ∈ Zn×2m
2q .

2. Let S← ExtBasis(T,B) be a basis for Λ⊥2q(B)

with ‖S̃‖ = ‖T̃‖.
3. Output σ ← SamplePre(B,S, γ, q · v).

Combine(pk, id, {(αi, σi)}li=1) :
Given a public key pk = (A, H), a tag id ∈
{0, 1}n and pairs {(αi, σi)}li=1 where αi ∈ F2 =
{0, 1} and σi is a signature of the i-th vector vi,
output σ ← Σli=1αiσi ∈ Z2m.

Verify(pk, id, y, σ) :
Given a public key pk = (A, H), a tag id ∈ 0, 1n,
a vector y ∈ Fn2 and a signature σ ∈ Z2m,

1. Set B← [A | H(id)] ∈ Zn×2m
2q .

2. If ‖σ‖ ≤ L · γ
√

2m and B ·σ = q ·y mod 2q,
output 1 (accept). Otherwise, output 0 (re-
ject).

Lemma 3. Let LHS be the linearly homomorphic sig-
nature over F2 as above. Suppose q be a prime, n,m
be integers with m > 2n log q, and γ > 30

√
n log 2q ·

ω(
√

log n). Then ‖σ‖ ≤ L · γ
√

2m and B · σ = q ·
y mod 2q for all valid signatures σ ← Combine(pk, id,

{(αi, σi)}li=1)

Moreover, Lemmas 4 and 5 from Boneh and Free-
man’s work show that this signature is unforgeable in
the random oracle model and it holds the weakly con-
text hiding property [4].

Lemma 4. Let LHS be the linearly homomorphic sig-
nature over F2 as above. Suppose that m = d6n log 2qe
and γ = 30

√
n log 2q log n. Let β = L · γ

√
2m. Then

LHS is unforgeable in the random oracle model assum-
ing that k-SISq,2m,β,γ problem is infeasible.

Lemma 5. Let LHS be the linearly homomorphic sig-

nature over F2 as above. Suppose that k <
log n

2 log log n
,

m = d6n log 2qe and γ = 30
√
n log 2q log n. Then LHS

is weakly context hiding.

4 Design of New Linearly Homomor-
phic Signatures

In this section, we define the linearly homomorphic
ring signature and its security requirements and design
the linearly homomorphic ring signature using a new
preimage sampling algorithm GenSamplePre(AR,AS ,
TS ,v, γ) by Wang and Sun [9]. We also construct
the signature scheme with short signature using lattice
mixing and vanishing technique by Boyen [10].

We set the public parameters params=(N, k, L,m,
q, γ) same as the signature by Boneh and Freeman in
Section 3.2.

4.1 Linearly Homomorphic Ring Signature

In a ring signature, a signer chooses any subset of
all possible signers including himself/herself to form a
ring, without getting their permission [17]. Thus, ring
signature provides the anonymity of the signer since the
signature of the message only convinces that one mem-
ber in the ring signed the message without revealing
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a signer’s identity. We define the linearly homomor-
phic ring signature using a new preimage sampling al-
gorithm GenSamplePre(AR,AS ,TS ,v, γ) by Wang and
Sun [9] as below:

Definition 5. (linearly homomorphic ring signature).
A linearly homomorphic ring signature LHRS is a tu-
ple of PPT algorithms LHRS = (R.Setup, R.Sign,
R.Combine, R.Verify) with the following function-
ality:

R.Setup(n, params) :
Given the security parameter n and public pa-
rameters params, this algorithm outputs a pub-
lic key pk and a secret key sk.

R.Sign(pk, sk, id,R, v) :
Given a key pair (pk, sk) of a signer where pk ∈
R, a tag id, a public key R of the ring, and a
vector v, this algorithm outputs a signature σ of
the vector v under sk.

R.Combine(R, id, {(αi, σi)}li=1) :
Given a public key R of the ring, a tag id, and
pairs {(αi, σi)}li=1 where αi ∈ F2 = {0, 1} and σi
is the signature of a vector vi for each i, this algo-
rithm outputs a signature σ for a vector Σli=1αivi.

R.Verify(R, id, y, σ) :
Given a public key R of the ring, a tag id, a vec-
tor y, and a signature σ, this algorithm outputs
either 0 (reject) or 1 (accept).

To check the correctness, for each (pk, sk), we must
have

a. For all key pairs (pki, ski) where pki ∈ R, tags
id, and all vectors y, the verification algorithm
Verify(R, id,y, σ) outputs 1 for all valid signa-
tures σ ← Sign(pki, ski, id, R,y).

b. Whenever we operate a linear combination of some
vectors {vi}li=1, we can output the valid signa-
ture for that linear combination.

The security requirements of linearly homomorphic
signature are unforgeability and weakly context hiding
property for linearly homomorphic ring signatures as
well as anonymity like other ring signature. Here, we
only give the formal definition of the anonymity since
the others are analogous to the one for linearly homo-
morphic signatures.

Definition 6. (anonymity). A linearly homomorphic
ring signature is anonymous if the advantage of any
PPT adversary A, in the following security game is
negligible in the security parameter n.

Setup :
The challenger C obtains (pki, ski) ← R.Setup
(n,params) r times where r is the size of the
ring R, then sends public keys {pki}

r
i=1 to A.

Queries :
A specifies the pair (i, R,v) where i is a signer in-
dex, R is a public key of the ringR, and v is a vec-
tor to be signed. Then, the challenger C chooses
a tag idj ← {0, 1}n uniformly and gives idj with
a signature σi ← R.Sign(pk, sk, idi, R,v).

Challenge :
A requests a challenge by sending (i0, i1, R

∗,v∗)
to C, where i0 and i1 are signer indices, R∗ is a
public key of the ring R∗ which contains pki0 and
pki1 , and v∗ is a vector to be signed. a non-zero
vector y∗, and a signature σ∗.
Then, C chooses a bit b← {0, 1} and a tag id∗ ←
{0, 1}n and sends a challenge signature σb ←
R.Sign(pkib , skib , id

∗, R∗,v∗) to the adversaryA.

Output :
A outputs a bit b′.

A wins the game if b = b′.

With these definition and security requirements, we
design the linearly homomorphic ring signature on lat-
tice as below:

R.Setup(n, g, params) :
Given a security parameter n, a number of all
possible signers g, and public parameters params
=(N, k, L, m, q, γ), do the following:

1. Run TrapGen(n,m, 2q) to generate a matrix
{Ai}gi=1 ∈ Zn×m2q and its corresponding trap-

door basis {Ti}gi=1 of Λ⊥2q(Ai) such that ‖T̃i‖ ≤
30
√
n log 2q.

2. Let H : {0, 1}∗ → Zn×m2q be a hash function,
viewed as a random oracle and choose the
ring R.

3. Output the public key pki = (Ai, H) and
the secret key ski = Ti for each signer i of
the ring and R is a subset of public keys of
all possible signers including pki to form a
ring R.

R.Sign(pki, ski, id, R, v) :
For a key pair (pki, ski) = (Ai,Ti) of a signer
where pki ∈ R when the size of the ring is r, a
tag id ∈ {0, 1}n, and a vector vi ∈ Fn2 , do the
following:

1. Set a matrix AR = [A1 | A2 | · · · | Ar | H(id)]

∈ Zn×(r+1)m
2q .

2. Output a signature σ ← GenSamplePre(AR,
AS ,TS , q · v, γ).

R.Combine(R, id, {(αj , σj)}lj=1) :
Given a public key R of the ring of size r, a hash
function H, a tag id ∈ {0, 1}n, and set of signa-
tures {σj}rj=1, output σ =

∑r
j=1 σi ∈ Z(r+1)m.
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R.Verify(R,H, id, y, σ) :
Given a public key R of the ring with the size r,
a hash function H, a tag id ∈ {0, 1}n, a vector
y ∈ Fn2 , and a signature σ ∈ Z(r+1)m, do the
following:

1. Set a matrix AR = [A1 | A2 | · · · | Ar | H(id)]

∈ Zn×(r+1)m
2q .

2. If ‖σ‖ ≤ L · γ
√

(r + 1)m and AR · σ =
q · y mod 2q, output 1 (accept). Otherwise,
output 0 (reject).

We believe that the above construction holds the lin-
early homomorphic property for signatures from the
same ring R.

4.2 Linearly Homomorphic Signature with Short
Signatures

We design a new linearly homomorphic signature
with short signatures as a tuple of PPT algorithms
SLH = (S.Setup,S.Sign, S.Combine,S.Verify) by
adopting lattice mixing and vanishing technique by Boyen
[10] as below:

S.Setup(n, params) :
Given a security parameter n and public parame-
ters params=(N, k, L, m, q, γ), do the following:

1. Use TrapGen(n,m, 2q) to extract a matrix

A0 and its trapdoor TA0
such that ‖T̃A0

‖ ≤
30
√
n log 2q.

2. Choose n+1 random matrix R0,R1, · · · ,Rn ∈
Zm×m from discrete Gaussian distribution
DZm,γ(x).

3. Choose n uniformly random integers h1, h2,
· · · , hn ∈ Z2q and fix h0 = 1 ∈ Z2q.

4. Let H : {0, 1}∗ → Zn×m2q be a hash function,
viewed as a random oracle.

5. Calculate Ci = AiRi + hiB0 for each i and
output a public key pk = (A0, {Ci}ni=0, H)
and a secret key sk = TA0

.

S.Sign(sk, id, v) :
Given a secret key sk = TA0

, a tag id ∈ {0, 1}n
and a vector v ∈ {0, 1}n, do the following:

1. Define Cv = C0 +
∑n
i=1(−1)v[i]Ci where

v[i] is the i-th value of the message v and
set Fv = [A0 | Cv | H(id)] ∈ Zn×3m

q as a
message-dependent matrix.

2. Get the extending trapdoor basis TF of Fv

using ExtBasis(TA0
,Fv).

3. Sample a non-zero random vector d ∈ Λ⊥(Fv)
⊂ Z3m using SamplePre(Fv,TF, q ·v, γ) and
output a signature σv = d of the vector v.

S.Combine(pk, id, {(αj , σj)}lj=1) :

Given a public key pk = (A0, {Ci}ni=0, H), a tag

id ∈ {0, 1}n, and pairs {(αi, σi)}li=1 where αi ∈
{0, 1} and σj is a signature of the j-th vector vj ,

output σ =
∑l
j=1 αjσj ∈ Z3m.

S.Verify(pk, id, y, σ) :
Given a public key pk = (A, H), a tag id ∈
{0, 1}n, a vector y ∈ {0, 1}t, and a signature
σ ∈ Z3m, do the following:

1. Check that v is in {0, 1}n and σv is a small
non-zero vector, i.e., 0 < ‖σv‖ ≤ L · γ

√
3m.

2. Set Cy = C0 +
∑n
i=1(−1)v[i]Ci and check

that σv satisfies that

[A0 | Cy | H(id)] d = q · y mod 2q.

3. If both are correct, accept the signature.
Otherwise, reject.

We expect that the above construction extracts the
shorter signatures than the signature from Boneh and
Freeman’s signature scheme.

5 Concluding Remark

We have two different methods to enhance lattice-
based linearly homomorphic signature scheme over bi-
nary fields by modifying linearly homomorphic signa-
ture by Boneh and Freeman [4]. We design the linearly
homomorphic ring signature and linearly homomorphic
signature with short signatures.

But, we haven’t proved the validity of the suggested
schemes or their security analysis yet. Thus, first of all,
we have to give the concrete proof of designed signa-
tures so that these signatures can be safely applicable
to the real world scenario.

Aside from this, it will be also challenging to de-
sign new fully homomorphic signatures by adding new
functionalities to the existing homomorphic trapdoor
functions like lattice mixing and vanishing technique
used in this paper or by changing the hard problems
on lattice from SIS problem to Ring-SIS, LWE or LWR
problems.
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