Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

computer
communications

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Computer Communications 34 (2011) 384-390

journal homepage: www.elsevier.com/locate/comcom

Contents lists available at ScienceDirect

Computer Communications

computer
communications

Defending RFID authentication protocols against DoS attacks

Dang Nguyen Duc *, Kwangjo Kim

Auto-ID Lab Korea, Department of Information and Communications Engineering, KAIST, 119 Munjiro, Yuseong-gu, Daejeon 305-732, Republic of Korea

ARTICLE INFO ABSTRACT

Article history:
Available online 22 June 2010

Keywords:

RFID security
Denial-of-service attack
Forward security

In this paper, we present a security weakness of a forward secure authentication protocol proposed by Tri
Van Le et al. called O-FRAP which stands for Optimistic Forward secure RFID Authentication Protocol. In
particular, we point out that in the O-FRAP protocol, the server can be subject to a denial-of-service attack
due to a flaw in the database querying procedure. Our attack also applies to a simplified version of
O-FRAP called O-RAP (Optimistic RFID Authentication Protocol) which is essentially O-FRAP but without
a secret key updating procedure (and thus forward security). We then propose two improved protocols
called O-FRAP" and O-RAP* which prevent the said denial-of-service attack. In addition, the O-FRAP* pro-

tocol also addresses two security weaknesses of O-FRAP pointed out earlier by Khaled and Raphael. In
terms of performance, comparing to O-FRAP, O-FRAP" requires a few more computational steps but much
less storage at the back-end server.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Radio Frequency Identification (RFID) is an emerging technology
which promises automatic item tracking. The key idea is to attach
each and every item with an RFID tag which can be read by RFID
readers via radio communication. Each RFID tag is a cheap device
capable of emitting a unique number which will be served as the
identification information of an RFID-tagged item in a database
at a back-end server.

Unfortunately, a widespread adoption of RFID is uncertain be-
cause of its inherent security weaknesses which includes tag clon-
ing and privacy violation. It turns out that these two security
weaknesses come from the very basic operation of an RFID tag, that
is to communicate the identification of an RFID-tagged item (here-
after referred to as Electronic Product Code or EPC for short). This is
an inherent security risk since we depend on the EPC number to
recognize a product as genuine or fake. An attacker equipped with
a compatible reader can scan many RFID tags to harvest a large
number of EPC numbers. He then can produce RFID tags which
emit exactly the same EPCs he has collected. This kind of tags are
called cloned tags. The cloned tags can be attached to counterfeited
items which should be recognized as genuine items. The core func-
tionality of an RFID tag also raises privacy concern. As each EPC
number is unique, an attacker with a compatible reader can recog-
nize and track RFID tags which leads to privacy violation of a per-
son carrying tagged items.

To deal with the security problems of RFID, the use of crypto-
graphic protocols is required. However, designing cryptographic
protocols for RFID tags is challenging as an RFID tag is a low-cost

* Corresponding author. Tel.: +82 42 866 6236; fax: +82 42 866 6273.
E-mail addresses: nguyenduc@icu.ac.kr (D.N. Duc), kkj@cs.kaist.ac.kr (K. Kim).

0140-3664/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
d0i:10.1016/j.comcom.2010.06.014

device with limited computational power. It is infeasible to imple-
ment public key cryptographic primitives and block ciphers. As a
result, a new approach to design cryptographic protocols for RFID
tags which employ only lightweight primitives is required. The
most popular lightweight primitive used in designing crypto-
graphic protocols for RFID is hash function.

We now describe desirable security properties of a crypto-
graphic protocol for RFID as follows [1-5].

e Mutual authentication between tag and reader/back-end server: In
order to prevent EPC numbers from being harvested by mali-
cious parties, reader-to-tag authentication must be provided.
In addition, the server should not waste its computational
resource on verifying and identifying fake tags. Therefore, RFID
readers should also authenticate tags before forwarding legiti-
mate tags to the server for identification.

Privacy-preserving authentication: In order to prevent a tag from
being tracked by malicious parties, it is not sufficient to avoid
communicating the tag’s EPC number in clear text. Indeed, the
information exchanged during different authentication sessions
should not help a malicious party to trace a tag. We call such a
property unlinkability. We refer to a protocol that provides both
secure authentication and unlinkability as a privacy-preserving
authentication protocol. A common approach to provide privacy-
preserving authentication is to use pseudonym. More specifi-
cally, for each authentication session, a tag uses a different tem-
porary identity called pseudonym to communicate with an RFID
reader.

Forward security: As an RFID tag is generally not a tamper-
proof device, it can be easily stolen and dissected to reveal
secret information stored in the memory of the tag. Many

D.N. Duc, K. Kim/Computer Communications 34 (2011) 384-390 385

authentication protocols for RFID including [6] have taken this
threat into account by providing a security property called
forward security. In the case of a privacy-preserving authenti-
cation protocol, forward security guarantees that all of
authentication sessions of a tag happened before the tag’s
secret is revealed remain unlinkable. In other words, the pri-
vacy of the tag is protected up to the point of the loss of
the secret information. A well-known method to achieve for-
ward security is to update the secret key frequently (say, after
every authentication session). Once a secret key is revealed,
the previous authentication sessions that are associated with
old and unknown secret keys are unlinkable. Updating secret
keys regularly might also have positive impact on providing
privacy-preserving as a tag possesses different keys during
different authentication sessions. Unfortunately, updating the
secret key interactively between a reader and a tag is often
subject to de-synchronization of secret, i.e., the attacker can
cause the reader and the tag to posses different keys which
makes future communication impossible.

In this paper, we analyze the security of a forward secure RFID
authentication protocol called O-FRAP [6] which stands for Opti-
mistic Forward secure RFID Authentication Protocol. O-FRAP is shown
to achieve privacy-preserving mutual authentication and forward
security under a security model called Universal Composable Secu-
rity Framework (UC framework for short) [7]. The UC framework
guarantees not only the security of a protocol running in isolation,
but also the security of the same protocol running as a component
of a bigger system. Our analysis of O-FRAP shows that it is vulner-
able to a denial-of-service attack (DoS for short). Our attack can be
summarized as follows:

o First, an attacker queries a large number of tags but terminates
each protocol session prematurely. The goal of this phase is to
cause each tag to possess a different version of pseudonym from
the one stored in the server’s database.

e Then, the server’s computational resources can be abused by
querying tags with de-synchronized pseudonyms. The attacker
can also attack the server directly by rendering itself as a tag
but sending invalid pseudonyms to the server.

Note that, in [9], the authors of O-FRAP presented a simplified
version of O-FRAP called Optimistic RFID Authentication Protocol
(O-RAP for short) which does not provide forward security. How-
ever, O-RAP is also vulnerable to the DoS attack presented in this
paper. We then propose an enhanced protocol called O-FRAP* to
counter our attack. Comparing to O-FRAP, O-FRAP* introduces
insignificant computational overhead but requires much less
memory storage at the server side. Our improved design can also
apply to the case of O-RAP protocol to make O-RAP resistant
against the DoS attack presented in this paper.

This paper is organized as follows: we first review O-FRAP
and O-RAP in Section 2. Then, we present the vulnerability of
O-FRAP and O-RAP against DoS attack in Section 3. The improved
protocol O-FRAP* (and the enhanced version of O-RAP which we
call O-RAP") is presented in Section 4, followed by security anal-
ysis and comparison in Section 5. Finally, we end with conclusion
in Section 6.

2. Related works

2.1. Notation

Throughout this paper, we will use the notations summarized in
Table 1.

Table 1
Summary of notations.
Notation Description
D Database of tags kept by server
D.query(.) Database querying procedure
D.update(.) Key updating procedure at database
n Number of tags in D
Ktag Shared secret between tag and server
Ttag Tag pseudonym
l Bit length of kg and ryqg
Prev; (Ktag, Trag) of tag i stored in D which was used in one of previous
sessions
Cur; (Ktag:Teag) Of tag i stored in D which is currently used
instance(i) A pair of the form (K;ag, 'tag) Of tag i
ks Fixed key shared between tag and server
fl) Pseudorandom function

2.2. O-FRAP and O-RAP protocols

O-FRAP is an authentication protocol for RFID in which a back-
end server authenticates and identifies RFID tags. Each tag is num-
bered from 1 to n and all of tag information is stored in a database
D at the back-end server. Note that, the RFID reader is omitted in
the description of O-FRAP as it essentially just plays the role of
an intermediate party who relays messages exchanged between a
tag and the server. A detailed description of O-FRAP is given in
Fig. 1.

We now discuss how O-FRAP achieves unlinkability and for-
ward security. Each tag shares with the server a secret key denoted
by kg To protect a tag against malicious tracking, for each authen-
tication session, a tag uses a randomly chosen number rq as its
pseudonym. The tag pseudonym is stored in both the memory of
the tag and the server’s database D. The goal is to use the pseudo-
nym to index D and quickly look up information on a tag given its
pseudonym (the D.query(.) procedure).

To achieve forward security, k. is updated after every success-
ful authentication session, both at the tag and the server sides. In
O-FRAP, the tag updates its key in the last round only if it success-
fully verifies the server. Therefore, an active attacker can intercept
and modify the server’s authentication token causing the tag fails
to verify the server and not to update its key. To prevent de-syn-
chronization attack, the server keeps two versions of secret key
for each tag in its database, a previously-used key (denoted by
kP”y and a currently-used one (denoted by ki.). The server

tag tag
updates the two keys in the D.update(.) procedure as follows:

o If the tag is authenticated with ki, the server does: kiy;” = ki
and ki, = kiz, where ki” is a newly generated key.
o If the tag is authenticated with k;”, the server preserves ki,;*

tag
and lets ki, = ki . The server does not update kf;;” because

tag
an active attacker can cause de-synchronization of secret by
modifying the server’s authentication token 24 in two consecu-

tive sessions.

The server also maintains two versions of the pseudonym for
each tag. Each entry in D which corresponds to one tag is indexed
by two pseudonyms. The two pseudonyms are also updated in the
same fashion as the secret keys are. We denote Prev; and Cur; as
two instances of tag information, each of the form (Secret Key,
Pseudonym), for a tag numbered i in D.

O-RAP which stands for Optimistic RFID Authentication Protocol
is a simplified version of O-FRAP which appeared in [9]. O-RAP is
essentially O-FRAP but without a key updating procedure. As a
result, O-RAP does not provide forward security and the back-
end server does not need to store two versions of the shared secret
key for each tag. A detailed description of O-RAP is given in Fig. 2.

386 D.N. Duc, K. Kim/Computer Communications 34 (2011) 384-390

Server(D)

Tsys €r {0, l}l

if D.query(Tiag) =1
range = [i, 1]
else
range = [1,n]
for j in range
for (kiag,Ttag) in (Prevy, Cur;)
U, — f(k:;a,m TrlfagHTSyS)
(U17Ué7vé7vi) — 1}/
if vo = v5
D.update(y)
output ACCEPT(5)

Tag(tag, ktag)
Tsys
v f(ktag: Ttag|[Tsys)
(v1,v2,v3,v4) <0
(Ttags Ttag) < (Ttag, v1)
Ttag||v2
!
U3
if v3 = v4
output ACCEPT(S)
ktag = U4

Fig. 1. The O-FRAP protocol.

Server(D)

Tag(rtag, ktag) |

Tsys €ER {07 1}L

if D.query(Fiag) =i
range = [i, i
else
range = [1,n]
for j in range
for (ktag, riag) in (Prevy, Cury)
’U/ — f(kga_q’ T,’ga_qHTsys)
(v1,v3,v5) — v’
if va = v
D.update(j)
output ACCEPT(j)

Tsys
v+ f(ktags Ttagl|Tsys)
(v1,v2,v3) v
(Ttag, Ttag) < (Itag, v1)

Ttag|v2
’

U3

if v3 = Ué
output ACCEPT(S)

Fig. 2. The O-RAP protocol.

Note that, Khalil and Raphael pointed out that the forward secu-
rity of O-FRAP" can be violated because the tag outputs ACCEPT
before updating its secret key. Therefore, if an attacker corrupts
the tag just before the tag's secret key is updated, the immediate
previous authentication session can be linked to the current ses-
sion. We also would like to remark that in O-FRAP, the tag updates
its secret key only if the server is authenticated successfully. This
potentially defeats forward security because an attacker can mod-
ify ¢4 to cause the server authentication to fail (which leads to the
tag not to update its secret key). Another weakness of O-FRAP
noticed in [8] is that the privacy-preserving property can be vio-
lated. More specifically, an attacker can trick a tag into updating

its pseudonym but not its secret key in one session and then he will
be able to trace the tag in the immediate following session. Note
that, the two attacks presented in [8] are not quite practical as only
two consecutive sessions can be linked.

3. Denial-of-service attack on O-FRAP and O-RAP

We now present a DoS attack on O-FRAP. The attack also works
on O-RAP as the two protocols share the same design. In O-FRAP,
the server will scan through the whole tag population in D if it fails
to single out one tag in D given a pseudonym of a tag, Ttg. An

attacker can exploit this property by sending a bogus T, Say T,

D.N. Duc, K. Kim/Computer Communications 34 (2011) 384-390 387

to the server and thus abuses the computational resources of the
server. A widespread presence of fake tags can make the problem
even more serious. One may argue that if the server fails to locate
asingle tag in D, it means that an attack is detected. In addition, the
fact that the server tries to match a tag with all the available tags in
its database is simply to make the protocol complete. However, O-
FRAP and O-RAP were designed to function like that for a different
reason which was not mentioned in [6,9]. The actual reason is that
it is straightforward to cause de-synchronization of pseudonym
between a tag and the server. As a tag always updates its pseudo-
nym regardless of being queried by a legitimate or malicious read-
er, the pseudonym can be easily de-synchronized by an attacker
who sends arbitrary query requests to the tag. In order to accom-
modate an RFID tag whose pseudonym has been de-synchronized,
the server needs to match that tag with each and every entry in its
database. The attack is illustrated in Fig. 3 where an attacker que-
ries the tag with r;, to cause de-synchronization of pseudonym.
Then, both the tag and the attacker can cause the server to scan
through the whole database D. We also want to remark that the
de-synchronization of pseudonym always implies that the pseudo-
nym at the tag is ahead of the pseudonym at the server. Therefore,
keeping a pseudonym used in one of previous session and indexing
D with this value are useless.

There are several ways to prevent the above attack as follows:

o An RFID tag should avoid updating its pseudonym and terminate
an authentication session if it is queried by an unknown server.
Note that, in order to provide unlinkability, the pseudonym of a
tag should not be sent before the server is authenticated.

o If an attacker attempts to send an invalid pseudonym, the
server should be able to detect it and take appropriate mea-
sures, e.g., stop the authentication session and examine the
tag in a physically secure location. In case of O-FRAP, the server
cannot distinguish whether a tag in question suffers from de-
synchronization of pseudonym or its pseudonym has been
actively modified by the attacker.

As we will see below, the two enhanced protocols, O-FRAP* and
O-RAP’, take both of the above approaches into account.

4. O-FRAP' and O-RAP" protocols

We now present the first improved protocol, O-FRAP*, which
aims to solve the security issues with O-FRAP mentioned above.
First, we shall discuss how to address those security issues and
then describe the construction of O-FRAP".

4.1. Main idea

In order to prevent an RFID tag from updating its pseudonym
accidentally, the server needs to be authenticated first. This cannot

be done in O-FRAP as the server has to look up a secret key shared
with an unknown tag before it can compute the authentication to-
ken v4. Note that, there is no loss of security if a tag uses one key to
authenticate the server and another key to prove its identity.
Therefore, we can use another common and fixed key to authenti-
cate the server. This key can be common for all tags or a local group
of tags (e.g., the tag database is partitioned and distributed) so that
the server does not have to search for this key first. Let’s call this
key ks. Authenticating the server first has another benefit as the
tag can now update its secret key before the server. The de-syn-
chronization attack can still be possible but in this case the prob-
lem is much easier to handle without the need for storing two
version of keys for each tag. To detect whether a pseudonym has
been tampered with before reaching the server, a tag can attach
to its pseudonym an integrity-checking message with the secret
key ks. In other words, the tag is authenticated by the server in
two steps: first, the server verifies that the tag is in its database
with ks; then the tag is identified with its own secret key Kiqg. In
practice, a reader can use the secret key ks to filter out fake tags.
Only tags that pass the first authentication step using ks (i.e., tags
that are actually in the database) can be forwarded to the back-
end server. Then, the back-end server will use the second authen-
tication step to authenticate and identify the tags.

4.2. Construction

In O-FRAP", each tag shares with the server two keys, a common
secret key ks and a private secret key k., The database D is in-
dexed with only currently-used pseudonyms of tags. The protocol
consists of four rounds roughly described as follows:

e Round 1: The server broadcasts its querying request rsys.

e Round 2: The tag then challenges the server with ty.

e Round 3: The server sends its response which will be verified by
the tag.

e Round 4: After authenticating the server, the tag updates its
pseudonym and secret key. Then it sends its old pseudonym
and its authentication token to the server so that the server
can authenticate and identify the tag. Note that, in response
to the attack in [8], the tag should updates its secret key and
pseudonym before accepting the server.

A detail description of O-FRAP* is given in Fig. 4 where a C lan-
guage convention return statement is used instead of output used
in the description of O-FRAP. Note that, O-FRAP* is a 4-round pro-
tocol for a purely practical reason. In practice, an RFID reader is
usually the one to initiate an authentication session.

We now discuss the key updating procedure at the server side.
After successfully verifying that the tag is in D, it is likely that the
D.query(.) will succeed and return one entry in D. Let instance(i) be

| Attacker

Server(D)

Tag(riag, ktag,ks) I

*
Tsys

Tsys

—
Ttag

Scan the whole D

Scan the whole D

Update r¢aqg
Ttag 1S de-synchronized

Tsys

Ftag

Fig. 3. Denial-of-service attack on O-FRAP and O-RAP.

388 D.N. Duc, K. Kim/Computer Communications 34 (2011) 384-390

Server(D, kg)

Tag(rtag, ktag,ks) |

if w # f(kS, 'Fta,gHrsysHtsys)
return “Attack Detected”
i+ D.query(Tiag)
(Ktags Ttag) < instance(i)
R:
V" — f(Ktag: TtaglIrsys|tsys)
(v1,v3) v
if V2 = ’Ué
D.update(i)
return ACCEPT(4)
else
k;a,g = f(kgaq)
goto R

_QueryRequest
tsys €r {0,1}
Lsys
Tsys €r {0, 1}
u < f(ks,Tsys|[tsys)
Tsys, U
if u= f(ks,rsys|tsys)
v f(ktags Ttag||Tsys[tsys)
(vi,v2) — v
(Ftag, Ttag) + (Ttag, V1)
w — f(ks, Ttag[rsys|[tsys)
ktag = f(ktag)
return ACCEPT(S)
Ttag||w||v2

Fig. 4. The O-FRAP" protocol.

a (Secret Key, Pseudonym)=(kiqg, 'rag) pair of the tag i stored in D.
Then, the server can authenticate the tag with the key k., How-
ever, it is still possible to cause de-synchronization of kg in O-
FRAP'. By modifying #», an attacker can cause tag authentication
with kg to fail which results in the server not to update its version
of keqg. Note that, the de-synchronization of secret in O-FRAP" is
very different from the problem in O-FRAP. In O-FRAP, the de-syn-
chronization of k., means the tag still keeps a key used in one of
previous authentication sessions while the server keeps the cur-
rently-used key. Whereas, in O-FRAP", if de-synchronization of kg
occurs then the server keeps one of the old keys while the tag has
the latest key. Furthermore, even though k. is inconsistent
between the server and the tag, the server can still locate the can-
didate tag in its database. It is clearly not the case in O-FRAP. This is
why we do not need to store two versions of secret key for each tag
in D. To accommodate a tag whose k¢, has been de-synchronized,
we update keqg in a chaining fashion, i.e., ki = f(kig)." The server
can try a new kg = f(ksqg) to re-authenticate the tag once it fails to
authenticate the tag with its current version of kg The number of
times the server tries in this scenario is up to a specific deployment
of O-FRAP".

Using the same approach described above, we can also secure
O-RAP against the denial-of-service attack presented in this paper.
We call O-RAP" as the secure version of O-RAP. Note that, O-RAP
does not have a key updating procedure. Therefore, there is no
key updating procedure as well as goto statement to handle the

1 If the output length of f{.) is longer than I, we can take the first I bits the output of
f.

de-synchronization of secret problem in O-RAP*. O-RAP" is illus-
trated in Fig. 5.

5. Security analysis and comparison
5.1. Secure mutual authentication

We can see that the mechanisms to provide mutual authentica-
tion in O-FRAP and O-FRAP* are essentially the same (this is also
true for O-RAP and O-RAP*). More specifically, an authentication
token is composed of a random nonce and the output from F(.)
with a shared secret key and the random nonce as the input. The
only difference is that in O-FRAP* and O-RAP”, the keys to authen-
ticate the server and a tag are different. Therefore, if an attacker
can violate the security of mutual authentication in the O-FRAP*
and O-RAP* protocols, it can do the same for the O-FRAP and
O-RAP protocols.

5.2. Privacy-preserving

Both O-FRAP and O-RAP* are secure against the tracing attack
presented in [8]. The reason is that the tag pseudonym and secret
key are updated at the same time. Therefore, an attacker cannot
cause a tag to update its pseudonym but not its secret key. Note
that, the tag pseudonym is emitted only after the server is verified
so not updating the pseudonym after every session does not make
a tag vulnerable to tracing attack. In addition, the fact that a tag
stops the protocol prematurely (i.e., the server is not successfully
authenticated) might have positive impact on privacy protection
in practice because it limits the ability of an attacker to detect

D.N. Duc, K. Kim/Computer Communications 34 (2011) 384-390 389

Server(D, ks)

Tag(rtam ktug 7k5)

QueryRequest
tsys €r {0, 1}
Lsys
Tsys €r {0, 1}
u — f(ks,rsys|[tsys)
Tsys, U
if u= f(ks,rsys|tsys)
v f(ktag, Ttagl|Tsys|[tsys)
(v1,v2) «— v
(Ftags Ttag) < (Ttag,v1)
w — f(ks, Ttagl[rsys|[tsys)
return ACCEPT(S)
Ttag||w||v2
if w # f(ks, TraglIrsys|tsys)
return “Attack Detected”
i — D.query(Fiag)
(Ktag: Ttag) < instance(i)
U, — f(k‘zagv TéagHrsys ‘ |t3y5)
(vi,v3) v
if vo = V4
return ACCEPT(4)

Fig. 5. The O-RAP" protocol.

Table 2
Comparison of O-FRAP, O-FRAP* and O-RAP".
O-FRAP O-FRAP* O-RAP*
No. of f{.) Tag: 1 Tag: 4 Tag: 3
evaluation Server: 1 Server: 4 Server: 3
Key length Tag: 21 bits Tag: 31 bits Tag: 31 bits
Server: 4In Server: (2n+ 1)l Server: (2n+ 1)l
bits bits bits
Mutual Yes Yes Yes
authentication
Privacy protection Weak Strong Strong
Resistant against No Yes Yes

DoS

the presence of RFID tags. For instance, a malicious party may at-
tempt to look for a particular RFID tag embedded in a passport to
determine the nationality of the passport holder. However, be-
cause the tag terminates the protocol early, the malicious party
might not have enough information on the protocol signature to
decide the presence or origin of the tag.

5.3. Forward security

O-FRAP" prevents the attack in [8] by requiring a tag to update
its secret key before accepting the server as authenticated. Further-
more, in O-FRAP”, an attacker cannot cause a tag not to update its
secret key even in case ks is corrupted. It is different from O-FRAP
where an attacker can modify the server authentication token v}
so that a tag will not update its secret key. As updating secret is re-
quired to achieve forward security, O-FRAP" is at least as secure as
O-FRAP.

5.4. Resistant against DoS attack

O-FRAP' and O-RAP" prevent fake tags from abusing the server’s
computational resources by verifying the integrity of pseudonyms.
In addition, an attacker cannot cause a tag to update its pseudonym

leading to inconsistent pseudonyms between tags and the server
(which makes the server to scan through the whole tag database
when querying tags in O-FRAP and O-RAP protocols).

5.5. Comparison

The comparison in terms of required computational resource
and security features of O-FRAP, O-FRAP" and O-RAP* is given in
Table 2.

6. Conclusion

In this paper, we show that the provably secure RFID authenti-
cation protocol called O-FRAP and its simplified version O-RAP are
vulnerable to DoS attack. We pointed out that it is trivial to abuse
the server’s computational resources in O-FRAP and O-RAP. We
then presented our improved protocols of O-FRAP and O-RAP
which we call O-FRAP" and O-RAP", respectively. The most impor-
tant point in the design of O-FRAP* and O-RAP" is that the server
should be authenticated first by using a fixed secret key. By doing
so, we not only defend O-FRAP* against DoS attack but also remove
the need for storing two versions of secret key and pseudonym for
each tag in the server’s database.

We think our approach of two-phase authentication can be
applied to many other RFID authentication protocols which use a
similar design to O-FRAP (that is the tag is authenticated and iden-
tified first). In some applications where mutual authentication
between tag and server/reader is not needed, using two-phase
authentication can still help a reader to prevent unwanted infor-
mation to travel to the back-end server.

Acknowledgement

This research was supported by the ICT Standardization pro-
gram of MKE (The Ministry of Knowledge Economy). The authors
also thank anonymous reviewers of this paper for providing useful
comments.

390 D.N. Duc, K. Kim/Computer Communications 34 (2011) 384-390

References

[1] Stephen Weis, Security and privacy in radio frequency identification devices,
Master’s Thesis. Available at <http://theory.lcs.mit.edu/sweis/masters.pdf>,
May 2003.

[2] Miyako Ohkubo, Koutarou Suzuki, Shingo Kinoshita, Efficient hash-chain based
RFID privacy protection scheme, in: the Proceedings of International Conference
on Ubiquitous Computing, Workshop Privacy, September 2004.

[3] Ari Juels, Stephen Weis, Authenticating pervasive devices with human
protocols, in: the Proceedings of CRYPTO'05, in: Victor Shoup (Ed.), LNCS,
3261, Springer-Verlag, 2005, pp. 293-308.

[4] Ari Juels, Strenthening EPC tag against cloning, in: M. Jakobsson, R. Poovendran
(Eds.), The Proceedings of ACM Workshop on Wireless Security (WiSe), 2005,
pp. 67-76.

[5] Ari Juels, RFID security and privacy: a research survey, Journal of Selected Areas
in Communication (J-SAC) 24 (2) (2006) 381-395.

[6] Tri Van Le, Mike Burnmester, Breno de Medeiros, Universally composable and
forward secure RFID authentication and authenticated key exchange, in: The
Proceedings of the Second ACM Symposium on Information, Computer and
Communications Security, March 2007, pp. 242-252.

[7] Ran Canetti, Obtaining universally composable security: towards the bare bones
of trust. Available at <http://eprint.iacr.org/2007/475>.

[8] Khaled Ouafi, Raphael C.-W. Phan, Traceable privacy of recent provably-secure
RFID protocols, in: the Proceedings of ACNS 2008, LNCS, 5037, Springer-Verlag,
2008, pp. 479-489.

[9] Mike Burnmester, Tri Van Le, Brene De Medeiros, Gene Tsudik, Universally
composable RFID identification and authentication protocols, ACM Transactions
on Information and Systems Security 12 (4) (2009) (Article 21).

