
All rights are reserved and copyright of this manuscript belongs to the authors.
This manuscript has been published without reviewing and editing as received
from the authors: posting the manuscript to SCIS 2009 does not prevent future
submissions to any journals or conferences with proceedings.

SCIS 2009 The 2009 Symposium on
Cryptography and Information Security

Otsu, Japan, Jan. 20-23, 2009
The Institute of Electronics,

Information and Communication Engineers

Improved ID-based Authenticated Group Key Agreement
Secure Against Impersonation Attack by Insider

Hyewon Park ∗ Tomoyuki Asano † Kwangjo Kim ‡

Abstract— Many conference systems over the Internet require authenticated group key agreement
(AGKA) for secure and reliable communication. After Shamir [1] proposed the ID-based cryptosys-
tem in 1984, ID-based AGKA protocols have been actively studied because of the simple public key
management. In 2006, Zhou et al. [12] proposed two-round ID-based AGKA protocol which is very
efficient in communication and computation complexity. However, their protocol does not provide user
identification and suffers from the impersonation attack by malicious participants. In this paper, we
propose improved ID-based AGKA protocol to prevent impersonation attack from Zhou et al.’s proto-
col. In our protocol, the malicious insider cannot impersonate another participants even if he knows
the ephemeral group secret value. Moreover, our protocol reduces the computation cost from Zhou et
al.’s protocol.

Keywords: ID-Based, GKA, AGKA, constant-round

1 Introduction

In many conference systems or applications, the com-
munication between the conference participants is ex-
changed through insecure channel like the Internet. Ac-
cording to this property of the systems, not only honest
but malicious users can easily eavesdrop or interrupt
the communication. Therefore, the conference partic-
ipants need their private communication to be secure
and reliable, and many solutions for the secure confer-
ence system have been proposed so far. Group key
agreement is one solution for secure communication
that more than two entities establish a shared secret
key for their communication. Since users can encrypt
or decrypt the messages with this established key, the
secure and reliable communication can be achieved. In
GKA, no participant can pre-determine the value of the
established session key. Additionally, GKA with au-
thentication mechanism is called authenticated group
key agreement (AGKA) and provides mutual key au-
thentication during group key agreement process.

After Shamir proposed ID-based cryptosystem [1],
ID-based AGKA protocols [8, 9, 10, 12, 14, 15] have
been proposed with the advantage of simple public key
management. ID-based cryptosystem uses an identity
information as a public key, so it does not need pub-
lic key infrastructure. Also, Burmester and Desmedt
[2] proposed constant-round GKA protocol over the
broadcast channel. Communication time is always con-
stant in this protocol because the participants are only
∗ Information and Communications University, Munji-dong,

Yuseong-gu, Daejeon, 305-732 Korea, inde1776@icu.ac.kr
† System Technologies Laboratories, Sony Corporation, 6-7-35

Kitashinagawa, Shinagawa-ku, Tokyo 141-0001, Japan
‡ Information and Communications University, Munji-dong,

Yuseong-gu, Daejeon, 305-732 Korea, kkj@icu.ac.kr

required to broadcast once when they want to send a
message to all the other participants. Many researchers
recently address the above two approaches to design
their GKA protocols.

In this paper, we review and analyze Zhou et al.’s
two-round ID-based constant round AGKA protocol
[12] because their protocol is considered to be one of
the most efficient ID-based AGKA protocol comparing
with the previous protocols. After that, we propose
an improved ID-based constant-round AGKA proto-
col. Our protocol prevents impersonation attack on
Zhou et al.’s protocol. We also prove the security of
our protocol under DBDH and CDH problems.

Our paper organized as follows: In Section 2, we
review previous ID-based AGKA protocols. After in-
troducing preliminaries in Section 3, we review Zhou
et al.’s two-round AGKA protocol and suggest how to
do impersonation attack by malicious participants in
Section 4. We present our improved ID-based AGKA
protocol in Section 5, and analyze in Section 6. We
finally conclude our paper in Section 7.

2 Related Work

In this section, we briefly review some recent papers
about ID-based constant-round AGKA protocols.

Choi et al. [8] proposed two-round ID-based AGKA
protocol based on Burmester and Desmedt’s GKA pro-
tocol in 2004. However, two papers showed imperson-
ation attacks on this protocol: replay attack by Zhang
and Chen [7] and insider colluding attack by Shim [13].

The protocol proposed by Kim et al. [9] requires
only one communication round, but suffers from replay
attack or passive attack because the equation for key
computation can be computed from any other users.

1

Shi et al. [10] also proposed one-round AGKA proto-
col that used different type of ID-based public/private
key pair with other protocols; however, Zhou et al. [12]
showed insider attack that malicious insider can get the
session key of any execution on this protocol.

Two AGKA protocols was proposed by Zhou et al.:
one requires one communication round (ZSM-1) and
the other requires two rounds (ZSM-2). ZSM-1 pro-
tocol requires much computation per each user and
has key control problem. ZSM-2 protocol is efficient
in computation, but suffers from impersonation attack
by insider. We discuss the security of the ZSM-2 pro-
tocol in Section 4.

In 2008, Choi et al. [14] proposed an improved pro-
tocol from the previous one. This protocol can prevent
passive attack or impersonation by additional signature
and session identifiers.

Yao et al. [15]’s AGKA protocol requires 3 commu-
nication rounds, and each round is for identity authen-
tication, key agreement, and key confirmation. This
protocol also can prevent passive attack or imperson-
ation.

3 Preliminaries

3.1 Security Model and Notions

Our security model follows Katz and Yung’s [6] for-
mal security model, which is extended version of Bres-
son et al.’s [4] model. Detailed definitions are described
in [6].

Participants and Initialization. Each user Ui in a
fixed, polynomial-size set P = {U1, ..., Un} of potential
participants have the unique identity ID. We denote
instance s ∈ N of player Ui as Πs

i .
In this model, an initialization phase occurs before

the protocol runs at first. Then each participant Ui

gets public/private keys (Qi, Si) by running an algo-
rithm G(1k).

Adversarial Model. We assume that an adversary
A can control all communications and ask an instance
to release session key or long-term key. An adversary’s
queries are modeled by the following oracles.

- Send(U, i,M) : Send message M to instance Πi
U and

outputs the reply generated by this instance.

- Execute(U1, ..., Un) : Execute the protocol between
the players U1, ..., Un and outputs the transcript of ex-
ecution.

- Reveal(U, i) : Output the session key ski
U .

- Corrupt(U) : Output the long-term secret key Si.

- Test(U, i) : A asks any of the above queries, and then
asks Test query only once. This query outputs a ran-
dom bit b; if b = 1 the adversary can access ski

U , and

if b = 0 he can only access a random string.

A passive adversary can ask Execute, Reveal, Cor-
rupt, Test queries and an active adversary can ask all
above queries including Send query.

Protocol Security. The advantage of an adversary A
in attacking protocol is defined as

AdvA(k) = |2 · Pr[Succ]− 1|,

where Succ is the event that A’s guess b′ satisfies
b = b′ for Test query.

The GKA protocol is said to be secure if AdvA(k) is
negligible for all probabilistic polynomial time (PPT)
adversary A.

3.2 Bilinear Pairing

G1 is an cyclic additive group and G2 is a cyclic
multiplicative group with same order q. Assume that
discrete logarithm problem (DLP) is hard in both G1

and G2. A mapping e : G1 × G1 → G2 which satisfies
the following properties is called a bilinear pairing from
a cryptographic point of view:

1. Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈
G1 and a, b ∈ Z∗q .

2. Non-degeneracy: If a generator P ∈ G1 then
e(P, P) is a generator of G2, that is, e(P, P) 6= 1.

3. Computable: There exists an efficient algorithm
to compute e(P,Q) for all P,Q ∈ G1.

CDH Problem : A Computational Diffie-Hellman
(CDH) parameter generator IGCDH is a PPT algo-
rithm takes a security parameter 1k and outputs addi-
tive group G1 with an order q.

When an algorithm A solves CDH problem with an
advantage ε, the advantage is

ε = Pr[A(G,P, aP, bP) = abP],

where P ∈ G1 and a, b ∈ Z∗q .

DBDH Problem : A Bilinear Diffie-Hellman (BDH)
parameter generator IGBDH is a PPT algorithm takes
a security parameter 1k and outputs G1 and G2 and
bilinear map e.

When an algorithmA solves Decisional BDH (DBDH)
problem with an advantage ε, the advantage is

|Pr[A(P, aP, bP, cP, e(P, P)abc) = 1]
- Pr[A(P, aP, bP, cP, e(P, P)d) = 1]| ≤ ε,

where P ∈ G1 and a, b, c, d ∈ Z∗q .

2

4 ZSM-2 Protocol

4.1 Description

Here we focus on the two-round ID-based AGKA
protocol, namely ZSM-2 protocol.

Before the session starts, ID-based system setup [5]
is done as follows:

Set Up. G1 and G2 are cyclic groups with order q, e
is a bilinear pairing, P is an arbitrary generator
of G1, and H denotes a hash function, where H :
{0, 1}∗ → Z∗q . Key Generation Center (KGC)
chooses a random s ∈ Z∗q as the secret master
key, and a random generator P of G1. Then KGC
computes Ppub = sP .

param = < G1, G2, q, e, P, Ppub, H >

Extraction. KGC generates the public/private key pair,
< Qi = H(IDi), Si = sQi >.

There are n users, from U1 to Un, in a group who
want to share a common secret key. U1 is assumed to
be an initiator of the group. Their protocol uses three
hash functions, H4: G2 → {0, 1}n, H5: {0, 1}n → Z∗q ,
and H6: G1 → {0, 1}n. The protocol works as follows.

Round 1. Initiator U1:

Pick δ ← G2, r ← {0, 1}n, k1 ← Z∗p
Compute Pi = r

⊕
H4(e(S1, Qi) · δ) (2 ≤ i ≤ n)

Compute & broadcast D1

D1 = < δ, P2, ..., Pn,

X1 = H5(r) · k1P, Y1 = k1Ppub, L >,

where L is a label containing users’ association
information.

Round 2. Ui(2 ≤ i ≤ n):

Find appropriate Pi from D1.
Then compute r′ = H4(e(Si, Q1) · δ)

⊕
Pi = r

Choose ki ← Z∗P randomly.
Compute & broadcast Di

Di = < Xi, Yi > = < H5(r) · kiP, kiPpub >

Key Computation. Each user computes

zi = H5(r)−1 ·Xi (1 ≤ i ≤ n)
Then verify the following equation. If fails, then
the protocol halts.

e(P,
∑n

j=1 Yj) = e(Ppub,
∑n

j=1 zj)

Session Key K = Ki = H6(z1)
⊕
...

⊕
H6(zn)

4.2 Impersonation Attack

In ZSM-2 protocol, they did not consider about the
existence of malicious participants. Also, their batch
verification only executes if the message is correctly
generated with secret value r, not if the message is
sent by correct user. Therefore, the malicious insider
who knows the secret value r can impersonate the other
users, that is, impersonation attack by the insider will
happen. The following is an attack on the protocol that
the legitimated user Uk impersonates the user Ui.

Round 2. Malicious insider Um(i 6= m) :
Inject the message which is sent to Ui.
Find appropriate Pm from D1.
Compute r′ = H4(e(Sm, Q1) · δ)

⊕
Pm = r

Random ki ← Z∗P , km ← Z∗P
Compute & broadcast Di, Dm

Di = < Xi, Yi > = < H5(r) · kiP, kiPpub >
Dm = < Xm, Ym > = < H5(r) · kmP, kmPpub >

Key Computation. All users succeed to verify Di

e(P,
∑n

j=1 Yj) = e(Ppub,
∑n

j=1 zj)

Session Key K = Ki = H6(z1)
⊕
...

⊕
H6(zn)

In Round 2 of the protocol, malicious user Um can
compute < Xi, Yi > pair using r because the com-
putation does not need any private information of Ui.
Then all the other users believe that they agreed session
group key with legitimate user Ui even though Ui does
not exist. This attack can also occur with colluding of
several malicious users.

5 Our Scheme

The impersonation attack by insider on the proto-
col is possible because their batch verification is not
enough to identify each user and only depends on se-
cret value r. Therefore, we improve the protocol that
modify the batch verification in the protocol to in-
clude user’s private key Si so malicious users cannot
impersonate the Ui even though they get r. Our pro-
tocol uses new hash functions, H1: G2 → {0, 1}|q|, H2:
{0, 1}|q| → Z∗q , and H3: G1 → {0, 1}|q|. The other no-
tations are the same in ZSM-2 protocol. Our protocol
runs as follows:

Round 1. Initiator U1 :

Pick δ, k1 ← Z∗q , r ← {0, 1}
|q|

Compute Pi = r
⊕
H1(e(δS1, Qi)) (2 ≤ i ≤ n)

Compute & broadcast D1

D1 = < δ, P2, ..., Pn, X1 = H2(r||L)k1P,

Y1 = k1Ppub +H2(r||L)S1, L >

Round 2. Ui(2 ≤ i ≤ n) :

Find appropriate Pi from D1.
Then compute r′ = H1(e(δSi, Q1))

⊕
Pi = r

Choose ki ← Z∗q randomly.
Compute & Broadcast Di

Di = < Xi, Yi >

= < H2(r||L)kiP, kiPpub +H2(r||L)Si >

Key Computation. Each user compute

z = H2(r||L)−1 ·
∑n

i=1Xi =
∑n

i=1 kiP
Then verify the following equation. If fails, then
it halts.

e(P,
∑n

j=1 Yj) = e(Ppub, z+H2(r||L)
∑n

j=1Qj)

Session Key K = Ki = H3(z)

3

In our AGKA protocol, three points are improved
from ZSM-2 protocol. (i) We define δ ← Z∗q and change
the encryption of secret value r in round 1 that δ is
multiplied to Q1 in G1 group. The multiplication in
G2 group takes much more time than in G1 group
in practice so we can reduce the time to encrypt r
in our protocol. (ii) Multiplication of z is combined
in our protocol to reduce the computation overhead.
In key computation process, we use hash function so
key control of specific user is still impossible. (iii) The
most important feature is that we modify the batch
verification. In our protocol, each user broadcasts <
H2(r||L) · kiP, kiPpub + H2(r||L)Si > to verify users.
This computation includes the private key of each users
so malicious user cannot make this value arbitrary. The
batch verification in our protocol can be done with the
following equation.

e(P,
∑n

j=1 Yj)
= e(P,

∑n
j=1(kjPpub +H2(r||L)Sj))

= e(P,
∑n

j=1(kjsP) +
∑n

j=1(H2(r||L)sQj))
= e(Ppub,

∑n
j=1(kjP) +

∑n
j=1(H2(r||L)Qj))

= e(Ppub, z +H2(r||L)
∑n

j=1(Qj))

6 Analysis of Our Protocol

In this section, we analyze our ID-based AGKA pro-
tocol from the security and performance points of view.

6.1 Security Analysis

Our goal is to show that our protocol is secure against
all types of adversary under DBDH and CDH assump-
tions. We show the security proof of our protocol in
two: encryption and signature schemes.

1) Encryption
We first assume that an adversary A gains an ad-

vantage from attacking the encryption scheme r ⊕ H1(
e(δSi, Qj)) without forging a signature.

Theorem 1. The encryption scheme in above protocol
is secure under the DBDH assumption in the Random
Oracle Model (ROM). Namely:

AdvA ≤ 2qex · AdvDBDH
G .

Proof. Let A be an active adversary and get advan-
tage in attacking the encryption. We consider that A
makes Execute query. The distribution of the tran-
script T and session group key K where 2 ≤ i ≤ n is
given by :

Real =



δ, k1 ← Z∗q , r ← {0, 1}
|q|;

Pi = r ⊕H1(e(S1, δQi));
r′ = H1(e(Si, δQ1))⊕ Pi;

Xi = H2(r||L)kiP, Yi = kiPpub +H2(r||L)Si;
T =< δ, P2, ..., Pn, X1, ..., Xn, Y1, ..., Yn >;

K = H3(z)



Consider the distributions Fake defined as follows:

Fake =



δ, k1, b1, bi ← Z∗q , r ← {0, 1}
|q|;

Pi = r ⊕H1(e(δb1Ppub, biP));
r′ = H1(e(biPpub, δb1P))⊕ Pi;

Xi = H2(r||L)kiP, Yi = kiPpub +H2(r||L)Si;
T =< δ, P2, ..., Pn, X1, ..., Xn, Y1, ..., Yn >;

K = H3(z)


Let ε = AdvDBDH

G and qex is the number of Execute
queries issued by A. When choosing (T ,K) pair ran-
domly to ask Test query and getting b, A can distin-
guish e(S1, δQi) and e(b1Ppub, δbiP), and get bit b′ from
guessing with probability ε′ (≤ ε) because he can ob-
tain b1P, ..., bnP and Ppub = sP is public. Therefore,
we obtain the following equation.

ε′ = |Pr[T ← Real;K ← Real;A(T ,K) = 1]
Pr[T ← Fake;K ← Fake;A(T ,K) = 1]| ≤ ε

There is aH-list which contains all the messages that
A queried before. Let Ask be the event that what A
makes to the Hash query is on the H-list when A asks
Test query. The advantage of A in correctly guessing
the session key and breaking the encryption is :

AdvA = 2 · Pr[Succ]− 1 = 2 · Pr[b = b′]− 1
= 2 · Pr[b = b′|¬Ask]Pr[¬Ask]

+2 · Pr[b = b′|Ask]Pr[Ask]− 1
= 2 · Pr[b = b′|¬Ask] + 2 · Pr[b = b′|Ask]− 1
= 2 · Pr[b = b′|Ask] = 2qex·ε′

A cannot gain the advantage without asking for it in
ROM, so 2 · Pr[b = b′|¬Ask] − 1 = 0. By adapting a
standard hybrid argument, we can have the result that
the advantage of A breaking the encryption as follows:

AdvA ≤ 2qex · AdvDBDH
G

2) Signature
Second, we assume that A gains an advantage with

forging a signature. In our protocol, we use an ID-based
signature scheme Σ defined as follows:

Extract. Given an identity ID, compute public key
QID = H(ID) and private key SID = sQID.

Sign. Compute Y = kPpub + hSID

where k ∈ Z∗q , h = H2(r||L);

< kP, Y >← Σgen(SID).

Verification. Verify e(P, Y) = e(Ppub, kP + hQID)

where h = H2(r||L);

True or False ← Σver(QID, < kP, Y >).

Here we show the signature scheme Σ is secure against
existential forgery on adaptively chosen ID attack as in

4

the following theorem. The proof follows from [8, 11].

Theorem 2. Let the hash functions H and H2 be ran-
dom oracles and F0 be a forger which performs an ex-
istential forgery under an adaptively chosen ID with
running time t0. The forger F0 can ask queries to the
H,H2, Extract and Sign at most qH , qH2 , qE , and qS
times, respectively. Suppose the advantage of F0 is ε0 ≥
10qH(qS + 1)(qS + qH2)/(q − 1). Then there exists an
attacker F that can solve the CDH problem within the
expected time t2 ≤ 120686qH2t0/ε0.

We can prove Theorem 2 by proving the following
Lemmas.

Lemma 1. Let the hash functions H be random oracle
and F0 be a forger for an adaptively chosen ID with
running time t0 and advantage ε0. Suppose F0 can ask
queries to the H at most qH times. Then a forger F
for a given ID has advantage ε1 ≤ ε0(1− 1/q)/qH with
running time t1 ≤ t0.

Proof. F is given ID∗, and we assume that F0 makes
H,Extract, and Sign queries at most once. F main-
tains a list LH of < IDi, Qi > and interacts with F0

after choosing α ∈ {1, ..., qH}.

- When F0 makes α-th H query on ID, F returns Q∗

with H query for ID∗ and inserts < ID,Q∗ >
into LH if ID = ID∗. Otherwise, F returns re-
sult for ID, and inserts < ID,Q > into LH .

- F0 issues an Extract query on Qi. If Qi = Q∗ then
F outputs FAIL; otherwise, F returns Si to F0

as the result of Extract query.

- When F0 issues H2 query on r||L, F returns the
result H2(r||L).

- When F0 makes Sign query on IDi, F returns <
IDi, kPi, Yi > to F0.

- F0 finally outputs < ID′, k′P, Y ′ > then F finds
< ID′, Q′ > in LH . If Q′ = Q∗, F outputs <
ID∗, k′P, Y ′ >, otherwise it fails.

Here, F succeeds the simulation with probability 1/q
if Q′ 6= Q∗ and < ID′, Q′ > is not in LH because the
output < ID′, k′P, Y ′ > is independent of the informa-
tion F0 accumulated from the previous queries in this
case. Therefore, the probability that F does not fail
the simulation is 1/qH(1− 1/q).

Lemma 2. Let the hash function H and H2 be random
oracles and F0 be a forger for a given ID who has ad-
vantage ε1 ≥ 10(qS + 1)(qS + qH2)/q with running time
t1. Suppose F0 can ask queries to the H,H2, Extract,
and Sign at most qH , qH2 , qE , and qS times, respec-
tively. Then there exists an attacker F can solve the
CDH problem within expected time t2 ≤ 120686qH2t1/ε1.

Proof. F sets the system parameters param = < G1,
G2, e, P, Ppub, ID, H, H2 > where Ppub = xP and
gives it to F0. Given P , xP , and yP , F ’s goal is to
compute xyP as CDH problem. F maintains two lists
LH =< IDi, ai, Qi > and LY =< IDj , kjP >, and
interacts with F0 as follows:

- When F0 makes H query on ID, F returns Q∗ = yP
for ID∗; otherwise F picks ai ∈ Z∗q randomly,
adds < IDi, ai, Qi > to LH , and returns Qi =
aiP .

- F0 issues an Extract query on Qi, if Qi = Q∗ then
F fails; otherwise, F finds < IDi, ai, Qi > from
LH and returns Si = aiPpub = xQi to F0.

- When F0 issues H2 query on r||L, F picks hi ∈ Z∗q
randomly and returns it.

- When F0 makes Sign query on IDi, F picks ki ∈ Z∗q
randomly, computes kiP , and adds < IDi, kiP >
to LY . Then F finds < IDi, ai, Qi > from LH ,
computes Yi = kixP + hiaixP = kiPpub + hiSi

and returns < IDi, kiP, hi, Yi > to F0.

Finally, F0 outputs a valid tuple < ID∗, kP, h, Y >
where < ID∗, kP > is not in LY without accessing any
oracles except H2. If F replays with the same random
tape but different choices of H2 as in the forking lemma
[3], then F0 outputs two valid tuples

< ID∗, kP, h, Y > and < ID∗, kP, h′, Y ′ >

where h 6= h′.
Here, F can computes (Y − Y ′)/(h − h′) = xyP

as CDH problem if both of them are expected; other-
wise, it fails. Therefore, the time for F is equal to the
time for forking lemma and the time t2 is bounded by
120686qH2t1/ε1.

Combining Lemmas 1 and 2, we can obtain The-
orem 2 with that the advantage of forger F in our
protocol is negligible.

6.2 Performance Analysis

Table 1 shows communication and computation cost
of our protocol comparing with other ID-based AGKA
protocols. We use the following notations:

n: Number of group members
#R: Total number of rounds
#U : Total number of unicast
#B : Total number of broadcast
#Exp: Total number of exponentiation
#G1-M : Total number of G1 group multiplication
#G2-M : Total number of G2 group multiplication
#Pair : Total number of pairings

Our protocol has less multiplication cost than ZSM-2
protocol, and shows even the most efficient protocol in
Table 1. Therefore, our AGKA protocol can improve
both of the security and performance of ZSM-2 proto-
col.

5

Table 1: Comparison of Performance
Protocol [8] [9] [10] [12]-1* [12]-2** [14] [15] Ours

#R 2 1 1 1 2 2 3 2
#U 0 0 (n− 1)2 0 0 0 0 0
#B 2n n 0 n n 2n 3n n

#Exp n(n− 1) 0 0 0 0 n(n− 1) 0 0
#G1-M 8n n(n+ 4) n2 0 n(n+ 3) 11n 2n(n+ 3) 7n− 1
#G2-M n(n− 1) 0 0 2n(n− 1) 2(n− 1) n(n− 1) 0 0
#Pair 4n n(4n− 3) n 2n(n− 1) 3n 6n n(n+ 5) 3n

*: ZSM-1 **: ZSM-2

7 Conclusion

In this paper, we suggested a deterministic attack on
the ZSM-2 protocol that a malicious insider who knows
the secret value r can impersonate the other user. To
prevent this attack, we proposed an improved AGKA
protocol which prevents impersonation attack by in-
sider and reduces the computation cost. In our proto-
col, we used signature including user’s private key, so an
insider who even gets secret value r cannot impersonate
other users. Moreover, our protocol reduces multipli-
cation cost in encryption and batch verification. An
open problem is to provide perfect forward secrecy if
all the previous transcripts and user’s private keys are
exposed, then the previous session key can be exposed.
Except this problem, our protocol improve the security
and performance of the previous protocol.

References

[1] A. Shamir, Identity-based Cryptosystems and Sig-
nature Schemes, Proc. of Crypto 84, LNCS 196,
pp.47-53, Springer-Verlag, 1984.

[2] M. Burmester and Y. Desmedt, A Secure and Effi-
cient Conference Key Distribution System, Proc.
of EUROCRYPT’94, LNCS 950, pp. 275-286.
Springer, May 1994.

[3] D. Pointcheval and J. Stern, Security Arguments
for Digital Signatures and Blind Signatures, J. of
Cryptology, vol. 13, pp. 361-396, 2000.

[4] E. Bresson, O. Chevassut, D. Pointcheval, and J.
Quisquater. Provably Authenticated Group Diffie-
Hellman Key Exchange, 8th ACM conference on
Computer and Communications Security (CCS’01),
pages 255-264. ACM Press, 2001.

[5] D. Boneh and M. Franklin, Identity-based encryp-
tion from the Weil pairing, Proc. of Crypto’01,
LNCS 2139, pp.213-229, Springer-Verlag, 2001.

[6] J. Katz and M. Yung, Scalable Protocols for
Authenticated Group Key Exchange, Proc. of
Crypto’03, LNCS 2729, pp.110-125, Springer, 2003.

[7] F. G. Zhang and X.F. Chen, Attack on Two
ID-based Authenticated Group Key Agreement

Schemes, Cryptology ePrint Archive: Report
2003/259.

[8] K. Y. Choi, J. Y. Hwang and D. H. Lee, Effi-
cient ID- based Group Key Agreement with Bilinear
Maps, Proc. of PKC’04, LNCS 2947, pp.130-144,
Springer-Verlag, 2004.

[9] J. S. Kim, H. C. Kim, K. J. Ha, and K. Y. Yoo,
One Round Identity-Based Authenticated Confer-
ence Agreement Protocol, Proc. of ECUMN 2004,
LNCS 3262, pp.407-416, Springer-Verlag, 2004.

[10] Y. Shi, G. Chen, and J. Li, ID-Based One
Round Authenticated Group Key Agreement Pro-
tocol with Bilinear Pairings, Proc. of International
Conference on Information Technology: Coding
and Computing (ITCC’05), vol.I, pp.757-761, 2005.

[11] H. Yoon, J. H. Cheon, and Y. Kim, Batch verifica-
tions with ID-based signatures, Proc. of ICISC ’04,
LNCS 3506, pp.233-248, Springer-Verlag, 2005.

[12] L. Zhou, W. Susilo, and Y. Mu, Efficient ID-based
Authenticated Group Key Agreement from Bilin-
ear Pairings, Proc. of Mobile Ad-hoc and Sensor
Networks (MSN 2006), LNCS 4325, pp.521-532,
Springer-Verlag, 2006.

[13] K. A. Shim, Further Analysis of ID-Based Authen-
ticated Group Key Agreement Protocol from Bilin-
ear Maps, IEICE Trans. Fundamentals, vol.E90-A,
no.1, pp.231-233, 2007.

[14] K. Y. Choi, J. Y. Hwang and D. H. Lee, ID-
Based Authenticated Group Key Agreement Secure
against Insider Attacks, IEICE Trans. Fundamen-
tals, vol.E91-A, no.7, pp.1828-1830, 2008.

[15] G. Yao, H. Wang, and Q. Jiang, An Authenti-
cated 3-Round Identity-Based Group Key Agree-
ment Protocol, Proc. of the third International
Conference on Availability, Reliability, and Secu-
rity (ARES’08), pp.538-543, ACM, 2008.

6

