
Preventing Abuse of Cookies Stolen by XSS

Hiroya Takahashi
Kanazawa University

Kanazawa, Ishikawa, Japan

Kenji Yasunaga
Kanazawa University

Kanazawa, Ishikawa, Japan

Masahiro Mambo
Kanazawa University

Kanazawa, Ishikawa, Japan

Kwangjo Kim
KAIST
Korea

Heung Youl Youm
Soonchunhyang University

Korea

Abstract—Cross Site Scripting (XSS) makes victims
execute an arbitrary script and leaks out personal
information from victims’ computers. An adversary can
easily get victim’s cookies by the XSS attack. If the
adversary cannot use the stolen cookies to impersonate
the victim, stealing cookie has no meaning. Therefore,
we propose a method to prohibit the abuse of stolen
cookies in order to make it ineffective to steal cookies
through the XXS attack. The proposed method uses one-
time password and challenge-response authentication to
identify whether a person is a valid owner of the cookie
or not.

Keywords-Cookies, Cross Site Scripting, HTTP, Web
Application

I. I NTRODUCTION

Today the Internet is widely used all over the
world. More the Internet is used, more the security
of computer is demanded. Especially protecting per-
sonal information is one of major concerns because of
the advent of various kinds of Internet services such
as SNS and online shopping. Such various kinds of
services often use a function called ”cookie”.

Cookie is a small piece of data sent from a website
and stored in a user’s web browser while a user is
browsing the website [1], [2]. It can be read out by
web server whenever needed. Cookie provides websites
with a reliable mechanism for remembering their state
and user’s activities. Cross Site Scripting (XSS) is a
typical web application vulnerability[3] and an attacker
of XSS can steal cookies by setting up the execution of
malicious scripts after crossing several websites. This
attack finally enables the adversary to do illegal ac-
cess or session hijack. Nowadays, XSS dominates the
largest percentage of all web application vulnerabilities

[4]. Unfortunately, there is no effective way to prevent
it [5], [6]. A secure cookie system and a method to
prevent XSS attack are highly demanded.

In this paper, we propose a secure cookie protocol
which prevents the abuse of cookies stolen by XSS.
If an adversary cannot abuse the cookies, accounts of
the victims remain safe. This paper is organized as
follows. After the introduction, we explain background
knowledge of HTTP, Cookies and XSS including a
fundamental method to invalidate a malicious script
contained in the HTTP request in section II. In ad-
dition to the fundamental method, previous methods
are described in section III. Then we describe a new
method to prevent abuse of stolen cookies with enough
usability in section IV. After that, we discuss in com-
parison with previous methods in section V. Conclusion
is given in section VI.

II. BACKGROUND

A. Session Management of HTTP

Hyper Text Transfer Protocol (HTTP) is a protocol
which is constructed for exchanging data between a
web browser and a web server at World Wide Web
(WWW). HTTP is a request-response type protocol
such that a client, web browser, sends a server a HTTP
request containing URL and method, and receives a
HTTP response. The set of request and response is
called session. When the session is completed, connec-
tion between the client and the server is disconnected.
The connection is stateless. That is, the server treats
each request as an independent connection: The server
does not hold the information of the previous client
and cannot reflect the state of the previous session.
This kind of stateless protocol is not suitable for online



operations such as online shopping. In order to solve
this problem, there is an idea of session management
which provides statefull protocol that is able to hold
the state of the connection. Session management means
that the server recognizes the session with the clients
and grasps the progress of processing. If session starts,
messages between the server and the client share
the same session ID. They recognize each other by
checking the session ID [7].

B. Cookie

The technology which enables the session manage-
ment over the HTTP protocol is called cookie. Cookie
is widely used for storing the session ID and personal
information handled in web applications. It is a small
size of data stored in a text file of the user’s computer
and exchanged between the server and the client [1],
[2]. There are six parameters in the cookie called
attribute.

1) Name of the cookie
2) Value of the cookie
3) Deadline of the cookie
4) Path of the server which the browser sends the

cookie
5) Domain of the server where the browser sends

the cookie
6) The demand for a secure connection between the

browser and the server

Cookie is given to a web browser from the server and is
held at the browser until it expires. There are two types
of cookies, a session cookie and a persistent cookie.
The session cookie is used temporarily and discarded
when the browser closes. The value of a session cookie
is a random value and renewed every time a new
session starts. On the other hand, a persistent cookie
is stored in the browser for a definite period of time.
Once a persistent cookie is given to the browser, it can
be reused for any number of times, which improves
the performance of web services.

C. Cross Site Scripting (XSS)

An attack of XSS [3] inserts a malicious script while
a user is browsing web pages. If the attack succeeds,
the adversary makes a victim to execute an arbitrary
script which is sent from the server to the browser
without any translation. The adversary does not attack
a vulnerable server directly, but uses the vulnerability
to lead a target user to a phishing page. The figure 1

Figure 1. Procedures of XSS

shows the concept and procedures of XSS. An attacker
follows the following procedures to launch the XSS
attack.

1) An adversary prepares a web site (trap page) and
puts a link to other web site which has vulnera-
bility. The link contains a malicious script, that
sends cookie to the adversary in step 6).

2) When a user comes to the trap page, he receives
the HTTP response which contains malicious
script. At this stage, the script has not been
invoked.

3) When a user clicks the link, the malicious script
is sent to the vulnerable server as a part of HTTP
request.

4) The server returns the malicious script to the
user’s browser without any process because of
the vulnerability.

5) The browser executes the malicious script be-
cause the browser falsely regards the script is
required not from the adversary but from the
server.

6) Because of the execution of the malicious script,
the browser sends cookie or personal information
to the adversary.

If the vulnerable server exists, it enables the adver-
sary to commits various kinds of attack by crossing a
trap page and embeds a malicious script. It means that
after the success of the XSS attack the adversary can
get personal information to impersonate a valid user or



session hijack.
XSS vulnerability often exists in the web page which

has a text field and operates dynamically according to
the input character. Therefore web pages which deal
with the personal information such as resister page or
login page are more likely to have XSS vulnerability.
The cause of XSS vulnerability is that a web browser
executes all scripts received from any server. Of course
a browser has option to prohibit the execution of all the
scripts that the browser receives. However, it spoils the
convenience of cookies. One of the reasons why XSS is
still a major issue is low level awareness of people who
manage the web server. People who are not an expert
of computing can make web pages easily today and get
damage of XSS. Meanwhile, server administrators are
less likely to take an active action against XSS because
they do not get damage directly. Also, taking measures
against XSS needs a lot of cost and XSS seems to be
ignored in spite of its damages.

A fundamental method to invalidate a malicious
script contained in the HTTP request is escaping
special characters by using CGI script. In the method,
servers regard a script in the HTTP request as a script
embedded by an adversary. The CGI script replaces
special characters such as ”&” and ”<” of the HTTP
request with equivalent characters shch as ”&amp;”
and ”&lt;”, respectively, before it is sent to the user’s
browser as a HTTP response. A malicious script is
never executed after escaping special characters. Un-
fortunately, there are still many sites which do not
take this counter measure. From these reasons, XSS
is still a major attack in computer networks that we
must prevent.

III. PREVIOUS WORK

A. Using Session Cookie

Cookie is stored at a browser until it expires. If we
are able to remove the cookie before the adversary
successfully steals it, the leakage of cookie never
happens. The valid period of cookie can be determined
by setting the deadline of cookie described in section
II-B. In the session cookies, the period is set at the past
time so that these cookies will be removed every time
the session terminates. This method [5] disables the
adversary to abuse the stolen cookie, but it ruins the
advantage of cookie which does not require the valid
user to input his personal information every time he
logs in to his account. Also it cannot prevent replay

attack which reuse the password stored in the session
cookie.

B. Dynamic Cookies Rewriting Technique

Rewriting the value of cookies is effective for pre-
cluding the adversary to use stolen cookies [8]. When
the server sends a cookie to the browser, a web proxy
changes the values of the cookie into randomized
values before stored in the browser. As the browser’s
database does not have the original values of the
cookies, the adversary does not get the true values
even if the XSS attack succeeds. The proxy has a
table which stores the attributes of the cookie and
randomized values. When a server requests the browser
to send a cookie, the randomized cookie is rewritten to
the original value by the proxy and send to the server.
A user can reuse the same cookie again. So the user
can enjoy the benefit of the cookie. However there are
two types of adversaries for which this method does
not work; (1) If an adversary and valid users are in the
same LAN and the adversary steals the randomized
cookies, the adversary succeeds in impersonation by
sending these cookies through the same proxy in the
LAN. (2) When an adversary steals cookies after the
proxy writes them back to the original values, these
stolen cookies contain true values. This method is
secure only if the adversary cannot use the same web
proxy as a valid user uses. Concerning replay attack,
both of adversaries described above can perform replay
attack easily.

IV. PREVENTING ABUSE OFSTOLEN COOKIES

A. Outline

As explained in section II-C, direct anti-XSS meth-
ods such as escaping special characters is not secure
enough. In this section, we discuss indirect anti-XSS
methods. In our approach, we pay attention to de-
creasing the effect of stealing cookies by XSS. That
is, an adversary cannot abuse stolen cookies even if
they have leaked out. Stolen cookies are often used for
session hijacking and prohibiting abuse of the stolen
cookies allows us to prevent session hijacking. When
someone accesses to a login page with a stolen cookie,
the system regards him as a valid user and imperson-
ation succeeds. From this point of view, distinguishing
a regular user from an adversary possessing stolen
cookies is effective for invalidating the XSS. In the



next section, we propose a method for indirect anti-
XSS using the challenge-response authentication.

B. Synchronized State Cookie Protocol

We propose a method that uses one-time password
and challenge-response authentication. In our method,
a server and a user have the same password which is
renewed every fixed time. The user keeps the password
in the persistent cookie and uses it when he needs to
log in to his account. The password the user uses and
the password the server keeps need to be synchronized
at all times. There are various kinds of one-time
password schemes [9]. If a new password is generated
by an algorithm using a secret value, the value should
not be stored in any cookie.

We also use challenge-response authentication in our
method. In response to an authentication request, the
server sends a challenge value to the user. We use a
PHP session ID as a challenge value. A user calculates
the response value by hashing the concatenation of his
password and the challenge value. Then the user sends
the response value to the server, and the server checks
whether the value matches with the value calculated
by the server or not. When it matches, the user is able
to access his account.

V. CONSIDERATION

In this section, we discuss properties of the proposed
method. There are some advantages in our method.
Even if an adversary succeeds in stealing a password
contained cookie by XSS, the adversary cannot abuse
the cookie after its expiry. In other words, the adversary
cannot impersonate a valid user when a fixed time
has passed. However, before the cookie expires, the
adversary can succeed in impersonation. From this
reason, we have to set an appropriate short interval
to renew the password.

Challenge-response authentication avoids the reuse
of intercepted values. Even if an adversary gets the
response value sent from a valid user to the server,
the adversary cannot use it later because a different
challenge is sent to the adversary in the succeeding
authentication. Our method can prevent the replay
attack.

We compare our method with previous work. The
table I shows the summary of the comparison. As de-
scribed in section III-B, the Dynamic Cookies Rewrit-
ing Technique is vulnerable to several types of adver-
saries, and the abuse of cookies is prevented depending

Table I
COMPARISON OFTHREE PROTECTIVE METHODS

Section III-A

Session Cookie

Section III-B
Cookie

Rewriting
Technique

Our Method
Synchronized
State Cookie

Cookie Abuse Prevention
Before Expiry × ∗ ×

Cookie Abuse Prevention
After Expiry ✓ ∗ ✓

Anti-Replay Attack × × ✓
Low Latency ✓ × ×

Possibility of No Error ✓ × ×
Usability × ✓ ✓

✓ : satisfied ,× : not satisfied ,
∗ : Not satisfied against adversaries described in section III-B

on the type of adversaries. Using proxy to rewrite the
cookie causes latency of communication between the
server and the user.

Our method also makes latency because of
a challenge-response authentication. The Dynamic
Cookies Rewriting Technique rewrites the cookies and
keeps the original values of the cookies at proxy. So
when it fails to write them back to original values, even
the valid user cannot properly access to the server. Our
method needs to synchronize a password between the
user and the server. When the synchronization fails, the
authentication fails. Both methods have a possibility to
induce errors such that cookies do not properly operate.

As for usability, using session cookie in section III-
A requires valid users to input their login information
every time they login to their account. In contrast, users
are required to input their login information only once
in our method.

VI. CONCLUSION

When a server has XSS vulnerability, an adversary
can obtain user’s cookies. To minimize the influence of
XSS indirectly, we introduced a method for preventing
abuse of stolen cookies. It uses one-time password and
challenge-response authentication to judge whether an
accessing user is valid or not. With keeping usability,
it can prevent the abuse of stolen cookies after their
expiry and offers anti-replay attack property. We plan
to implement our proposed method and evaluate its
feasibility including latency.

ACKNOWLEDGMENT

A part of this paper is supported by JSPS A3 Fore-
sight Program. We would like to appreciate the support.



REFERENCES

[1] Joon S. Park, Ravi Sandhu,Secure Cookies on the Web,
3rd ed. IEEE INTERNET COMPUTING, pp.36-44,
JULY - AUGUST 2000.

[2] Vorapranee Khu-smith, Chris Mitchell,Enhancing the
Security of Cookies, ICICS 2001, LNCS 288, pp.132-
145, 2002.

[3] JNV (Japan Vulnerability Notes) iPedia,CWE-79,
Cross Site Scripting, http://jvndb.jvn.jp/ja/cwe/CWE-
79.html.

[4] IPA Security Center, Report on
Vulnerability-related Information of Software,
http://www.ipa.go.jp/files/000009160.pdf

[5] Hiromitsu Takagi, Satoshi Sekiguchi, Kazuhito Omaki,
A Case Study in How E-commerce Sites Are Vulnerable
To the ”Cross-Site Scripting” Attack, IPSJ, Com-
puter Security Symposium 2001 (CSS2001), pp.247-
252, 2001.

[6] Hiroki Takahashi, Omar Ismail, Youki Kadobayashi,
Suguru Yamaguchi,A Proposal and Implementation
of Automatic Detection/Collection System for Cross-
Site Scripting Vulnerabilities, IPSJ, IEICE Technical
Research Report, Vol.103, No.62, IA2003-6, pp.31-36,
2003.

[7] D. Kristol, L. Montulli, HTTP State Management
Mechanism, IETF Documents IETF Tools,
http://tools.ietf.org/html/rfc2965.

[8] Rattipong Putthacharoen, Pratheep Bunyatnoparat,Pro-
tecting Cookies from Cross Site Script Attacks Using
Dynamic Cookies Rewriting Technique, ICACT 2011,
ISBN 978-89-5519-155-4, pp.1090-1094, Feb 2011.

[9] Alfred J. Menezes, Paul C. van Oorschot, Scott A.
Vanstone,Handbook of Applied Cryptography, CRC
Press, ISBN: 0-8493-8523-7, 1997.


