
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks (2014)

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.1159

RESEARCH ARTICLE

Differentially private client-side data deduplication
protocol for cloud storage services
Youngjoo Shin1,2 * and Kwangjo Kim1

1 Department of Computer Science, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Korea
2 The Attached Institute of ETRI, Yuseong-gu, Daejeon, Korea

ABSTRACT

Cloud storage service providers apply data client-side deduplication across multiple users to achieve cost savings of
network bandwidth and disk storage. However, deduplication can be used as a side channel by attackers who try to obtain
sensitive information of other users’ data. We propose a differentially private client-side deduplication protocol. A storage
gateway allows efficient data deduplication while reducing the risk of information leakage. Its security can be strongly
guaranteed according to the definition of differential privacy. We evaluate the effectiveness and efficiency of the proposed
protocol through experiments. Copyright © 2014 John Wiley & Sons, Ltd.

KEYWORDS

cloud storage; secure data deduplication; storage gateway; differential privacy; information leakage-resilient protocol

*Correspondence

Youngjoo Shin, The attached institute of ETRI, Yuseong-gu, Daejeon, Korea.
E-mail: s.youngjoo@kaist.ac.kr

1. INTRODUCTION

Most cloud storage service providers utilize data dedu-
plication to save the cost of network bandwidth and disk
storage [1]. Client-side (or source-based) data dedupli-
cation technique eliminates duplicate copies of data (or
files) across multiple users before uploading them. It has
been known that this technique is not secure, because
by monitoring and analyzing network traffic, adversaries
can use (client-side) deduplication as a side channel to
obtain sensitive information of other users’ data [2,3].
Recently, some solutions have been proposed to pre-
vent such information leakage, but several problems still
remain unresolved.

Harnik et al. scheme [2] and its security-enhanced
version [4] obfuscate the occurrence of deduplication
by randomizing the event with certain probability. This
randomized approach, however, causes huge network
bandwidth consumption owing to the unnecessary file
upload. In addition, the schemes are based on the strong
assumption that all individual files are independent of each
other. This leads to our new attack, denoted by related-
files attack, that we propose in this paper. Security of these
approaches [2,4] are weakened by related-files attack in
which an adversary can take advantage of knowledge of
correlations among files. Olivier et al. proposed another
solution for secure deduplication [5]. Their idea is to run

the deduplication protocol at a home router provided by an
Internet service provider (ISP) and mix network traffic for
cloud storage with other service traffic. This solution, how-
ever, lacks flexibility because the fact that it requires an ISP
home router limits its uses to a specific service model.

Allowing efficient client-side deduplication while
reducing the risk of information leakage is still an open
problem. In this paper, we address this problem and
propose a secure client-side deduplication protocol. Our
solution utilizes a storage gateway, which is a network
appliance that resides at the customer’s premises and
provides APIs to access the remote cloud storage server.
Because they simplify interactions with cloud storage ser-
vices, storage gateways are gaining popularity and being
deployed as a key component in various cloud service
models, such as public, private, or hybrid cloud comput-
ing [6]. The key idea of the proposed solution is that
a storage gateway handles user requests for file uploads
and performs data deduplication on them on behalf of the
users (or clients). In this way, the network traffic for each
user request is merged together at the storage gateway’s
Wide Area Network (WAN) interface. Without generat-
ing unnecessary network traffic, this approach weakens the
link between the deduplication event and the amount of
actually transferred. This idea is similar to of Olivier et al.
solution [5], but using storage gateways gives flexibility for
adapting to various cloud service models.

Copyright © 2014 John Wiley & Sons, Ltd.

Client-side data deduplication protocol Y. Shin and K. Kim

For robust security, we apply a differentially private
mechanism to our proposed protocol. Differential privacy
is a security notion that has been presented in database
security literature to design privacy-enhanced statistical
databases [7–9]. By exploiting differential privacy, the
proposed protocol strongly guarantees that the presence
or absence of individual files in the cloud storage is
hard to infer from any side channel attacks, including
related-files attack.

The contributions of this paper are as follows. First,
we discuss the security weakness of the previous schemes
[2,4] that are based on the randomized approach. Second,
we propose a storage gateway-based solution that guar-
antees robust security, while providing network efficiency
and flexibility. Third, we analyze its security under the def-
inition of differential privacy and evaluate its effectiveness
by our experiments.

The rest of this paper is organized as follows: In
Section 2, we review the previously proposed schemes
and describe their security weakness. In Section 3, details
of our storage gateway-based deduplication solution are
described. In Section 4, we present a security analysis and
the experiment results of the proposed protocol. Finally, in
Section 5, we give the summary of this paper.

2. RELATED-FILES ATTACK

2.1. Related-files attack on Harnik et al.
scheme

We briefly review Harnik et al. scheme [2] and present its
security weakness.

2.1.1. The protocol description.

For every file F, a cloud storage server assigns a
threshold tF chosen randomly in a range [2, d], where d is a
security parameter that might be known public. The cloud
server keeps a counter cF , which represents the number
of previous uploads of a copy of F. When a client
uploads a new copy of F, the server performs (client-side)

deduplication if at least tF copies of F have been previously
uploaded (i.e., cF � tF) or if the copy is uploaded by an
identical user who has previously uploaded F; no dedupli-
cation event occurs otherwise. This protocol is illustrated
in Figure 1(a).

In order to analyze its security, let us consider the fol-
lowing three types of events where the adversary is about
to identify whether a copy of F was uploaded.

(i) (2 < tF < d) The adversary finds out that a dedu-
plication event occurs after uploading 2 < t < d
copies of F. This could be due to two cases:

(i-1) F already exists, and the adversary uploads
t = tF – 1 copies of F and

(i-2) F does not exist and the adversary uploads
t = tF copies of F.

(ii) (tF = 2) The adversary finds out that a deduplica-
tion event occurs after uploading a single copy of
F. It is the case that tF = 2 and a single copy of F
has been previously uploaded by another user.

(iii) (tF = d) The adversary finds out that a deduplica-
tion event occurs after uploading d copies of F. It is
the case that no copy of F was previously uploaded
and tF = d.

For F with 2 < tF < d, it can be shown that the events
of two cases (i-1) and (i-2) occur with equal probabili-
ties. Hence, a deduplication event gives an adversary no
information of the existence of F in the storage. On
the other hand, for F with tF = 2 or tF = d,
the adversary can easily learn the existence of F by
uploading just one or d copies of the file. Note that
the two events (ii) and (iii) are mutually exclusive and
each event happens with probability 1

d–1 . As a result,

with probability 1 – 1
d–1 , the scheme described previ-

ously leaks no information, which enables an adversary
to distinguish between the case that a single copy of F
was previously uploaded and the case that the file was
not uploaded.

(a) (b)

Figure 1. Randomized client-side deduplication protocol.

Security Comm. Networks (2014) © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Y. Shin and K. Kim Client-side data deduplication protocol

2.1.2. Related-files attack.

The security of Harnik et al. scheme stands on an
implicit assumption that all files are stored independently.
This assumption is too strong, because in real environ-
ments, some files are likely to be correlated to each other
and thus stored at the same server together. For instance,
some executable files may coexist to construct a software
package. We also consider that some document files with
the same content in different formats, such as doc, pdf, and
xml, coexist to support various document viewers.

Related-files attack exploits this correlations among
files. By uploading not only F but also other files related
to F, the adversary can infer the existence of F with
high probability. For Harnik et al. scheme, the probabil-
ity that the threshold of at least one is 2 or d among

n-related files is p = 1 –
�

1 – 1
d–1

�n
, and the probability

increases as n increases. Figure 2 shows the relationship
between the number of related files (n) and the probabil-
ity (p) that the adversary successfully obtains information
of F via related-files attack varying the security param-
eter d. For example, with 10 files related to F (i.e.,
n = 10), the adversary can determine the existence of
F with probability p = 0.45 (assume that d = 18),
which is much higher than p = 0.06 with no related files
(i.e., n = 1).

2.2. Related-files attack on Lee et al.
scheme

Lee et al. [4] observed that the probability of Harnik
et al. scheme that information of the existence of a file
is leaked to the adversary is not negligible in security
parameter d. Following the observation, they proposed a
security-enhanced version of Harnik et al. solution.

2.2.1. The protocol description.

In Lee et al. scheme, a threshold tF is initially set to d
for every file F, where d is a security parameter. For each
upload of a copy of F, the server randomly chooses r 2
{0, 1, 2} and calculates tF = tF – r instantly. Then, similar
to Harnik et al. scheme, deduplication occurs at client side
if cF � tF or the copy of F is uploaded by the identical
user; otherwise, deduplication is performed at sever-side.
Figure 1(b) illustrates this protocol.

As analyzed in [4], the adversary’s success probability
can be minimized when the security parameter d is selected
as a multiple of 3. The probability that the adversary learns

information of the existence of F is
�

1
3

�d/3
+
�

1
3

�d
.

2.2.2. Related-files attack.

The security of Lee et al. scheme [4], however, stands
on the same assumption as Harnik et al. method that files
are not related to each other and stored independently.
The probability that the adversary finds out deduplica-
tion events for at least one out of n related files is p =

1 –

�
1 –

�
1
3

�d/3
–
�

1
3

�d
�n

, which increases as the number

of related files increases. Figure 3 shows the relationship
between the number of related files (n) and the probability
(p) varying the security parameter (d). As shown through
the graph in Figure 3, Lee et al. solution is still vulnerable
to related-files attack.

3. THE PROPOSED PROTOCOL

3.1. Background

The notion of differential privacy was introduced by
Dwork et al. [7–9]. It is a standard privacy notion for

Figure 2. Success probability of related-files attack against Harnik el al. scheme.

Security Comm. Networks (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Client-side data deduplication protocol Y. Shin and K. Kim

Figure 3. Success probability of related-files attack against Lee el al. scheme.

release functions over sets of data items (or databases).
Differential privacy is defined for randomized functions
(i.e., distributions over the set of possible outputs) and can
be formally stated as follows.

Definition 1. A randomized function Q : D! R satisfies
�-differential privacy if for all r 2 R and for all data sets
D and D0 that differ in a single item

Pr{Q(D) = r} � e� � Pr{Q(D0) = r}

The definition states that the probability of any result
of the randomized function Q is almost independent of
whether any individual item among the data set is present
in the input. For each item, it is almost as if the item was
not used in the computation of the function, a very strong
baseline for privacy.

Differential privacy is actually preserved by adding
noise to the output of the function. Intuitively, the noise
introduces uncertainty about the real value of the output,
which naturally makes the real values of the inputs also
uncertain to an adversary. The basic method for imple-
menting differential privacy mechanism is to use Laplacian
noise, which is a symmetric exponential distribution [7].
The mechanism is additive, that is, given a function, it
approximates its output by computing the function exactly
and then adding noise sampled from a specific distribution.

Comparing with alternative privacy definitions, differ-
ential privacy gives strong security guarantee. Unlike the
notion of differential privacy, many other privacy notions
do not provide a direct guarantee or are even vulnerable
to auxiliary information that an adversary might know. For
example, the notion of k-anonymity [10], which provides
security on releasing data such that the identity of individ-
ual data items remains private, is weaker than the notion

of differential privacy. That is, k-anonymity is provided if
the information for each item cannot be distinguished from
at least k-1 other items. However, this definition gives no
guarantee if the adversary has knowledge of some auxiliary
information about the data sets [11].

3.2. System and attack model

We consider a general cloud storage service model that
involves the following three entities (Figure 4).

� Cloud storage server (CSS): this is owned by a cloud
service provider and provides many storage resources
as a service to its users through WAN (or the Internet).

� Storage gateway (GW): this is a local disk-attached
network server that resides at the customer’s on-
premises site and provides an interface to access data
at CSS. Every user request for a file upload or down-
load is processed by GW, which in turn performs
data deduplication and transfers the actual user data
to CSS.

� Users (U): a user outsources its data to CSS through
GW. Data deduplication becomes transparent to U
because the process is performed on GW.

An adversary A, acting as a user by creating its own
account or compromising the accounts of others , interacts
with GW by uploading or downloading some data. Dur-
ing the interactions, A could view all network traffic and
its content between A (including compromised users) and
GW. We assume that a connection from GW’s WAN inter-
face to CSS is encrypted by Secure Socket Layer (SSL) or
Transport Layer Security (TLS) protocol. As recent results
[12,13] show that SSL/TLS keeps the content of commu-
nications securely from being sniffed by adversaries unless

Security Comm. Networks (2014) © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Y. Shin and K. Kim Client-side data deduplication protocol

Figure 4. The system model of the proposed protocol.

some flaws in its implementation exist, A can monitor only
the amount of traffic at the link between GW and CSS, but
not its content. The goals of A are (1) to determine the exis-
tence of a file of interest in CSS and eventually (2) to learn
the content of the file. A may have auxiliary information
that several files coexist with the file of interest. Moni-
toring the network traffic, A, will mount a sophisticated
traffic analysis attack with powerful computing resources
to achieve its goals.

3.3. Design goal

According to the attack model described previously, A
views a deduplication as an oracle and will use it when
mounting the attack. That is, A continues file uploading
and observing the amount of network traffic that eventually
occurs during the attack. Thus, the deduplication can be
modeled as a function QS(F), which takes a file F as input
and outputs the amount of network traffic. The output will
be determined by whether a storage S contains F or not.
Let us denote a storage without F by S1 and a storage with
F by S2 (i.e., S2 = S1

S
{F}). The attack can be stated that

A is trying to find out whether the storage S is S1 or S2 by
querying a function QS(F) one or more times. The primary
design goal of the proposed protocol is to make QS(F) ran-
domized and satisfy �-differential privacy so that A hardly
distinguishes between S1 and S2.

Definition 2. We say that storage S is a set of files in CSS.
A randomized function QS(F) gives �-differential privacy if
for all storages S1 and S2 that differ in a single file F (i.e.,
S2 = S1

S
{F}) and all 0 � � � |F|,

Pr
˚
QS2 (F) = �

�
� e� � Pr

˚
QS1 (F) = �

�

The proposed protocol is expected to achieve the
following security and performance goals.

� Single file privacy (�-differential privacy): the pro-
posed protocol should give �-differential privacy so
that A cannot distinguish between two storages S1

and S2, where S2 = S1
S

{F}. That is, the proposed
protocol should prevent A from using deduplication
as a side channel.

� Related files privacy: the proposed protocol should
prevent A from obtaining any information even when
knowing some related files {F1, F2, : : : , Fn} for any
n > 1. That is, A should not gain a higher advantage
in distinguishing S1 from S2 = S1

S
{F1, F2, : : : , Fn}

than distinguishing it from S2 = S1
S

{F}.
� Efficiency: network traffic overhead that is caused

by the proposed protocol should be minimized. We
also require that the proposed protocol should not
significantly degrade the system performance on GW.

3.4. Protocol description

The proposed deduplication protocol is implemented on
GW. The main idea is that (1) for hiding the deduplica-
tion from A, GW runs a differentially private algorithm
when deciding the volume of data to be sent to CSS; (2)
for minimizing the network overhead, GW maintains a
queue, which we denote T , in which data accepted from
U is temporarily stored before transmission, and if needed,
GW uses data from T as noise traffic instead of generating
dummy traffic. The proposed protocol is composed of two
operations: File Upload and File Download.

3.4.1. File upload operation.

U uploads a file F to GW. During this upload, dedu-
plication is not run, and all bytes of F are always sent to
GW. Once F is accepted, GW runs Algorithm 1 to per-
form deduplication and transfer the data to CSS. Let us
denote by {b1, b2, : : : , b|F|} a sequence of bytes of F and
by {c1, c2, : : : , c|T |} a sequence of bytes of data stored in
T . The details of Algorithm 1 are as follows.

(1) Put F = {b1, b2, : : : , b|F|} into the local disk of
GW.

(2) Communicate with CSS to check if F has already
been stored in CSS. In detail, CHECKFILEEX-
ISTS() algorithm calculates h(F), a hash value of F,

Security Comm. Networks (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Client-side data deduplication protocol Y. Shin and K. Kim

Algorithm 1

1: procedure UPLOAD(F)
2: Buffer ;
3: FileExists CHECKFILEEXISTS(F)
4: � GETTRANSFERSIZE(|F|, FileExists)
5: if FileExists is false then
6: Buffer {b1, b2, ..., b�}
7: ENQUEUE(T , {b�+1, b�+2, ..., b|F|}) F Put

|F| – � bytes of F into T
8: else
9: {c1, c2, ..., ct} DEQUEUE(T , �) F Get �

bytes of data from T
10: Buffer {c1, c2, ..., ct}
11: if t < � then

12: DummyBytes
R
 � {0, 1}(|� |–|t|)�8

13: Buffer Buffer || DummyBytes
14: end if
15: end if
16: TRANSFER(Buffer) F Send data in Buffer to CSS
17: end procedure

and sends h(F) to CSS. Then, it receives an answer
FileExists 2 {true, false} from CSS.

(3) Compute � (0 � � � |F|), the amount of data to
be actually transferred to CSS. In order to deter-
mine � , GETTRANSFERSIZE() (Algorithm 2) uses
Poi(�), which generates a Poisson-distributed ran-
dom number from a finite interval [0, 1] with a
mean �.

Algorithm 2

1: procedure GETTRANSFERSIZE(|F|, FileExists)
2: if FileExists is true then

3: ˛
R
 � Poi

�
1+�

2

�
F � is a privacy parameter

(0 � � � 1)
4: else

5: ˛
R
 � Poi

�
1–�

2

�
6: end if
7: � d˛|F|e F |F| is the size of F in bytes and

0 � ˛ � 1
8: return �
9: end procedure

(4) If F does not exist in CSS (i.e., a dedupli-
cation event does not occur), all bytes of F
should be transferred to CSS. A subset of bytes
{b1, b2, : : : , b�} of F is moved to Buffer from the
local storage for transmission. The remaining bytes
{b�+1, b�+2, : : : , b|F|} are then enqueued into T by
running ENQUEUE() algorithm.

(5) If F already exists in CSS (i.e., a deduplication
event occurs), it is not necessary to transfer F to
CSS. Hence, � bytes of data {c1, c2, : : : , ct} are
dequeued from T by running DEQUEUE() and then

put onto Buffer for transmission. If there are not
enough data in T (i.e., t < �), dummy bytes are ran-
domly generated and padded to Buffer so that the
total size becomes equal to � .

(6) Finally, the data in Buffer are sent to CSS by
running TRANSFER().

3.4.2. File download operation.

U sends GW a request for downloading F. Upon receiv-
ing, GW retrieves F in the storage of CSS. If found, GW
returns the requested file F to U. In order to enhance per-
formance for file downloading, GW may first find F in the
local storage. If F is found on GW, it can be immediately
sent to U.
Security consideration. Adversaries may exploit the file
download operation when trying to learn the existence
of F on CSS. If GW keeps files at the local storage for
some time (i.e., for average upload time taken for each file
on GW to complete its upload to CSS) regardless of the
deduplication result, adversaries will have no information
on F.

4. EVALUATION

4.1. Security analysis

We analyze the security of the proposed protocol in terms
of two requested security properties. For analysis, the pro-
posed protocol is modeled as a randomized function QS(F)
in this section. Suppose that an adversary algorithm A tries
to learn information on the file of interest in CSS.

4.1.1. Single file privacy.

A has no information on the occurrence of deduplica-
tion by monitoring the link between A and GW because
all bytes of the file are always sent to GW at the link. At
WAN link of GW, the content of the network is not visi-
ble to A because of encryption; thus, A has no option but
to conduct traffic analysis by querying QS(F). The output
of QS(F), which we denoted by � in the previous section,
is actually determined by Algorithm 2. By the definition
of Poisson distribution, Pr{Poi(�) = x} = �xe–x/x!. It can
be shown that the proposed protocol satisfies the security
that is described in Definition 2 and hence gives single
file privacy.

Pr
˚
QS2 (F) = �

�
Pr
˚
QS1 (F) = �

� =
Pr
n
Poi

�
1–�

2

�
= ˛

o

Pr
n
Poi

�
1+�

2

�
= ˛

o

=

�
1–�

2

�˛
�

1+�
2

�˛ e
–1+�

2

e
–1–�

2

=

�
1 – �

1 + �

�˛
e� � e�

Security Comm. Networks (2014) © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Y. Shin and K. Kim Client-side data deduplication protocol

Single file privacy means that for any two storages
that differ on a single file, the proposed protocol will
release approximately the same volume of network trans-
mission on both storages. This property guarantees that
the presence or absence of an individual file will not affect
the output of the proposed protocol significantly. Thus, it
prevents the adversary A from using deduplication as a
side channel.

4.1.2. Related files privacy.

Let us denote three storages: S1, S2 = S1
S

{F}, and
S3 = S1

S
{F1, F2, : : : , Fn}, where F 2 {F1, F2, : : : , Fn}.

It is obvious that the computation of QS(F) is inde-
pendent of the rest of the files and Pr

˚
QS2 (F) = �

�
=

Pr
˚
QS3 (F) = �

�
. The ratio of probabilities is therefore

Pr
˚
QS2 (F) = �

�
Pr
˚
QS1 (F) = �

� =
Pr
˚
QS3 (F) = �

�
Pr
˚
QS1 (F) = �

�

This result implies that the statistical difference of
QS(F) between S1 and S3 is always equal to the difference
between S1 and S2. Hence, the advantage that A succeeds
in distinguishing between S1 and S3 (i.e., with knowledge
of related files {F1, F2, : : : , Fn}) is not greater than the
probability of distinguishing between storages S1 and S2,
which differ in a single file.

4.2. Experiments

We conducted experiments for evaluating the effectiveness
and efficiency of the proposed protocol. Our test bed con-
sisted of two servers, which acted as GW and CSS, with
an Intel Core processor i5 running at 2.8 GHz and 4 GB
RAM memory with a 2 TB hard disk. One server acting as

the GW is located at local area network and connected with
a PC, which simulates multiple clients. The other server
is located remotely over the Internet and acting as the
CSS. The data set used in our experiments consists of files
including Windows system files, office documents, and
media files, totaling up to 3 TBs. The data set’s duplicate
ratio (i.e., a proportion of redundant files in the data set) is
27.5%. Figure 5 shows cumulative file size distribution of
the data set. We split the data set into two groups of equal
size and put one group into CSS and used the other group
for uploading at client side during the experiment. Upload-
ing behavior by users was simulated such that the upload
event followed exponential distribution with its frequency
varying from 10 to 600 uploads per 10 min.

4.2.1. Network efficiency.

We first evaluated the network efficiency by measur-
ing traffic overhead and comparing the measurements with
the previous randomized schemes of Harnik et al. and
Lee el al. For the experiment, we simulated the previous
schemes with all network traffic passing through GW. In
the proposed and the previous schemes, traffic overhead is
measured at the outgoing (WAN) interface of GW to CSS.
Figure 6 shows the amount of accumulated traffic over-
head over time with varying security parameters. “Traffic
overhead” of the graph refers to the amount of extra band-
width consumption used to obfuscate the occurrence of
deduplication. In the proposed protocol, dummy traffic is
generated and transferred to CSS only if there are not
enough data in T . Hence, the extra bandwidth consumption
is quite small as compared to that of the previous schemes,
in which copies of duplicate data are always transferred
until it reaches the threshold. With the greatest security
guarantee (� = 0), the proposed protocol incurs 48 GBs in

Figure 5. Cumulative file size distribution in the data set.

Security Comm. Networks (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Client-side data deduplication protocol Y. Shin and K. Kim

Figure 6. Network transmission overhead over time.

Figure 7. Storage overhead (b refers to batch interval in minutes).

total, which is about 13% of the traffic overhead incurred
by the previous schemes with the lowest security guarantee
(d = 3).

4.2.2. System performance.

We also evaluated the system performance on GW by
measuring two metrics: required local disk capacity and
average processing time for each request. Both metrics are
sufficient to measure the required system resources on GW
for running the proposed protocol. For comparison, we
considered a batch algorithm that is similar to the proposed
protocol but performs in a naive way. The batch algorithm

immediately accepts user files and performs deduplication
but transfers them to CSS periodically every given batch
interval. For ease of comparison, we ran the proposed pro-
tocol such that at every batch interval, all the remaining
data in T were uploaded to CSS. Figures 7 and 8 show two
measurements under different batch intervals (60, 120 min)
and varying upload frequencies. In Figure 7, “Max stor-
age” refers to the greatest amount of data stored in the local
disk on GW during the experiment, which indicates the
disk capacity required to run these schemes. In Figure 8,
“Avg. processing time” refers to average time taken for
each upload request to complete its upload to CSS. The

Security Comm. Networks (2014) © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Y. Shin and K. Kim Client-side data deduplication protocol

Figure 8. Average processing time.

Figure 9. Tradeoff between security parameter(�) and average upload delay time (upload frequency is 600 per 10 mins).

results of this experiment indicate that the proposed proto-
col uses a decreasing amount of system resources on GW
as the number of users (i.e., upload frequency) increases as
compared to the batch algorithm.

While the proposed protocol can achieve higher secu-
rity, some delay may be incurred during file upload opera-
tion, because some parts of data will be delayed on GW. In
order to investigate this tradeoff between the security and
the performance, we measured average upload delay time
(i.e., average time taken for each remaining part of data on
GW to be uploaded to CSS) varying security parameters.
Figure 9 shows a result of the experiment. With no batch

interval (b = 1) and greatest security guarantee (� = 0),
average upload delay is about 27 mins. The delay can be
greatly reduced by increasing � or applying batch intervals
to the proposed protocol.

5. CONCLUSION

In order to achieve cost savings of network bandwidth and
disk storage, cloud storage service providers apply client-
side (or source-based) data deduplication techniques.
Unfortunately, deduplication can be used as a side chan-

Security Comm. Networks (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Client-side data deduplication protocol Y. Shin and K. Kim

nel by adversaries who try to obtain sensitive information
of other users’ data. Several solutions have been proposed
to prevent such information leakage. However, these solu-
tions are based on a strong assumption that all individual
files (or data) are independent of each other.

Observing this assumption, we proposed new attack,
which is called related-files attack, to the previous
approaches. In order to mitigate such an attack, we pro-
posed a storage GW-based secure client-side deduplication
protocol. A storage GW is a network appliance that pro-
vides access to the remote cloud server and simplifies
interactions with cloud storage services, and is used in
various cloud service delivery models such as public, pri-
vate, and hybrid cloud computing. The proposed solution,
by utilizing the storage GW as an important component
in the system design, achieves greater network efficiency
and architectural flexibility while also reducing the risk of
information leakage.

For more robust security guarantee, we applied a dif-
ferential private mechanism to the proposed protocol. Dif-
ferential privacy is a security notion that has been used
for designing privacy-enhanced databases. By exploiting
a differential private mechanism, the proposed protocol
strongly guarantees that the presence or absence of indi-
vidual files in the cloud storage is hard to infer from any
side channel attacks including related-files attack that has
been proposed in the paper.

For validation of the effectiveness and efficiency of
the proposed protocol, we conducted several experiments
using real data sets. The network efficiency and the sys-
tem performance of the proposed protocol were evaluated
by measuring traffic overhead, required local disk capacity
and average processing time for each request. The experi-
ments showed that the proposed protocol outperforms the
previous approaches.

By exploiting a differential private mechanism, the
security against any side channel attacks is strongly
guaranteed.

Acknowledgements

This research was funded by the MSIP, Korea in the ICT
R&D Program 2014 [1391104001] and the KUSTAR-
KAIST Institute, KAIST, Korea.

REFERENCES
1. Russell D. Data deduplication will be even bigger in

2010. Gartner 2010, Available at: http://www.gartner.
com/doc/1297513 [accessed on 24 March 2014].

2. Harnik D, Pinkas B, Shulman-Peleg A. Side chan-
nels in cloud services: deduplication in cloud storage.

IEEE Security and Privacy Magazine 2010; 8:
40–47.

3. Mulazzani M, Schrittwieser S, Leithner M, Huber M,
Weippl E. Dark clouds on the horizon: using cloud
storage as attack vector and online slack space, Pro-
ceedings of USENIX Security Symposium (SEC’11),
San Francisco, CA, 2011; 65–76.

4. Lee S, Choi D. Privacy-preserving cross-user source-
based data deduplication in cloud storage, Proceedings
of International Conference on ICT Convergence, Jeju,
Korea, 2012; 329–330.

5. Olivier, Neumann C, Montalvo L, Defrance S. Improv-
ing the resistance to side-channel attacks on cloud
storage services, Proceedings of International Con-
ference on New Technologies, Mobility and Security
(NTMS’12), Istanbul, Turkey, 2012; 1–5.

6. Zaffos S, Couture A. Hybrid cloud gateway appli-
ances expand cloud storage use cases. Gartner 2011,
Available at: http://www.gartner.com/doc/1516718
[accessed on 24 March 2014].

7. Dwork C, McSherry F, Nissim K, Smith A. Cali-
brating noise to sensitivity in private data analysis,
Proceedings of Conference on Theory of Cryptogra-
phy (TCC’06), LNCS, vol. 3876, New York, NY, 2006;
265–284.

8. Dwork C. Differential privacy: a survey of results,
Theory and Applications of Models of Computation,
LNCS, vol. 4978, Xi’an, China, 2008; 1–19.

9. Dwork C, Smith A. Differential privacy for statistics:
what we know and what we want to learn. Journal of
Privacy and Confidentiality 2010; 1(2): 135–154.

10. Sweeney L. k-anonymity: a model for protecting pri-
vacy. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems 2002; 10(5): 557–570.

11. Narayanan A, Shmatikov V. Robust de-anonymization
of large sparse datasets, Proceedings of IEEE Sympo-
sium on Security and Privacy (SP’08), Oakland, CA,
2008; 111–125.

12. Fahl S, Harbach M, Muders T, Baumgärtner L,
Freisleben B, Smith M. Why eve and mallory love
android: an analysis of android ssl (in)security,
Proceedings of ACM Conference on Computer and
Communications Security (CCS’12), Raleigh, NC,
2012; 50–61.

13. Krawczyk H, Paterson KG, Wee H. On the security
of the tls protocol: a systematic analysis, Advances
in Cryptology—CRYPTO’13, LNCS, vol. 8042, Santa
Barbara, CA, 2013; 429–448.

Security Comm. Networks (2014) © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

http://www.gartner.com/doc/1297513
http://www.gartner.com/doc/1297513
http://www.gartner.com/doc/1516718

	Differentially private client-side data deduplication protocol for cloud storage services
	INTRODUCTION
	RELATED-FILES ATTACK
	Related-files attack on Harnik et al. scheme
	The protocol description
	Related-files attack

	Related-files attack on Lee et al. scheme
	The protocol description
	Related-files attack

	THE PROPOSED PROTOCOL
	Background
	System and attack model
	Design goal
	Protocol description
	File upload operation
	File download operation

	EVALUATION
	Security analysis
	Single file privacy
	Related files privacy

	Experiments
	Network efficiency
	System performance

	CONCLUSION

