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Abstract—Feature learning plays an important role in im-
proving the learning capability of any machine learner by
reducing the data complexity. As one of feature learning methods,
feature selection has a crucial role for a machine learning
with huge and complex input data. We examine the feature
weighting methods in existing machine learners and look at
how they could be used for the accurate selection of the
important features. In order to validate our idea, we consider
Wi-Fi networks since pervasive Internet-of-Things (IoT) devices
create huge traffics and vulnerable at the same time. Detecting
known and unknown attacks in Wi-Fi networks remains great
challenging tasks. We test and validate the feasibility of the
selected features using a common neural network. This study
demonstrates that the proposed weighted-based machine learning
model can outperform other filter-based feature selection models.
The experimental results not only demonstrate the effectiveness
of the proposed model, achieving 99.72% F1 score, but also prove
that combining a weight-based feature selection method with
a light machine-learning classifier which leads to significantly
improved performance, compared to the best result reported in
the literature.

Keywords—Intrusion detection system, Wi-Fi network, feature
selection, artificial neural network, decision tree.

I. Introduction

Feature learning can be characterized as a way to model
the behavior of data using a small subset of attributes or
instances [1]. Feature selection, one of feature learning meth-
ods, eliminates unnecessary features [2]. Feature selection can
be divided to filter-based and wrapper-based depending on
the deployed methodology. A filter-based (feature) selection
measures the correlation and redundancy of each attribute
without executing a learning algorithm. Therefore, the filter-
based selection is lighter and faster than the wrapper-based
selection. On the other hand, the wrapper-based selection
considers the results of a learning algorithm, which makes
the wrapper-based selection to fit the subset of features [3].
We propose a novel feature selection method that considers
the weights of each feature coming from lightweight machine-
learning models, namely Artificial Neural Network (ANN),
and decision tree C4.5. Those models are capable of classify-
ing each instance with relevant information from the data and
lightweight compared to deep learning models. We select the
most suitable features depending on the corresponding weight

which expresses the importance of each feature. The small set
of selected features is essential to a real-time detection. The
proposed approach finally ends by leveraging the ANN as a
classifier.
In order to verify our idea, we consider Wi-Fi networks

which has been anticipated to be a major traffic in Internet
traffic by 2020 [4]. As Wi-Fi networks have been widely
deployed for high-speed local area connectivity, the number
of attacks has grown exponentially [5]. However, there is
no general model reported in the literature that is capable
of detecting both known and unknown Wi-Fi attacks. An
Intrusion Detection System (IDS) is one of the most common
components for every network security infrastructure [6].
Machine learning techniques have been widely adopted as the
main detection algorithm in the IDS due to their model-free
properties [7]. We believe that leveraging recent machine-
learning methods will bring significant improvements to the
existing IDS models, particularly for detecting Wi-Fi attacks
in large-scale networks.
We evaluate the proposed approach on the Aegean Wi-Fi

Intrusion Dataset (AWID) [8]. They tested a number of existing
machine-learning models on the dataset in a heuristic manner.
Our proposed approach outperforms the state-of-the-art IDSs
with 99.97% detection rate, 99.72% F1 score and 0.41% false
alarm rate. Clearly, the novel way of combining weighted-
based feature selection with the ANN classifier improves the
ability to detect impersonation attacks, and can be further gen-
eralized for different attack types, both known and unknown,
in large-scale Wi-Fi networks.
The remainder of this paper is organized as follows: Sec-

tion II reviews the related work. We describe our proposed
approach in Section III. Section IV presents the experimental
results and analysis. Finally, our conclusion and future work
are described in Section V.

II. Related Work
Feature selection has been incorporated as a preprocessing

step before classification task. Kayacik et al. [9] introduced the
importance of feature selection during building IDS models.
The relevance of each feature in the KDD’99 Dataset was
investigated and the roles of information gain was discussed.



Fig. 1. Our proposed architecture consists of feature selection and classifica-
tion tasks

Zaman and Karray [10] analyzed the Transmission Control
Protocol/Internet Protocol (TCP/IP) network model to classify
IDSs using a feature selection method called the Enhanced
Support Vector Decision Function (ESVDF). Louvieris et
al. [11] utilized naïve Bayes method in feature selection to
propose an effects-based feature-identification IDS. Manekar
and Waghmare [12] had an idea to combine Particle Swarm
Organization (PSO) and Support Vector Machine (SVM).
They applied PSO to do feature optimization, resulting in
optimized feature. Subsequently, SVM carried out the clas-
sification task. Saxena and Richariya [13] also proposed a
similar weighted feature selection approach while the original
idea was introduced by Schaffernicht and Gross [14]. Guyon
et al. [15] proposed feature selection method using SVM-
based algorithm. They ranked the input features based on their
importance during support vector learning process. Wang [16],
suggested a unique related approach, using weights learned by
an ANN to rank the input features. He showed that deep neural
networks can be used to find useful features existing in raw
network-flow data.

Several work have been done in Wi-Fi network attacks
detection. Kolias et al. [8] published a comprehensive Wi-
Fi network traces that become a public dataset for 802.11
networks. They checked various machine learning algorithms
to validate their dataset in a heuristic manner. Among all
the classification results obtained, the impersonation attack
detection was found to be the most unsatisfactory. Our goal is
to improve overall detection rate including the impersonation
attack detection. Recently, Usha and Kavitha [17] used the
AWID dataset and successfully improved the overall detection
rate. We implement different feature selection method in order
to achieve near-perfect Wi-Fi attacks detection.

III. Our Approach
There are two main tasks in our proposed architecture:

feature selection and classification tasks. Fig.1 shows our
proposed architecture which begins with feature selection, and
ends with classification task. Feature selection is performed
to select several features from the raw feature space. New
generated features are simply selected from the raw ones
without transformation. Feature selection aims for the smaller
number of new generated features than the raw ones. We
leverage weighted feature-selection methods using ANN and
C4.5. The ANN is also employed for classification task in

Algorithm 1 Pseudocode of our proposed architecture
1: procedure Weighted Feature Selection
2: function Dataset Normalization(Raw Dataset)
3: return InFeats
4: end function
5: function Feature Selection(InFeats)
6: switch ANN do
7: case Weighted-ANN(InFeats)
8: return OutFeats
9: case Weighted-C4.5(OutFeats)
10: return OutFeats
11: end function
12: procedure Classification(OutFeats)
13: Training ANN
14: Min E = 1

ν

∑ν
j=1

∑κ
i=1

[
zi j log yi j + (1 − zi j ) log

(
1 − yi j

)]
15: end procedure
16: end procedure

the final step. Algorithm 1 explains the pseudocode of our
proposed architecture. Further details of each method are
explained in the following sub-sections.

A. ANN

We apply an ANN as weighted feature-selection method. By
using ANN, our model is able to choose a subset of features
which are of utmost significance in order to learn the attack
model based on the heuristic weights from ANN learning. Fig.
2 shows the ANN model where b1 and b2 depict the bias values
for each hidden layer, respectively.
We use the first hidden layer only for feature selection and

then consider the weight values between the first two layers
in order to select the important input features. The weight
expresses the share of the input features to the first hidden
layer. The values close to zero for Wi j , which means that the
corresponding input feature X j is meaningless for next hidden
layer Hi . Therefore, the value of weights can be considered
to measure the importance of a feature. One hidden layer is
sufficient, since we consider the weights in the first hidden
layer only. We define the important value of each input feature
as expressed by Eq. (1):

Vj =

h∑
i=1
|Wi j |, (1)

where h is the amount of neurons in the first hidden layer. In
order to select the most important features, we sort the input
features according to Vj values in a descending order. We pick
some features that have a Vj value bigger than threshold.
Besides using an ANN for a weight-based feature selection,

we also utilize an ANN as a classifier. The ANN is known to
be one of the most popular pattern recognition algorithms. We
use a supervised ANN and leverage it with a scaled conjugate
gradient optimizer, which is suitable for an exhaustive problem
[18].



Fig. 2. ANN Model

B. Decision Tree
We adopt C4.5 decision tree [19], which is one of the

most popular decision tree methods, as inductive reference.
C4.5 decision tree is robust from noisy data and can learn
disjunctive expressions. It has a tree structure, where each
node inside the tree represents a test of several attributes
from the input representation data. Every branch of the tree
expresses possible values of features residing at that node
and different test results. C4.5 uses a greedy algorithm to
construct a tree in a top-down recursive divide-and-conquer
approach [20]. The first step of C4.5 algorithm is to select
the best attribute that results in important information for
classification and to generate a test node for corresponding
attributes. For the next step, it divides the data based on
their values according to test attributes that reside in the
parent node. The algorithm finishes when all data has been
grouped in the same class, or the process of adding additional
separations does not improve the classification performance,
based on some predefined threshold. Subsequently, feature
selection phase starts. It begins with selecting top-three level
nodes, then removes the equal nodes and updates the list of
selected features.

IV. Evaluation
Our proposed approach is evaluated in several experiments.

First, we verify two feature selection approaches: filter-based
and wrapper-based methods, which are implemented in the
Waikato Environment for Knowledge Analysis (WEKA) [21].
Second, we implement the ANN classifier using MATLAB
R2016a running on an Intel Xeon E-3-1230v3 CPU @3.30
GHz with 32 GB RAM. We validate our proposed approach
using the unbalanced dataset, in order to show that our
proposed approach can run in a real Wi-Fi network. We also
compare our proposed approach with the state-of-the-art IDS
in Wi-Fi networks.

TABLE I
Distribution of each attack class in AWID dataset

Class Training Test

Impersonation 48,522 20,079
Flooding 48,484 8,097
Injection 65,379 16,682

Total 162,385 44,858

A. Dataset
We evaluate our methods on the AWID Dataset [8] as a

benchmark dataset. The dataset was published in 2015 with
huge and real Wi-Fi network traces. Due to its comprehen-
siveness and real characteristics, the AWID dataset might
become the common benchmark dataset for Wi-Fi network-
related researches. We use AWID-CLS-R-Trn and AWID-CLS-
R-tst for training and test dataset, respectively. There are
1,795,575 instances in the training dataset with 1,633,190
and 162,385 normal and attack instances, respectively. While
the test dataset contains 575,643 instances with 530,785 and
44,858 normal and attack instances, respectively. Table I shows
the distribution of attack classes for both training and test
datasets.
The dataset expresses the nature of a network which normal

instances significantly outnumber attack instances [8]. The
ratio between normal and attack instances are 10:1 and 11:1
for unbalanced training and test datasets, respectively. This
may cause bias to the training model, and reduce classification
accuracy. In order to avoid this problem, we balance the dataset
in advance. The ratio between normal and attack instances
after the balancing process is 1:1 for both balanced training
and test datasets. The normal instances are randomly reduced
into 163,319 data instances for training dataset while 53,078
data instances for test dataset. We train our proposed approach
using the balanced dataset and verify the trained model using
the unbalanced dataset.
Preprocessing should be conducted in advance since the

AWID dataset [8] has diverse value data types. We use two
main steps for preprocessing: mapping symbolic-valued at-
tributes to numeric values, and the normalizing step. Symbolic
attributes would be mapped to integer values with a minimum
value of 1 and a maximum value of N, where N is the number
of symbols. Some attributes that have a hexadecimal data type
need to be casted into integer values, as well. Also, there are
some attributes left with a continues data type. In addition, the
dataset also contains the question mark (“?”) for unavailable
values for the corresponding attributes. The question marks are
assigned to zero value [22]. After all attribute values are casted
into integer values, each of the attributes is linearly normalized
between zero and one. Eq. (2) shows the normalizing formula:

zi =
xi − min(x)

max(x) − min(x)
, (2)

where zi expresses the normalized value, xi denotes to the
corresponding attribute value, and min(x) and max(x) are the



TABLE II
Feature set obtained among all selection methods

Method Selected Features

CFS 4,8,47,68,71
Corr 67,50,51,47,75,71,9,8,154,145

ANN 131,134,93,70,120,83,79,136,94,90,75,140,142,64,66,
73,67,38,118,82,112,107,68,7,4

C4.5 67,75,78,38,79,110,8,76,119,70,1,107,80,4,111,77,
61,2,3,112,108,76,109,82

minimum and maximum values of the attribute x, respectively.

B. Evaluation Metrics
The different measures commonly used [23] are invoked

to evaluate the performance of our approach: Detection Rate
(DR), False Alarm Rate (F AR), time to build the model
(TBM), and time to test the model (TT). Intuitively, our
goal is to achieve a higher DR and F1 score, and at the
same time, maintain lower F AR, TBM and TT. True Positive
(TP) is the number of intrusions correctly classified as an
attack. True Negative (TN) is the number of normal instances
correctly classified as a benign packet. False Negative (FN)
is the number of intrusions incorrectly classified as a benign
packet. False Positive (FP) is the number of normal instances
incorrectly classified as an attack.

DR refers to the number of attacks detected divided by the
total number of attack instances in the test dataset as expressed
by Eq. (3).

DR =
T P

T P + FN
, (3)

F AR is the number of normal instances classified as an
attack divided by the total number of normal instances in the
test dataset as shown by Eq. (4).

F AR =
FP

T N + FP
, (4)

F1 score measures a harmonic mean of precision and recall
as expressed by Eq. (5).

F1 =
2T P

2T P + FP + FN
, (5)

C. Experimental Result
We compare our ANN and C4.5 weighted-feature selection

methods, which belong to wrapper-based feature selection
methods, with CFS and Corr filter-based feature selection
methods. CFS (CfsSubsetEval) [24] considers the predictive
ability of each feature individually and the degree of redun-
dancy between them, in order to evaluate the importance of
a subset of features. This approach will select subsets of
features that are highly correlated with the class, while having
low inter-correlation. While Corr (Correlation) measures the
correlation between the feature and the class in order to
evaluate the importance of a subset of features.

TABLE III
Model comparisons on selected features

Method DR (%) FAR (%) F1 (%) TBM (s) TT (s)

CFS 93.40 3.22 94.72 108 12
Corr 98.19 2.05 97.89 4 22
ANN 99.97 1.46 99.13 661 25
C4.5 99.92 0.41 99.72 142 38

TABLE IV
ANN model comparisons on number of features

Feats DR (%) FAR (%) F1 (%) TBM (s) TT (s)

5 78.52 3.24 86.12 661 7
10 99.53 2.71 98.19 661 24
15 99.23 1.88 98.52 661 20
25 99.97 1.46 99.13 661 25

We select a subset of features using wrapper method con-
sidering each feature weight. For ANN, we first set a threshold
weight value. The subset of features with higher weight value
than a predefined threshold value are then selected. Similarly,
C4.5 produces a binary tree with several level depths. We
select the features that belong to the top three levels in the tree.
CFS produces a fixed number of selected features and Corr
provides a correlated feature list. Table II shows all feature set
obtained among all selection methods.
Table III shows model comparisons on selected features.

Best performance results are in bold. ANN achieved the high-
est DR (99.97%). However, C4.5 is the best performer model
since it achieved highest F1 score (99.72%) and F AR (0.41%).
As expected, filter-based methods (CFS and Corr) built their
models quickly, which is 4s only by Corr. However, CFS
attained the lowest performance among all models. Filter-based
feature selection methods take much shorter time compared
to the time taken by weighted feature selection. However,
weighted feature selection improves the filter-based feature
selections performance significantly.
We observe the impact of different amount of features

involved during testing experiments. Table IV describes the
weighted-ANN model comparisons, while Table V describes
the weighted-C4.5 model comparisons with respect to the
number of features. The time taken to build the model is
always the same due to the time taken during feature selection
task. The best performer models for both weighted-ANN

TABLE V
C4.5 Model comparisons on number of features

Feats DR (%) FAR (%) F1 (%) TBM (s) TT (s)

5 95.52 2.16 96.45 143 18
10 98.52 1.70 98.26 143 12
15 99.11 0.82 99.08 143 34
25 99.92 0.41 99.72 143 38



Fig. 3. Model performance comparison between Weighted-ANN and
Weighted-C4.5 in terms of F1 score

Fig. 4. Model performance comparison between Weighted-ANN and
Weighted-C4.5 in terms of FAR

and weighted-C4.5 are the tests which involved 25 features
achieving the highest DR and F1 score while maintaining the
lowest F AR. However, at the point of 25 features, the longest
time was taken to test both models.

We compare the weighted-ANN and weighted-C4.5 with
respect to number of features involved during the training as
depicted in Figs. 3, 4, and 5 in terms of F1 score, F AR and
TT, respectively. The square-dotted line shows the performance
of the proposed weighted-ANN method, while the triangle-
dotted line represents weighted-C4.5. Fig. 3 shows that both
methods can classify the attack instances with a few selected
features only. Weighted-C4.5 achieved high F1 scores since
the point of 5 features only that involved during the test, since
the previously selected features are more informative. While
weighted-ANN has low F1 score at the point of five features
only, however, we achieved comparable F1 scores at the point
of 10 features afterwards. Fig. 4 shows the same pattern for
both weighted-ANN and weighted-C4.5. However, weighted-
C4.5 always achieved the lower F AR than weighted-ANN.
As expected, the smaller the number of features involved, the
faster time taken for testing experiments as shown in Fig. 5 by
the smallest number of TT at 5 features for weighted-ANN.

Fig. 5. Model performance comparison between Weighted-ANN and
Weighted-C4.5 in terms of TT

TABLE VI
Comparisons with other work

Approach DR (%) FAR (%) F1 (%) TBM (s)

Weighted-ANN 99.97 1.46 99.13 661
Weighted-C4.5 99.92 0.41 99.72 143

SAE [25] 72.00 0.15 82.94 3,600
J48 [8] 96.30 3.99 94.80 569

NMI [17] 99.20 2.00 98.00 7,200

For a sake of the fairness, we leverage the unbalanced test
dataset in order to mimic real Wi-Fi networks. The unbalanced
dataset contains 530,785 normal instances and 44,858 attack
instances. We examine our proposed approach against the
state-of-the-art of IDSs in Wi-Fi networks, namely, Stacked
Auto Encoder (SAE) classifier by our previous work [25],
J48 classifier by Kolias et al. [8], and a Normalized gain
based IDS for MAC Intrusions (NMI) by Usha et al. as
shown in Table VI. Our proposed approach with weighted-
feature selection methods outperforms the other three previous
studies. In particular, our weighted-ANN is able to classify
Wi-Fi attacks with the highest detection rate, 99.97%. While
our proposed approach with weighted-C4.5 achieved the best
performance with 99.72% F1 score. We believe C4.5 achieved
better performance than ANN because C4.5 is able to separate
features based on the information gain value coming from test
attributes. The lowest F AR has been achieved by our SAE
classifier [25], since SAE adopts unsupervised learning. Thus,
the classification performance excelled for one particular class
only, which is normal class. Therefore, the SAE [25] achieved
low attack detection as expressed by low DR. In summary, we
observe the advantage of leveraging weighted-feature selection
using ANN and C4.5, which is shown by high DR and F1 score
while maintaining low F AR.

V. Conclusion and Future Work
We discussed a novel method of combining weighted-feature

selection with a reliable Wi-Fi attacks detector in wireless
networks. High-dimensional original features are examined
using a weighted-feature selection method in order to eliminate



redundant and unimportant features. We adopt ANN and
C4.5 as a weighted-feature selection method. A condensed
important features are sufficient to detect Wi-Fi attacks in
a large-scale Wi-Fi network, with a 99.72% F1 score and
a 0.41% false alarm rate. In the near future, we plan to
incorporate recent advancements in machine learning methods,
such as deep learning, which is able to learn from complex and
huge amounts of data. Therefore, the IDS model incorporating
a deep learning method suits the Wi-Fi networks property,
which is large-scale data.
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