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Abstract—With the proliferation of mobile devices, many
users now take advantage of location-based services that use
their current position. However, careful consideration should be
made when sending one’s location to another as the location
often includes personal attributes such as home address and
reveals private information such as health or religion. To resolve
this issue, a dummy generation technique is widely used. This
technique protects the location privacy of a user by generating
false position data (dummy) along with the true position data to
obfuscate an adversary. However, the current dummy generation
technique rarely assumes any prior knowledge held by the
attacker that may allow them to reduce the level of uncertainty
about the true location.

In this paper, we propose a dummy generation method that
is resistant to adversaries who have information about the user
as well as external spatiotemporal knowledge. Our method uses
conditional probabilities to generate realistic false locations at
which the user is highly likely to be located at the given time
and add more weight to the vulnerable location and time pairs.
We first describe the strategy for the adversary and present
our dummy generation method which is simple and effective
for preventing the described attack. Experimental results show
that our method obfuscates the true location more successfully
compared to other approaches.

I. INTRODUCTION

Smartphones have become highly portable and accurate
sensing devices in recent years. Many researchers have tried to
collect data from smartphones in order to utilize the data for
numerous context-aware applications. Among the applications
currently available, location-based services are among the most
widely deployed types and are capable of offering personalized
real-time services. For example, Foursquare [1] is a popular
location-based social networking application that provides
personalized local searches. Shop Alert [2] is a location-aware
marketing program in the US that delivers coupons and special
deals to consumers when they are near a shop. OnStar [3],
provided by General Motors, supports location-aware services
such as stolen vehicle tracking, and there are a myriad of other
location-based applications [4]–[7] used in various other fields,
including weather reporting, medical services, real-time Q &
A, recommendation, and advertisement.

When using location-based services, a user sends his/her
current position along with requests to a service provider
through communication networks, and the service provider
offers services based on the location coordinates. The common
vulnerability in this scenario is the case in which an adversary

is the owner, maintainer, or controller of the service provider.
This is critical because servers store personal location data,
including home addresses, and they may reveal sensitive
information such as health conditions or religion. To counter
against this vulnerability, one of the popular methods is to hide
the true location from service providers by generating false
noise locations called “dummy locations”. However, existing
dummy generation methods rarely assume that an attacker has
prior knowledge about the user and the environment, which
may give clues that distinguish the true location from the
dummy location.

There has been an increase in the rates of social network
service usage by all age groups in recent years. A pertinent
privacy concern arises owing to the fact that social networking
sites reveal personal information on profile pages or personal
posts. We propose an attack scenario in which an adversary
collects some user information, for example, their home
or office address, from social networking sites and utilizes
the information to distinguish their true location from the
dummy locations. In addition, we assume that the adversary
has spatiotemporal information such as the locations of
residences, restaurants, and offices, and the times people
normally sleep, eat, work, etc. In this attack scenario, it
is critical that all generated dummy locations must be
convincing to adversaries; yet not much research has proven
simple and effective in this particular attack. In this paper, we
propose a method that generates dummy locations that are
highly convincing in such an attack strategy using a simple
statistical approach. To sum up, we define our attack scenario
and the goal of our method as follows:

• Attack Scenario - An attacker has prior knowledge
about a target user and external spatiotemporal information,
belonging to a context-linking attack [29]. The attacker tries
to distinguish the user’s true location from dummy locations
using this information.
• Goal - We propose a method to generate realistic dummy
locations robust against this attack scenario.

Our dummy generation method carefully chooses dummy
locations from the top k realistic locations calculated by con-
ditional probabilities. In addition, we pay special attention to
locations that may have vulnerability in specific spatiotemporal



contexts by adding a weight factor. Experiments using real
data have demonstrated that our method is more resistant to
the given attack: the success probability of the attacker in
our method is 4.6% lower than the state-of-the-art approach
and 35.6% lower than the random approach, on average. Our
approach generates more realistic dummy locations according
to the time. Moreover, our dummy locations are more probable
when real locations with low query probabilities are given.
Our dummy generation approach is sufficiently simple to be
utilized in real-world applications and obfuscates the true
location among the dummy locations more successfully as
compared to other methods.

The rest of this paper is organized as follows: After review-
ing related work in Section II, we explain our threat model and
dummy generation in Section III. We explain our proposed
method and present our experimental design and evaluation in
Sections IV and V, respectively. Finally, we make a conclusion
and discuss future work in Section VI.

II. RELATED WORK

Location privacy is defined as the ability to prevent other
parties from learning one’s current or past location [8]. Ex-
tensive work has been carried out to show the vulnerability
of location-based services and to assess the importance of
location privacy. For example, Liao et al. [9] infer users’
activities from the frequency of their visits to certain loca-
tions. De Mulder et al. [10] identify a mobile user from
previous movements. Some research [11]–[13] deduce the
home addresses of individuals from observing location traces.
Matsuo et al. [14] infer personal information from users’
indoor location data.

To protect location privacy while using location-based ser-
vices, many mechanisms have been suggested. The previous
research can be largely categorized to three main approaches:
spatial or temporal cloaking, using mix zones, and generating
dummies. The cloaking approach designs cloaking boxes that
each contains k users. A user is concealed in the cloaking
box and the box’s location information is sent to the service
provider [15]–[19]. The problem with this method is that
the spatial or temporal accuracy of location information is
reduced. Further, the method generally requires third-party
server to save global knowledge of a large number of users,
which is impossible for real-world applications and can yield a
performance bottleneck. The second type of location privacy
protection mechanism utilizes a mix zone [20], [21], which
is a region where there is no update of location information.
The trusted server collects the pseudonyms of users within a
mix zone and assigns new pseudonyms to confuse attackers.
This method also requires a trusted server for processing
the perturbation algorithm and location privacy is degraded
when there are too few people in the mix zone. Lastly,
the dummy generation approach sends several fake locations,
called dummy locations, along with the true location to
servers, increasing uncertainty for the adversary. This method
is a mobile-based one that does not require any trusted servers
and is known to achieve a similar level of privacy without loss

of location accuracy. However, there are additional communi-
cation costs for the fake locations; thus, several cost reduction
techniques have been devised [22]. It is also challenging to
create realistic dummy locations, in particular, if an attacker
has additional temporal or context information [23] that helps
to discover the true location. Very early work was carried out
by Kido et al. [22], who established dummy trajectories in
which the next position is selected from the neighborhood of
current positions. The starting points can be selected randomly.
Similarly, Krumm [24] fakes a users’ driving movements by
using a database of actual GPS tracks from 253 drivers. They
compute the probability of a given position being a starting or
ending point to make a more realistic model. Chow et al. [25]
generate fake location traces by leveraging Google Maps. They
add simulated stops and noises in the routes in Google Maps
and output a fraction of the points according to the desired
time range.

In this paper, we focus ourselves on the dummy generation
approach. Different from the existing approaches, we assume
that an attacker has additional context knowledge of the user’s
location-related information, such as home or office addresses,
and external spatiotemporal information, such as addresses of
restaurants, etc. Few previous works assume prior information
held by an attacker. For example, Shokri et al. [26] pro-
vide a formal framework for the analysis of location-privacy
protection mechanisms in which the attacker’s prior mobility
information about each user is assumed. This information
is encoded either in the form of traces or as a matrix of
transition counts and then modeled as a Markov chain. Another
study [27] proposes a mechanism which preserves the optimal
location privacy of a user given the user’s service quality
constraints against an optimal inference attack. The study
assumes that the adversary knows each user’s location-based
service access patterns and underlying obfuscation algorithm,
and formalize the problem as a zero-sum Bayesian Stackelberg
game [27]. This research differs from our approach, as they
protect location privacy by transforming actual locations into
pseudo-locations, whereas we use dummy locations as well as
the actual location. Similar to our work, Niu et al. [28] propose
Dummy Location Selection (DLS) algorithms considering the
side information available to adversaries. They assume that the
adversary knows the user’s query probabilities and generate
realistic dummies using an entropy-based scheme. To the best
of our knowledge, we establish a novel method that is resistant
to another particular assumption of the adversary’s prior
knowledge, a user’s profile and spatiotemporal information.
We assume a more realistic scenario that is highly likely to
happen at current times when various social networking sites
and local search services are widely deployed.

III. OUR THREAT MODEL AND DUMMY GENERATION

A. Threat Model

A common architecture for location-based services consists
of mobile devices, positioning systems, communication net-
work, and service providers as shown in Fig. 1. Sensors in the
mobile devices send a user’s current location to the service



Fig. 1. A common architecture for location-based services.

provider using communication network, which computes and
responds to queries based on the user’s location coordinates.
To make our threat model, we assume an honest-but-curious
(HBC) service provider as the adversary. An HBC service
provider behaves according to a predefined protocol but tries
to derive sensitive information, i.e., the real location in this
case, from the stored data. Among various attack scenarios
mentioned in [23], we focus ourselves on the single-position
attack where the adversary analyzes a single query from
the user. Additionally, the user is assumed to reveal his/her
location in a sporadic way. In contrast, the device and the
positioning system are 100% trustful. We focus ourselves on
a device-based dummy generation technique in which the
decisions made by the technique are trusted.

B. Dummy Generation

To deal with the threat model described in Section III-A, a
dummy generation technique is devised which hides the true
location from the service provider by sending one or more
false locations, namely dummy locations or dummies, together
with the true one. As illustrated in Fig. 2, the overall procedure
operates as follows:

1) The user’s device is at position A.
2) The user sends position data A, including dummy loca-

tions, B, C, D, and E to the service provider.
3) The service provider creates services for all position

data, A to E, and sends the services to the user.
4) The user receives all the services and selects only the

desired service, i.e., that for A.
The real location A is sent to the service provider as well

as the four dummy locations B, C, D, and E (k=5). The user
knows the true location, whereas the service provider does not.
Thus, the service provider cannot distinguish the true location
from a set of k received locations (1 real location and k − 1
dummy locations). In this way, location privacy is preserved,
achieving k-anonymity [29].

C. Our Attack Scenario

We propose an attack scenario in which the HBC service
provider performs a context-linking attack [29] which assumes
that the adversary has prior knowledge about the user as
well as the external spatiotemporal information. Owing to the
wide use of social networking sites, homepages, and other

Fig. 2. Operation of a location-based service with the dummy generation.

Algorithm 1 Attacker’s Strategy
User information: L (locations related to a user, e.g., home
or office address)
Background information: TL (possible time and location
pairs, e.g., (12 p.m., restaurant))
Query input: t (time), C (k query locations), R (possible
answers)
Output: r (real location guess)
if (t, c) ∈ TL where ∀c ∈ C then

R← c
else

if c ∈ L then
R← c

else R← C
end if

end if
return r ← random pick from R

vulnerable internet websites, adversaries can easily collect
the target user’s information, for instance, their home, office,
school information, etc., and use the information to discern
the true location. For example, assume that a victim is at
home and is using a location-based service. The location-based
service will send the home address along with some random
dummy locations to the HBC service provider. If the HBC
service provider also knows the victim’s home address, the
service provider may guess that the victim is at home since
the location is more probable than any unfamiliar locations.
Further, the adversary may infer the real location using their
spatiotemporal knowledge. For example, if there is a location
of a restaurant among the candidates queried at lunchtime,



the adversary may infer that the real location is likely to be
the restaurant. This prior knowledge raises a critical issue for
existing dummy generation techniques because the knowledge
may help to guess the true location from among several
candidates.

The detailed procedure of our attack scenario is described
in Algorithm 1. First, an attacker guesses the real location
from among the possible answers that the adversary thinks
are realistic locations given a particular time. If there are
no such location and time pairs, the attacker selects user-
related locations, and otherwise, random locations. If multiple
matches exist, the adversary selects randomly among the
matches. In this paper, we generate dummy locations that are
robust to the attack scenario presented above.

IV. OUR PROPOSED METHOD

In this section, we describe a new dummy generation
method that is robust to an HBC service provider that has
prior knowledge about the user and the context (Section III-
C). Our approach is based on the following ideas:

• Generate dummy locations where the target user fre-
quently visits at the given time.

• Generate dummy locations that are predicted to be vul-
nerable from the user’s perspective.

We calculate conditional probabilities to tackle the first idea,
and add a weighting scheme to consider the second idea.

A. Generating Frequent Locations

Our approach carefully chooses dummy locations using
conditional probability of locations given a time, predicting
the behavior of the target user at a particular time of day.
Equation (1) calculates the probability that a user is at a
specific location at a given time.

P (location|time) =
P (location ∩ time)

P (time)
(1)

Equation (1) calculates the probabilities of joint of events
location and time, and the probabilities of times. Additionally,
we normalize the data by adding 1 occurrence to every
location/time pair to prevent 0 probabilities. After calculating
the P (location|time) of all possible locations at the given
time, we generate dummy locations that result in the highest
probabilities excluding the real location. If the values of
P (location|time) are identical, we select the locations based
on the value of P (location). In this way, we can predict the
probable locations where a user is highly likely to be at the
give time.

B. Weighting Vulnerable Time/Location Pairs

We guess the vulnerable locations that the adversary
may know and use them as dummy locations. Most social
networking sites ask for similar location-related information,
specifically current home and office addresses, school,
hometown, and more. Therefore, users can predict their
vulnerable information based on their disclosure patterns on

Fig. 3. KAIST campus map.

those websites. Further, the user knows where he/she often
goes at a particular time. Our method generates dummy
locations for those vulnerable place and time pairs to confuse
the attacker. For each vulnerable location and time pair
P (location ∩ time), our approach multiplies a weight,
risk, where the risk > 1. This means that we assign more
emphasis to the location and time pairs that are predicted to
be vulnerable, e.g., the times and the locations that the user
frequents. As a result, we have (2).

P (dummy) =
P (location ∩ time) · risk

P (time)
(2)

• risk > 1, if the location/time pair is vulnerable
• risk = 1, if the location/time pair is not vulnerable

Finally, we generate dummy locations from the top
P (dummy) in (2).

V. EXPERIMENTAL DESIGN AND EVALUATION

To evaluate our approach, we performe experiments based
on real logged data of a person. The experiments are designed
to answer the following questions:

Q1 How robust are our dummy locations generated by
conditional probabilities against the attack scenario?
Q2 How does weighting vulnerable location and time pairs
help ensure more robust dummy locations?

A. Settings

Dataset We construct a dataset that contains logged data of
time and location from one target user. The logs were recorded
for 17 days, resulting in 263 log data instances in total. We
reduce the scale of the locations to places on the KAIST
(Korea Advanced Institute of Science and Technology) campus
to obtain valid evaluation data within a limited time. We
consider 80 popular places that are indicated in Fig. 3. Among
the 80 possible places, the logged data contained 10 locations



TABLE I
TEN LOCATIONS ON THE CAMPUS LOGGED BY ONE PERSON

Location Number of Instances
Building N1 116

Cafeteria (North) 15
Twosome Place cafe 8

Sejong dormitory 109
Cafeteria (East) 1

Fitness center (Sejong) 2
Library 1

Duck pond 1
Cafeteria (West) 4
Coffee Bean cafe 6

Total 263

as specified in Table I. We train with 218 instances and test
our method with 45 instances that consists of the last 4 days
of data.

Attacker’s Scenario We assume that the adversary knows the
following information prior to the attack:
User’s information (L): We simulate the adversary’s attack and
search for the user’s information on the Internet. As a result,
the addresses of the user’s office, university, high school, and
hometown were retrieved. Among the locations we found, the
office (Building N1) and current residence (Sejong dormitory)
were locations on the KAIST campus.
Spatiotemporal information (TL): We assume that the adver-
sary knows all the cafeterias and cafes, residences, and office
buildings on the KAIST campus. Further, the adversary has
general knowledge that people normally go to cafeterias or
cafes during mealtimes (7 a.m. – 9 a.m., 11 a.m. – 1 p.m.,
and 5 p.m. – 7 p.m.), residences to sleep during late night (2
a.m. – 6 a.m.), and works during the afternoon (2 p.m. – 4
p.m.).

The attacker guesses one real location conforming to the
strategy (Algorithm 1) mentioned in Section III-C.

Performance Measure We compute the average probabil-
ity that the attacker correctly identifies the true location(r).
According to our attack scenario in Section III-C, the ad-
versary randomly chooses from the possible real location
candidates(R) that are selected using prior information about
the user and the spatiotemporal knowledge. The success
probability of attacker is calculated as in (3). The lower the
probability, the more difficult it is for the adversary to identify
the true location from the dummy locations, thus, the more
resistant the method is to attack.

Success Probability of Attacker =


1

|R|
if r ∈ R

0 if r /∈ R

(3)

B. Experimental Results

We evaluate robustness against the suggested attack strategy
by comparing our method with two other schemes. The
baseline approach is the method used in [22] which gener-
ates dummy locations randomly, each location having equal

Fig. 4. Comparison of success probability of attacker and different k-
anonymity.

Fig. 5. The performance of our approach according to different risk and k.

probability. The DLS algorithm is introduced in [28], which
uses an entropy-based scheme. Additionally, we indicate the
theoretical result from the optimal k-anonymity algorithm, in
which the probability of guessing the real location is 1/k.

Fig. 4 compares the result of our dummy generation method
(risk=1) and the other two methods. We show results using
different k-anonymity by changing the number of dummy
locations. The graphs clearly demonstrate that our approach
results in lower probability that the attacker correctly identifies
the true location, which means our approach is safer in the
face of the attacker’s suggested strategy. On average, when
our method is used, the attacker succeeds 4.6% less often than
when the DLS algorithm is used and 35.6% less often than
when the random scheme is used. Further, as k (the number of
dummy locations) increases, the performance also increases,
which is a reasonable result.

Next, we evaluate our weighting scheme for vulnerable time
and location pairs which is described in (2). We set vulnerable
time/location pairs according to the user’s schedule: (2 a.m. –
6 a.m., Sejong dormitory), (8 a.m., Cafeteria (East)), (2 p.m. –
6 p.m. and 8 p.m. – 9 p.m., Building N1), (11 a.m. – 12 p.m.
and 17 p.m. – 18 p.m., cafeterias and cafes on the campus)



TABLE II
COMPARISON OF DUMMY LOCATIONS WHEN A QUERY IS GIVEN AT LUNCHTIME.

Real query Cafeteria (East), 12 p.m.
Approach Dummy 1 Dummy 2

Random [22] Building E12 Building W5
DLS [28] Library Duck pond

Our approach (risk=1) Building N1 Cafeteria(North)
Our approach (risk=5) Cafeteria(North) Twosome Place cafe

TABLE III
COMPARISON OF DUMMY LOCATIONS WHEN A LOCATION WITH LOW QUERY PROBABILITY IS GIVEN.

Real query Eoeun Hill, 3 p.m.
Approach Dummy 1 Dummy 2

Random [22] Fitness center (Areum) Cafeteria (North)
DLS [28] Duck plaza Building E16

Our approach (risk=1) Building N1 Sejong dormitory

The risk weight for vulnerable locations is set from 1 to 9 to
test our method. Table 5 demonstrates that our approach using
risk weight results in lower probability of attacker’s success
than the approach using no weight (risk=1), meaning that in
the former it is more difficult to identify the true location.
Moreover, the effect of using risk is clearer when lower k is
used: the case where k is 2 shows the greatest improvement.
The reason for this is that a large k, meaning many dummy
locations, already includes most of the realistic locations we
have in the dataset. Thus, we can prove that k = 3 is enough
for the user in our experiment. On the other hand, we can assert
that our approach can be effectively applied to location-based
services which lower network cost is preferred (lower k). If
an application allows only one dummy location to be sent to
the service provider, our approach will generate much safer
dummies.

C. Qualitative Analysis

Our method takes time into consideration, which gives more
realistic dummy locations. For example, Table II shows two
dummy locations generated by different schemes when given
a query at 12 p.m. (around lunch time). The random approach
[22] generates irrelevant locations inconsistent with both the
user’s query history and the time. The DLS [28] algorithm
generates dummy locations based on query probabilities which
do not take the time into account. Since the query, cafeteria
(East), has similar query probability to the library and the
duck pond, the DLS algorithm generates those locations as
dummy locations. Additionally, we observe that this approach
often generates cafeteria locations during late-night hours,
which is intuitively unreasonable since cafeterias normally
do not open at 4 a.m. The reason for this is that cafeterias
have high query probabilities and the DLS approach selected
them as dummy locations regardless of the time. On the
other hand, our approach generates Building N1 (the user’s
office) and the cafeteria (North) as dummy locations. This
means that Building N1 and the cafeteria (North) were the
most frequently visited places at 12 p.m. in previous days.
The cafeteria (North) is highly likely to be visited around

lunch time and Building N1 is where the office of the user
is situated. Thus, our dummy locations seem to be more
realistic compared to other locations. If risk is set to 5,
contextual information is more emphasized and cafeterias and
cafe locations are more preferred around lunch time. This
results in the cafeteria(North) and Twosome Place cafe, which
are also very realistic to an adversary with inference ability.

Furthermore, our approach handles locations with low query
probabilities differently. For instance, what kind of dummy
locations are generated when the user visits a new place?
This situation is simulated in Table III. Eoeun Hill is a new
place which the user never has visited before: thus, its query
probability is zero. The random approach selects randomly
from all possible locations in campus without considering
query probabilities. Consequently, the dummy locations that
are generated can be irrelevant, such as the fitness center
(Areum), or relevant with good luck, such as the cafeteria
(North), which is a place that the user visited before. However,
the lucky cases are very rare because there are so many places
in the area, whereas people normally go to a limited set of
places. The DLS approach generates dummy locations that
have similar query probability to that of the real location.
Therefore, in this case, the method generates places that the
user never has visited before, such as the duck plaza and
Building E16. All dummy locations and real locations are
new to the attacker. However, if there are some locations that
are familiar to adversary, the adversary may select familiar
ones rather than new locations. This idea is implemented
in our approach, which generates places with high query
probabilities regardless of whether the real query has low
probability. In Table III, our approach generates Building N1
(the user’s office) and Sejong dormitory (the user’s residence)
as dummy locations which are much more likely than the new
place, Eoeun Hill. Therefore, our approach can generate more
tempting dummy locations compared to other schemes.

In spite of the good aspects mentioned, our approach re-
quires some memory space to save the vulnerable location/time
pairs when risk is used. In addition, we focus ourselves on
the single-point attack in this research and we show that



our method is simple and effective in such an attack sce-
nario. However, our approach may become vulnerable when a
multiple-position attack is executed, which may find patterns
from multiple points. We plan to deal with multiple-position
attacks in future studies.

VI. CONCLUSION AND FUTURE WORK

In this paper, we describe an attacker’s strategy in a
location-based system where there is an honest-but-curious
service provider that has prior knowledge of the user and exter-
nal background information. To tackle the threat, we introduce
a dummy generation method that generates effective dummy
locations using conditional probabilities given a particular
time. Further, we show that the location privacy is enhanced
when considering spatiotemporal information. Experimental
results show that our simple statistical method provides more
effective dummy locations than other methods.

We demonstrate that our dummy generation method is
successful in single-position attack scenario. We plan to extend
our method to handle multiple-position attacks. We believe our
simple and effective approach can be easily deployed in real-
world location-based services to enhance the location privacy.
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