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Abstract— In this paper, we introduce an interesting tool to construct the k-out-of-N threshold
signature schemes, which we call as message block sharing. To achieve our goal, we first separate an
original message with large size into multiple message blocks with random size. Then, we give a partial
number of message blocks to N signers with combinatorial approach. We propose an example scheme
with our tool by implementing this to the lattice-based group signature scheme by Gordon et al. in
ASIACRYPT 2010.
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1 Introduction

After Ajtai’s seminal work [1] on lattices, lattices
have come up as a fascinating tool in cryptology. The
advantage of lattice-based cryptography can be certi-
fied from the fact that their security is based on the
worst-case hardness assumptions instead of average-
case hardness assumptions and the lattice-based cryp-
tography remains secure against quantum computers.
From these advantages, the range of applications of lat-
tices varies in many areas in cryptology recently.

Separately, a digital signature scheme is a protocol
that one party makes a signature for a message with
the private signing key and the other party can verify
the signature if he has the public verification key. But
if we want to decrease the strength of the signer, the
signature should be signed by several members in a
group instead of one party. One example is a k-out-of-
N threshold signature scheme, which is a protocol that
approves any subset of k members among N members
to produce a valid signature, but it is impossible to
generate a valid signature in case fewer than k members
are involved in the protocol. So, any conspiracy of
less than k corrupted members cannot produce a valid
signature.

In the current technology with quantum computer
and big data, one interesting issue is how to apply the
cryptographic primitive to be robust to quantum com-
puter attack and the other is how we distribute the
power of the signer so that we can control the message
with huge size more carefully. Indeed, our lattice-based
threshold signature scheme satisfies both conditions.

1.1 Related Approach in Threshold Lattice-
based Cryptography

Only a few works have considered lattice-based sig-
nature schemes in the threshold setting. Feng et al.
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[10] give a threshold signature scheme whose signing
algorithm proceeds sequentially through each member
of the group. This scheme is highly interactive and the
scheme is based on NTRUSign, which has been broken
[17]. Cayrel et al. [8] give a lattice-based threshold
ring signature scheme, in which at least t members are
needed to create an anonymous signature. In that sys-
tem, each member has its own public key, and verifica-
tion time grows linearly with the number of members.
Also, Bendlin et al. [3] give a threshold variant of Gen-
try et al.’s signature scheme [12] by giving the way to
share a lattice trapdoor.

1.2 Related Approach to Our Construction

Unlike the threshold setting, there have been a lot
of works on lattice-based signature schemes [7, 8, 11,
12, 14, 15, 16, 19, 20]. But we briefly introduce two
previous approach [11, 12]. First one is Gentry et al.’s
paper which shows how to construct trapdoor func-
tions by sampling lattice points from a specific discrete
Gaussian probability distribution and using that distri-
bution, they construct simple and efficient “hash-then-
sign” signature scheme [12].

The second paper by Gordon et al. is the main refer-
ence for this paper and this paper introduces the first
construction of a lattice-based group signature scheme
with a new algorithm for sampling a basis for an or-
thogonal lattice and the trapdoor [11].

The most common and the simplest tool to make
a threshold signature scheme from the original signa-
ture is using the well-known secret sharing technique by
Shamir [21]. But in this paper, we do not use Shamir’s
secret sharing scheme so that we do not need to make
any polynomials for secret sharing. Instead, we sug-
gest the simpler concept called “message block sharing”
by partitioning the original message into d blocks with
some basic combinatorial idea. Then, we apply this
idea into Gordon et al.’s lattice-based group signature
scheme to construct our threshold signature scheme.
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1.3 Outline of the Paper

In Section 2, we introduce the notation and some re-
quirements on lattices to get into this paper such as the
lattice problem, trapdoor functions in Gentry et al.’s
paper, and the group signature suggested by Gordon et
al. with their Non-Interactive Witness-Indistinguishable
(NIWI) proof system. We explain how to construct
our main technique, message block sharing with the
binomial coefficients in Section 3. In Section 4, with
our message block sharing technique, we describe the
construction of our lattice-based threshold signature
scheme derived from the scheme in Gordon et al.’s pa-
per. We discuss the security of our scheme in Section
4 as well. In Section 5, we give a conclusion.

2 Background on Lattices

In the paper, we use n for the security parameter and
other parameters are taken as a function of n. When we
say something is “statistically close,” we mean “their
difference is negligible in n.”

2.1 Notation and Orthogonal Lattices

We denote vectors using small bold letters (e.g., x, y)
and denote matrices using big bold letters (e.g., A, B).
‖x‖ represents the Euclidean norm of x and ‖B‖ repre-
sents the maximum of Euclidean norms of the columns
of B. For instance, when B = {b1| · · · |bm}, ‖B‖ =

maxi ‖bi‖. Then, we denote B̃ = (b̃1| · · · |b̃m) for the
Gram-Schmidt orthogonalization of columns of B.

If a matrix B ∈ Zn×mq is given, we definem-dimensional

lattice L(BT ) as L(BT ) = {y ∈ Zm|y ≡ BT s mod q
for some s ∈ Zm}. We define the orthogonal lattice (or
dual lattice) Λ⊥(B) as Λ⊥(B) = {w ∈ Zm|BTw ≡ 0
mod q}.

2.2 Gaussian Error Distribution

The normal (Gaussian) distribution over R is a con-
tinuous normal distribution and we normally define this
as the density function

f(x) =
1

σ
√

2π
· exp(− (x− µ)2

2σ2
).

But in this paper, we replace
1

σ
√

2π
by s and as-

sume that the mean µ is 0. Then, we have the density
function

Ds(x) =
1

s
· exp(−πx

2

s2
).

Similarly, m-dimensional Gaussian distribution can be
defined as

Ds(x) =
1

s
· exp(−π‖x‖

2

s2
).

When we say Gaussian distribution in the paper, we
always mean the truncated Gaussian which is the Gaus-
sian distribution whose support is restricted to x ∈ R
with |x| < s · ω(

√
log n).

For a lattice Λ ⊂ Zm, we can define discrete Gaus-
sian distribution, which is the m-dimensional Gaussian
distribution whose support is restricted to the lattice
Λ and its density function is defined by

DΛ,s(x) =
Ds(x)∑
y∈ΛDs(y)

.

Gentry et al. [12] showed that this distribution can
be sampled efficiently for s ≥ ‖B‖ · ω(

√
log n).

2.3 Learning With Errors Problem

The “Learning With Errors” (LWE) problem is firstly
introduced by Regev in 2005 [18]. LWE problem gen-
eralizes the “learning parity with noise” problem and
many lattice-based cryptographic protocols like encryp-
tion schemes and fully homomorphic encryption schemes
and signature schemes assume that LWE problem is
hard [6, 11, 13, 18].

We follow the problem described in Gordon et al.’s
paper [11]. For a positive integer m,n with m > n,
integer q ≥ 2, a vector s ∈ Znq , and a probability distri-
bution χ on the interval [0, q)m, we define the decisional
version of the LWE problem as the problem of distin-
guishing between uniformly chosen (A,y) ← Zn×mq ×
[0, q)m and the sampling (A,AT s+e mod q) where
A ← Zn×mq and e ← χ. We say that the LWEm,q,χ

problem is hard when (A,y) and (A,AT s+e mod q)
are indistinguishable.

For discrete Gaussian distribution DZm,s mod q, we

denote the L̂WEm,q,s problem for an abbreviation of
the LWEm,q,DZm,s

problem. We remark that hardness
of the LWE problem with error distribution Ψm

α implies
hardness of the LWE problem with error distribution
DZm,α·q·

√
2.

Lemma 2.1. [11] For any α, hardness of the LWEm,q,α

problem implies hardness of the L̂WEm,q,αq
√

2

2.4 How to Sample an Orthogonal Lattices with
Trapdoor

Alwen and Peikert [2] show the trapdoor sampling
algorithm which generates an almost uniform matrix
A ∈ Zn×mq with a “trapdoor” matrix T ∈ Zm×m satis-
fying the following lemma:

Lemma 2.2. [2] There is a probabilistic poly-time
algorithm TrapSamp(1n, 1m, q) with q ≥ 2 and m ≥
n + 8n log q, which outputs matrices A ∈ Zn×mq and
T ∈ Zm×m such that :

– The distribution on A as output by TrapSamp is
stastistically cloase to uniform over Zn×mq ,

–– the columns of T form a basis of the lattice Λ⊥(A),
implying in particular A·T = 0 (mod q),

– ‖T‖ = O(n log q) and ‖T̃‖ ≤ C ·
√
n log q, for

some absolute constant C < 40.
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For orthogonal lattices, we modify the documents
described in Lemma 2.2 and give another lemma for
sampling orthogonal basis and the trapdoor.

Lemma 2.3.[11] There is a probabilistic poly-time al-
gorithm OrthoSamp(1n, 1m, q,B ∈ Zn×mq ) with q ≥ 2
and m ≥ 8n log q, which outputs matrices A ∈ Zn×mq

and T ∈ Zm×m such that:

– ABT = 0 (mod q). Moreover, the distribution
on A is statistically close to uniform over Zn×mq ,
subject to this condition,

–– the columns of T form a basis of the lattice Λ⊥(A),
implying in particular A·T = 0 (mod q),

– Furthermore, each column ti of T is distributed
(independently) according to DΛ⊥(A),s, where s =

C ·
√
n log q·ω(

√
logm) and C is the constant from

Lemma 2.2.

We also need the trapdoor inversion algorithm from
Gentry et al.’s paper, GPVInvert(A, T, s, u) outputs
e ← DΛ⊥(A)+t,s after computing an arbitrary t ∈ Zm
with At = u (mod q).

2.5 NIWI Proof System and the Lattice-based
Group Signature Scheme

Let B1, · · · ,Bn ∈ Zn×mq and z1, · · · , zn ∈ Zmq . Then
we specify how to construct NIWI proof system that
Gordon et al. used in their paper for the gap language
Ls,γ = (LY ES , LNO) defined by:

LY ES =

{(
B1, · · · ,Bn

z1, · · · , zn

)∣∣∣∣∃ s ∈ Znq and i ∈ [N ]

: ‖zi −BT
i s‖ ≤ s

√
m

}
LNO =

{(
B1, · · · ,Bn

z1, · · · , zn

)∣∣∣∣∀ s ∈ Znq and i ∈ [N ]

: ‖zi −BT
i s‖ > γ · s

√
m

}
Here, LY ES represents the collection of N points at

least one of which is close to the corresponding lattice,
and LNO represents the collection of N points all of
which are pretty far from the corresponding lattice.

Lemma 2.4.[11] Let γ ≥ O

√
m

logm
. Then, there is

a NIWI proof system for the language Ls,γ in the ran-
dom oracle model, where the length of the proof is
O(mnN log q) bits.

From Lemma 2.1 through Lemma 2.4, we can con-
struct the lattice-based group signature scheme by Gor-
don et al.’s. Formally, group signature scheme GS=
(G.KeyGen, G.Sign, G.Verify, G.Open) is a collection of
four poly-time algorithms [4, 11] defined by:

– Group key-generation algorithm G.KeyGen
(1n,1N ) with a security parameter n and the group
size N is a randomized algorithm that outputs
(PK, TK, gsk), where PK is the public key, TK
is the tracing key for the opener, and gsk is a
vector of N signing keys for each member i.

–– Group signature signing algorithm G.Sign
(gsk[i],M) with signing key gsk[i] and the mes-
sage M is a randomized algorithm that outputs
a signature σ.

– Group signature verification algorithm
G.Verify(PK, M,σ) is a deterministic algorithm
which outputs either 1 or 0. (accept or reject)

– Opening algorithm G.Open(TK, M,σ) is a de-
terministic algorithm that outputs an identity i ∈
[N ].

The group signature should satisfy anonymity and
traceability for the security. Anonymity means that
we cannot determine which group member signed the
particular message without the tracing key, even ad-
versary has all the signing keys. Traceability means
that adversary cannot forge a valid signature which is
untraceable by the opener.

We give a description of Gordon et al.’s scheme briefly.
We let n be the security parameter, q = poly(n),m ≥
8n log q and s ≥ C

√
n log q ·ω(

√
logm) be other param-

eters of the system. We let H : {0, 1}∗ → Znq be a hash
function for a random oracle.

GKV.KeyGen(1n, 1N ): Extract (B1,S1), · · · , (BN ,SN )
← TrapSamp(1n, 1m, q) and for each i ∈ [N ],
compute (Ai,Ti)← OrthoSamp(1n, 1m, q,Bi). It
outputs PK =

(
(Ai,Ti)

N
i=1

)
as the public key, TK

= (Si)
N
i=1 as the tracing key, gsk = (Ti)

N
i=1 as a

signing key for each member.

GKV.Sign (gsk[j],M): Choose random r ← {0, 1}n,
set M̄ = M‖r, and compute hi = H(M̄‖i) for
each i ∈ [N ]. Then,

– Compute ej ← GPVInvert(Aj ,Tj , s,hj).

–– For i 6= j, choose ej ← Zmq uniformly ran-
dom, with Aiei = hi (mod q)

For all i, sample si ← Znq and compute zi =

BT
i si+ei (mod q) in Znq . Then, using the witness

(si, i), we construct the NIWI proof π for the gap
language Ls,γ as discussed above.
Output (r, z1, · · · , zN , π).

GKV.Verify(PK, M,σ): Resolve the signature σ into
(r, z1, · · · , zN , π) and set M̄ = M‖r. Output 1
iff the proof π is correct, and Aizi = H(M̄‖i)
(mod q) for all i.

GKV.Open(TK, M,σ): Resolve the signature σ into
(r, z1, · · · , zN , π) and using the TK = (Si)

N
i=1,

output the smallest index i whose distance be-
tween L(BT

i ) and zi is at most s
√
m or output ⊥

in case to indicate the failure.
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We can easily check the correctness of the scheme.
This scheme assumes hardness of LWEm,q,α problem.

3 Message Block Sharing

Unlike Shamir’s secret sharing technique, we focus
more on basic structure of general ‘hash-and-sign’ sig-
nature scheme. The idea is that we first divide an origi-
nal message into message blocks M1, · · · ,Md with ran-
dom size so that no block remains meaningful. Then,
we distribute uniform number of message blocks into
each member of the group. But to satisfy the con-
dition of k-out-of-N threshold signature scheme, this
distribution cannot be randomly shared. Moreover, al-
liance of less then k members do not have every message
block and any alliance of k members must have the en-
tire message like the condition of threshold signature
scheme.

From here, we denote µi as the member of the group
and Γi as the set of message blocks that a member µi
gets. We briefly review the definition of the binomial
coefficient and introduce how to construct our main
tool called “message block sharing” technique.

3.1 Definition of Binomial Coefficient

We denote the binomial coefficient as

(
a

b

)
=

n!

k!(n− k)!

and

(
a

b

)
is interpreted as a coefficient of the monomial

xb of binomial formula (x+ y)a.
But in combinatorics, this number represents the

number of ways that b instances are chosen from a in-
stances. (i.e., This number represents the number of
a-element subsets of an b-element set.) This interpre-
tation leads to our message block sharing technique.

3.2 2-out-of-3 Message Block Sharing

In this subsection, we give a toy example to get an
inspiration to make k-out-of-N message block sharing.
In other words, there are N members in the group and
if k of them share their information, the whole message
reveals.

For two-out-of-three message block sharing, we first
divide the original message into several message blocks
M1, · · · ,Ms and give t message blocks to each member
so that two members can reveal the message. Indeed,
d = 3, t = 2 is enough to achieve our goal. If we let
Γ1 = {M2,M3},Γ2 = {M1,M3} and Γ3 = {M1,M2},
one member do not have complete message blocks and
any two members can get the message.

3.3 k-out-of-N Message Block Sharing

From the previous example, we notice that no mes-
sage block is shared by all members. If we switch this
into the fact slightly, we get that for each message block
Mj , we can accept the situation that one member does
not have that block Mj . We generalize this fact into k-
out-of-N message block sharing model. Then, for each
message block, it is sufficient although k − 1 members

do not have that block. Moreover, to exclude the pos-
sibility that the coalition of k − 1 members make full
message, k−1 members should not contain a block Mj

for each block message Mj .
The last condition for message block sharing is that

each member has the same number of messages and
this can be satisfied with the way we find all possible
k−1-element subsets of N -element set and for the rest
of the set {α1, · · · , αl−k+1}, each message block goes
into members µα1

, · · · , µαl−k+1
.

Clearly, if the number of message block s is equal

to

(
N

k − 1

)
, we get the desired message block sharing

model. The conspiracy of at most k−1 members do not
reveal the full message since there always exists exactly
one message block missed from our distribution of mes-
sage blocks and k members must obtain the message
since at least one member has the message block Mj

for each message block Mj . Furthermore, each member

has exactly t =

(
N − 1

k − 1

)
message blocks.

Namely, to construct k-out-of-N message block shar-
ing, we need the message to be sufficiently large so that

the message can be divided into d =

(
N

k − 1

)
message

blocks. Thus, in the following section, we consider that
security parameter n is determined by the size of the
original message.

Summing up the above, we have the parameter ex-
tracting algorithm defined as:

– Threshold parameter extracting algorithm
TParamExt(MM ) with M which is a bit length
of the message M is a deterministic poly-time
algorithm that outputs (n,N, k), where n is the
security parameter, N is the group size, and k
is the number of members to generate the valid
signature.

Using this algorithm, we can construct k-out-of-N
threshold signature scheme in Section 4.

4 Our Threshold Signature Scheme Based
on Lattices

In this section, we define the k-out-of-N threshold
signature scheme more precisely. Then, we modify the
lattice-based group signature scheme in Gordon et al.’s
paper using message block sharing technique. We de-
scribe our threshold signature scheme.

4.1 Definitions and Security Model

We adopt the definition and security model from the
work of Shoup [23] to define our k-out-of-N threshold
signature schemes.

The k-out-of-N threshold signature T S = (T.Param,
T.KeyGen, T.Sign, T.Verify) is a collection of four poly-
time algorithms defined by:

– Threshold parameter preparing algorithm
T.Param(M) with the message M is a determinis-
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tic algorithm which outputs (n,N, k), where n is
the security parameter, N is the group size, and k
is the number of required signers for verification.

–– Threshold key-generation algorithm T.KeyGen
(1n, 1N , 1k), with a security parameter n, the group
size N , and the number of required signers for
verification, is a randomized algorithm that out-
puts (PK, gsk, (Γi)

N
i=1), where PK is the public

key, gsk is a vector of N signing keys for each
member i, and Γi is a message block set that the
member i can sign on.

– Threshold signature signing algorithm T.Sign
(gsk, M , (Γi)

N
i=1) with signing key gsk and the

message M is a randomized algorithm that out-
puts a signature σ.

– Threshold signature verification algorithm
T.Verify(PK,M, (Γi)

N
i=1, σ) is a deterministic al-

gorithm which outputs either 1 or 0 (depends on
whether accepted or rejected).

For the security model, we assume there are τ cor-
rupted players with the condition such that k ≥ τ + 1
and N−τ ≥ k and security requirements of the thresh-
old signature scheme is as follows:

Correctness. If there is no corrupted players, then
combining signature of any k signers outputs a valid
signature on the message.

Unforgeability. We say that the adversary forges a
signature when he outputs a valid signature for a mes-
sage in which was not submitted as a signing query
to at least k − τ uncorrupted players. We say that
the threshold signature scheme is unforgeable when the
probability that the adversary forges a signature is neg-
ligible.

4.2 Our Construction

Similar to Gordon et al.’s scheme, we let n be the
security parameter, q = poly(n),m ≥ 8n log q and s ≥
C
√
n log q · ω(

√
logm) be other parameters of the sys-

tem. We let H : {0, 1}∗ → Znq be a hash function
for a random oracle. but n is decided after computing
bit length of the message M and we do not need the
opening algorithm in our scheme.

T.Param(M): Compute the bit length MM of the
message M and outputs (n,N, k) ← TParamExt
(MM ).

T.KeyGen(1n, 1N ): Extract (B1,S1), · · · , (BN ,SN )←
TrapSamp(1n, 1m, q) and for each i ∈ [N ], com-
pute (Ai,Ti)← OrthoSamp(1n, 1m, q,Bi). It out-
puts PK =

(
(Ai,Ti)

N
i=1

)
as the public key, gsk

= (Ti)
N
i=1 as a signing key for each member. Fi-

nally, compute and distribute the corresponding
message block set Γi = {(Mi1 , · · · ,Mit) for each

member i where t =

(
N − 1

k − 1

)
and the total num-

ber of message blocks is d =

(
N

k − 1

)
.

T.Sign (gsk, M , (Γi)
N
i=1): For each member i, set

M [i] = Mi1‖ · · · ‖Mit and compute hi = H(M [i])
for each i ∈ [N ]. Then,

– Compute ej ← GPVInvert(Aj ,Tj , s,hj).

For all i, sample si ← Znq and compute zi =

BT
i si+ei (mod q) in Znq . Then, using the witness

(si, i), we construct the NIWI proof π for the gap
language Ls,γ as discussed above.
Output (z1, · · · , zN , π).

T.Verify(PK, M, (Γi)
N
i=1, σ): First check whether Γi ⊂

{M1, · · · ,Md} for all i. Resolve the signature σ
into (z1, · · · , zN , π) and setM [i] = Mi1‖ · · · ‖Mit

and compute hi = H(M [i]) for each i ∈ [N ].
Output 1 iff the proof π is correct, Γi ⊂ {M1,
· · · ,Md} for all i, and Aizi = H(M [i]) (mod q)
for all i.

Then, we show the security requirement of our pro-
posed scheme as follows:

Theorem 4.1. The proposed scheme produces the valid
signature. (Correctness)

Proof. Aizi = Ai(B
T
i si + ei) = Aiei = H(M [i]) (mod

q) since AiB
T
i = 0 (mod q) for all i. This confirms for

each i, zi is a valid signature for M [i].
Indeed, if we combine signatures of any k members,

we can get the signature for the original message since∑k
δ=1 Γ[iδ] = (the whole message blocks) from the con-

struction of Γ[i]. Thus, any k members can generate
the valid signature for the message using the message
block sharing model and correctness is guaranteed in
this model.

Theorem 4.2. The proposed scheme satisfies the un-
forgeability.

Proof. We may assume that k − 1 members are cor-
rupted. Then, this problem becomes the unforgeabil-
ity of one signature zi. Indeed, this can be guaran-
teed from the hardness of LWE problem and collision-
resistance of the hash function. Thus, our construction
is also unforgeable.

4.3 Comparison with Other Threshold Signa-
ture Schemes

We compare related signature scheme in threshold
setting that we described in section 1 with our scheme.
Feng et al.’s work [10] gives sequential signing process
so that each member cannot generate their own signa-
ture simultaneously. This scheme is based on the stan-
dard NTRU lattice and the variation of Closest Vector
Problem (CVP) which is a worst-case hardness problem
to find the closest lattice vector u to the given vector
w. But during the protocol, this scheme use NTRUSign
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scheme which can be broken these days as discussed in
Section 1. Cayrel et al.’s work [8] gives a ring threshold
signature by modifying the threshold signature scheme
based on the syndrome decoding problem with identi-
fication scheme but this scheme is based on small inte-
ger solution (SIS) problem which is weaker than LWE
problem. Then, Bendlin et al. [3] provide a threshold
signature scheme by using an algorithm to share a lat-
tice trapdoor. This scheme is based on LWE problem
but conceptually hard to understand.

In Table 1, we compare our scheme with other thresh-
old schemes. Our scheme is based on LWE problem so
that there is no known attack and the scheme is con-
ceptually simpler since we do not change any trapdoor
functions as Bendlin et al. did, but divide the message
into parts. Moreover, our scheme can generate the sig-
nature concurrently without any sequence. But since
our scheme generates the group size after we get the
message M , this would be inefficient in some situation.

Table 1: Threshold Signatures on Lattices

Scheme FGM[10] CLRS[8] BKP[3] Ours

Problem NTRU lattice Ideal lattice Lattice Lattice

Security CVP SIS LWE LWE

Known Yes No No No
attack

Key Idea sequential syndrome trapdoor message
signing decoding share block

Moreover, if we compare other signature scheme in
threshold setting based on other problem such as Dis-
crete Logarithm Problem (DLP) [5, 9] and Integer Fac-
torization Problem (IFP) [23], our scheme takes more
operation than other schemes from the view of compu-
tation. But, unlike those schemes based on DLP and
IFP which can be broken by quantum computer attack
[22], our scheme is secure against quantum computer
attack.

5 Conclusion

We construct a conceptually simpler lattice-based
threshold signature scheme with a new idea using mes-
sage block sharing tool. Compare to Gordon et al.’s
scheme, each member has the different partial message
and its corresponding hash value. Then, all members
generate valid signature for partial message blocks as
Gordon et al.’s scheme delegates one member to gener-
ate the valid signature on behalf of all group members
and other member generates an invalid signature. This
difference makes our scheme to be a threshold signature
scheme instead of group signature scheme like Gordon
et al.’s scheme.

Our scheme enables the signing process of the mes-
sage with large bit length to be more secure but in
some cases, the scheme might be inefficient as we set
the group size after we get the message. As we can see

in Table 1, we still need to improve our scheme like con-
structing its Ring-LWE variant to get more efficiency.

So, for future work, we consider how to construct the
Ring-LWE version of our scheme and also, we plan to
apply our tool to design a new threshold group signa-
ture scheme or a threshold ring signature scheme based
on lattices.

Acknowledgement

This research was supported by the KUSTAR-KAIST
Institute, Korea, under the R&D program supervised
by the KAIST and funded by the MSIP (Ministry of
Science, ICT & Future Planning), Korea in the ICT
R&D Program 2013.

References

[1] Miklós Ajtai, “Generating hard instances of lattice
problems,” Proceedings of the twenty-eighth annual
ACM Symposium on Theory of Computing, 99–108,
1996.
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