
1796 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 8, AUGUST 2016

Data Randomization and Cluster-Based Partitioning
for Botnet Intrusion Detection

Omar Y. Al-Jarrah, Omar Alhussein, Paul D. Yoo, Senior Member, IEEE, Sami Muhaidat, Senior Member, IEEE,
Kamal Taha, Senior Member, IEEE, and Kwangjo Kim, Member, IEEE

Abstract—Botnets, which consist of remotely controlled com-
promised machines called bots, provide a distributed platform
for several threats against cyber world entities and enterprises.
Intrusion detection system (IDS) provides an efficient counter-
measure against botnets. It continually monitors and analyzes
network traffic for potential vulnerabilities and possible existence
of active attacks. A payload-inspection-based IDS (PI-IDS) iden-
tifies active intrusion attempts by inspecting transmission control
protocol and user datagram protocol packet’s payload and com-
paring it with previously seen attacks signatures. However, the
PI-IDS abilities to detect intrusions might be incapacitated by
packet encryption. Traffic-based IDS (T-IDS) alleviates the short-
comings of PI-IDS, as it does not inspect packet payload;
however, it analyzes packet header to identify intrusions. As
the network’s traffic grows rapidly, not only the detection-rate
is critical, but also the efficiency and the scalability of IDS
become more significant. In this paper, we propose a state-
of-the-art T-IDS built on a novel randomized data partitioned
learning model (RDPLM), relying on a compact network fea-
ture set and feature selection techniques, simplified subspacing
and a multiple randomized meta-learning technique. The pro-
posed model has achieved 99.984% accuracy and 21.38 s training
time on a well-known benchmark botnet dataset. Experiment
results demonstrate that the proposed methodology outper-
forms other well-known machine-learning models used in the
same detection task, namely, sequential minimal optimization,
deep neural network, C4.5, reduced error pruning tree, and
randomTree.

Index Terms—Botnet intrusion detection, efficient learning,
ensembles, feature selection, machine-learning (ML).

Manuscript received November 13, 2014; revised May 8, 2015 and
July 3, 2015; accepted October 2, 2015. Date of publication October 30, 2015;
date of current version July 15, 2016. This work was supported in part by
the Khalifa University of Science, Technology and Research-Korea Institute
of Science and Technology (KAIST) Institute, in part by the KAIST, Korea,
and in part by the National Research Foundation of Korea through the
Korea government (MSIP) under Grant NRF-2015R1A2A2A01006812. This
paper was recommended by Associate Editor L. D. Xu.

O. Y. Al-Jarrah and K. Taha are with the Electrical and Computer
Engineering Department, Khalifa University of Science, Technology
and Research, Abu Dhabi, UAE (e-mail: omar.aljarrah@kustar.ac.ae;
kamal.taha@kustar.ac.ae).

O. Alhussein is with the School of Engineering Science, Simon Fraser
University, Burnaby, BC V5A1S6, Canada (e-mail: oalhusse@sfu.ca).

P. D. Yoo is with the Department of Computing and Informatics,
Bournemouth University, Poole, U.K. (e-mail: paul.d.yoo@ieee.org).

S. Muhaidat is with the Electrical and Computer Engineering Department,
Khalifa University of Science, Technology and Research, Abu Dhabi, UAE,
and also with the University of Surrey, Guldford GU2 7XH, U.K. (e-mail:
muhaidat@ieee.org).

K. Kim is with the School of Computing, Korea Advanced Institute
of Science and Technology (KAIST), Daejeon 34141, Korea (e-mail:
kkj@kaist.ac.kr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2015.2490802

I. INTRODUCTION

NOWADAYS, despite the use of different security mea-
sures, such as firewalls and encryption algorithms, many

organizations and enterprises fall victims of different cyber-
attacks. Attackers might launch different types of attacks,
which vary on their effect, over the organizations and enter-
prises, from low to high significance. Attackers may deliber-
ately exploit systems vulnerabilities in order to sneak into the
system and ultimately control it.

Botnet attack is known as one of the most severe cyber-
threats, where a collection of computers are compromised and
remotely controlled by a controlling computer called botmas-
ter [1]–[3]. Botnet often involves thousands of bots that are
spread over the Internet. Botmaster utilizes botnet by keeping
it under its control as long as possible. Botmaster might use
botnet for different purposes, such as launching distributed
cyber-attacks, e.g., distributed denial of service attack, and
performing distributed computation tasks. Intrusion detection
system (IDS) is considered as a reactive measure that enhances
existing network security by detecting, identifying, and track-
ing the intruders [4]. Many existing IDSs built for botnets are
rule-based, whose performances depend upon rule-sets defined
by experts [5], [6]. A rule-based botnet IDS identifies botnets
by examining network traffic and comparing it with a known
or previously seen botnet signatures, which normally encoded
by security expert [7]. However, due to the substantial increase
in network traffic, keeping these rules updated becomes
more and more difficult, tedious, and time-consuming [8].
Such dependency makes it inefficient toward novel forms of
botnets [9].

Machine-learning (ML) techniques could be used to auto-
mate botnet detection process. Knowledge-based intrusion
detection by ML techniques, where a learning system build
a model from previously known attack signatures, has recently
been an area of concentration in ML society [10]. The
adaptability, flexibility, and automated-learning ability of ML
models show significant advantages over rule-based IDSs.
However, the majority of ML models are performance-driven,
meaning that most nonparametric and model-free proper-
ties of ML-based approaches require high computational
cost to find an optimal model (i.e., the global optima).
Thus, designing a more accurate ML-based intrusion detec-
tion model will hence lead to a higher likelihood of slow
model update, and thus, preventing real-time detection, and
efficient use of energy, due to the increasing computa-
tional cost.

2168-2267 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

AL-JARRAH et al.: DATA RANDOMIZATION AND CLUSTER-BASED PARTITIONING FOR BOTNET INTRUSION DETECTION 1797

An ideal IDS shall provide a full protection to users and net-
works with zero type II error rate [i.e., false-negative (FN)],
which refers to a failure of an IDS to detect an actual
attack [11], and adapt to the frequently changing network envi-
ronments [8], [12]. With the recent emergence of large-scale
digitized network-traffic data (i.e., big data), the efficiency and
scalability of ML-based IDS is of critical importance [13]. Not
only the model accuracy and the detection-rate (DR) must be
considered when evaluating the performance of an IDS, but
also the computational complexity and efficiency.

In this paper, we examine network flow within a time
interval and extract feature sets that characterize the network
flow within that time interval. Feature sets are then used to
distinguish between botnet attack and normal network traffic.

This paper presents the design and development of botnet
detection methodology and solution to deal with large volumes
of network data. The contributions of this paper include.

1) Design of novel algorithms that detect botnet attacks
based on network-traffic flow characteristics at the trans-
port layer level, regardless of the underlying layers
contents or payload. The proposed model outperforms
payload-inspection approach in terms of computational
time and immunity to encryption algorithms [14].

2) A novel data condensation method design and develop-
ment. Toward this, we propose the following.

a) A modified forward selection ranking technique to
eliminate redundant and irrelevant features.

b) A data reduction technique that utilizes Voronoi-
based data partitioning to deal with the large-scale
botnet dataset.

3) Evaluation and comparisons of the proposed method. We
compare the proposed methods with several popular ML
models on well-known Information Security and Object
Technology (ISOT) botnet dataset theoretically and
experimentally, and they are as follows. ML algorithms:
multilayered deep neural network (DNN), reduced error
pruning tree (REPTree), randomTree (RTree), C4.5 deci-
sion tree (DT), and sequential minimal optimiza-
tion (SMO). Feature selection algorithms such as corre-
lation feature selection (CFS) and WrapperSubsetEval.
These are evaluated on Botnet benchmark-11Fs dataset
and their performance are measured by seven different
standard metrics.

The organization of the paper is as follows. Section II gives
the theoretical background of botnet and botnet detection tech-
niques. Section III proposes novel randomized data partitioned
learning model (RDPLM). In Section IV, the performance of
the proposed model is compared with other existing detec-
tion models in terms of detection accuracy (Acc), detection
rate (DR), false alarm rate (FAR), Mathew’s correlation coef-
ficient (Mcc), standard deviation of F-measure (σ), time to
build model (TBM), and testing time (TT).

II. BOTNET DETECTION TECHNIQUES

Generally, botnet detection techniques can be classified into
four categories: 1) rule-based; 2) anomaly-based; 3) domain
name server (DNS)-based; and 4) data-mining-based [15].

Snort, which is used by BotHunter [16], is a well-known open
source rule-based IDS [6]. Such method inspects the payload
of the transmission control protocol (TCP) or user datagram
protocol packets and compare it with known intrusion sig-
natures. Although rule-based methods could be accurate and
efficient in identifying malicious activities, as the volume
of data grows, encoding attack’s rules becomes tedious and
time-consuming.

Anomaly-based methods define anomaly behavior as a devi-
ation from normal network behavior. Unlike rule-based, it can
detect novel attacks. However, this method requires modeling
of pure normal network profile, which is not always easy to
achieve. Karasaridis et al. [17] proposed a novel methodology,
which employs scalable nonintrusive algorithm that analyzes
huge amount of summary traffic data of transport layer data to
detect, track, and characterize botnet on a large Tier-1 ISP net-
work. Gu et al. [18] proposed an algorithm called Botsniffer
based on the observation that bots, within the same botnet,
show a very strong synchronization and spatial-temporal cor-
relations in their responses and activities. Arshad et al. [19]
proposed a fully anomaly-based approach that requires no
a priori knowledge of bot signatures, command and con-
trol (C&C) servers’ addresses or botnet C&C protocols. This
method clusters bots with similar net flows and attacks in
different time windows and performs correlation to identify
infected hosts successfully.

DNS-based methods are built on the fact that bots need
to establish a connection with C&C server in order to
join the botnet channel and interact with botmaster or
other bots. This method is similar to anomaly-based, in
a sense that it detects botnet by monitoring the network
traffic on DNS server side and comparing it with normal
network profile [20]. Villamarin-Salmon and Brustoloni [21]
developed botnet intrusion detection model that analyzes
and correlates anomalous DDNS. Choi et al.’s [22] system
monitors group activities in DNS traffic.

A number of recent approaches utilize data-mining or
ML techniques have gained popularity. Model-free property
of ML algorithms seems to be suitable for rapidly chang-
ing environments and brings a few important advantages to
botnet intrusion detection tasks, such as model adaptability,
learnability, and flexibility [14]. Han and Cho [23] proposed
a novel intrusion-detection technique based on evolutionary
neural networks. The proposed technique discovers the struc-
tures and weights of the neural networks, simultaneously.
Strayer et al. [24] examined flow characteristics, such as
bandwidth, packet timing, and burst duration, for evidence of
Internet-relay-chat-based (IRC) C&C activities, and success-
fully distinguished IRC flow by eliminating traffics that are
likely to be normal IRC. Then, they classified the remain-
ing traffic into groups that is likely to be a part of botnet.
Masud et al. [25] proposed a flow-based botnet detection
system, which does not impose any restriction on botnet com-
munication protocol. Hence, it could be used for detecting non-
IRC botnets. Saad et al. [26] proposed a P2P botnet detection
system using traffic analysis. The system considers both flow-
based features and host-based features. They tested five dif-
ferent ML algorithms including nearest neighbor (NN), naive

1798 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 8, AUGUST 2016

Bayesian, support vector machine (SVM), artificial neural net-
works, and Gaussian-based classifier. Their proposed method
utilized with a SVM achieved a detection rate of about 97%.

Rasheed and Alhajj [27] presented a time efficient suffix
tree-based algorithm to detect the periodicity of outlier pat-
terns in a time series by giving more significance to less
frequent yet periodic patterns. Bilge et al. [28] also used
a ML-based method to classify wide-scale NetFlow traces as
normal or malicious. Their method uses the NetFlow traces
that are usually sampled over the observed traffic, which
might causes losses of information about fine pattern of mali-
cious traffic. Among four different ML algorithms, namely,
SVM, C4.5, DT, and RandomForest (RF), RF obtained the
best ratio between DR and false positive rate. In the study
of Stevanovic and Pedersen [29], how much traffic, that is
needed to be observed per flow in order to capture the pat-
tern of malicious traffic, is evaluated. Their proposed method
successfully detected botnet traffics using purely flow-based
traffic analysis. Most botnet IDSs reported in the literature are
payload-inspection-based that captures and analyzes header
and payload for every packet in network traffic, which is com-
putationally demanding [30]. Moreover, such method could
be very inefficient when packets are encrypted. Traffic-based
botnet IDS examines the complete traffic between two hosts
during the botnet life time [14]. Thus, it is not preferable when
considering real-time botnet detection since hosts might run
and communicate for few seconds or days.

With the explosive growth of distributed and heterogeneous
network data, not only the accuracy, but also model efficiency
and scalability have become a matter of great interest among
cyber-security experts. Distributing workload among multiple
workstations/computing clusters are of great interest as well.
However, existing ML algorithms are not scalable and flexible
enough to deal with such massive amount of network data.

III. METHODOLOGIES

Our methodologies consist of four consecutive phases. First
phase involves collecting and generating botnet dataset that
represents real-world traffic, to evaluate the performances of
our proposed method. Second, to develop an efficient and scal-
able ML algorithm that can deal with the large-scale network
traffic and provide real-time detection within acceptable time-
margin, selecting right features is of critical importance. In
this phase, we develop a novel feature selection technique that
eliminates redundant and irrelevant data and creates a subset
of relevant features. Third, in addition to above, we introduce
novel data reduction technique that can significantly reduce the
number of data samples used during learning process. Fourth,
meta-learning model of multiple randomized trees, which con-
sider a randomly selected features subset with no pruning,
is constructed to detect botnet attacks. The predictive perfor-
mance of the proposed methods are compared against those of
SMO algorithm for training a support vector classifier, mul-
tilayered perceptron DNN, C4.5 pruned DT, REPTree, and
RTree for accuracy, DR, false alarm rate, Mcc, F-measure,
which represents model stability and generalization ability,
time to build model, and TT.

TABLE I
FEATURES DESCRIPTION

A. Data Collection: Botnet Benchmark-11Fs Dataset

Building a ML-based botnet IDS requires a dataset, where
the model can learn from. The dataset shall also represent real
networks traffic by having all the necessary features. In our
experiments, the selected models are evaluated on the well-
referenced ISOT benchmark dataset [26]. ISOT contains both
malicious P2P botnet and nonmalicious traffic. It has the traf-
fics of two notorious P2P botnets from 2007 to 2009, namely
Waledac and Storm. ISOT dataset obtained its malicious traf-
fic from the French Chapter of Honeynet Project [31]. The
nonmalicious traffic was collected jointly by the TrafficLab
at Ericsson Research in Hungary [32] and Lawrence Berkeley
National Laboratory (LBNL) in 2005. These two nonmalicious
datasets have a good number of everyday traffic from variety
of applications, including HTTP Web browsing, gaming, and
bit torrent clients, as well as traffic from mid-sized enterprises,
which is provided by LBNL.

To generate an experimental dataset that represents real
world traffic, these three datasets have been merged into sin-
gle trace file by mapping the IP addresses of the infected
machines to two of the machines that provide background
traffic. TCPReplay tool that replays trace files on the network
interface device is then used to replay all the trace files in order
to homogenize the network behavior of the three datasets.
Finally, the replayed data is captured via Wireshark.

In this paper, we examine network traffic characteristics that
define network flow, a collection of network packets that are
exchanged between two IP addresses within time period T
using a pair of ports utilizing different layer 4 protocols [33].
The selection of the length of T is a tradeoff between accuracy
and speed that could influence the utility and usefulness of the
detection system. Our ultimate aim is to detect any intrusions
as quickly as possible while maintaining acceptable accuracy.
If the value of T is too small, we may fail to capture certain
attack characteristics that might be apparent over a long period
of time. In such case, the detection system will suffer from
high error rate. If the value of T is too large, the detection
system would not be able to detect attacks until the end of T ,
and it eventually increases the detection time and prevents
real-time detection. We thus examine the flow characteristics
within a time interval T of 300 s, the optimal time interval sug-
gested by Zhao et al. [14]. Table I shows the 11 features that
encode the flow characteristics within the given time interval.

AL-JARRAH et al.: DATA RANDOMIZATION AND CLUSTER-BASED PARTITIONING FOR BOTNET INTRUSION DETECTION 1799

In order to include universal network independent features,
the source and destination port numbers are not included in
the experiments of this paper. That because the use of these
features became in efficient when data comes from different
network [34].

B. Randomized Data Partitioned Learning Model (RDPLM)

This section describes the building blocks of the proposed
RDPLM. The proposed model consists of three consecutive
steps as follows.

1) Step I (Modified Forward Selection Ranking): Selecting
right features of botnet is of critical importance as it could not
only reduce the computational cost but also improve the gen-
eralization capabilities of the detection system and give better
understanding of the problem [12]. Feature selection methods
can be widely categorized into two main categories, individual
evaluation (also known as feature ranking) and subset eval-
uation. Feature ranking methods assess features and assign
them weights according to their degrees of importance [35].
In contrast, subset evaluation methods select candidate feature
subset based on a certain search method. Feature selection
methods might be classified based on incorporating clas-
sification model in feature set selection process into filter
and wrapper methods [36]. Filter methods depend on train-
ing data characteristics to select features with independence
of the classification model, whereas, wrapper methods opti-
mize classifier as a part of the feature subsets evaluation and
selection processes.

In Step I, a modified forward selection ranking technique
is used to eliminate redundant and irrelevant features, which
might contain false correlations that obstruct the learning pro-
cess of the classifiers [37], [38]. As depicted in Fig. 1, we
first rank the features/attributes based on their utility and sig-
nificance on detecting a class type. Information gain ratio
with respect to the class is used to evaluate the utility of
each feature/attribute in the features/attributes subsets. This
is given by

IR
(
C, Aj

) = (
H(C) − H

(
C|Aj

))/
H

(
Aj

)

where C is the class, and Aj is the jth attribute. Here, H(·) is
the entropy function given by

H(·) = −
∑

i

Pi(·)log2[Pi(·)]

where, P(·) is the probability operator and i is the number
of classes in a given dataset. Second, features are sorted in
descending order based on its utility in feature set S1. The
first feature with the highest rank form a new feature subset
S2 from feature set S1. Then, similarly to forward selection
ranking [38], the algorithm adds new feature from S1 to S2 and
calculates the performances (detection accuracy and training
time/time-to-build model) of the classifier when feature set
S2 is used. Performance measure ω, which captures the time
complexity and detection accuracy of a classifier, is calculated
as follows:

ω(Si) = TBMSi × (
100 − AccSi

)

Fig. 1. Feature selection pseudo code. IR(C, Aj) denotes the information
gain ratio of attribute j. ω(Si) = TBMSi × (100 − AccSi), where AccSi and
TBMSi are the detection accuracy and training time of classifier, respectively,
when feature set Si is used.

where, TBMSi and AccSi denote time to build model and detec-
tion accuracy of a classifier when feature set Si is used. We aim
to minimize ω, where feature set Si is said to have better per-
formance than feature set Sj if ω(Si) < ω(Sj). The feature that
reduces ω is kept in S2; otherwise, it is discarded. The algo-
rithm proceeds till all features in S1 are tested. The resultant
features set S2 includes the selected features set. Fig. 1 shows
the pseudo code of Step I.

2) Step II (Simplified Subspacing): To deal with the large-
scale botnet dataset in an efficient manner, a data reduction
technique that utilizes Voronoi-based data partitioning and
clustering techniques is proposed.

Several instance reduction methods have been reported
in literature. Some of which rely on selecting what so-
called border instances to be the newly reduced dataset.
An instance is called a border instance of some class A,
if this instance is the nearest neighbor of an instance that
belongs to another class, that is not in A. Examples of
such algorithms are patterns by ordered projections [39] and
pairwise opposite class-NN (POC-NN) [40]. Some other meth-
ods rely on clustering, in which the dataset is split into n
clusters, and the centroids of the clusters are selected to
represent the newly reduced dataset [41]–[43]. For instance,
in [42], the generalized-modified Chang algorithm merges the
clusters that contain similar classes and then fetches their
centroids. Although the previously mentioned methods do
not assume any subsequent classifier model to be used, they
still assume the existence of fully labeled datasets. In other
words, they utilize the knowledge of the labels for the reduc-
tion. However, in botnet detection domain, the generation,
collection, and labeling of the datasets are both very costly
and time-consuming. Therefore, for future research conve-
nience, we do not constrain our reduction technique to fully

1800 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 8, AUGUST 2016

Fig. 2. Stepwise procedure of Step II. SRS is performed based on the
specified sampling percentage. Voronoi and K-means algorithms are applied
to reduce the dataset size. Then, Step III uses the newly reduced dataset for
classification.

labeled datasets. In what follows, we introduce simplified
subspacing data reduction algorithm based on simple Voronoi
data partitioning and clustering techniques.

Given a dataset X ∈ RN×D, with N instances and D features,
we would like to reduce the dataset to obtain C ∈ Rn×D, which
has n � N instances. Our proposed data reduction algorithm
consists of two main stages. In the first stage, a Voronoi-
partitioning technique clusters the whole input vector space
into smaller Voronoi regions based on some randomly selected
representative samples. Our motivation beyond this stage is
to reduce the complexity of the next stage. We assume that
in large scale data, very far away points should not have
a big influence on each other. In addition, this stage would
allow for parallel computing techniques. In the second stage,
we utilize the K-means algorithm to fetch the centroids of
each Voronoi region to represent all original input vectors.
The collection of all centroids constitutes the newly reduced
dataset, C. Thereby, the time to build the subsequent clas-
sifier models could be reduced significantly [44]–[46]. In
addition, combining with a parametric partitioning model
introduces semi-parametric properties to the pure nonparamet-
ric learning model so that the final model could be more
stable and robust. Fig. 2 illustrates the stepwise procedure
of Step II.

In the first stage of the algorithm, simple random sam-
pling (SRS) is performed on the original dataset to select n
representative samples out of a total of N samples. SRS selects
n equiprobable random samples from the original dataset with
replacement following a binomial distribution [47].

Next, we partition the dataset space into n Voronoi regions,
based on the selected representative samples. In the case
of semi-labeled datasets, the selected representative set in
the first stage is assumed to be labeled. There exist many
efficient implementation algorithms for the construction of
the Voronoi diagram (VD). Out of which, the divide-and-
conquer and fortune’s line sweep algorithms are most efficient.
According to [48, Ths. 3.3 and 3.4], the divide-and-conquer
and Fortune’s line sweep constructs a VD of N points within
time of O(Nlog N) and linear space, in the worst case, where
both bounds are optimal [48].

Let the representative subset, S = {p1, p2, . . . , pn} ∈ RD,
be used to partition the dataset space into n Voronoi regions,
where D denotes the dimensionality of the input vectors, and
(n/N) is the sampling percentage, then the Voronoi region

Fig. 3. Voronoi regions.

Fig. 4. Step II pseudo code.

centered by a representative instance pi, is defined by

Vor(pi) = {
X ∈ RD

∣∣ ‖x − pi‖ ≤ ∥∥x − pj
∥∥ ∀j ∈ S

}

where ‖·‖ represents the L2 norm operator.
In the second stage, we overlay the entire (original) dataset

into the constructed Voronoi regions. Then, the centroid of
each Voronoi region is fetched using the K-means algorithm.
The label of the centroids followed the labels of the selected
representative subset. Thereby, the data size is reduced to the
previously specified sampling percentage (n/N). As an illus-
trative example, we perform the instance reduction algorithm
on some uniformly random 2-D dataset. Fig. 3 illustrates the
two-stage reduction algorithm, where we firstly select ran-
dom representative subset and construct a VD. Then, for each
Voronoi region, we perform K-means clustering. Fig. 4. depicts
the pseudo code of Step II.

3) Step III (Multiple Randomized Trees): Due to the het-
erogeneity observed in ISOT dataset, different data types from
different resources (e.g., HTTP browsing and gaming), using
a single classifier is not a wise choice. We thus construct

AL-JARRAH et al.: DATA RANDOMIZATION AND CLUSTER-BASED PARTITIONING FOR BOTNET INTRUSION DETECTION 1801

Fig. 5. General architecture of Step III ensemble. The collection of trees
{h(x, θk), k = 1, 2, . . . , n}, where the θk are independently, identically dis-
tributed RTrees, and each tree casts “a unit vote” for the final classification
of input x.

ensemble model that combines a number of methods and
procedures to exploit network traffic characteristics effectively.

Typical to RF, Step III utilizes that if we take a large collec-
tion of weak learners, each performing only better than chance,
then by putting them together, it is possible to make an ensem-
ble learner that can perform arbitrarily well. However, base
classifiers of ensemble model should be built on nonidentical
training datasets in order to reduce variance error and provide
diversity among them. Randomness is introduced by bootstrap
resampling to grow each tree in the ensemble learner, and also
by finding the best splitter at each node within a randomly
selected subset of inputs. Step III grows many DTs [49] as in
Fig. 5. To classify a new input vector x, put the input vec-
tor down each of the DTs in the ensemble classifier. Each
DT is trained on a bootstrap sample of the training data [50].
The DTs are used in this step and the entropy was used to
rank attributes in terms of the reduction in the uncertainty of
the class label. The algorithm finds the attribute which has
the highest information gain, which represents the expected
reduction of entropy by partitioning examples based on cer-
tain attribute, and places it on the root node of the tree. Then,
creates the branches which represent the possible values of
parent node.

Step III performs a kind of cross-validation by using out-
of-bag (OOB) data. Since each tree in the ensemble grows on
a bootstrap sample of the data, the sequences left out of the
bootstrap sample, the OOB data, can be used as legitimate test
set for that tree. On average 1/3 of the training data will be
OOB for a given tree. Consequently, each data in the training
dataset will be left out of 1/3 of the trees in the ensemble,
and use these OOB predictions to estimate the error rate of
the full ensemble.

Like classification and regression tree [51], Step III uses
the gini impurity for determining the final class in each
DT. The gini impurity of node impurity is the measure most
commonly chosen for classification-type problems. If a dataset
T contains examples from n classes, gini impurity G(T) is
defined as

Gsplit(T) = 1 −
n∑

j=1

(
Pj

)2

Fig. 6. Flowchart of Step III ensemble.

where Pj is the relative frequency of class j in T . If a data set
T is split into two subsets T1 and T2 with sizes N1 and N2,
respectively, the gini impurity of the split data contains
examples from n classes, the Gsplit(T) is defined as

Gsplit(T) = N1

N
G(T1) + N2

N
G(T2)

the attribute value that provides the smallest Gsplit(T) is chosen
to split the node.

Fig. 6 illustrates the flowchart of the Step III ensemble.
First, a random collection of samples from the training dataset
is selected while maintaining the class distribution. Second,
with this selected dataset, a random set of attributes from the
original dataset is chosen based on user defined values. All
the input variables are not considered because of enormous
computation and high chances of overfitting. In a dataset where
M is the total number of input attributes in the dataset, only
R attributes are chosen at random for each tree where R =
log2(M) + 1, R < M. Third, the attributes from this set create
the best possible split to develop a DT model. The process
repeats for each of the branches until the termination condition
stating that leaves are the nodes that are too small to split or
only have data of the same class. Step III builds randomized
tree in each iteration of bagging algorithm, and often produces
excellent classifier. Each tree votes for class type and the final
decision is the majority votes of all trees.

IV. IDS EVALUATION AND ANALYSIS

The most common and well-accepted statistical methods to
evaluate the performance of a classifier are resubstuituation,

1802 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 8, AUGUST 2016

TABLE II
FEATURE SETS

cross-validation, and bootstrapping. In this paper, we use
cross-validation to assess the detective performance of the pro-
posed model. In our evaluation, the original dataset is divided
into ten random subsets where nine subsets are used for train-
ing and the other one subset is used for testing. This process
is repeated, recursively, until all subsets are tested. The clas-
sification errors of every subset is accumulated then the mean
absolute error is computed. This method gives us better under-
standing of how our proposed method performs in real time
situations.

Different measures are used to evaluate the performance
of each classifier, namely, classification accuracy (Acc), DR
(also known as, sensitivity), false alarm rate (FAR), Mcc,
standard deviation of F-measure (σ), time has been taken to
build model (TBM) and (TT). Acc reveals classifier’s abil-
ity to correctly classify normal and botnet traffic; DR is the
number of intrusion traffic detected by the model divided by
the total number of intrusions in the test set; FAR refers
to the percentage of normal traffic classified as intrusion;
and Mcc is a correlation coefficient between the observed
and detected binary classification that has a value between
−1 and +1, a coefficient of +1 represents a perfect detection,
0 means no better than random detection and −1 indicates
total disagreement between detection and observation. A high
value of Mcc means more robust detection model. σ pro-
vides a good idea about model’s generalization ability, and
stability. We aim for a high Acc, DR, and Mcc, and low σ ,
TBM, FAR, and TT. The above measures can be defined
as follows:

Acc = TP + TN

TP + TN + FP + FN

DR = TP

TP + FN

FAR = FP

TN + FP

Mcc = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where true-positive (TP) is the number of correctly classified
intrusions, true-negative (TN) is the number of correctly clas-
sified normal traffic, FN is the number of incorrectly classified
intrusions as normal traffic, and false-positive (FP) is the num-
ber of incorrectly classified normal traffic as intrusions. Our
dataset contains network flow attributes that describe flow
information within a 300 s window. For each flow, there
is at least one packet that was exchanged. We generated
689 205 instances, where 7394 are malicious and 681 811 are
nonmalicious instances.

TABLE III
PERFORMANCE OF RDPLM-S III ON 11FS

TABLE IV
MODELS PERFORMANCES ON CFS FEATURE SET

To show the effectiveness of the proposed methods, their
performance is compared with those of other well-known
ML algorithms on feature set derived through methods
reported in literature like CFS [52], which is used in [12],
WrapperSubsetEval [53], and Step I. Table II shows fea-
ture sets that are produced by the different feature selection
methods.

Table III shows the performances of each algorithm on the
Botnet benchmark-11Fs dataset. Experiment results show that
RDPLM-S III (Step III) outperforms other ML algorithms
used in the paper. RDPLM-S III has achieved the highest Acc
(99.9845), DR (0.9942), and Mcc (0.9927), which are better
than those of SMO, DNN, C4.5, REPTree, and RTree, with
very low FAR (0.00009). C4.5 achieved the highest stability
and generalization capacity σ (0.0020).

Table IV shows models performances on feature set that is
produced by CFS feature selection method. C4.5 achieved the
highest Acc, DR, and Mcc, while Step III obtained the highest
generalization and stability denoted by σ . It is noticeable that,
generally, models performances in term of Acc, DR, FAR,

and Mcc degrade when these models are build on feature set
produced by CFS method. As expected, models’ TBM and
TT reduced when less number of features is used to build
classifier.

Table V shows models performances when models are
built on feature set that is generated by wrapper method. As
expected, C4.5 has achieved the best performances in terms of
Acc (99.9842), DR (0.9977), and Mcc (0.9926), that because
wrapper method optimized C4.5 classifier in the feature sub-
set evaluation and selection process. Although, feature set, that
is produced by wrapper method, enhanced the performances
of C4.5 classifier and achieved better detection accuracy than
using the full feature set, it does not enhance the performances
of other models, which means that the selected features are not

AL-JARRAH et al.: DATA RANDOMIZATION AND CLUSTER-BASED PARTITIONING FOR BOTNET INTRUSION DETECTION 1803

(a) (b)

(c) (d)

Fig. 7. Models performance comparisons. (a) Accuracy of SMO, DNN, C4.5, REPTree, RTree, and RDPLM. (b) Time to build model of SMO, DNN, C4.5,
REPTree, RTree, and RDPLM. (c) F-Measure of SMO, DNN, C4.5, REPTree, RTree, and RDPLM. (d) False Alarm Rate of SMO, DNN, C4.5, REPTree,
RTree, and RDPLM.

TABLE V
MODELS PERFORMANCE ON WRAPPER FEATURE SET

the optimum ones. Step III and RTree obtained the lowest false
alarm rate.

Table VI shows models performances on Step I feature set,
Step III outperforms other models in terms of Acc (99.9842),
DR (0.9936), FAR (0.00009), and Mcc (0.9926). It is notewor-
thy that feature set that is selected through Step I improves
the detection accuracy of C4.5, REPTree, RTree, maintains the
detection accuracy of SMO, and slightly effects the detection
accuracy of DNN. In term of DR, Step I feature set maintains
the performance of SMO, and enhances C4.5 and RTree and
slightly effects DNN and Step III. In term of FAR Step I does
not effect SMO, C4.5, and Step III, while it enhances DNN
and REPTree and slightly increases RTree’s FAR.

As seen in Table VI, our feature selection algorithm
described in Step I enhances the performance of Step III
by reducing its TBM, the time complexity of the model.
Noticeably, unlike CFS and Wrapper feature sets, the selected
features through Step I enhanced the performance of most of
the other models. The best performances were achieved by
Step III except in model stability and TBM, where C4.5 and

TABLE VI
MODELS PERFORMANCES ON RDPLM-SI FEATURE SET

TABLE VII
PERFORMANCE OF RDPLM-S II AND III ENSEMBLE

RTree excelled, respectively. Step III effectively reduced its
TBM from 36.93 s to 21.38 s, which means fast model update.
Moreover, the throughput of Step III increases since its TT is
reduced from 0.104 s to 0.092 s. This makes the proposed
model, RDPLM, a good candidate especially for large-scale
botnet detection tasks. All in all, the novel features selection
technique of Step I used along with Step III could lead to
the best detective performance by achieving Acc = 99.9842,
DR = 0.9936, FAR = 0.00009, and Mcc = 0.9926.

We can notice from Table VII that the Acc of Step III is
improving as a lower reduction rate is used. Acc and TBM

1804 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 8, AUGUST 2016

of Step III were 99.9648 and 12.8544 s, respectively, when
the volume of the original dataset has been reduced to 50%
using Step II. However, the Acc and TBM reach 99.9798 and
26.0828 s when the volume of the data has been reduced to
90%. When the volume of the data is reduced to 70% and 80%,
no significant improvement has been observed in terms of Acc,
FAR, and Mcc. However, system stability and generalization
capabilities improved. We can notice from Table VII that the
proposed model, RDPLM, obtained better performances than
DNN and SMO even when the dataset is reduced by 50%.
Moreover, its TT is less than other models TT, which means
fast classification and high system throughput. That makes it
a preferred model to provide real time detection.

Fig. 7(a) depicts the performance of different models in term
of Acc. As shown, RDPLM outperforms other models in term
of Acc. As in Fig. 7(b), RDPLM-S III TBM is much lower
than DNN model. Fig. 7(c) shows that RDPLM-S III shows
a stable performance on different folds, while DNN and SMO
accuracy noticeably varies on different folds. Fig. 7(d) shows
models FAR. RDPLM-S III achieved the lowest FAR than all
other models.

V. CONCLUSION

The concept of IDS has provided us an opportunity to
enhance existing network security by detecting, identifying
and tracking the attackers. ML algorithms are used in many
existing IDSs. However, due to its inherent nature, model
complexity and computational requirements could grow expo-
nentially when dealing with large datasets. In this paper, we
presented three steps to construct efficient botnet IDS for large-
scale networks. To eliminate redundant features and reduce the
volume of dataset, we use a novel feature ranking and Voronoi-
clustering-based data partitioning techniques. In addition, we
use network flow characteristics to detect botnet intrusions
regardless of packet payload content, which make it immune
to packet encryption. Experimental results show that the pro-
posed methods not only achieved very high detection accuracy
(99.984%) but also successfully reduced the model computa-
tional cost. This can be seen as a significant contribution as
it could prevent the potential data processing delays, a criti-
cal requirement of ML-based intrusion detection model when
dealing with large-scale networks. As the number of objects
connected to networks increases, the security systems face
a critical challenge due to the global connectivity and accessi-
bility of Internet of things (IoT). Unlike business computers,
which for decades have been sheltered behind corporate fire-
walls and IDSs, the products now being linked to the Internet
are frequently on their own. IoT devices in general have lim-
ited computing power and memory. In our future work, we
aim to achieve an order of magnitude reduction to the usage of
memories during the implementation of IoT devices by using
large-scale online-learning techniques. Locally, in online learn-
ing model, the memory needed to store the function remains
constant even with added datapoints, since the solution com-
puted at one step is updated when a new datapoint becomes
available, after which that datapoint can then be discarded.
Thus, the solution takes less time to compute with the addition

of a new datapoint, as compared to batch learning techniques.
Globally, a new large-scale (distributed) learning scheme allo-
cates the computation of learning and data processing among
several computing devices. We believe it is a natural way
of scaling up learning algorithms to distribute the analytic
computations and solve their large and complex problems.

REFERENCES

[1] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multi-
faceted approach to understanding the botnet phenomenon,” in Proc.
6th ACM SIGCOMM Conf. Internet Meas., New York, NY, USA, 2006.
pp. 41–52.

[2] N. S. Raghava, D. Sahgal, and S. Chandna, “Classification of botnet
detection based on botnet architechture,” in Proc. Int. Conf. Commun.
Syst. Netw. Technol. (CSNT), Rajkot, India, 2012, pp. 569–572.

[3] B. Al-Duwairi and L. Al-Ebbini, “BotDigger: A fuzzy inference sys-
tem for botnet detection,” in Proc. 5th Int. Conf. Internet Monitor.
Prot. (ICIMP), Barcelona, Spain, 2010, pp. 16–21.

[4] D. E. Denning, “An intrusion-detection model,” IEEE Trans. Softw. Eng.,
vol. SE-13, no. 2, pp. 222–232, Feb. 1987.

[5] J. Zhang and M. Zulkernine, “Network intrusion detection using random
forests,” in Proc. PST, St. Andrews, NB, Canada, 2005, pp. 53–61.

[6] M. Roesch, “Snort—Lightweight intrusion detection for networks,” in
Proc. USENIX LISA, Nov. 1999.

[7] Z. Yu, J. J. P. Tsai, and T. Weigert, “An automatically tuning intrusion
detection system,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 37,
no. 2, pp. 373–384, Apr. 2007.

[8] W. Hu, J. Gao, Y. Wang, O. Wu, and S. Maybank, “Online adaboost-
based parameterized methods for dynamic distributed network intrusion
detection,” IEEE Trans. Cybern., vol. 44, no. 1, pp. 66–82, Jan. 2014.

[9] S. T. Sarasamma and Q. A. Zhu, “Min–max hyperellipsoidal clustering
for anomaly detection in network security,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 36, no. 4, pp. 887–901, Aug. 2006.

[10] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin, “Intrusion detection
by machine learning: A review,” Expert Syst. Appl., vol. 36, no. 10,
pp. 11994–12000, 2009.

[11] M. E. Whitman and H. Mattord, Principles of Information Security.
Clifton Park, NY, USA: Cengage Learning, 2011.

[12] F. Zhang, P. P. K. Chan, B. Biggio, D. S. Yeung, and F. Roli, “Adversarial
feature selection against evasion attacks,” IEEE Trans. Cybern., to be
published.

[13] M.-H. Tsai, K.-C. Chang, C.-C. Lin, C.-H. Mao, and H.-M. Lee, “C&C
tracer: Botnet command and control behavior tracing,” in Proc. IEEE
Int. Conf. Syst., Man, Cybern. (SMC), Anchorage, AK, USA, 2011,
pp. 1859–1864.

[14] D. Zhao et al., “Botnet detection based on traffic behavior analysis and
flow intervals,” Comput. Security, vol. 39, pp. 2–16, Nov. 2013.

[15] M. Feily, A. Shahrestani, and S. Ramadass, “A survey of botnet and
botnet detection,” in Proc. 3rd Int. Conf. Emerg. Security Inf., Syst.
Technol., SECURWARE, Athens, Greece, 2009, pp. 268–273.

[16] G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong, and W. Lee,
“BotHunter: Detecting malware infection through IDS-driven dialog
correlation,” in Proc. USENIX Security, Boston, MA, USA, 2007,
pp. 167–182.

[17] A. Karasaridis, B. Rexroad, and D. Hoeflin, “Wide-scale botnet detection
and characterization,” in Proc. 1st Conf. First Workshop Hot Topics Und.
Botnets, Cambridge, MA, USA, 2007, p. 7.

[18] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting botnet command
and control channels in network traffic,” 2008.

[19] S. Arshad, M. Abbaspour, M. Kharrazi, and H. Sanatkar, “An anomaly-
based botnet detection approach for identifying stealthy botnets,” in
Proc. IEEE Int. Conf. Comput. Appl. Ind. Electron. (ICCAIE), Penang,
Malaysia, 2011, pp. 564–569.

[20] L. Cao and X. Qiu, “Defence against botnets: A formal definition
and a general framework,” in Proc. IEEE 8th Int. Conf. Netw., Archit.
Stor. (NAS), Xi’an, China, 2013, pp. 237–241.

[21] R. Villamarin-Salomon and J. C. Brustoloni, “Identifying botnets using
anomaly detection techniques applied to DNS traffic,” in Proc. IEEE
5th Consum. Commun. Netw. Conf. CCNC, Las Vegas, NV, USA, 2008,
pp. 476–481.

[22] H. Choi, H. Lee, H. Lee, and H. Kim, “Botnet detection by monitoring
group activities in DNS traffic,” in Proc. 7th IEEE Int. Conf. Comput.
Inf. Technol., CIT, Aizuwakamatsu, Japan, 2007, pp. 715–720.

AL-JARRAH et al.: DATA RANDOMIZATION AND CLUSTER-BASED PARTITIONING FOR BOTNET INTRUSION DETECTION 1805

[23] S.-J. Han and S.-B. Cho, “Evolutionary neural networks for anomaly
detection based on the behavior of a program,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 36, no. 3, pp. 559–570, Jun. 2005.

[24] W. T. Strayer, D. Lapsely, R. Walsh, and C. Livadas, “Botnet detection
based on network behavior,” in Botnet Detection. Medford, MA, USA:
Springer, 2008, pp. 1–24.

[25] M. M. Masud, T. Al-Khateeb, L. Khan, B. Thuraisingham, and
K. W. Hamlen, “Flow-based identification of botnet traffic by min-
ing multiple log files,” in Proc. 1st Int. Conf. Distrib. Framework
Appl., DFmA, Penang, Malaysia, 2008, pp. 200–206.

[26] S. Saad et al., “Detecting P2P botnets through network behavior analysis
and machine learning,” in Proc. 9th Annu. Int. Conf. Privacy, Security
Trust (PST), Montreal, QC, Canada, 2011, pp. 174–180.

[27] F. Rasheed and R. Alhajj, “A framework for periodic outlier pattern
detection in time-series sequences,” IEEE Trans. Cybern., vol. 44, no. 5,
pp. 569–582, May 2014.

[28] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel,
“Disclosure: Detecting botnet command and control servers through
large-scale netflow analysis,” in Proc. 28th Annu. Comput. Security Appl.
Conf., Orlando, FL, USA, 2012, pp. 129–138.

[29] M. Stevanovic and J. M. Pedersen, “An efficient flow-based botnet detec-
tion using supervised machine learning,” in Proc. Int. Conf. Comput.,
Netw. Commun. (ICNC), Honolulu, HI, USA, 2014, pp. 797–801.

[30] L. Braun, G. Munz, and G. Carle, “Packet sampling for worm and bot-
net detection in TCP connections,” in Proc. IEEE Netw. Oper. Manage.
Symp. (NOMS), Osaka, Japan, 2010, pp. 264–271.

[31] (Jan. 2015). French Chapter of Honenynet. [Online]. Available:
http://www.honeynet.org/chapters/france

[32] G. Szabó, D. Orincsay, S. Malomsoky, and I. Szabó, “On the valida-
tion of traffic classification algorithms,” in Passive and Active Network
Measurement. Berlin, Germany: Springer, 2008, pp. 72–81.

[33] A. Sperotto et al., “An overview of IP flow-based intrusion detection,”
IEEE Commun. Surveys Tuts., vol. 12, no. 3, pp. 343–356, Jul. 2010.

[34] H. Hang, X. Wei, M. Faloutsos, and T. Eliassi-Rad, “Entelecheia:
Detecting P2P botnets in their waiting stage,” in Proc. IFIP Netw. Conf.,
Brooklyn, NY, USA, 2013, pp. 1–9.

[35] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Mar. 2003.

[36] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos,
“A review of feature selection methods on synthetic data,” Knowl. Inf.
Syst., vol. 34, no. 3, pp. 483–519, 2013.

[37] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly
detection: Methods, systems and tools,” IEEE Commun. Surveys Tuts.,
vol. 16, no. 1, pp. 303–336. Feb. 2014.

[38] S. Zaman and F. Karray, “Features selection for intrusion detection sys-
tems based on support vector machines,” in Proc. 6th IEEE Consum.
Commun. Netw. Conf. (CCNC), Las Vegas, NV, USA, 2009, pp. 1–8.

[39] J. C. Riquelme, J. S. Aguilar-Ruiz, and M. Toro, “Finding representative
patterns with ordered projections,” Pattern Recognit., vol. 36, no. 4,
pp. 1009–1018, 2003.

[40] T. Raicharoen and C. Lursinsap, “A divide-and-conquer approach to the
pairwise opposite class-nearest neighbor (POC-NN) algorithm,” Pattern
Recognit. Lett., vol. 26, no. 10, pp. 1554–1567, 2005.

[41] J. C. Bezdek and L. I. Kuncheva, “Nearest prototype classifier
designs: An experimental study,” Int. J. Intell. Syst., vol. 16, no. 12,
pp. 1445–1473, 2001.

[42] R. A. Mollineda, F. J. Ferri, and E. Vidal, “An efficient prototype merg-
ing strategy for the condensed 1-NN rule through class-conditional hier-
archical clustering,” Pattern Recognit., vol. 35, no. 12, pp. 2771–2782,
2002.

[43] C. J. Veenman and M. J. T. Reinders, “The nearest subclass classi-
fier: A compromise between the nearest mean and nearest neighbor
classifier,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 9,
pp. 1417–1429, Sep. 2005.

[44] K. Josien, G. Wang, T. W. Liao, E. Triantaphyllou, and M. C. Liu, “An
evaluation of sampling methods for data mining with fuzzy c-means,”
in Data Mining for Design and Manufacturing. New York, NY, USA:
Springer, 2001, pp. 355–369.

[45] A. Rajaraman and J. D. Ullman, Mining of Massive Datasets.
Cambridge, U.K.: Cambridge Univ. Press, 2011.

[46] M. P. S. Bhatia and D. Khurana, “Experimental study of data clustering
using k-means and modified algorithms,” Int. J. Data Mining Knowl.
Manage. Process (IJDKP), vol. 3, no. 3, pp. 17–30, 2013.

[47] W. N. H. W. Mohamed, M. N. M. Salleh, and A. H. Omar, “A compara-
tive study of reduced error pruning method in decision tree algorithms,”
in Proc. IEEE Int. Conf. Control Syst. Comput. Eng. (ICCSCE), Penang,
Malaysia, 2012, pp. 392–397.

[48] F. Aurenhammer and R. Klein, “Voronoi diagrams,” Handbook of
Computational Geometry, vol. 5. Amsterdam, The Netherlands: Elsevier
North Holland, 2000, pp. 201–290.

[49] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986.

[50] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996.

[51] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Monterey, CA, USA: Wadsworth and Brooks,
1984.

[52] M. A. Hall, “Correlation-based feature selection for machine learn-
ing,” Ph.D. dissertation, Dept. Comput. Sci., Waikato Univ., Hamilton,
New Zealand, 1999.

[53] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques. Amsterdam, The Netherlands: Morgan Kaufmann,
2005.

Omar Y. Al-Jarrah received the B.S. degree in
computer engineering from Yarmouk University,
Irbid, Jordan, in 2005, and the M.S. degree in com-
puter engineering from the University of Sydney,
Sydney, NSW, Australia, in 2008. He is currently
pursuing the Ph.D. degree with Khalifa University,
Abu Dhabi, UAE.

His current research interests include machine
learning, intrusion detection, big data analytics, and
knowledge discovery in various applications.

Omar Alhussein received the B.Sc. degree in com-
munications engineering from Khalifa University,
Abu Dhabi, UAE, in 2013, and the M.A.Sc.
degree in engineering science from Simon Fraser
University, Burnaby, BC, Canada, in 2015.

In 2014, he was a Research Assistant with the
Etisalat BT Innovation Centre, Khalifa University,
for five months. Since 2014, he has been with the
Multimedia Communications Laboratory, Simon
Fraser University. His current research interests
include spanning signal processing, wireless

communications, and machine learning.
Mr. Alhussein currently serves as a Reviewer for the IEEE

COMMUNICATIONS LETTERS and other flagship conferences.

Paul D. Yoo (SM’13) received the Ph.D. degree
in engineering and information technology from
the University of Sydney (USyd), Sydney, NSW,
Australia, in 2009.

He was a Post-Doctoral Scientist with the Centre
for Distributed and High Performance Computing,
USyd, from 2008 to 2009, and a Doctoral Researcher
(Quantitative Analysis) with the Capital Markets
CRC, Sydney, administered by the Australia Federal
Department for Education, Science and Training
from 2004 to 2008. He was an Assistant Professor

of Data Science with the ATIC-Khalifa Semiconductor Research Centre and
the Electrical and Computer Engineering Department, Khalifa University of
Science, Technology and Research, Abu Dhabi, UAE, from 2009 to 2014. He
is currently a Lecturer (equivalent Assistant Professor) with the Department
of Computing and Informatics, Bournemouth University, Poole, U.K. He
is also affiliated with the USyd, the Aristotle University of Thessaloniki,
Thessaloniki, Greece, and the Korea Advanced Institute of Science and
Technology, Daejeon, Korea, as a Senior Fellowship Scientist. He holds over
50 prestigious journal and conference publications.

Dr. Yoo serves as an Editor of the IEEE COMMUNICATIONS LETTERS and
Elsevier JBDR journals.

1806 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 8, AUGUST 2016

Sami Muhaidat (SM’11) received the Ph.D. degree
in electrical and computer engineering from the
University of Waterloo, Waterloo, ON, Canada, in
2006.

From 2007 to 2008, he was an NSERC Post-
Doctoral Fellow with the Department of Electrical
and Computer Engineering, University of Toronto,
Toronto, ON, Canada. From 2008 to 2012, he was an
Assistant Professor with the School of Engineering
Science, Simon Fraser University, Burnaby, BC,
Canada. He is currently an Associate Professor with

Khalifa University, Abu Dhabi, UAE, and a Visiting Reader with the Faculty
of Engineering, University of Surrey, Guildford, U.K. His current research
interests include advanced digital signal processing techniques for image
processing and communications, machine learning, cooperative communica-
tions, vehicular communications, multiple-input-multiple-output, and space
time coding. He has authored over 100 journal and conference papers in the
above topics.

Dr. Muhaidat was a recipient of several scholarships during his undergrad-
uate and graduate studies and the 2006 Natural Sciences and Engineering
Research Council of Canada Postdoctoral Fellowship Competition. He cur-
rently serves as a Senior Editor for the IEEE COMMUNICATIONS LETTERS,
and an Associate Editor for the IEEE TRANSACTIONS ON VEHICULAR

TECHNOLOGY.

Kamal Taha (SM’14) received the Ph.D. degree in
computer science from the University of Texas at
Arlington, Arlington, TX, USA, in 2010.

He has been an Assistant Professor with the
Department of Electrical and Computer Engineering,
Khalifa University, Abu Dhabi, UAE, since 2010.
He was an Instructor of Computer Science
with the University of Texas at Arlington, from
2008 to 2010. He was an Engineering Specialist with
Seagate Technology, Cupertino, CA, USA, from
1996 to 2005. He has over 60 refereed publications

that have appeared in prestigious top ranked journals, conference proceed-
ings, and book chapters. Fifteen of his publications have appeared (or are
forthcoming) in the IEEE TRANSACTIONS journals. His current research
interests include information forensics and security, bioinformatics, infor-
mation retrieval, data mining, and databases, with an emphasis on making
data retrieval and exploration in emerging applications more effective, effi-
cient, and robust.

Dr. Taha serves as a member of the Program Committee, Editorial
Board, and Review Panel for a number of international conferences and
journals, some of which are the IEEE and Association for Computing
Machinery (ACM) journals.

Kwangjo Kim (M’12) received the B.Sc. and
M.Sc. degrees in electronic engineering from
Yonsei University, Seoul, Korea, in 1980 and
1883, respectively, and the Ph.D. degree from the
Division of Electrical and Computer Engineering,
Yokohama National University, Yokohama, Japan,
in 1991.

He was a Visiting Professor with the
Massachusetts Institute of Technology, Cambridge,
MA, USA, and the University of California at
San Diego, La Jolla, CA, USA, in 2005, and

the Khalifa University of Science, Technology and Research, Abu Dhabi,
UAE, in 2012, and an Education Specialist with the Bandung Institute of
Technology, Bandung, Indonesia, in 2013. He is currently a Full Professor
with the School of Computing, Korea Advanced Institute of Science and
Technology, Daejeon, Korea, the Korea representative to IFIP TC-11, and
the honorable President of the Korea Institute of Information Security
and Cryptography (KIISC). His current research interests include theory of
cryptology, information security, and its applications.

Prof. Kim had served as a Board Member of the International Association
for Cryptologic Research (IACR) from 2000 to 2004, the Chairperson of
Asiacrypt Steering Committee from 2005 to 2008, and the President of the
KIISC in 2009. He is a member of Institute of Electronics, Information and
Communication Engineers, IACR, and ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

