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Abstract

Till date, the cryptanalysis of iterated ciphers are mainly based on dedicated metrics like linear bias
or differential or their variants (mostly). The attacks are dependent on design of cipher[Hey02]. To the
best of our knowledge, no successful attempt been made to generalize the choice or selection of metrics;
known or unknown. In this paper we try to use the state of the art statistical tools to derive a method of
generic attack against iterated ciphers. We present only the theoretical setup here. The simulation results

are work under progress.

1 Introduction

Statistics plays a key role in cryptanalysis!. Although
statistical analysis alone will rarely give solutions to
cryptographic systems, it often plays the central role
in a method of attack. The probabilistic variation of
plaintext, or possibly of keys, forms the basis of many
cryptanalytic techniques [Kul76]. The Ph.D. thesis of
P. Junod[Jun05] gives an overview. Statistical infer-
ence is the process of making statements about the
properties of a population based on a sample of possi-
ble observations and any other available information.
Bayesian inference utilises Bayes’ theorem, extended
to include currently available information, to modify
opinion by experience. [Lin65, Pre89] give good in-
troductions to Bayesian inference. A region S, is a
100(1 — «) credible region if

/ m(0x)dd =1 — «
Sa

The problem, similar to that encountered in classical
inference, is that there may be any number of re-
gions containing a (1 — «) proportion of the posterior
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distribution. However it seems reasonable to choose
S. so that S, does not exclude any value of § more
probable than any value of 8 already in S,.

In this paper we use the Bayesian Inference tech-
niques to analyze the block ciphers. We first de-
rive a basis function which shall allow us to compute
component-wise [ikelihood for any iterated cipher.
Then Gibbs sampling method is used for posterior
sampling. We follow the Markov Chain - Monte Carlo
method to achieve conditional distributions and even-
tually the credible regions.

2 The methodology

Let p = (p1,...,pn) be an input (plain-text), k be
the secret key, which gives birth to the r (number
of rounds in the cipher) round keys = (k!,... x")
each of n bits by the key-generation algorithm. The
encrypted message ¢ = (¢q,...,¢,). We denote the
bit positions by subscipts and different sets by super-
scripts.

Let our data set be D = (¢! = f(p',k),...,c™ =
f(p™, K)) be the set of outputs corresponding to in-
puts {(p",K),..., (P, K)}.

Now let, ¢™*! = f(p™*! k), where f(-,) is the
cryptographic function, ¢™*! is known but p™*+! and

425 -



x are unknown, our objective is to obtain the poste-
rior distribution of (p™*!, k), given D and ¢™*?; in
particular, we are interested in the marginal poste-
rior of k, given D and ¢™*!. Thus, we are in an
inverse problem set-up: given the inputs (p, k), the
response ¢ = f(p, k) is known, but we are interested
in obtaining the inverse of ¢, given by £ '(c). Note
that, given k, p = f (e, k) is known completely.

2.1 The Reed-Muller (basis) repre-
sentation

It is well-known that any function g : FN —— F can
be represented using the following Reed-Muller ex-
pansion:

(1)

where N is integer, @ = (aq,...,an), pla(w) =
H;-V:l w;‘j are the basis functions, with «; € {0,1}
for all j = 1,2,...,N; the coefficients Cy, € {0,1}
for € FV. In the above, we define w9 = 1 and
w]l = U}j.

We exploit the above Reed-Muller expansion prin-
ciple to represent our unknown, multidimensional,

Boolean function f : Fy — Fs.

g(’w) = @aeFNcaua(w)a

Componentwise Reed-Muller representation

Note that a valid Reed-Muller based basis function
representation of the i-th component f;(x,k) is as
follows:

(2)

where the coefficients C; o and jiq () are of the same
forms as in Eq.(1).

fi(mv K) = Daerzn Ci,atua (xv K’)v

Prior on the Reed-Muller coefficients
We assume that, for each ¢ and a,

Cia d Bernoulli(pe)-

(3)
Defining
rc = Z Z Ci7a7
i=1 a€F2n

the prior on C = {Cj o : i =1,...,n,a € F"} is
given by

(4)

[C] = pe(l—pe)"?re,

(5)
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where Z = 227,
The likelihood

We write Dy, 11 = (D,y,,,,)’, the data set D,
augmented with y,, ;. The likelihood is given by

L(Dm-‘rl; C, T, K) = H 6{yj} (f(mja K’j))
(6)
= H(s{yj} (fC(wjvmj))

j=1
(7)

X0y, 3 (f (2, k)

X0y, 1} (fe(T, K))

In practice we will approximate (7) by

L(Dpir;icx,k) = [[0pw,.0 (fola; k)
j=1

(8)

In Eq.(8), B(y,e) = {z : d(y,z) < €} is an e
neighbourhood of y, where € > 0 and d is a suitably
chosen metric that is capable of measuring distances
between any two values in F2”. We consider the Ham-
ming distance as a suitable metric between any two
elements u = ujug - - - U9, and v = vV vy - - - Vo, Where
ug, v; € {0,1} for each i:

XéB(ym+17€) (-fc(wa K’))

2n

Z(ui D v;)

1=1
2n

- Y-l
i=1

The above distance, which can be easily seen to sat-
isfy all the properties of a matric, can be interpreted
as the number of position-wise mismatches.

Clearly, as ¢ — 0, L(Dpi1;¢,¢,k) —
L (D,,+1; ¢, z, k) pointwise. Given a suitable choice
of €, the number of basis functions used in the rep-
resentation f.(-,-) of f(-,-) is the least number such
that fe(y;,K;) € B(y,,¢) for each j =1,...,m.

d(u,v) (9)

(10)

Prior on (x, k)

We assume that a priori, for each j,
T ~ Bernoulli(p,) independently,  and
kj ~ Bernoulli(p), independently.
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The joint posterior
The joint posterior is given, up to a proportionality
constant, by

[C=c,X =2, K = K|[Dp1]
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function (provided it is known) to obtain p. This de-
terministic simulation scheme is likely to improve the
accuracy of the simulations of the other unknowns ¢
and K.

x [C=¢ x[X =x]x[K = K|

XLe(Dpy1;€, 2, K).

2.2 Computation of the posterior us-
ing Gibbs sampling

Given arbitrary initial values of «, k, drawn perhaps
from their respective prior distributions[CG92].
The sample is drawn from the full conditional
distributions [C|Dy,+1, X, K], [K|D41,C,X],
and [X|D,,+1,C, K]. In fact, in what follows, we
will find it easier to sample, for each 1 = 1,2,...,n,
sequentially from [Ci.al Dm+1,C—i—a, T, K,
[ki| D1, ¢, 65,  [2i|Dmy1, ¢, —i, K], where
C—i,—a = C\{Cip“ K_; = K/\Iii, and r_; = CL’\J?l

Given an initial value (C(O)7 K(O),X(O)), for each
i=1,2,...,n, at each iteration ¢t = 1,2,..., we gen-
erate samples sequentially

Cz(t«l ~ [Ci,a|Dm+17 C(—t;i)ww(t_l)a H(t_l)]§

4 el gt
20~ [Ii\DmH,CEZ, C(_t;i)a,m(_ti_l), o

We discard the samples corresponding to the first
B iterations as burn-in (a thumb rule says that B =
20,000 is often adequate), and then keep the samples
corresponding to the next T (T = 50,000 is often
adequate) iterations for the inference.

Adequate  choice of the initial  values
(e, k©® 20 is important for fast convergence of
the Gibbs sampler. Below we discuss the choice of
the initial values, while also shedding light on the
choice of € and the number of basis components in
the Reed-Muller representation of the system.

; and
n(ti_l)].

i 0 TV—

Hgt) ~ [Ki| D1, €

2.3 Deterministic
given c and K

simulation of p

Given ¢, the function f.(-,-) is known. Since knowl-
edge of the key k facilitates direct inversion of the
function f,. to obtain p, it seems that given our cur-
rent value kK we can directly use the deterministic

3 Summarization of the poste-
rior distributions

For objects in ", such as X and K, the summaries
are not straightforward to derive as in the cases of real
random variables. For this we introduce below the
concept of “central estimate”; our approach will be
akin to the “central clustering” approach of [SMD11]
in the context of Bayesian clustering.

3.1 Definition of Central Estimate

Motivated by the definition of mode in the case of
parametric distributions, we define that z* € F™ as
“central”, which, for a given small € > 0, satisfies the
following equation:

P({zeF":d(z",2) <e€})

= su/pP {zeF":d(2,2z) <e}). (11)

Note that z* is the global mode of the distribution
as € — 0. Thus, for a sufficiently small ¢ > 0, the
probability of an e-neighborhood of an arbitrary value
z', of the form {z € F" : d(2/, z) < €}, is the highest
when z’ = z*, the central estimate.

The above definition will hold for all positive e if
the distribution of z is unimodal. However, for mul-
timodal distributions of z, the central estimate will
not remain the same for all such e. For instance, due
to discreteness of the distribution of z, for some ¢, the
neighborhood of the global mode may contain just a
few values of z (other than the global mode), while
for the same ¢, the neighborhood of some local mode
may contain many more values. This would yield the
local mode as another central estimate. Thus, by al-
lowing € to vary uniformly over (0, 1), all the modes
of the distribution of z can be detected, including the
global mode, the latter obtained by letting e — 0.
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3.2 Construction of desired credible
regions of clusterings

Given a central estimate z*, one can then obtain, say,
an approximate 95% posterior density credible region
as the set {z € F" : d(z,z*) < €}, where €* is such
that

P{zeF":d(z,2") <€}) ~0.95. (12)
In Eq.(12) €¢* can be chosen adaptively by starting
with €* = 0 and then slightly increasing €* by a quan-
tity ¢ until (12) is satisfied. In our case we may chose
¢=10"19,

Approximate Highest Posterior Density (HPD) re-
gions can be constructed by taking the union of the
highest density regions. We next discuss an adaptive
methodology for constructing HPD regions[MHCIO00].

3.3 Construction of desired HPD re-
gions of clusterings

Assume that there are &k modes, {z7,...,2}}, ob-
tained by varying e of the neighborhoods {z € F" :
d(z,w) < e};w € F" uniformly over the interval
(0,1), and following the principle described in Section
3.1. Also consider k €*’s, {€],...,€;}. Consider the
regions R; = {z € F" : d(2},2) < € };j = 1,... k.
Set, initially, €] = €5 =--- =¢; =0.

Step 1 For ¢ = 1,...,N(= 2"), if the z; € F" does

not fall in R; for some j, then increase € by a
small quantity, say, (. As before, we may chose
¢ =10"10,

Step 2 Calculate the probability of U?Zle as P =
P (US_y R;).

Step 3 Repeat steps (i) and (ii) until P ~ 0.95 or any

desired probability.

Step 1 implicitly assumes that, since z; ¢ R;, R;
must be a region with low probability, so its expan-
sion is necessary to increase the probability. This ex-
pansion is achieved by increasing €} by ¢. This step
also ensures that the sets I2; are selected adaptively,
by adaptively increasing €;. The final union of the
C;’s is the desired approximate HPD region.
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4 Future work

We have presented the theoretical outline of our pro-
posed scheme. Immediate future work is to finish
the simulations and see how we stand with respect to
existent attacks based on attack complexities.

We have plan to extend our scheme for cipher only
attach even when the function (cipher) is unknown.
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