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Abstract

Lattices have been used to construct many cryptographic primitives after Ajtai’s

seminal paper in 1996. The goal of this paper is to design novel cryptographic

primitives using lattices, which are still found to be no polynomial time attack by

quantum computers. For achieving this, we survey the known lattice-based

cryptography and lattice-based fully homomorphic encryption schemes as a first

step. We focus on the hard problems in lattice and the relationship between known

fully homomorphic encryption scheme and noisy polly cracker model.
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I. Introduction

One challenging issue in modern

cryptography is to design novel cryptographic

primitives which can be still secure against

quantum computer (simply called as “post

quantum cryptography"). This challenge

becomes very important after Shor’s seminal

algorithm[1] to solve integer factorization

problem(IFP) and discrete logarithm

problem(DLP) including elliptic curve DLP in

polynomial time was published. This makes

our secure systems and applications in a

great danger since public key cryptosystem

like RSA, ElGamal and elliptic curve

cryptosystem can be easily broken by very

powerful adversaries with quantum computer.

This fact encourages us to make

quantum-proof cryptosystems which mean

even if quantum computer is exploited to
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attack the cryptosystem, the security is not

to be compromised.

Lattice-based cryptography is known to be

secure against quantum computer attack. The

popular lattice-based cryptosystems are

Ajtai-Dwork cryptosystem by Ajtai and

Dwork[2], GGH cryptosystem by Goldreich et

al.[3] and NTRU cryptosystem by Hoffstein

et al.[4]. Lattices become lots of attention

applied for various areas in cryptography

such as average-case hardness problem to

worst-case hardness problem reduction[5],

fully homomorphic encryption (FHE)

schemes[6] and multilinear maps[7].

Our aim is to classify the lattice-based

FHE schemes from noisy polly cracker. The

organization of this paper is as follows: In

Chapter II, we define the lattice and hard

problems in lattice. Then we review the idea

of previous lattice-based cryptosystems and

their security model. In Chapter III, we define

the FHE schemes and the noisy polly cracker

model. After that, we classify known

lattice-based FHE schemes from noisy polly



cracker model in Chapter IV. Finally, Chapter

V gives a brief conclusion and future work.

II. Lattice-based Cryptography

After seminal work by Ajtai[8] which deals

with hard instances of lattice problems,

lattices become a powerful tool to make

secure cryptographic primitives. We define

the lattice and some hard problems in lattice,

and we review the previous cryptosystems

based on lattice problems.

2.1 Definition and Hard Problems

A lattice is defined as a set of points

   ⋯ ′s are integers with

 linearly independent vectors ⋯ in

ℝ and the set ⋯ is called the

basis of  . We say that the basis is good

if it is relatively orthogonal to each other

and the basis is bad in case they are not

that orthogonal.

Lattices behave like a group and among

them, there are special lattices called ideal

lattices which is similar to ideals in some

ring . Cyclic lattices and anti-cyclic

lattices are kind of ideal lattices. We then

give some well-known hard problems in

lattice.

SVP (Shortest Vector Problem) is given

a lattice  , we find the non-zero lattice

vector in  which is the closest to the

origin. And CVP (Closest Vector Problem)

is given a lattice  and a vector  , we

find the lattice vector  in  which is

closest to the vector  .

Both SVP and CVP are considered as a

worst-case hardness problem in lattice.

Two popular average-case hardness

problems in lattice exist which can be

reduced to the worst-case hardness

problem in lattice. One is called SIS (Short

Integer Solution) problem and is used in

one way functions, signature schemes and

identification schemes and the other is

called LWE (Learning With Errors)

problem whose decisional version is used

for guaranteeing the security of encryption

schemes like IBE and FHE schemes. There

are also SIS over rings (R-SIS) problem[9]

and LWE over rings (R-LWE) problem[10]

but we only state decisional version of

LWE problem.

Problem. (DLWE: Decisional version of

LWE problem) Given a secret ←ℤ
 ,

polynomially many ←ℤ
‎ and its

corresponding noise ← , distinguish

       from uniform

extraction 


 ℤqn ×ℤq.

Indeed, search version of LWE problem

which tries to find  is exactly equivalent

to this decisional version of LWE problem

by using hybrid argument[5]. DLWE over

rings (R-DLWE) problem is stated

similarly with slight change of the domain.

2.2 Popular Cryptosystems Based on

Lattices

We briefly review the idea of some

popular public key cryptosystems using

lattices.

The first scheme is suggested by Ajtai

and Dwork[2]. The idea follows from the

Ajtai’s previous seminal work in hash

functions[8] and Ajtai-Dwork cryptosystem

is based on the worst-case hardness

problem called unique-SVP, which is the

variant of SVP since we find the unique

shortest vector. But, since some lattices

have no vector satisfying unique-SVP

problem, we should determine suitable

lattices in advance and hence, this scheme

is really inefficient.



Second is GGH cryptosystem[3]. This

scheme uses good and bad basis as its

private and public key, respectively. The

idea is adding a noise vector  to a bad

basis for encryption. Then, decryption

process is to find the lattice point closest

to the ciphertext. But, lattice point should

be properly chosen for decryption and the

key size should be inefficiently large to

prevent the attack using the lattice

reduction algorithm.

NTRU cryptosystem[4] remains still

secure and practical these days. Its original

construction is based on ring structure, but

it is later shown that this can be described

using lattices with special structure. It is

most practical lattice-based cryptography

by now. Recently, Stehlé and Steinfold[12]

succeeded to give strong security guarantee

to NTRU cryptosystem by showing the

reduction to standard worst-case problems

in ideal lattice.

After Regev’s encryption scheme based

on LWE problem in 2005[5] was published,

the mainstream of lattice-based public key

cryptography becomes based on LWE

problem or ring version of LWE problem.

III. Fully Homomorphic Encryption

and Noisy Polly Cracker

After Gentry’s paper in 2009[6], there are

huge progress in fully homomorphic

encryption area. All previous FHE schemes

can be classified as the follow-up research of

these schemes – Gentry’s original scheme

based on ideal lattices[6], van Dijk et al.’s

scheme (vDGHV scheme) over the

integers[13] and Brakerski and

Vaikuntanathan’s scheme (BV scheme) based

on the LWE problem[14] and Ring-LWE

problems[15].

Study on fully homomorphic encryption

scheme is very useful in various areas. For

example, it can improve the security of

clouding system since it delegates processing

of user's data without giving away access to

user's original data. We explain homomorphic

encryption more precisely.

A homomorphic encryption scheme, HE is a

scheme whose operation on ciphertexts

becomes ciphertext of operation on its

corresponding plaintexts. For example, RSA

is one well-known homomorphic encryption

under multiplication.

And we say an encryption scheme FHE is

fully homomorphic if it is a homomorphic

encryption for all operations.

For almost all fully homomorphic

encryption schemes published, somewhat

homomorphic encryption scheme is first

constructed with so-called evaluation

algorithm and then they use bootstrapping

theorem in Gentry's paper to make a fully

homomorphic encryption scheme[6]. So, we

focus on classifying somewhat homomorphic

encryption schemes. But as Gentry did in his

thesis, we describe the noisy polly cracker

model.

3.1 Polly Cracker[16]

The idea is to take the encryption of zero

as polynomials ’s that evaluate to 0 at

the secret key  during the key generation.

Encryption is done by summing the

plaintext  and the subset sum of such

polynomials ’s and decryption is done by

putting the secret key  to the ciphertext

 . But this model is very weak since this

can be broken by Gaussian elimination. So

we need to add the noise into this model.

3.2 Noisy Polly Cracker

In this model, decryption should properly

work after adding a noise. The idea is to

take the encryption of zero as polynomials

’s that evaluate to something small and



even or zero at the secret key during the

key generation. We assume that messages

are with binary forms. Then, encryption

process is the same as the polly cracker

model but during the decryption process,

we must divide it by 2 after putting the

secret key into the ciphertext. Since this

model cannot be broken by Gaussian

elimination or any known attacks in polly

cracker model, noisy polly cracker model is

more secure than polly cracker model.

IV. Classification of FHE Schemes

We observe three somewhat homomorphic

encryption schemes of FHE schemes (vDGHV

scheme, BV scheme, GSW scheme) from

noisy polly cracker model. Then, we compare

those schemes in Table 1 with their special

features.

　 vDGHV [13] BV [14] GSW [16]

base integer lattice lattice/ideal lattice

security approximate-GCD LWE LWE/Ring-LWE

concept simple complex simple

batch

ciphertext
O O X

efficiency Very Low Very Low Low

special

feature

Add an additional

even noise during

the encryption

linear ciphertext

re-linearization

eigenvector/eigenvalue

applicable for making ID-based and

Attribute-based encryption

[Table 1] Comparison of three somewhat homomorphic encryption schemes

As we can see in Table 1, BV and GSW

schemes are based on lattices but vDGHV

schemes are based on the integer problem.

Normally, since integer is conceptually

simpler than lattice, vDGHV scheme is

simpler than BV scheme. But GSW scheme

becomes simpler by adopting the concept of

eigenvalues. On the other hand, GSW scheme

does not show the possibility of batch

ciphertext, which can be decrypted to many

plaintexts. Although all schemes are still not

so efficient, GSW scheme is better than other

schemes since it can be applied to the

problems on ideal lattices as well. Hence,

GSW scheme may be the best among FHE

schemes from noisy polly cracker model.

V. Conclusion

So far, we review previous lattice-based

cryptosystems and several lattice-based FHE

schemes. Also, we understand that noisy

polly cracker model becomes a great tool to

construct new FHE schemes as Gentry did.

For future work, we discuss how to create

the batch version of GSW scheme which is

the weakness of GSW scheme in Table 1

and we try to find new FHE schemes from

other assumptions. Also, we consider how

much known FHE schemes are resilient to

the key leakage. But to complete this

mission, we should discuss more papers

about leakage resilient cryptography like

the paper by Akavia et al.[18].
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