O-FRAP+: Enhancing Security of a Forward secure RFID
Authentication Protocol

Dang Nguyen Duc* and Kwangjo Kim*

*Department of Information and Communication Engineering, KAIST

Abstract

In this paper, we point out two security weaknesses of a forward-secure RFID
authentication protocol proposed by Tri Van Le et al called O-FRAP. The first
security weakness of O-FRAP is its vulnerability against denial-of-service attack.
The second one is a flaw in a key updating procedure that can break forward
security of O-FRAP. We then propose our improved protocol which we «call
O-FRAP+. Our proposed protocol eliminates the denial-of-service threat and achieves

forward security.

ILIntroduction

Tri Van Le et al proposed a forward secure
RFID authentication protocol called O-FRAP [1]
which stands for Optimistic Forward secure
RFID Authentication Protocol.
security properties of O-FRAP are claimed by

The following

the authors:

* Mutual authentication between RFID tag
and RFID reader: a RFID tag and a RFID
reader is mutually authenticated after a
successful execution of O-FRAP.

* Anonymity of RFID tag: RFID tag is
secure against tracking by malicious
parties.

* Forward security: even if a RFID tag is
corrupted, its history remains anonymous.

O-FRAP is proven to be secure in a security
model called Universal Composable Security
Framework (UC framework for short) which
[2]. The UC

framework not only guarantees the security of a

was suggested by Ran Canetti

protocol running in isolation, but also the same
protocol running as a component of a larger
system.

In this paper, we first analyze the security of

O-FRAP. Our analysis of O-FRAP shows that
it is vulnerable to denial of service attack.
Furthermore, we demonstrate that O-FRAP
does not strictly achieve forward security. We
called
O-FRAP+ to cope with our attacks. Comparing
to O-FRAP, O-FRAP+ introduces insignificant
computational overhead but requires much less

then propose an improved protocol

memory storage on the server side.

II. O-FRAP

Throughout this paper, we will use notations
summarized in Table 1.

Notation | Description

D I Database of tags kept by server
D.query(.) | Database querying procedure
D.update(.)| Key updating procedure at database
n Number of tags in D

Security parameter, e.q., bit length of secret
Shared secret between Tag and Server
Shared secret in one of old session

Current shared secret

kiag Shared secret for the next session
Ttag Tag psendonym
Prey, 'U«'f..u.rf .9) of tag i stored in I which was used in one of previous sessions
Cur; | {kiag.Tiag) of tag i stored in [} which is currently used
instance(i) | A pair of the form (keag, reag) of tag i
ks [Fixed key shared between Tag and Server
F(.} Pseudorandom function

Table 1. Notations
O-FRAP [1] is
between a server and many RFID tags. In
O-FRAP, each tag is numbered from 1 to n

an authentication protocol

and all of tag information are stored in a
database D of the back-end server. Note that
the RFID reader is omitted in the description of
O-FRAP as it essentially just plays the role of
a proxy relaying messages exchanged between
the tag and the server. A detail discription of
O-FRAP is given in Fig. 1.

Server(D)
rays Er 0,1}

Tag(reag, ktag)

v Flkeag, Trag|lraus)
(v1,v2,v3,04) — v
(Feags Ttag) — (Ftag, 1)
Trag||vz
e
if D.query(fiay) =1
range = [i,1]
else
range = [1,n]
for j in range
for (kfag: Tiag) in (Prevy, Curs)
v’ F{k;ﬂa'r:mﬂ”rmﬂ)
(vl,vh,v3,v4) v’
if v = v}
D.update(7)
output ACCEPT(j)

]
U3

if vs = v§
ktag = 14
output ACCEPT(S)
Fig. 1. O-FRAP

We how O-FRAP

anonymity and forward

now discuss achieves
security. Each tag
shares a secret key, denoted as Kiwg with the
server. To protect a tag against tracing attack,
for each authentication session, a tag uses a
randomly chosen number r4, as its pseudonym.
The pseudonym is also stored in the memory of
the tag and D simultaneously. The goal is to
use the pseudonym to index D and quickly look
up information on a tag given its pseudonym
(the

forward-security,

D.query(.) procedure). To achieve
kwe 1s updated after every
successful authentication session both at the tag
and the

desynchronization attack, the sever keeps two

server sides. To prevent

versions of secret key for each tag in its
database. a previously-used key (say k) and
a currently-used one (say k™).
in the

The server

updates the two keys D.update(.)
procedure as follows:

e If the tag is authenticated with £, the

server does: K = k™ and kK™ = K
where knew is a newly generated key.

e If the tag is authenticated with K™, the
server preserves k7% and lets K™ = K™
The server does not update kX”® because

attacker

desynchronization of the
modifying the authentication token of the
server in two consecutive authentication

an active can cause

secret by

sessions.
The server also maintains two versions of
pseudonym for each tag and each entry in D is
The

in the same

indexed by two pseudonyms. two

pseudonyms are also updated
fashion as the secret keys are.

III. Security Weaknesses of

O-FRAP
Denial of service attack on O-FRAP. As we
can see, in O-FRAP, the server will scan

through the whole tag population in D if it fails

to locate one single tag in D given a
pseudonym of a tag. An attacker can exploit
this property by sending an invalid pseudonym
to the server and thus abuse the computational
resource of the server. A widespread presence
of illegitimate tags can make the problem even

more serious.

Forward insecurity of O-FRAP.

that the pseudorandom function F is secure, the

Assuming

forward security of O-FRAP relies entirely on
the secret key being updated after every
authentication session by both the tag and the
server. Consequently, if the server successfully
authenticates the tag and updates the shared
secret, it is required that the tag will also
correctly verify the server and update the secret
key. However, this is impossible to achieve as

an active attacker can always modify the v’s

value sent by the server resulting in the tag
not to update its secret key. In other words,

forward security is lost.

IV. Our Proposed Protocol -
O-FRAP+

We now present our improved protocol named
O-FRAP+ which aims to solve the security
with O-FRAP we have showed in

Section 2. We now discuss how to address

issues
those security issues and then describe the
construction of O-FRAP+.

Main Idea. In order to prevent a RFID tag
from updating its pseudonym accidentally, the
server needs to be authenticated first. This
cannot be done in O-FRAP as the server has
to look up the secret key before it can compute
the authentication token v’'s. However, we note
that

forward security for the server) is not required.

the privacy of the server (including
Therefore we can use another fixed key to
authenticate the server. This key is common for
all tags or group of tags in the database of the
server so that the server does not have to look
up this key first. Let’s call this key k_S.
Authenticating the

benefit as the tag can now update its secret

server first has another
key before the server. The desynchronization
attack can still be possible but in this case the
problem seems to be much easier to handle
without the need for storing double keys for
each tag. To detect whether a pseudonym has
been tampered with before reaching the server,
a tag can attach to its pseudonym an
integrity—checking message with the secret key
ks. In other words, the tag is authenticated by
the server in two steps: first, the server verifies
that the tag is in its database with ks; then the

tag is identified with its own secret key Kige.

Doing this has some benefits in practice. For
example, the tag database may be partitioned
and distributed and a unique ks is assigned for
each partition of the database. Then the key ks
can be used to identify which partition of D
that the tag belongs to.

Construction. In O-FRAP+, each tag shares
with the server two key, a common key ks and
its private secret key kwg The database D is
indexed with only currently-used pseudonym.
The protocol consists of 4 rounds roughly
described as follows:

* Round 1: The

querying request rsys.
* Round 2: The tag then challenges the

server with tsys.

server broadcasts its

* Round 3: The server communicates its
response to be authenticated by the tag.

* Round 4: After authenticating the server,
the tag updates its pseudonym and secret
key. Then it sends its old pseudonym and
its authentication token.

A detail description of O-FRAP+ is depicted in
Fig. 2.

Server(D)
Tays €En {0,1}

Tag(reag, keag,ks)

tsys €r {0,1}
u — F(ks, roys|ltsys)

if u = F(ks,Tayslltsys)
U = Flkiag. Trag||Tays ||teys)
(v1,02) — v
(Frag, Trag) — (Prag, 1)
w — F(ksg, Frag||reyslltays)
kiag = F{kiu_w}
output ACCEPT(S)
Fag||w| vz
if w # F(ks, Frag||Tays|tays)
output “Attack Detected”
if D.query(fag) =1
(ktagsThag) + instance(i)
R: v — F{k;uy‘r;ay”r-lyﬂlltﬂys}
(vi,va) — o
if vg = v}
output ACCEPT(4)
D .update(1)
else
kiu,ri = F(kmy)
goto R

Fig. 2. O-FRAP-

Note that, O-FRAP+ is a 4-round protocol for a
purely practical reason. In real life, the server
(or the RFID reader)
initiate an

is usually the one to

authentication session. From a
security point of view, rss can be moved to the
round 2 without any effect on the security of

the protocol.

We now discuss the key updating procedure at
the server side. After successfully verify that
the tag is in D by using ks, it is likely the
D.query(.)) will succeed and return one entry in
D. let (Secret
Pseudonym) (k'tag, ') pair of the tag i

instance(i) be a Key,
stored in D. Then, the server can authenticate
the tag with the key k'we. However, it is still
possible to cause desynchronization of Kwe in
O-FRAP+. An active attacker can modify vz
resulting in the tag authentication with k'wme to
fail and the server not to update the shared
secret. Note that, the desynchronization problem
in O-FRAP+ is very different from the one in
O-FRAP. In O-FRAP, the desynchronization of
ke means the tag still keeps a key used in one
of previous authentication sessions while the
server keeps the currently—used key. Meanwhile,
in O-FRAP+, if desynchronization of ke occurs
then the server keeps one of old keys while the
tag has the latest key. Furthermore, even
though kwe is inconsistent, the server can still
single out the candidate tag in its database. It
is not the case in O-FRAP. This is why we do
not need to store two versions of key for each
tag in D. To accomodate a tag whose kue has
been desynchronized, we update kw, In a
chaining fashion, ie., kwg = F(kig) where F is
a pseudorandom function. This allows the server
to try a new Kk'we = F(k'wg) to authenticate the
tag once it fails to authenticate the tag with its
current version of k'we. The number of times

the server tries in this scenario is up to a

specific deployment of O-FRAP+.

In [3], the authors mentioned a method to cause

desynchronization of secret by completely

blocking an important message, eg, v's in
O-FRAP and v2 in O-FRAP+. We argue that
the blocking attack is easier to be dealt with in
O-FRAP+ than in O-FRAP. It is because in
O-FRAP+, the server, not the tag, is at risk not
to update the secret. As the server has a far
more computational resource that the tag, it can
use some mechanisms like timer to detect

blocking.

We O-FRAP and

O-FRAP+ in terms of computational resource

Comparison. compare

and security features in Table 2.

[O-FRAP O-FRAP™
MNumber of F(.) Evaluation Tag: 1 Tag: 4
Server: 1 Server: 4
Key Length Tag: 21 bits Tag: 31 bits
Server: 4ln bits|Server: (2n + 1)1 hits
Authentication Mutual Mutual
Anonimyty Yes Yes
Forward Security Weak Strong
Resistant against DoS No Yes

Table. 2. Comparison of O-FRAP+ and O-FRAP

V.Concluding Remarks

In this paper, we have presented two security
provably secure RFID
called O-FRAP. In
particular, we pointed out that it is trivial to

weaknesses of a
authentication protocol
abuse the server computational resource in
O-FRAP. We also showed that O-FRAP is not
forward secure due to the way the shared
secret key is updated. We also presented our
improved protocol of O-FRAP which we call
O-FRAP+. The most important point in the
design of O-FRAP+ is that the server should
be authenticated first. By doing so, we can not
only defend O-FRAP+ against denial of service
attack but also remove the need for storing two

versions of secret key in the server’s database.

In

addition, O-FRAP+ is now fully forward

secure. We conclude that our improved protocol
has much better practical value than O-FRAP.

References

[1]1 Tri Van Le, Mike Burnmester and Breno de

(21

[3]

[4]

[5]

(6]

(7]

Medeiros, ‘'‘Universally Composable and
Forward Secure RFID Authentication and
Authenticated Key Exchange'’, In the
Proceedings of the 2nd ACM Symposium on
Information, Computer and Communications
Security, pp. 242--252, March 2007..

Ran Canetti, ‘‘Obtaining Universally
Composable Security: Towards the Bare
Bones of Trust’’, Available at

http://eprint.iacr.org/2007/475.

T. van Deursen and S. Radomirovic,
“*Attacks on RFID Protocols’’, Available at
http://eprint.iacr.org/2008/310.

Ari Juels, "“‘RFID Security and Privacy: A
Research Survey’’, In the Journal of
Selected Areas in Communication (J-SAC),
24(2):381-395, February 2006.

Ari Juels, “'RFID Security and Privacy: A
Research Survey’’, In the Journal of
Selected Areas in Communication (J-SAC),
24(2):381-395, February 2006.

Stephen Weis, ‘‘'Security and Privacy in
Radio Frequency Identification Devices'’,
Master Thesis, Available at
http://theory.lcs.mit.edu/~sweis/masters.pdf,
May 2003.

Miyako Ohkubo, Koutarou Suzuki, and
Shingo Kinoshita, ‘‘Efficient Hash—Chain
Based RFID Privacy Protection Scheme’’,
In the Proceedings of International
Conference on Ubiquitous Computing,
‘Workshop Privacy, September 2004.

[8] Ari Juels and Stephen Weis, '‘Authenticating

(9]

Pervasive Devices with Human Protocols’’,
In the Proceedings of CRYPTO'05, Victor
Shoup (Eds.), Springer-Verlag, LNCS 3261,
pp. 293 - -308, 2005.

Ari Juels, ‘‘Strenthening EPC Tag against
Cloning’’, In the Proceedings of ACM
Workshop on Wireless Security (WiSe), M.
Jakobsson and R. Poovendran (Ed.),

pp.67-76. 2005.

