
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.12 DECEMBER 2017
2991

PAPER
Provably Secure Gateway Threshold Password-Based
Authenticated Key Exchange Secure against Undetectable On-Line
Dictionary Attack∗∗

Yukou KOBAYASHI†∗, Nonmember, Naoto YANAI††, Kazuki YONEYAMA†††, Takashi NISHIDE†a), Members,
Goichiro HANAOKA††††, Nonmember, Kwangjo KIM†††††, Member, and Eiji OKAMOTO†, Fellow

SUMMARY By using Password-based Authenticated Key Exchange
(PAKE), a server can authenticate a user who has only the same password
shared with the server in advance and establish a session key with the user
simultaneously. However, in the real applications, we may have a situation
where a user needs to share a session key with server A, but the authen-
tication needs to be done by a different server B that shares the password
with the user. Further, to achieve higher security on the server side, it may
be required to make PAKE tolerant of a server breach by having multi-
ple authentication servers. To deal with such a situation, Abdalla et al.
proposed a variant of PAKE called Gateway Threshold PAKE (GTPAKE)
where a gateway corresponds to the aforementioned server A being an on-
line service provider and also a potential adversary that may try to guess the
passwords. However, the schemes of Abdalla et al. turned out to be vulner-
able to Undetectable On-line Dictionary Attack (UDonDA). In this paper,
we propose the first GTPAKE provably secure against UDonDA, and in the
security analysis, we prove that our GTPAKE is secure even if an adversary
breaks into parts of multiple authentication servers.
key words: password-based authenticated key exchange (PAKE), threshold
cryptography

1. Introduction

1.1 Background

Password-based authenticated key exchange (PAKE) [3]–
[6], [13], [15] is a two-party protocol by which a user and an
authentication server can establish a cryptographic key that
is computationally hard to guess by sharing only the same
human-memorable password in advance. PAKE can be use-
ful because it does not assume a public-key infrastructure
that requires the user to bring a device storing public-key

Manuscript received August 31, 2016.
Manuscript revised August 20, 2017.
†The authors are with University of Tsukuba, Tsukuba-shi,

305-8577 Japan.
††The author is with Osaka University, Suita-shi, 565-0871

Japan.
†††The author is with Ibaraki University, Hitachi-shi, 316-8511

Japan.
††††The author is with National Institute of Advanced Industrial

Science and Technology, Tsukuba-shi, 305-8560 Japan.
†††††The author is with Korea Advanced Institute of Science and

Technology, Korea.
∗Presently, with LAC Co., Ltd.
∗∗A preliminary version of this paper appeared in [16] and the

detailed security analysis about the necessity of the commitments
used in the proposed protocol was added.

a) E-mail: nishide@risk.tsukuba.ac.jp
DOI: 10.1587/transfun.E100.A.2991

related data. PAKE will also fit in well with computational
environments where simple and secure ubiquitous access is
needed.

Although PAKE is useful, there exist situations where
(two-party) PAKE cannot be deployed as is. For instance,
in the case of a global roaming service, a user (who is
located abroad) may receive the service from an external
server (called a gateway which can be considered as a ser-
vice provider) by establishing a session key with the server,
but in PAKE, it is assumed that the authentication server is
the service provider at the same time. Hence, traditional
PAKE will not function in such a context because the gate-
way is different from the authentication server. Furthermore,
as the European Network and Information Security Agency
(ENISA) [10] pointed out the potential threat of malicious
servers, it is desirable to take into consideration the exis-
tence of malicious authentication servers to achieve high
security. However, traditional PAKE will not be sufficient
because only a single authentication server is supposed to
be involved. Even if the server is trusted, software vulner-
abilities can lead to a leakage of important data as shown
by Heartbleed in April 2014 [11] where the vulnerability of
OpenSSL can cause a leakage of the passwords stored in
servers. Therefore, traditional PAKE cannot cope with such
a threat.

To tackle those problems, Abdalla et al. proposed Gate-
way PAKE (GPAKE) [1] by introducing an entity called
a gateway into PAKE and Gateway Threshold PAKE (GT-
PAKE) [1] by further having multiple authentication servers.
However, as shown in [8], these schemes of Abdalla et al.
turn out to be vulnerable to Undetectable On-line Dictio-
nary Attack (UDonDA) in which an adversary mounts a
password guessing attack in the on-line transaction and the
attack cannot be detected by the authentication servers [9].
Although, in [2], it is mentioned that these protocols can be
modified such that the authentication server can detect on-
line dictionary attacks, the details of how it can be done and
the security proof were not described. In the schemes of
Abdalla et al., the authentication server responds and sends
a message without authenticating the user, so the adversary
can make on-line attempts to guess the password repeatedly.
Due to the low entropy of the password, that attack becomes
devastating. Hence, it is needed to propose a new GTPAKE
scheme that overcomes UDonDA.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

2992
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.12 DECEMBER 2017

Table 1 Comparison of the existing GPAKE and GTPAKE schemes.

Protocol User Gateway Server Message Assumption Model Threshold UDonDA
GPAKE [1] 2e 2e 2e 4 PCDDH ROM NO NO
GTPAKE [1] 2e 2e (13n + 18)e 3n + 4 PCDDH ROM YES NO
GPAKE [18] 3e 2e 2e 6 DDH ROM NO YES
GPAKE [20] 5e + E 2e 5e + E 6 DDH Standard NO YES
GPAKE [19] 3e 2e 2e 9 CDH ROM NO YES
Our GTPAKE 6e 2e (2n2 + 19n + 11)e 4n + 11 DDH ROM YES YES

The computational costs for the user, gateway, and authentication server are estimated in the User, Gateway, and Server columns, respectively. Especially, the
computational costs of [20] here are the ones recalculated by us. We use modular exponentiation denoted as “e” because modular exponentiation is the most
expensive computation and “E” means the cost of a public key encryption. For the sake of simplicity, n authentication servers participate in the authentication
phase. In the Message column, the number of communications is shown and we evaluate a broadcast to all authentication servers as n communication
costs. In the Assumption column, the hardness assumption is shown. In the Model column, the random oracle model or the standard model is shown. In
the Threshold column, it is shown whether the protocol tolerates the corruption of authentication servers. In the UDonDA column, it is shown whether the
protocol can detect malicious login attempts for guessing the passwords of users.

1.2 Contribution

We propose new GTPAKE which has resistance of
UDonDA and the corruption of authentication servers. We
adapt the security model of GPAKE [1], [18] to that of GT-
PAKE and prove the security of our GTPAKE under stan-
dard assumptions in the random oracle model. The pro-
posed scheme has the stronger security against a malicious
gateway or authentication servers compared with existing
schemes, and a global roaming service used for users re-
gardless of places and devices is expected to be one of its
applications.

A naive extension of GPAKE where the communica-
tion process is not changed and the process of authentication
servers is adapted to the threshold secret sharing does not
lead to GTPAKE. Even if the password is encrypted and the
secret key for encrypting the password is shared among the
authentication servers, the password itself needs to be de-
crypted to compare the registered password with the login
password, which means the leakage of password to an ad-
versary corrupting authentication servers. To overcome this
problem, in the authentication process, the servers decrypt
the encrypted password partially and authenticate a user si-
multaneously without revealing the password itself.

We compare the proposed scheme with other exist-
ing GPAKE and GTPAKE schemes†. As shown in Ta-
ble 1, the computation and communication costs of our
protocol are not better than those of GTPAKE [1]. How-
ever, Szydlo shows that the Chosen-basis Decisional Diffie-
Hellman (CDDH) assumption on which the schemes of
Abdalla et al. are based is already vulnerable to some at-
tacks [17]. The security of our scheme is proven in the ran-
dom oracle model with the DDH assumption. Similarly to
GTPAKE of Abdalla et al., our scheme tolerates the cor-
ruption of some authentication servers. Furthermore, while
the schemes of Abdalla et al. are vulnerable to UDonDA,
our scheme is invulnerable to this attack, although our proof
similar to [18] is given in the non-concurrent setting, which

†In the comparison here, we focus only on schemes with secu-
rity proofs, and the discussion of schemes without security proofs
can be found in [18].

assumes that a new session does not begin until the previous
session is finished.

The organization of the paper is as follows. In Sect. 2,
we introduce some background to understand this paper. In
Sect. 3, we define the security model of GTPAKE. In Sect. 4,
we describe the construction of our scheme. In Sect. 5, we
prove the security of the proposed scheme. In Sect. 6, we
make final remarks. Finally, we explain the reason why the
proposed scheme needs a commitment scheme in Appendix
A and the bound related to the birthday problem in Ap-
pendix B.

2. Preliminaries

We show the notation and security assumptions used in this
paper.

2.1 Notation

We use the following notation throughout this paper. We
denote by Zq the set {0, 1, . . . , q − 1}. x ← A represents
that x is chosen uniformly at random from set A. Let g be a
generator of the subgroup G of order p over Zq and a ‖ b be
the concatenation of elements a and b, which is able to be
divided into its original elements. We denote by {0, 1}k the
set of all binary strings of length k. Especially, {0, 1}∗ means
the set of all binary strings of arbitrary length. The function
negl is negligible if and only if, for every positive integer c,
there exists an integer N such that negl(x) < 1/xc for any
x > N.

We represent a user as U ∈ U, a gateway as G ∈ G,
and the i-th authentication server as S i ∈ S for i = 1, . . . , n
where U, G, and S are the sets of all users, gateways, and
authentication servers, respectively, and n is the number of
all authentication servers. Especially, we denote by P any
participant in the set of all participants P (= U ∪ G ∪ S).
We call one representative of the authentication servers that
communicates with a gateway a combiner C ∈ S. We set
t (< n/2 + 1) as the threshold value which is the minimum
number of servers required to authenticate users.

KOBAYASHI et al.: PROVABLY SECURE GTPAKE SECURE AGAINST UDONDA
2993

2.2 Security Assumptions

The following security assumptions are well-known.

Definition 1: (Computational Diffie-Hellman (CDH) As-
sumption). We define the Computational Diffie-Hellman
(CDH) problem as the problem of computing gab from given
(g, ga, gb) where g is a generator chosen at random from
group G and (a, b) ← Z2

q. We say that the CDH assumption
holds in G if the advantage in solving the CDH problem de-
fined as Advcdh

A (κ) = Pr[A(g, ga, gb) = gab] is negligible for
any probabilistic polynomial time algorithmA with respect
to the security parameter κ.

Definition 2: (Decisional Diffie-Hellman (DDH) As-
sumption). We define the Decisional Diffie-Hellman
(DDH) problem as the problem of distinguishing the distri-
bution of (g, ga, gb, gab) and (g, ga, gb, gc) where g is a gen-
erator chosen at random from group G and (a, b, c) ← Z3

q.
We say that the DDH assumption holds in G if the advan-
tage in solving the DDH problem defined as Advddh

A (κ) =

|Pr[A(g, ga, gb, gab) = 1] − Pr[A(g, ga, gb, gc) = 1]| is neg-
ligible for any probabilistic polynomial time algorithm A
with respect to the security parameter κ.

2.3 Building Block

We use the non-interactive zero-knowledge proof of equal-
ity of discrete logarithm as the building block in a similar
manner to GTPAKE of Abdalla et al. [1]. We describe the
proof system between a prover and a verifier as follows.
Two generators (g1, g2) over a group G are given and let
EDLog(g1,g2) be the language pairs (x1, x2) ∈ G2 where there
exists a random number x ∈ Zq such that x1 = gx

1 and
x2 = gx

2. The prover chooses y ← Zq and computes y1 = g
y
1

and y2 = g
y
2. After computing c = H0(q ‖ g1 ‖ g2 ‖

x1 ‖ x2 ‖ y1 ‖ y2) where H0 is a hash function mapping
{0, 1}∗ → Zq, the prover computes z = xc + y mod q and
sends (c, z) to the verifier. The verifier checks the equation
c = H0(q ‖ g1 ‖ g2 ‖ x1 ‖ x2 ‖ g

z
1/xc

1 ‖ g
z
2/xc

2).

3. Security Model

We describe the system model and security definitions of
GTPAKE.

As Fig. 1 shows the communication model of GT-
PAKE, the user as the client connects to a gateway playing
the role of the service provider. The gateway has a role of
forwarding the message to one of the authentication servers
named the combiner. Here the authentication servers play
the role of authentication service provider. The combiner
communicates with other servers to authenticate the user.
Although the communication channel between the user and
the gateway is insecure and under the control of an adver-
sary, the channel between the gateway and the combiner
is authenticated and the channel between the authentication

Fig. 1 Communication model of GTPAKE.

servers is secure†.
When an authentication process for a user (say, User

A) is being processed, another login attempt from the same
user (i.e., User A) is suspended until the preceding authen-
tication process is finished. We assume a static adversary
that corrupts the set of less than the threshold authentication
servers before the protocol is executed.

3.1 System Model

The proposed scheme consists of the following three sub-
protocols.

• Init. Given the security parameter and the setup pa-
rameters, the public parameters params are output††.

• Regi. The user registers his password with the au-
thentication servers. If all authentication servers can-
not register the password successfully, then outputs the
error symbol ⊥.

• Auth. The more than or equal to the threshold servers
authenticate a user. If the user and gateway can estab-
lish the same session key while passing authentication
successfully, then outputs a session key sk, otherwise
outputs reject.

3.2 Security Requirements

We describe the security requirements for GTPAKE. The
technical details of reflecting these requirements are given
in Definitions 4 and 6.

3.2.1 Existing Security Requirements

The security requirements for not only GPAKE but also GT-
PAKE are as follows (due to Wei et al. [18]).

• Known-Key Security (KS). The adversary cannot dis-
tinguish a real session key from a random session key
even if the adversary obtains other session keys.

• Forward Secrecy (FS). The established session key
before the adversary obtains the static keys of the user
including passwords are still indistinguishable from a
random session key.

†To establish an authenticated or secure channel, both parties
(i.e., the gateway and combiner, the combiner and authentication
server, and pairs of authentication servers) have a common static
key.
††Although we assume a trusted dealer distributing some pa-

rameters for simplicity, the authentication servers themselves can
publish parameters by using the technique of the distributed key
generation [12].

2994
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.12 DECEMBER 2017

• Resistance to Basic Impersonation (BI). The adver-
sary cannot impersonate a legitimate user unless the ad-
versary obtains the password of the user.

• Resistance to Off-line Dictionary Attack (offDA).
The adversary cannot guess a password by verifying
its guess in the off-line manner.

• Resistance to Undetectable On-line Dictionary At-
tack (UDonDA). The adversary cannot guess a pass-
word by verifying its guess in the on-line manner with-
out being detected by uncorrupted participants.

3.2.2 Modified Security Requirements

We adapt the security requirements of GPAKE to that for
the threshold setting. Unlike the single server setting where
the adversary does not corrupt the authentication server in
GPAKE, we take an active adversary corrupting less than
threshold authentication servers into consideration in GT-
PAKE.

• Resistance to leakage of internal information to
servers (LIS). An adversary cannot distinguish a real
session key from a random session key and cannot
guess the password even if the adversary obtains in-
ternal information of some authentication servers.

3.3 Oracles

We show the necessary oracles to define a stronger security
model than that of GTPAKE [1]. To distinguish the session
between participants, the `-th instance for participant P is
denoted by P(`). Let U(`), G(j), C(k), and S (k)

i be instances of
a user, gateway, combiner, and i-th authentication server, re-
spectively. The instance represents the state of a participant
in a session during the progress of the protocol.

3.3.1 Existing Oracles [18]

The oracles used in the existing GPAKE are as follows.

• Execute(U(`),G(j),C(k)). This query models passive at-
tacks. The output of this query consists of the message
exchanged during the execution in the protocol among
U(`), G(j), and C(k).

• SendUser(U(`),m). This query models active attacks
against a user instance U(`)†. The output of this query
consists of the message the user instance U(`) would
generate on receipt of message m.

†The states of the oracle for an adversary in the same session
are preserved. The SendUser and SendServer oracles halt if an
adversary asks the oracle in the invalid order or the counter of in-
correct login attempts exceeds a predetermined limit which is the
upper limit of acceptable failed login attempts defined by the au-
thentication service provider. The SendGateway oracle halts if
an adversary asks the oracle in the invalid order. Although the
SendUser and SendServer oracles interact with an adversary act-
ing as a gateway, the SendGateway oracle interacts with an adver-
sary acting as a user and a combiner.

• SendGateway(G(j),m). This query models active at-
tacks against a gateway instance G(j).† The output of
this query consists of the message the gateway instance
G(j) would generate on receipt of message m.

• SendServer(C(k),m). This query models active attacks
against a combiner instance C(k).† The output of this
query consists of the message the combiner instance
C(k) would generate on receipt of message m.

• SessionKeyReveal(P(`)). This query models leakage
of session keys related to information of passwords. If
the session key for the instance of participant P(`) is not
defined, then return ⊥. Otherwise, return the session
key for P(`).

• StaticKeyReveal(P). This query models leakage of the
static secrets of participant P. If P is a user, then re-
turn the password. If P is a gateway, then return secret
keys for authenticated channels. If P is an authentica-
tion server, then return the encrypted passwords for all
users, the share of a secret key, the published parame-
ters for all authentication servers, and other secret keys
for authenticated and secure channels.

• EphemeralKeyReveal(P(`)). This query models leak-
age of the ephemeral keys used by instance P(`). The
output of this query consists of the ephemeral keys of
P(`) such as the chosen random numbers.

• EstablishParty(U, pwU). This query models that an ad-
versary registers a password pwU on behalf of a user U.
The users against whom the adversary has not ask this
query are called honest.

• Test(P(`)). This query models the indistinguishability
of the session key of P(`). At the beginning of the ex-
periment the challenge bit b is chosen from {0, 1}. If the
session key for P(`) is not defined, then return ⊥. Oth-
erwise, return session key of P(`) if b = 1 or a random
key of the same size if b = 0. The adversary can ask
this query only once at any time during the experiment.

• TestPassword(U, pw′U). This query models the secrecy
of the password held by an honest user U. If the
guessed password pw′U equals the registered password
pwU of the user U, then return 1. Otherwise, return 0.
The adversary can ask this query only once at any time
during the experiment.

3.3.2 Added Oracles

We add a new oracle to adapt the single server setting to
the threshold setting where an adversary can obtain internal
information of authentication servers by corruption.

• Corrupt(S i). This query models intrusion into the au-
thentication server. By asking the query at the begin-
ning of the protocol, the adversary can take full control
of the authentication server S i.

3.4 Security Definitions

We describe the security definitions of GTPAKE. The defi-

KOBAYASHI et al.: PROVABLY SECURE GTPAKE SECURE AGAINST UDONDA
2995

nitions here are similar to those of GPAKE [1], [18], but the
method of dealing with authentication servers is different.
The Session ID (SID) is provided when the protocol is first
initiated to determine the session uniquely. The Partner ID
(PID) is taken to be an identifier of the instance intended to
establish a session key.

Definition 3: (Partnering [1]). A user U(`) and gateway
G(j) are partnered if the following conditions hold.

1. U(`) and G(j) exist.
2. U(`) and G(j) have the same SID.
3. The PID of U(`) is G(j) and the PID of G(j) is U(`).
4. No other instances have the same PID of U(`) or G(j).

3.4.1 Session Key Security

For the security of session keys, an adversary can ask the
Test oracle once against a fresh participant. In the following
definition, the adversary is restricted such that the adversary
cannot ask queries that break the security of the protocol
trivially.

Definition 4: (Freshness in Session Key Security). A
user U(`) and partnered gateway G(j) are fresh if the user
is honest and none of the following conditions hold.

1. The adversary asks SessionKeyReveal(U(`)) or Ses-
sionKeyReveal(G(j)).

2. The adversary asks EphemeralKeyReveal(U(`)) or
EphemeralKeyReveal(G(j)).

3. The adversary asks SendServer(C(k),m) and either
queries.

a. StaticKeyReveal(G).
b. StaticKeyReveal(C).

4. The adversary asks SendUser(U(`),m) or SendGate-
way(G(j),m) and either queries.

a. StaticKeyReveal(U).
b. EphemeralKeyReveal(U(`)) in any instance `.
c. Corrupt(S i) for more than or equal to t authenti-

cation servers.

To model the attacks which the adversary can mount
through the game in the security of session keys, an adver-
sary is allowed to ask the Execute, SendUser, SendGate-
way, SendServer, SessionKeyReveal, StaticKeyReveal,
EphemeralKeyReveal, Corrupt, EstablishParty, and Test
oracles. The list of participants is given to the adversary at
the beginning of the experiment. In this situation, we define
Succsks as the event where an adversary succeeds in guessing
a challenge bit b in the Test oracle.

(1) Capturing the security properties of session keys

As described in the condition 1 of Definition 4, KS is re-
flected by allowing an adversary to obtain session keys in
non-target sessions. As described in the condition 2, LIS is
reflected by allowing an adversary to obtain the ephemeral
and static keys or intermediate results calculated by some

authentication servers and by prohibiting the adversary from
obtaining the ephemeral keys of users and gateways in the
target session. As described in the condition 3, FS is re-
flected by allowing an adversary to obtain static keys of the
users and by prohibiting the adversary from obtaining the
static keys of partnered gateways and the combiner. As de-
scribed in the condition 4, BI is reflected by allowing an
adversary to ask queries in non-target sessions and by pro-
hibiting the adversary from obtaining the password of the
target user.

Definition 5: ((T ,R)-Session Key Security). In GTPAKE
protocolL, the advantage of adversaryA for (T ,R)-session
key security is defined as

Advsks
L,D(A) = |Pr[Succsks] − 1/2|,

where the password is chosen at random from dictionary D
of size |D|. The maximum advantage among all adversaries
that expend at most T time and R resources is defined as

Advsks
L,D(T ,R) = max

A
{Advsks

L,D(A)}.

The (T ,R)-session key security meets the equation
Advsks

L,D(T ,R) ≤ qsend/|D| + negl(κ) for any probabilistic
polynomial time adversaries where qsend (< |D|) is the num-
ber of queries to the SendUser and SendServer oracles and
κ is a security parameter.

3.4.2 Password Protection Security

For the security of passwords, an adversary can ask the Test-
Password oracle once against a fresh password. In the fol-
lowing definition, the adversary is restricted such that the
adversary cannot ask queries that break the security of the
protocol trivially.

Definition 6: (Freshness in Password Protection Secu-
rity). The password of a user U is fresh if the user is honest
and the adversary does not ask the following queries.

1. StaticKeyReveal(U).
2. EphemeralKeyReveal(U(`)) in any instance `.
3. Corrupt(S i) for more than or equal to t authentication

servers.

To model the attacks which the adversary can mount
through the game in the security of passwords, an adver-
sary is allowed to ask the SendUser, SendServer, Session-
KeyReveal, StaticKeyReveal, EphemeralKeyReveal, Es-
tablishParty, Corrupt, and TestPassword oracles. The list
of participants is given to the adversary at the beginning of
the experiment. In this situation, we define Succpps as the
event that an adversary succeeds in guessing the password
pwU in the TestPassword oracle.

(1) Capturing the security properties of passwords

As described in Definition 6, UDonDA is reflected by al-
lowing an adversary to ask the SendUser and SendServer
oracles until the number of incorrect login attempts exceeds

2996
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.12 DECEMBER 2017

a predetermined limit. Also offDA is reflected by allow-
ing an adversary to obtain internal information such as the
ephemeral and static keys of non-target users and a set of
less than the threshold corrupted authentication servers. The
corrupted combiner can disturb the communication between
a user and honest authentication servers, but successful dis-
turbance is not considered as the success of breaking the
security of passwords.

Definition 7: ((T ,R)-Password Protection Security). In
GTPAKE protocol L, the advantage of adversary A for
(T ,R)-password protection security is defined as

Advpps
L,D

(A) = Pr[Succpps],

where the password is chosen at random from dictionary D
of size |D|. The maximum advantage among all adversaries
that expend at most T time and R resources is defined as

Advpps
L,D

(T ,R) = max
A
{Advpps

L,D
(A)}.

The (T ,R)-password protection security meets the
equation Advpps

L,D
(T ,R) ≤ (qsend + 1)/|D| + negl(κ) for any

probabilistic polynomial time adversaries where qsend (<
|D|) is the number of queries to the SendUser and Send-
Server oracles and κ is a security parameter.

4. Our Scheme

4.1 How to Construct GTPAKE

We describe the problems and give an intuitive explanation
of our construction. As described in Sect. 1.2, it is difficult
to convert GPAKE of Wei et al. (which is secure against
UDonDA) into GTPAKE. In fact, the naive extension of
GPAKE of Wei et al. is the insecure scheme described in Ap-
pendix A. In addition, it seems difficult to make GTPAKE
of Abdalla et al. secure against UDonDA. In the schemes of
Abdalla et al., it is impossible for an authentication server
to terminate the protocol when an incorrect login attempt is
made because the message made by an honest user is in-
distinguishable from that by the adversary. In the proposed
scheme, it is possible for authentication servers to compute
the result while keeping the password itself secret by realiz-
ing decryption and randomization simultaneously. We also
use zero knowledge proofs in communication among au-
thentication servers to prevent an adversary from showing
incorrect shares.

4.2 Overview of Our Scheme

We describe the flow of our proposed scheme. First, a
trusted dealer generates some public system parameters
such as the public key pk of the authentication servers. Sec-
ond, a user registers the ElGamal ciphertext (PW · pkv, gv)
with the hash value PW of his password pw and a random

number v. Third, the user sends gr/PW to the authentica-
tion servers via a gateway where r is a random number. Af-
ter a random number w is generated while hiding the ran-
dom number among the authentication servers, the combiner
sends gw to the user. The user and authentication servers
verify the validity of H(grw) with each other where H is a
hash function. The user sends gx to the gateway where x is
a random number. The gateway sends gy to the user where
y is a random number. Finally, the session key H(gxy) is
established between the user and the gateway.

4.3 Construction

We show our proposed scheme based on the system model
defined in Sect. 3.1. A perspective of the proposed scheme
is shown in Fig. 2.

First, we describe the following sub-protocol of initial-
ization. If the number of authentication servers is modified,
this sub-protocol is executed again.
Init. Let p be a κ-bit prime where κ is the given security
parameter and q be a large prime dividing p − 1.
Let us denote a generator of subgroup G of order q over Zp
by g.
The hash functions H0 : {0, 1}∗ → Zq, H1 : {0, 1}∗ → G, and
H2,H3 : {0, 1}∗ → {0, 1}κ are chosen.
A trusted dealer computes the parameters as follows.
The trusted dealer computes another random generator h (,
g) and the public key pk = gs of a secret key s← Zq for the
ElGamal encryption.
The trusted dealer chooses ak ← Zq for k = 1, . . . , t − 1
where t is the given threshold value and generates the poly-
nomial f (z) = s + a1z + · · · + at−1zt−1 mod q.
The trusted dealer sends a share si = f (i) mod q to each
authentication server S i via a secure channel and publishes
gsi mod p among the authentication servers.
Finally, the public system parameters
params = (p, q,G, g, h, pk,H0,H1,H2,H3) are output.

Second, we describe the following sub-protocol of reg-
istration.
Regi. A new user chooses a password pwU at random from
a dictionary D and computes PWU = H1(U ‖ pwU) by us-
ing his identification U.
After generating the ElGamal ciphertext Enc(pwU) =

(PWU · pkv mod p, gv mod p) where v← Zq, the user sends
(U,Enc(pwU)) to the authentication servers.
This information is stored in all authentication servers as the
ciphertext of the password for the user U.
If any problems occur, then the error symbol ⊥ is output.

Third, we describe the following sub-protocol of au-
thentication composed of twelve steps.
Auth. If a processing request has come in the invalid order,
the incorrect login attempt is counted and the session is re-
jected. After the counter of incorrect login attempts exceeds
the predetermined limit, a processing request from the user

KOBAYASHI et al.: PROVABLY SECURE GTPAKE SECURE AGAINST UDONDA
2997

Fig. 2 Overview of the proposed scheme.

is rejected.

Step 1. A user U computes PWU = H1(U ‖ pwU) by using
his password pwU .
U chooses r ← Zq and computes R = gr and R∗ = R/PWU .
U sends (U,R∗) to a gateway G.

Step 2. The gateway G sends (U,G,R∗) to a combiner C.

Step 3. The combiner C publishes (U,G,C,R∗) to all au-
thentication servers.
The authentication server S i generates two polynomials
gi(z) = bi,0 + bi,1z + · · · + bi,t−1zt−1 mod q and g′i(z) =

b′i,0 + b′i,1z + · · · + b′i,t−1zt−1 mod q where (bi,k, b′i,k) ← Z2
q

for k = 0, . . . , t − 1.
S i broadcasts Bi,k = gbi,k hb′i,k mod p for k = 0, . . . , t − 1
and sends wi, j = gi(j) mod q, w′i, j = g′i(j) mod q to S j for
j = 1, . . . , n.
S j checks the equation gwi, j hw

′
i, j =

∏t−1
k=0(Bi,k) jk for i =

1, . . . , n.
If the confirmation does not hold for index i, S j publishes a
complaint against S i.
An authentication server receiving more than or equal to the
threshold t complaints is marked as disqualified.
S j publishing the complaint against S i’s values (wi, j, w

′
i, j)

satisfying the confirmation is also marked as disqualified.
The set L is defined as the subscript set of more than or equal
to the threshold qualified authentication servers.
S i whose index is included in L computes as follows.
S i computes wi =

∑
j∈L w j,i and broadcasts Ai,k = gbi,k for

k = 0, . . . , t − 1.
S j checks the equation gwi, j =

∏t−1
k=0(Ai,k) jk for i ∈ L.

If the confirmation does not hold for index i, S j publishes a
complaint.

Otherwise S i computes W =
∏

i∈L Ai,0.
Using the encrypted password Enc(pwU) = (E1, E2) =

(PWU · pkv, gv), S i broadcasts F1,i = (E1 · R∗)wi , F2,i = Ewi
2

and proofs EDLog(E1·R∗,g)(F1,i,
∏

j∈L
∏t−1

k=0(A j,k)ik),
EDLog(E2,g)(F2,i,

∏
j∈L
∏t−1

k=0(A j,k)ik).
After S i checks the proofs, C sends (U,C,W) to G.

Step 4. The gateway G chooses y ← Zq and computes
Y = gy.
G sends (G,C,Y,W) to U.

Step 5. The user U chooses (x, d)← Z2
q.

U computes X = gx, K1 = Wr, α = H2(U ‖ G ‖ C ‖ X ‖ Y ‖
R∗ ‖ W ‖ K1), and the commitment Com = gαhd†.
U sends (U, X,Com) to G.

Step 6. The gateway G sends (U, X,Y,Com) to C.

Step 7. The combiner C broadcasts (U, X,Y,Com) among S i
whose index is included in the set L.
S i computes F1 =

∏
i∈L FλL,0,i

1,i and F2 =
∏

i∈L FλL,0,i

2,i where
λL,i, j =

∏
{k∈L∧k, j}(i − k)/(j − k) is the Lagrange coefficient.

S i broadcasts T2,i = F si
2 and the proof EDLog(F2,g)(T2,i, g

si).
After checking the proof, S i computes K1 = F1/

∏
i∈L T λL,0,i

2,i .
S i computes α′ = H2(U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖ W ‖ K1).
C sends (U, α′) to G.

†The reason why our scheme uses a commitment scheme here
(although it seems unnecessary) is explained in Appendix A. With-
out this commitment, it enables a malicious gateway to guess a
password by combining subtle on-line and off-line dictionary at-
tacks. We believe this shows the complexity that arises in con-
sidering the extension (i.e., GTPAKE) of traditional PAKE where
more than two parties are involved.

2998
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.12 DECEMBER 2017

Step 8. The gateway G computes K2 = Xy and an authenti-
cator Auth′ = H2(U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖ W ‖ K2).
G sends (α′,Auth′) to U.

Step 9. The user U checks the validity of α′ by using α.
U computes K2 = Y x and checks the validity of Auth′ by
using K2.
If one of the two confirmations is false, U increments the
counter of incorrect login attempts for G, reject is output,
and this sub-protocol is terminated†.
Otherwise, U computes the session key sk = H3(U ‖ G ‖
C ‖ X ‖ Y ‖ R∗ ‖ W ‖ K2) and sends (U, d) to G.

Step 10. The gateway G sends (U, d) to C.

Step 11. The combiner C broadcasts (U, d) among S i whose
index is included in the set L.
S i checks the validity of Com by using d and α′.
If one of the confirmations is false, S i increments the
counter of incorrect login attempts for U, reject is output,
and C sends (U, failure) to G where failure means that the
authentication process failed.
Otherwise, C sends (U, success) to G where success means
that the authentication process succeeded.

Step 12. The gateway G computes the session key sk =

H3(U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖ W ‖ K2) and sk is output if
success is received.
Otherwise (i.e., failure is received), the session is rejected.

5. Security Analysis

5.1 Session Key Security

We prove the security of the session key in the proposed
scheme under the CDH assumption in the random oracle
model.

Theorem 1: ((T ,R)-Session Key Security). Let L be our
GTPAKE scheme andA be a probabilistic polynomial time
adversary that corrupts at most (t− 1)(< n/2) authentication
servers in advance. Then the advantage ofA for the session
key security in L with at most T time and R resources is

Advsks
L,D(A) ≤

q2
H0

+ q2
H1

+ (qexe + qsend)2

2q
+

q2
H2

+ q2
H3

2κ+1

+qexe · (qH2 + qH3) · Advcdh
A (κ)

+
qH2 + qH3

2κ
+

qsends + qsendu

|D|
,

where qH0 , qH1 , qH2 , and qH3 are the number of hash queries
to the oracles H0,H1,H2, and H3, respectively, qexe is the

†An honest user also counts the number of the login failures
if the login attempt failed although a correct password was used,
and will report that the gateway is corrupted if the counter exceeds
the predetermined limit. This is because a corrupted gateway can
cause such malicious login failures.

number of queries to the Execute oracle, qsend is the num-
ber of queries to the SendUser, SendGateway, and Send-
Server oracles, qsends and qsendu are the number of queries
to the SendServer and SendUser oracles, respectively, i.e.,
the equation qsendu + qsends ≤ qsend holds, and |D| is the size
of the dictionaryD.

Proof 1: We define Succsks in Game n as Succsks
n .

Game 0. This experiment corresponds to a real attack by
the adversary in the random oracle model. By Definition 5,
and we have

Advsks
L,D(A) = |Pr[Succsks

0] − 1/2|.

Game 1. In this experiment, we simulate the hash functions
and the oracle defined in Sect. 3.3. We simulate the random
oracles H0, H1, H2, and H3 by maintaining hash lists Λ0,
Λ1, Λ2, and Λ3 as follows.

• On a hash query H0(m), if there already exists a record
(m, r), then we return r;
Otherwise, we choose r ← Zq, add the record (m, r) in
the hash list Λ0, and return r;

• On a hash query H1(m), if there already exists a record
(m, r), then we return r;
Otherwise, we choose r ← G, add the record (m, r) in
the hash list Λ1, and return r;

• On a hash query H2(m) (resp. H3(m)), if there already
exists a record (m, r), then we return r;
Otherwise, we choose r ← {0, 1}κ, add the record (m, r)
in the hash list Λ2 (resp. Λ3) and return r;

For the simulations in the later games, we also prepare
the hash functions H′2 and H′3 by maintaining hash lists Λ′2
and Λ′3.

The Execute, SendUser, SendGateway, Send-
Server, SessionKeyReveal, StaticKeyReveal, Ephemer-
alKeyReveal, EstablishParty, Corrupt, and Test oracles can
be simulated as follows.

• On a query SendUser(U(`), ∗), we proceed as follows.
If a query StaticKeyReveal(U), EphemeralKeyRe-
veal(U(`)) in any instance `, or Corrupt(S i) for more
than or equal to t authentication servers has been asked
by the adversary, then do nothing. If the processing re-
quest has come in the invalid order or the counter of in-
correct login attempts exceeds the predetermined limit,
we increment the counter of incorrect login attempts
and do not reply.

1. On a query SendUser(U(`), start), we proceed as
follows.
PWU = H1(U ‖ pwU); r ← Zq;
R = gr; R∗ = R/PWU ; then return (U,R∗);

2. On a query SendUser(U(`), (G,C,Y,W)), we pro-
ceed as follows.
(x, d)← Z2

q; X = gx; K1 = Wr;
α = H2(U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖ W ‖ K1);
Com = gαhd; then return (U, X,Com);

KOBAYASHI et al.: PROVABLY SECURE GTPAKE SECURE AGAINST UDONDA
2999

3. On a query SendUser(U(`), (α′,Auth′)), we pro-
ceed as follows.
We check the validity of α′; K2 = Y x;
We check the validity of Auth′;
If one of the two confirmations is false, we incre-
ment the counter of incorrect login attempts for G
and return abort;
Otherwise, sk = H3(U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖
W ‖ K2);
then return (U, d);

• On a query SendServer(C(k), ∗), we proceed as fol-
lows.
If a query StaticKeyReveal(G) or StaticKeyReveal(C)
has been asked by the adversary, then do nothing. If
the processing request has come in the invalid order or
the counter of incorrect login attempts exceeds the pre-
determined limit, we increment the counter of incor-
rect login attempts and do not reply. In the following
queries, the adversary does the process on behalf of the
corrupted authentication server S j.

1. On a query SendServer(C(k), (U,G,R∗)), we pro-
ceed as follows.
The uncorrupted authentication server S i broad-
casts Bi,k = gbi,k hb′i,k and sends wi, j = gi(j), w′i, j =

g′i(j) secretly to the authentication server S j cor-
rupted by the adversary;
S i checks the validity of w j,i, w

′
j,i by using B j,k;

S i computes the share wi =
∑

j∈L w j,i and broad-
casts Ai,k = gbi,k ;
S i checks the validity of A j,k by using w j,i;
S i broadcasts F1,i = (E1 · R∗)wi , F2,i = Ewi

2 and
proofs;
S i checks the proofs and computes W =

∏
j∈L Ai,0;

then return (U,C,W);
2. On a query SendServer(C(k), (U, X,Y,Com)), we

proceed as follows.
The uncorrupted authentication server S i com-
putes F1 =

∏
i∈L FλL,0,i

1,i and F2 =
∏

i∈L FλL,0,i

2,i ;
S i broadcasts T2,i = F si

2 and the proof;
S i checks the proof and computes K1 =

F1/
∏

i∈L T λL,0,i

2,i ;
S i computes α′ = H2(U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖
W ‖ K1);
then return (U, α′);

3. On a query SendServer(C(k), (U, d)), we proceed
as follows.
The uncorrupted authentication server S i checks
the validity of Com;
If one of the confirmations is false, we increment
the counter of incorrect login attempts for U and
return (U, failure);
Otherwise, return (U, success);

• On a query SendGateway(G(j), ∗), we proceed as fol-
lows.
If a query StaticKeyReveal(U), EphemeralKeyRe-

veal(U(`)) in any instance `, or Corrupt(S i) for more
than or equal to t authentication servers has been asked
by the adversary, then do nothing. If the processing
request has come in the invalid order, then do not reply.

1. On a query SendGateway(G(j), (U,R∗)), then re-
turn (U,G,R∗);

2. On a query SendGateway(G(j), (U,C,W)),
y← Zq; Y = gy;
then return (G,C,Y,W);

3. On a query SendGateway(G(j), (U, X,Com)),
then return (U, X,Y,Com);

4. On a query SendGateway(G(j), (U, α′)),
K2 = Xy;
Auth′ = H2(U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖ W ‖ K2);
then return (α′,Auth′);

5. On a query SendGateway(G(j), (U, d)), then re-
turn (U, d);

6. On a query SendGateway(G(j), (U, success/
failure)), we proceed as follows.
If success is received, sk = H3(U ‖ G ‖ C ‖ X ‖
Y ‖ R∗ ‖ W ‖ K2);
If failure is received, then do nothing;

• On a query Execute(U(`),G(j),C(k)), we proceed as fol-
lows.
(U,R∗)← SendUser(U(`), start);
(U,G,R∗)← SendGateway(G(j), (U,R∗));
(U,C,W)← SendServer(C(k), (U,G,R∗));
(G,C,Y,W)← SendGateway(G(j), (U,C,W));
(U, X,Com)← SendUser(U(`), (G,C,Y,W));
(U, X,Y,Com)← SendGateway(G(j), (U, X,Com));
(U, α′)← SendServer(C(k), (U, X,Y,Com));
(α′,Auth′)← SendGateway(G(j), (U, α′));
(U, d)← SendUser(U(`), (α′,Auth′));
(U, d)← SendGateway(G(j), (U, d));
(U, success/failure)← SendServer(C(k), (U, d));
SendGateway(G(j), (U, success/failure));
then return (U,G,C, X,Y,R∗,W, α, α′,Auth,Auth′,
Com, d, success/failure);

• On a query SessionKeyReveal(P(`)), we proceed as
follows.
If the session key sk is defined for the user or gateway
instance P(`) then return sk, else return ⊥;

• On a query StaticKeyReveal(P), we proceed as fol-
lows.
If P is a user U, then return the registered password
pwU ;
If P is a gateway G, then return the secret key for the
authenticated channels between the gateway and au-
thentication servers;
If P is an authentication server S i, then return the en-
crypted password Enc(pw) = (PW · pkv, gv) for all
users, the share si of the secret key for P, the published
parameter gsi for all authentication servers, and other
secret keys for the authenticated channels between the
authentication server and a gateway and secure chan-
nels among authentication servers;

3000
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.12 DECEMBER 2017

• On a query EphemeralKeyReveal(P(`)), we proceed as
follows.
If there are already the ephemeral keys generated by
the instance P(`), then return the ephemeral keys, else
return ⊥;

• On a query Corrupt(S i), we proceed as follows.
We return all information obtained by the authentica-
tion server S i such as static keys, ephemeral keys, and
all the intermediate values of the computation in S i.

• On a query EstablishParty(U, pwU), we proceed as fol-
lows.
If there is already a user U, then do nothing, else estab-
lish a new user U with the password pwU ;

• On a query Test(U(`)), we proceed as follows.
sk ← SessionKeyReveal(P(`));
If sk = ⊥, then return ⊥, else b← {0, 1};
If b = 1 (resp. b = 0), sk′ = sk (resp. sk′ ← {0, 1}κ),
then return sk′;

This experiment is perfectly indistinguishable from the pre-
vious experiment, and we have

Pr[Succsks
1] = Pr[Succsks

0].

Game 2. We halt this experiment when a collision on the
outputs of the hash oracles and the transcripts occurs. We
set the number of queries to the hash oracle Hi as qHi for
i = 0, 1, 2, 3, that to the Execute oracle as qexe and that to
the SendUser, SendGateway, and SendServer oracles as
qsend. By using the bound described in Appendix B (i.e., the
value n corresponds to q or 2κ and the value m corresponds
to qH0 , qH1 , qH2 , qH3 , or (qexe + qsend)), we have

|Pr[Succsks
2] − Pr[Succsks

1]|

≤
q2

H0
+ q2

H1
+ (qexe + qsend)2

2q
+

q2
H2

+ q2
H3

2κ+1 .

Game 3. We change the simulation of queries to the
Execute oracle, especially queries to the SendUser and
SendGateway oracles on a test session. When a query
SendGateway(G(j), (U, α′)), SendUser(U(`), (α′, Auth′)),
or SendGateway(G(j), (U, success/failure)) is asked, we
compute the authenticator Auth′ and the session key sk as
H′2(U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖ W) and H′3(U ‖ G ‖ C ‖ X ‖
Y ‖ R∗ ‖ W) by using the private hash oracles H′2 and H′3, re-
spectively. The difference between this experiment and the
previous one is indistinguishable unless the adversary asks
the query (U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖ W ‖ K2) to the hash
function H2 or H3. The difference of the following proba-
bilities is negligible as long as the CDH assumption holds,
and we have

|Pr[Succsks
3] − Pr[Succsks

2]|

≤ qexe · (qH2 + qH3) · Advcdh
A (κ).

To evaluate the probability of this event, we con-
struct an algorithm to solve the CDH problem. The al-
gorithm obtains the CDH tuple (M,N) and chooses the
session (U(`),G(j)). We set X = Mu1gu2 for a query

SendUser(U(`), (G,C,Y,W)) and Y = Nu3gu4 for a query
SendGateway(G(j), (U,C,W)) where (u1, u2, u3, u4) ← Z4

q.
We compute α and Auth′ as H2(U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖
W) and sk as H3(U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖ W) for queries
SendUser(U(`), (G,C,Y,W)), SendUser(U(`), (α′,Auth′)),
SendGateway(G(j), (U,C,W)), SendGateway(G(j), (U, α′)),
and SendGateway(G(j), (U, success/failure)). All other
queries are handled in the same way as the previous game.
The simulator picks a test session with the probability
1/qexe. Although the simulator cannot obtain the ephemeral
keys of a user and a gateway by Definition 4, the simulator
can simulate queries to all oracles without logg X and logg Y .

If the adversary asks the query (U ‖ G ‖ C ‖

X ‖ Y ‖ R∗ ‖ W ‖ K2) to the hash function H2
or H3 in the session (U(`),G(j)), we can compute K2 =

CDH(Mu1gu2 ,Nu3gu4) = CDH(Mu1 ,Nu3) · CDH(Mu1 , gu4) ·
CDH(gu2 ,Nu3) · CDH(gu2 , gu4) = CDH(M,N)u1u3 · Mu1u4 ·

Nu2u3 ·gu2u4 from hash lists Λ2 and Λ3 where CDH is a func-
tion to return gab from (ga, gb) in terms of the generator g in
the same way as in [7]. In this way, we can extract the value
CDH(M,N) from the given tuple (M,N).

In Game 3, the Diffie-Hellman key K2 is random and
independent from any other ephemeral and static keys such
as passwords. In this situation, only three ways to distin-
guish a session key from a random key are left as follows.
Case 1. The adversary asks the query (U ‖ G ‖ C ‖ X ‖ Y ‖
R∗ ‖ W ‖ K2) to the hash function H2 or H3.

The probability that Case 1 occurs is (qH2 + qH3)/2κ.
Case 2. The adversary asks the SendGateway or Send-
Server oracle except for SendGateway(G(j),m) and suc-
cessfully shares the session key with G(j).

In order for the adversary to share the session key with
the gateway, the adversary needs to convince the gateway by
sending valid commitments Com and d to the combiner and
giving Succ to the gateway. Also we note that an authenti-
cated channel is established between the gateway and com-
biner in our security model. Therefore, even if the adversary
tries to send Com and d to the combiner directly (i.e., not via
the gateway) or to send Succ to the gateway directly (i.e.,
not via the combiner), this attack fails because the adver-
sary is not allowed to obtain the static key for establishing
the authenticated channel by Definition 4. Thus, the adver-
sary has no choice but to do active attacks to authentication
servers via the gateway through queries to the SendServer
oracle. Therefore, the probability that the adversary suc-
cessfully gives Succ to the gateway without communicating
with the gateway and combiner is negligible. However, the
adversary cannot obtain information of passwords unless ac-
tive attacks are done as Theorem 2, and thus, the probability
that Case 2 occurs is at most qsends/|D| where qsends is the
number of queries to the SendServer oracle.
Case 3. The adversary asks the SendUser oracle except for
SendUser(U(`),m) and successfully shares the session key
with U(`).

The adversary needs to send valid authenticators α′ and
Auth′ to impersonate G to U. However, the adversary can-
not obtain information of passwords unless active attacks

KOBAYASHI et al.: PROVABLY SECURE GTPAKE SECURE AGAINST UDONDA
3001

are done as Theorem 2. According to Definition 4, the ad-
versary is not allowed to obtain static keys and ephemeral
keys of the user and corrupt more than or equal to t authen-
tication servers. The probability that Case 3 occurs is at
most qsendu/|D| where qsendu is the number of queries to the
SendUser oracle.

As a result, the probability that the adversary succeeds
in guessing the challenge bit b at random, we have

Pr[Succsks
3] =

1
2

+
qH2 + qH3

2κ
+

qsends + qsendu

|D|
.

�

5.2 Password Protection Security

We prove the security of the password in the proposed
scheme under the DDH assumption in the random oracle
model.

Theorem 2: ((T ,R)-Password Protection Security). Let
L be our GTPAKE scheme and A be a probabilistic poly-
nomial time adversary that corrupts at most (t − 1)(< n/2)
authentication servers in advance. Then the advantage ofA
for the password protection security in L with at most T
time and R resources is

Advpps
L,D

(A) ≤
q2

H0
+ q2

H1
+ (qexe + qsend)2

2q
+

q2
H2

+ q2
H3

2κ+1

+(qexe + 1) · Advddh
A (κ) +

qsends + qsendu + 1
|D|

,

where qH0 , qH1 , qH2 , and qH3 are the number of hash queries
to the oracles H0,H1,H2, and H3, respectively, qexe is the
number of queries to the Execute oracle, qsend is the num-
ber of queries to the SendUser, SendGateway, and Send-
Server oracles, qsends and qsendu are the number of queries
to the SendServer and SendUser oracles, respectively, i.e.,
the equation qsendu + qsends ≤ qsend holds, and |D| is the size
of the dictionaryD.

Proof 2: We define Succpps in Game n as Succpps
n .

Game 0. This experiment corresponds to a real attack by
the adversary in the random oracle model. By Definition 7,
and we have

Advpps
L,D

(A) = Pr[Succpps
0].

Game 1. As the proof in Sect. 5.1, we can simulate the
hash functions Hi for i = 0, 1, 2, 3, the Execute, SendUser,
SendGateway, SendServer, SessionKeyReveal, StaticK-
eyReveal, EphemeralKeyReveal, EstablishParty, and Cor-
rupt oracles. We simulate the TestPassword oracle as fol-
lows.

• On a query TestPassword(U, pw′U), we proceed as fol-
lows.
pwU ← StaticKeyReveal(U);
If pw′U = pwU , then return 1, else return 0;

This experiment is perfectly indistinguishable from the
previous experiment, and we have

Pr[Succpps
1] = Pr[Succpps

0].

Game 2. We halt this experiment when a collision on the
outputs of the hash oracles and the transcripts occurs. By
using the bound described in Appendix B (i.e., the value n
corresponds to q or 2κ and the value m corresponds to qH0 ,
qH1 , qH2 , qH3 , or (qexe + qsend)), we have

|Pr[Succpps
2] − Pr[Succpps

1]|

≤
q2

H0
+ q2

H1
+ (qexe + qsend)2

2q
+

q2
H2

+ q2
H3

2κ+1 .

Game 3. We change the simulation of the queries to
the SendServer oracle for all sessions and the Corrupt
oracle for authentication servers. When a query Send-
Server(C(k), (U, X,Y,Com)) or Corrupt(S i) is asked, we re-
place the secret part needed to decrypt the stored ElGamal
ciphertext of the password with a random element for honest
users. The difference between this experiment and the pre-
vious one is the stored passwords which are not generated
by EstablishParty. The difference of the following proba-
bilities is negligible as long as the DDH assumption holds,
and we have

|Pr[Succpps
3] − Pr[Succpps

2]| ≤ Advddh
A (κ).

We suppose that we have a successful distinguisher be-
tween Games 2 and 3, we construct an algorithm to solve
the DDH problem to prove the above.

The simulator needs to change the process done by un-
corrupted authentication servers to be consistent with the in-
tended values. We assume w.l.o.g. that S n is in the set of
uncorrupted authentication servers in the well-defined set L.
The simulator controls the other uncorrupted authentication
servers as usual.

First, we deal with the simulation about the public key
in the sub-protocol of setup Init. In this proposed model,
the trusted dealer computes a secret key s, the public key
pk = gs, and the corresponding share gsi . Given gs with-
out knowing s, the simulator needs to publish gsn as a
trusted dealer such that gs is the ElGamal public key. Us-
ing the DDH triple (M,N,Z), the corresponding share for
S n is set as gsn = MλL,n,0 ·

∏
j∈(L\{n})(gs j)λL,n, j where λL,i, j =∏

{k∈L∧k, j}(i − k)/(j − k) is the Lagrange coefficient. Due to
the honest majority setting, the simulator can compute all
the share s j of the secret key s.

To simplify the system, we assume that the trusted
dealer distributes the shares of the secret key correspond-
ing to the ElGamal public key. We can construct the pro-
posed scheme without the trusted dealer by producing some
parameters among the authentication servers. In this case,
we can simulate the public key by hitting the intended value
similar to the distributed key generation technique [12].

Second, we deal with the simulation about the stored
passwords in the sub-protocol of registration Regi. Since all

3002
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.12 DECEMBER 2017

users register the encrypted passwords by sending the en-
crypted passwords to the authentication servers, the simula-
tor knows all the passwords for honest users. When a query
Corrupt(S i) is asked, we embed the DDH triple into all en-
crypted passwords. The simulator returns (PWUi · Z

vi ,Nvi)
where vi ← Zq for all honest users and (PWUi · pkv, gv) for
the other users. Other internal information is given to the
adversary as usual.

Third, we deal with the simulation about a partial de-
cryption in the sub-protocol of authentication Auth. We
need to simulate the uncorrupted authentication servers for
SendServer(C(k), (U, X,Y,Com)). The share T2,n for Ui can
be computed as Zw·vi·λL,n,0 ·

∏
j∈(L\{n}) Nw·vi·s j·λL,n, j without sn.

Other parameters generated from the uncorrupted servers
can be simulated similarly to the authentication process.

To detect malicious authentication servers that publish
incorrect shares, the non-interactive zero-knowledge proof
of equality of discrete logarithm is used in our scheme.
In the random oracle model, the simulator can simulate
this proof without knowing the secret keys. The simulator
chooses (c, z) ← Z2

q and sends (c, z) as the proof. The hash
oracle H0 returns c from the hash list Λ0 if the adversary
asks the query (q, g1, g2, u1, u2, g

z
1/u

c
1, g

z
2/u

c
2).

Therefore, the simulator assigns (pk, gv,CDH(pk, gv))
for the given DDH triple (M,N,Z). The simulator is able to
solve the DDH problem by using the difference of success
probability that an adversary guesses the registered pass-
word of one honest user through the TestPassword oracle
because all the encrypted passwords for all honest users in-
clude the DDH triple. In the case of Z = CDH(M,N), the
environment for the distinguisher corresponds to Game 2. In
the case of Z , CDH(M,N), the environment for the distin-
guisher corresponds to Game 3. If the distinguisher decides
that the distinguisher interacted with Game 2, the algorithm
outputs 1, otherwise 0.

Game 4. We change the simulation of queries
to the Execute oracle, especially the SendUser and
SendServer oracles on a test session. When a
query SendUser(U(`), start), SendUser(U(`), (G,C,Y,W)),
or SendServer(C(k), (U,G,R∗)) is asked, we replace the
Diffie-Hellman key in the authenticators α and α′ with ran-
dom elements. The difference of the following probabilities
between this experiment and the previous one is negligible
as long as the DDH assumption holds, and we have

|Pr[Succpps
4] − Pr[Succpps

3]| ≤ qexe · Advddh
A (κ).

To evaluate the probability of this event, we construct
an algorithm to solve the DDH problem. The algorithm
obtains the DDH triple (M,N,Z) and chooses the session
(U(`),C(k)). The distinguisher picks a test session with the
probability 1/qexe. We show the simulation of the SendUser
and SendServer oracles without ephemeral keys logg R and
logg W as follows.

We set R = Mu1 for a query SendUser(U(`), start) and
K1 = Zu1u2 for a query SendUser(U(`), (G,C,Y,W)) where
(u1, u2) ← Z2

q. When a query SendServer(C(k), (U,G,R∗))

is asked, we need to simulate the process of honest au-
thentication servers sending and receiving information pri-
vately and publicly for corrupted parties. The simulator
knows all the shares wi, j, w

′
i, j, the coefficients bi,k, b′i,k, and

the public values Bi,k due to the honest majority setting.
We assume w.l.o.g. that S n is in the set of uncorrupted au-
thentication servers in the well-defined set L. We assign
Ai,k = gbi,k for i ∈ (L\{n}), k = 0, . . . , t − 1 and compute
An,0 = Nu2 ·

∏
i∈(L\{n})(Ai,0)−1. We assign wn, j = gn(j) for j ∈

(L\{n}) and compute An,k = (An,0)λL,k,0 ·
∏

j∈(L\{n})(gwn, j)λL,k, j for
k = 1, . . . , t − 1. We broadcast An,k, Bn,k = An,khb′n,k mod p
for k = 0, . . . , t−1, F1,n = (Nu2 sv ·Zu1u2)λL,n,0 ·

∏
j∈(L\{n})(Mu1 ·

pkv)w j·λL,n, j , and F2,n = (Nu2v)λL,n,0 ·
∏

j∈(L\{n})(E2)w j·λL,n, j . All
other processes are handled in the same way as the previous
game.

Since the simulation in the generation of logg W is
identical to the action in the previous game, the set L can
be the same as the real protocol at the end of the proto-
col. Accordingly, other parameters such as w′i, j are defined
without contradiction. We note that the password obtained
via the Execute oracle is information-theoretically hidden
in sessions because R, X, and K1 are relatively independent
in every session. On the other hand, the passwords obtained
via the SendUser and SendServer oracles are still used in
sessions.

Therefore, the simulator assigns (R,W,CDH(R,W)) for
the triple (Uu1 ,Vu2 ,Zu1u2).† In the case of Z = CDH(M,N),
the environment for the distinguisher corresponds to Game
3. In the case of Z , CDH(M,N), the environment for the
distinguisher corresponds to Game 4. If the distinguisher
decides that the distinguisher interacted with Game 3, the
algorithm outputs 1, otherwise 0.

Game 5. We change the simulation of the queries
to the SendServer oracle. When a query Send-
Server(C(k), (U, X,Y,Com)) is asked, we compute the au-
thenticator α′ as H′2(U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖ W) by using
the private hash oracle H′2. The difference between this ex-
periment and the previous one is indistinguishable unless the
adversary asks a query (U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖ W ‖ K1)
to the hash function H2 where K1 = CDH(R∗ · PWU ,W).

There is at most one hash value PW such that K1 =

CDH(R∗·PW,W) for some pair (R∗,W) as a result of Lemma
2 in [7]. Therefore, the probability that this bad event oc-
curs in the non-concurrent setting is bounded by the prob-
ability that the adversary guesses the password at random
through the SendServer oracle to which qsends is the num-
ber of queries with at most T time and R resources where
|D| is the size of the dictionaryD, we have

|Pr[Succpps
5] − Pr[Succpps

4]| ≤
qsends

|D|
.

Game 6. We change the simulation of the queries to the
SendUser oracle. When a query SendUser(U(`), start) is

†The reason why the simulator assigns (R,W,CDH(R,W)) for
the triple not (M,N,Z) but (Mu1 ,Nu2 ,Zu1u2) is to differ the outputs
of the SendUser and SendServer oracles in each session.

KOBAYASHI et al.: PROVABLY SECURE GTPAKE SECURE AGAINST UDONDA
3003

asked, we compute R∗ as gr∗ where r∗ ← Zq without using
the password pwU . R∗ has been simulated, but W has been
generated by the adversary trying to impersonate a combiner
to a user. To succeed in passing the verification done by the
user, the adversary needs to send an authenticator α which
is computed by at most one password in the non-concurrent
setting. Then the success probability with at most T time
andR resources is at most qsendu/|D|where qsendu is the num-
ber of queries to the SendUser oracle, we have

|Pr[Succpps
6] − Pr[Succpps

5]| ≤
qsendu

|D|
.

In this game, information of the password obtained via
the SendUser and SendServer oracles is not used in ses-
sions, so the adversary cannot do much better than guessing
the password at random. Finally, the adversary guesses the
password through the TestPassword oracle once, we have

Pr[Succpps
6] =

1
|D|

.

�

6. Concluding Remarks

We proposed new GTPAKE which has resistance of
UDonDA and the corruption of authentication servers. We
proved the security of our GTPAKE under standard assump-
tions in the random oracle model. The proposed scheme has
the stronger security against a malicious provider compared
with existing schemes, and a global roaming service used
for users regardless of places and devices is expected to be
one of its applications. Our scheme is an instantiation of
GTPAKE, and the generic construction of GPAKE and GT-
PAKE is left as future work.

Acknowledgements

We would like to thank anonymous reviewers and Shin-
Akarui-Angou-Benkyou-Kai for their valuable comments.
This work was supported in part by JSPS KAKENHI Grant
Number 17K00178, Institute for Information and & com-
munications Technology Promotion (IITP) grant (2017-0-
00555), and National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. NRF-
2015R1A-2A2A01006812).

References

[1] M. Abdalla, O. Chevassut, P.A. Fouque, and D. Pointcheval, “A sim-
ple threshold authenticated key exchange from short secrets,” ASI-
ACRYPT 2005, LNCS, vol.3788, pp.566–584, 2005.

[2] M. Abdalla, M. Izabachene, and D. Pointcheval, “Anonymous and
transparent gateway-based password-authenticated key exchange,”
CANS 2008, LNCS, vol.5339, pp.133–148, 2008.

[3] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key
exchange secure against dictionary attacks,” EUROCRYPT 2000,
LNCS, vol.1807, pp.139–155, 2000.

[4] S. Bellovin and M. Merritt, “Augmented encrypted key exchange: A

password-based protocol secure against dictionary attacks and pass-
word file compromise,” ACM CCS 1993, pp.244–250, 1993.

[5] S. Bellovin and M. Merritt, “Encrypted key exchange: Password
based protocols secure against dictionary attacks,” Proc. IEEE Sym-
posium on Research in Security and Privacy, pp.72–84, 1992.

[6] V. Boyko, P. MacKenzie, and S. Patel, “Provably secure password-
authenticated key exchange using Diffie-Hellman,” EUROCRYPT
2000, LNCS, vol.1807, pp.156–171, 2000.

[7] E. Bresson, O. Chevassut, and D. Pointcheval, “New security results
on encrypted key exchange,” PKC 2004, LNCS, vol.2947, pp.145–
158, 2004.

[8] J.W. Byun, D.H. Lee, and J.I. Lim, “Security analysis and improve-
ment of a gateway-oriented password-based authenticated key ex-
change protocol,” IEEE Commun. Lett., vol.10, no.9, pp.683–685,
2006.

[9] Y. Ding and P. Horster, “Undetectable on-line password guessing
attacks,” Operating Systems Review, vol.29, no.4, pp.77–86, 1995.

[10] European Network and Information Security Agency, “Cloud com-
puting risk assessment,” 2009.

[11] European Network and Information Security Agency, “Heartbleed
Wake Up Call,” 2014.

[12] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure dis-
tributed key generation for discrete-log based cryptosystems,” J.
Cryptology, vol.20, no.1, pp.51–83, 2007.

[13] O. Goldreich and Y. Lindell, “Session-key generation using human
passwords only,” CRYPTO 2001, LNCS, vol.2139, pp.408–432,
2001.

[14] S. Goldwasser and M. Bellare, “Lecture notes on cryptography,”
Summer Course “Cryptography and computer security” at MIT,
1999:1999, 1996.

[15] J. Katz, R. Ostrovsky, and M. Yung, “Efficient password-
authenticated key exchange using human-memorable passwords,”
EUROCRYPT 2001, LNCS, vol.2045, pp.475–494, 2001.

[16] Y. Kobayashi, N. Yanai, K. Yoneyama, T. Nishide, G. Hanaoka, K.
Kim, and E. Okamoto, “Gateway threshold password-based authen-
ticated key exchange secure against undetectable on-line dictionary
attack,” SECRYPT 2015, pp.39–52, 2015.

[17] M. Szydlo, “A note on chosen-basis decisional Diffie-Hellman as-
sumptions,” FC 2006, LNCS, vol.4107, pp.166–170, 2006.

[18] F. Wei, C. Ma, and Z. Zhang, “Gateway-oriented password-
authenticated key exchange protocol with stronger security,”
ProvSec 2011, LNCS, vol.6980, pp.366–379, 2011.

[19] F. Wei, Z. Zhang, and C. Ma, “Analysis and enhancement of an
optimized gateway-oriented password-based authenticated key ex-
change protocol,” IEICE Trans. Fundamentals, vol.E96-A, no.9,
pp.1864–1871, Sept. 2013.

[20] F. Wei, Z. Zhang, and C. Ma, “Gateway-oriented password-
authenticated key exchange protocol in the standard model,” J. Sys-
tems and Software, vol.85, no.3, pp.760–768, 2012.

Appendix A: Security Analysis of the Scheme without
Commitments

A.1 Construction

We mention the insecure construction to explain the rea-
son why the proposed scheme needs a commitment scheme,
although it seems unnecessary. We describe the following
sub-protocol of authentication composed of nine steps. We
note that the sub-protocol of setup and registration in this
scheme are the same as those of the proposed scheme in
Sect. 4.3. A perspective of the insecure scheme is shown in
Fig. A· 1.

http://dx.doi.org/10.1007/11593447_31
http://dx.doi.org/10.1007/11593447_31
http://dx.doi.org/10.1007/11593447_31
http://dx.doi.org/10.1007/978-3-540-89641-8_10
http://dx.doi.org/10.1007/978-3-540-89641-8_10
http://dx.doi.org/10.1007/978-3-540-89641-8_10
http://dx.doi.org/10.1007/3-540-45539-6_11
http://dx.doi.org/10.1007/3-540-45539-6_11
http://dx.doi.org/10.1007/3-540-45539-6_11
http://dx.doi.org/10.1145/168588.168618
http://dx.doi.org/10.1145/168588.168618
http://dx.doi.org/10.1145/168588.168618
http://dx.doi.org/10.1109/risp.1992.213269
http://dx.doi.org/10.1109/risp.1992.213269
http://dx.doi.org/10.1109/risp.1992.213269
http://dx.doi.org/10.1007/3-540-45539-6_12
http://dx.doi.org/10.1007/3-540-45539-6_12
http://dx.doi.org/10.1007/3-540-45539-6_12
http://dx.doi.org/10.1007/978-3-540-24632-9_11
http://dx.doi.org/10.1007/978-3-540-24632-9_11
http://dx.doi.org/10.1007/978-3-540-24632-9_11
http://dx.doi.org/10.1109/lcomm.2006.1714545
http://dx.doi.org/10.1109/lcomm.2006.1714545
http://dx.doi.org/10.1109/lcomm.2006.1714545
http://dx.doi.org/10.1109/lcomm.2006.1714545
http://dx.doi.org/10.1145/219282.219298
http://dx.doi.org/10.1145/219282.219298
http://dx.doi.org/10.1007/s00145-006-0347-3
http://dx.doi.org/10.1007/s00145-006-0347-3
http://dx.doi.org/10.1007/s00145-006-0347-3
http://dx.doi.org/10.1007/3-540-44647-8_24
http://dx.doi.org/10.1007/3-540-44647-8_24
http://dx.doi.org/10.1007/3-540-44647-8_24
http://dx.doi.org/10.1007/3-540-44987-6_29
http://dx.doi.org/10.1007/3-540-44987-6_29
http://dx.doi.org/10.1007/3-540-44987-6_29
http://dx.doi.org/10.5220/0005539300390052
http://dx.doi.org/10.5220/0005539300390052
http://dx.doi.org/10.5220/0005539300390052
http://dx.doi.org/10.5220/0005539300390052
http://dx.doi.org/10.1007/11889663_14
http://dx.doi.org/10.1007/11889663_14
http://dx.doi.org/10.1007/978-3-642-24316-5_26
http://dx.doi.org/10.1007/978-3-642-24316-5_26
http://dx.doi.org/10.1007/978-3-642-24316-5_26
http://dx.doi.org/10.1587/transfun.e96.a.1864
http://dx.doi.org/10.1587/transfun.e96.a.1864
http://dx.doi.org/10.1587/transfun.e96.a.1864
http://dx.doi.org/10.1587/transfun.e96.a.1864
http://dx.doi.org/10.1016/j.jss.2011.09.061
http://dx.doi.org/10.1016/j.jss.2011.09.061
http://dx.doi.org/10.1016/j.jss.2011.09.061

3004
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.12 DECEMBER 2017

Fig. A· 1 Overview of the insecure scheme.

Auth. If a processing request has come in the invalid order,
the incorrect login attempt is counted and the session is re-
jected. After the counter of incorrect login attempts exceeds
the predetermined limit, a processing request from the user
is rejected.

Step 1. A user U computes PWU = H1(U ‖ pwU) by using
his password pwU .
U chooses r ← Zq and computes R = gr and R∗ = R/PWU .
U sends (U,R∗) to a gateway G.

Step 2. The gateway G sends (U,G,R∗) to a combiner C.

Step 3. The combiner C publishes (U,G,R∗) to all authenti-
cation servers.
The authentication server S i generates two polynomials
gi(z) = bi,0 + bi,1z + · · · + bi,t−1zt−1 mod q and g′i(z) =

b′i,0 + b′i,1z + · · · + b′i,t−1zt−1 mod q where (bi,k, b′i,k) ← Z2
q

for k = 0, . . . , t − 1.
S i broadcasts Bi,k = gbi,k hb′i,k mod p for k = 0, . . . , t − 1
and sends wi, j = gi(j) mod q, w′i, j = g′i(j) mod q to S j for
j = 1, . . . , n.
S j checks the equation gwi, j hw

′
i, j =

∏t−1
k=0(Bi,k) jk for i =

1, . . . , n.
If the confirmation does not hold for index i, S j publishes a
complaint against S i.
An authentication server receiving more than or equal to the
threshold t complaints is marked as disqualified.
S j publishing the complaint against S i’s values (wi, j, w

′
i, j)

satisfying the confirmation is also marked as disqualified.
The set L is defined as the subscript set of more than or equal
to the threshold qualified authentication servers.
S i whose index is included in L computes as follows.
S i computes wi =

∑
j∈L w j,i and broadcasts Ai,k = gbi,k for

k = 0, . . . , t − 1.
S j checks the equation gwi, j =

∏t−1
k=0(Ai,k) jk for i ∈ L.

If the confirmation does not hold for index i, S j publishes a

complaint.
Otherwise S i computes W =

∏
i∈L Ai,0.

Using the encrypted password Enc(pwU) = (E1, E2) =

(PWU · pkv, gv), S i broadcasts F1,i = (E1 · R∗)wi , F2,i = Ewi
2

and proofs EDLog(E1·R∗,g)(F1,i,
∏

j∈L
∏t−1

k=0(A j,k)ik),
EDLog(E2,g)(F2,i,

∏
j∈L
∏t−1

k=0(A j,k)ik).
After S i checks the proofs, C sends (U,C,W) to G.

Step 4. The gateway G chooses y ← Zq and computes
Y = gy.
G sends (G,C,Y,W) to U.

Step 5. The user U chooses x ← Zq and computes X = gx,
K1 = Wr, and α = H2(U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖ W ‖ K1).
U sends (U, X, α) to G.

Step 6. The gateway G sends (U, X,Y, α) to C.

Step 7. The combiner C broadcasts (U, X,Y, α) among S i
whose index is included in the set L.
S i computes F1 =

∏
i∈L FλL,0,i

1,i and F2 =
∏

i∈L FλL,0,i

2,i where
λL,i, j =

∏
{k∈L∧k, j}(i − k)/(j − k) is the Lagrange coefficient.

S i broadcasts T2,i = F si
2 and the proof EDLog(F2,g)(T2,i, g

si).
After checking the proof, S i computes K1 = F1/

∏
i∈L T λL,0,i

2,i .
S i checks the validity of α using K1.
If the confirmation is false, S i increments the counter of in-
correct login attempts for U, reject is output, and this sub-
protocol is terminated.
Otherwise, C computes β′ = H2(U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖
W ‖ K1) and sends (U, β′) to G.

Step 8. The gateway G computes K2 = Xy, an authenticator
Auth′ = H2(U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖ W ‖ K2) and the
session key sk = H3(U ‖ G ‖ C ‖ X ‖ Y ‖ R∗ ‖ W ‖ K2).
G sends (β′,Auth′) to U.

KOBAYASHI et al.: PROVABLY SECURE GTPAKE SECURE AGAINST UDONDA
3005

Step 9. The user U checks the validity of β′ by using K1.
U computes K2 = Y x and checks the validity of Auth′ by
using K2.
If one of the two confirmations is false, U increments the
counter of incorrect login attempts for G and reject is out-
put.
Otherwise, U computes the session key sk = H3(U ‖ G ‖
C ‖ X ‖ Y ‖ R∗ ‖ W ‖ K2) and sk is output.

A.2 Attack against Password Protection Security

We describe the following method for an adversary acting
as a malicious gateway to guess the password of a target
user by a combination of the on-line and off-line dictio-
nary attacks in the scheme described in Sect. A.1. To avoid
this attack, the proposed scheme in Sect. 4.3 uses a com-
mitment scheme that can hide the calculated intermediate
results among the authentication servers.

1. The active adversary interacts with a target user U once
as below where instances of a user, a malicious gate-
way, and a combiner are U(`), G′(j), and C(k) respec-
tively. We note that this attack in the on-line manner is
detected by the honest authentication servers correctly
because the value generated by the adversary at random
does not pass the verification with overwhelming prob-
ability. However, we also note that this attack is quite
powerful in the sense that this only one probe makes
the whole password guessing attack possible.

a. The adversary (i.e., the malicious gateway G′) ob-
tains R∗ in the message (U,R∗) from U.

b. The adversary chooses the random numbers
(y, w′)← Z2

q and computes Y = gy,W ′ = gw
′

. The
adversary sends (G′,C,Y,W ′) to U and obtains α′

in the response message (U, X, α′) from U.

2. The passive adversary guesses the password pwU in the
off-line manner by using the obtained data as below.

a. The adversary chooses the password pw′U from the
dictionaryD and computes R′ = R∗·H1(U ‖ pw′U).

b. The adversary checks whether H2(U ‖ G′ ‖ C ‖
X ‖ Y ′ ‖ R∗ ‖ W ′ ‖ (R′)w

′

) equals the hash value
α′.

c. The adversary repeats Steps (a) and (b) until the
password satisfying the equation in (b) (that is the
correct password) is detected.

Appendix B: The Bound Related to the Birthday Prob-
lem

We explain how to derive the bound of the probability of
the collision on the outputs of the hash function used in
the proof of Theorems 1 and 2. This probability is widely
discussed as the birthday problem [14], which asks for the
probability that at least one pair in a set of m people will

have the same birthday. We compute the probability p(n,m)
that there is at least one collision in the set of m hash values
computed from hash function H which outputs n kinds of
hash values as below.

When the first value is chosen, the probability of no
collision is 1. When the second value is chosen, the prob-
ability of no collision is 1 − 1/n. When the third value is
chosen, the probability of no collision is 1 − 2/n. Similarly,
when the m-th value is chosen, the probability of no collision
is 1 − (m − 1)/n. The probability that at least one collision
happens is

p(n,m) = 1 − (1 − 1/n)(1 − 2/n) · (1 − (m − 1)/n).

By using a first-order approximation for ex where e is
Napier’s constant and |x| � 1, we have ex ≈ (1 + x). Thus
when the equation m � n holds,

p(n,m) ≈ 1 − e−1/n · e−2/n · · · e−(m−1)/n

= 1 − e−(1+2+···+(m−1))/n

= 1 − e−m(m−1)/2n

≈ 1 − (1 − m(m − 1)/2n)
= m(m − 1)/2n
< m2/2n.

Yukou Kobayashi received the B.S. degree
from the School of Informatics at University of
Tsukuba in 2013 and the M.E. degree from the
School of Systems and Information Engineering
at University of Tsukuba in 2015. He is cur-
rently working as a security engineer at LAC
Co., Ltd.

Naoto Yanai received B.E. degree in Electri-
cal Engineering from Ichinoseki National Col-
lege of Technology, Japan, in 2009, and M.E.
and Ph.D. in Graduate School of Information
Engineering from University of Tsukuba, Japan,
in 2011 and 2014, respectively. He is currently
an assistant professor at Department of Multi-
media Engineering, Graduate School of Infor-
mation Science and Technology, Osaka Univer-
sity. His research interests are cryptography and
information security.

3006
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.12 DECEMBER 2017

Kazuki Yoneyama received the B.E.,
M.E. and Ph.D. degrees from the University
of Electro-Communications, Tokyo, Japan, in
2004, 2006 and 2008, respectively. He was a re-
searcher of NTT Secure Platform Laboratories
from 2009 to 2015. He is presently engaged in
research on cryptography at the Ibaraki Univer-
sity, since 2015. He is a member of the Inter-
national Association for Cryptologic Research
(IACR), IPSJ and JSIAM.

Takashi Nishide received B.S. degree from
the University of Tokyo in 1997, M.S. degree
from the University of Southern California in
2003, and Dr.E. degree from the University of
Electro-Communications in 2008. From 1997
to 2009, he had worked at Hitachi Software En-
gineering Co., Ltd. developing security prod-
ucts. From 2009 to 2013, he had been an as-
sistant professor at Kyushu University and from
2013 he is an associate professor at University
of Tsukuba. His research is in the areas of cryp-

tography and information security.

Goichiro Hanaoka Graduated from the De-
partment of Engineering, The University of To-
kyo in 1997. Received Ph.D. degree from The
University of Tokyo in 2002. Joined AIST in
2005. Currently, Leader, Advanced Cryptosys-
tems Research Group, Information Technology
Research Institute, AIST. Engages in the R&Ds
for encryption and information security tech-
nologies including the efficient design and secu-
rity evaluation of public key cryptosystem. Re-
ceived the Wilkes Award (2007), British Com-

puter Society; Best Paper Award (2008), The Institute of Electronics, In-
formation and Communication Engineers; Innovative Paper Award (2012,
2014), Symposium on Cryptography and Information Security (SCIS);
Award of Telecommunication Advancement Foundation (2005); 20th An-
niversary Award (2005), SCIS; Best Paper Award (2006), SCIS; Encour-
agement Award (2000), Symposium on Information Theory and its Appli-
cations (SITA); and others.

Kwangjo Kim received the B.S. and M.S.
degrees of Electronic Engineering in Yonsei
University, Korea in 1980 and 1883, respec-
tively and Ph.D. of Div. of Electrical and Com-
puter Engineering in Yokohama National Uni-
versity, Japan in 1991. He has served board
member of International Association for Cryp-
tologic Research (IACR) from 2000 to 2004,
chairperson of Asiacrypt Steering Committee
from 2005 to 2008 and President of Korea Insti-
tute of Information Security and Cryptography

(KIISC) in 2009. Also he was a visiting professor in MIT (2005), UCSD
(2005), KUSTAR, UAE (2012) and an education specialist in ITB, Indone-
sia (2013). He is currently a professor at School of Computing in KAIST,
Korea, Korea Representative to IFIP TC-11 and Honorable President of
KIISC. His research interests include the theory of cryptology and infor-
mation security and its application. He is members of IEICE, IEEE, IACR
and ACM. He is a Fellow of the IACR.

Eiji Okamoto received his B.S., M.S. and
Ph.D. degrees in electronics engineering from
the Tokyo Institute of Technology in 1973, 1975
and 1978, respectively. He worked and stud-
ied communication theory and cryptography for
NEC central research laboratories since 1978. In
1991 he became a professor at Japan Advanced
Institute of Science and Technology, then at
Toho University. Now he is a professor at Fac-
ulty of Engineering, Information and Systems,
University of Tsukuba. His research interests

are cryptography and information security. He is members of IEEE and
ACM.

