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Abstract. We propose a secure threshold signature scheme without
trusted dealer. Our construction is based on the recently proposed signa-
ture scheme of Waters in EUROCRYPT’05. The new threshold signature
scheme is more efficient than the previous threshold signature schemes
without random oracles. Meanwhile, the signature share generation and
verification algorithms are non-interactive. Furthermore, it is the first
threshold signature scheme based on the computational Diffie-Hellman
(CDH) problem without random oracles.
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1 Introduction

Digital signatures can be produced by a group of players rather then by one
party by using a threshold signature scheme. In contrast to the regular signature
schemes where the signer is a single entity which holds the secret key, in (k, n)-
threshold signature schemes the secret key is shared by a group of k players.
In order to produce a valid signature on a given message m, individual players
produce their partial signatures on that message, and then combine them into a
full signature on m. A distributed signature scheme achieves threshold k, if no
coalition of k − 1 (or less) players can produce a new valid signature, even after
the system has produced many signatures on different messages. A signature
resulting from a threshold signature scheme is the same as if it was produced by
a single signer possessing the full secret signature key. In particular, the validity
of this signature can be verified by anyone who has the corresponding unique
public verification key. In other words, the fact that the signature was produced
in a distributed fashion is transparent to the recipient of the signature.

Threshold cryptography and secret sharing have been given considerable at-
tention since they were proposed. The first threshold secret sharing schemes,
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based on the Lagrange interpolating polynomial and linear project geometry,
were proposed by Shamir [11]. Many efficient digital signature and threshold
signature schemes are proved secure in the random oracle model. However, sev-
eral papers proved that some popular cryptosystems previously proved secure
in the random oracle are actually provably insecure when the random oracle is
instantiated by any real-world hashing functions [2]. Therefore, provably secure
threshold signature scheme in the standard model attracts a great interest.

Related Work. Recently, [13] gave the first threshold signature without ran-
dom oracles. However, the threshold signature scheme requires that the users
generate the signature interactively. Meanwhile, the correctness of these gener-
ated signature shares cannot be verified. Ideally, there is no other interaction
in the threshold signature scheme, namely the players need not talk to each
other during signing. Such threshold systems are called non-interactive. Often
one requires that threshold signature be robust [8], namely if threshold signature
fails, the combiner can identify the signing players that supplied invalid partial
signatures. In [12], a practical threshold signature scheme based on RSA was
proposed, which is non-interactive. However, it required a trusted dealer.
Contributions. In this paper, we propose a new practical threshold signature
scheme without trusted dealer. The threshold signature has the following prop-
erties:

1. It is provably secure without relying on the random oracle model;
2. Signature share generation and verification are completely non-interactive;
3. The scheme is the first threshold signature scheme based on the CDH prob-

lem without random oracles;
4. Signature share generation and verification algorithms are very efficient.

2 Preliminaries

2.1 Security Definitions and Notions

We shows the definition as follows:

Definition 1. A (k, n)-threshold signature scheme consists of algorithms (DKG,
SS, SV, SC, Vrfy). These algorithms are specified as follows:

1. DKG is the distributed key generation algorithm. On input security param-
eter 1λ, k, n it outputs public key pk and secret key sk. Meanwhile, it also
outputs the private value ski and verification key vki of player i such that
the values (sk1, · · · , skn) form a (k, n)-threshold secret sharing of sk. The
public output of the protocol contains the public key pk and verification key
V K = (vk1, · · · , vkn).

2. SS is the signature share generation algorithm run by player i, on input secret
share ski, a message m, it returns σi as the shared signature.

3. SV is the signature share verification, on input public key pk, verification
key vki, a message m, σi, output 1 if it is valid. Otherwise, output 0.
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4. SC is the signature share combining algorithm, on input |Φ| different shares
{σi}i∈Φ, where Φ ⊂ {1, 2, · · · , n} is a set and |Φ| ≥ k, a message m, it returns
σ as the signature.

5. Vrfy is the signature verification algorithm, on input pk, m, σ, returns 1 if
it is valid, otherwise, returns 0.

DKG makes use of an appropriate distributed secret-sharing technique to
generate shares of the private key as well as verification keys that will be used
for checking the validity of signature shares. The signing server then keeps their
private key shares secret but publishes the verification keys. Given a message for
signing, the signing servers then run the signature share generation algorithm
SS taking the message as input and send the resulting signature shares to the
combiner. Note that the validity of the shares can be checked by running the
signature share verification algorithm SV. When the user collects valid signature
shares from at least k servers, the signature can be reconstructed by running the
share combining algorithm SC. Notice that our model explicitly requires that
the generation and verification of signature shares is completely non-interactive.

We work with a static corruption model: the adversary must choose which
players to corrupt at the very beginning of the attack.

Unforgeability for (k, n)-threshold signature is defined as in the following
game involving an adversary A.

We have a set of n players, indexed 1, · · · , n, a trusted dealer, and an adver-
sary A. There is also a share signing algorithm SS, a share verification algorithm
SV, a share combining algorithm SC, and a signature verification algorithm Vrfy.

At the beginning of the game, the adversary selects a subset of k − 1 players
to corrupt. In the dealing phase, the dealer generates a public key pk along with
secret key shares sk1, · · · , skn, and verification keys VK = {vk1, · · · , vkn}. The
adversary obtains the secret key shares of the corrupted players, along with the
public key and verification keys. After the dealing phase, the adversary submits
signing requests to the uncorrupted players for messages of his choice. Upon such
a request, a player outputs a signature share for the given message.

We say that the adversary forges a signature if at the end of the game he
outputs a valid signature on a message that was not submitted as a signing
request to the uncorrupted players. We say that the threshold signature scheme
is unforgeable if it is computationally infeasible for the adversary to forge a
signature.

2.2 Pairings and Problem

Let G, GT be cyclic groups of prime order p, writing the group action multi-
plicatively. Let g be a generator of G. A bilinear map ê : G × G → GT is also
defined.

Definition 2. (Computational Diffie-Hellman CDH Assumption) The Com-
putational Diffie-Hellman problem is that, given g, gx, gy ∈ (G)3 for unknown
x, y ∈ Z

∗

p, it is hard to compute gxy.
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2.3 Brief Review of Waters Signature Scheme

In EUROCRYPT’05, Waters [14] proposed an identity based encryption scheme.
From the private key extraction algorithm, a signature scheme without random
oracles has been constructed [14].

1. Gen. Choose α ∈ Zp and let g1 = gα. Additionally, two random values
g2, u

′ ∈ G and a random n-length vector U = (ui), whose elements are
chosen at random from G. The public key is pk = (g1, g2, u

′, U) and the
secret key is gα

2 .
2. Sign. To generate a signature on message M = (µ1, · · · , µn) ∈ {0, 1}n, pick

s ∈R Z∗

p and output the signature as σ=(gα
2 · (u′

∏n
j=1 u

µj

j )s, gs) with his
secret key gα

2 .
3. Verify. Given a signature σ on message M = (µ1, · · · , µn) ∈ {0, 1}n, it

first parses σ = (σ1, σ2). Then it checks if the following equation holds:
ê(σ1, g)=ê(g2, g1) · ê (u′

∏n
i=1 u

µi

i , σ2). Output 1 if it is valid. Otherwise,
output 0.

2.4 Brief Review of GJKR’s DKG

Before we give the description of GJKR’s DKG, we review two fundamental
secret sharing schemes:

A. Shamir’s Secret Sharing [11]: Given a secret α, choose at random a degree
k − 1 polynomial function f ∈ Zp[X ] such that x = f(0). Give to player Pi

a share xi = f(i) mod p, where p is a prime. We will write (x1, · · · , xn) ↔
(x) to denote such a sharing.

B. Feldman Verifiable Secret Sharing [6]: Like Shamir’s secret sharing
scheme, it generates for each player Pi a share xi = f(i) mod p, such that

(x1, · · · , xn) ↔ (x). If f(x)=
∑k−1

i=0 aix
i, then the dealer broadcasts the values

Ai = gai , where g is subgroup generator. This will allow the players to check
that the values xi really define a secret by checking that gxi=

∏k−1
j=0 Aij

j . It
will also allow detection of incorrect shares at reconstruction time. In the
following we will refer to this protocol by Feldman-VSS.

Pedersen proposed a DKG protocol in [9]. The basic idea in Pedersen’s DKG
protocol is to have n parallel executions of Feldman-VSS protocol in which each
player Pi acts as a dealer of a random secret zi that he picks. The secret value
x is taken to be the sum of the properly shared z′

is. Since Feldman-VSS has the
additional property of revealing yi = gzi , the public value y is the product of
the yi’s that correspond to those properly shared z′

is.
In spite of its use in many protocols, Pedersen’s DKG [9] cannot guaran-

tee the correctness of the output distribution in the presence of an adversary.
Specifically, Gennaro et al. [7] showed a strategy for an adversary to manipulate
the distribution of the resulting secret x to something quite different from the
uniform distribution. In contrast to the Pedersen’s DKG, Gennaro et al. [7] pre-
sented the GJKR’s DKG protocol that enjoys a full proof of security. It starts by



5

running a commitment stage where each player Pi commits to a (k − 1)-degree
polynomial fi(z) whose constant coefficient is the random value, zi, contributed
by Pi to the jointly generated secret α. To realize the above commitment stage
it used the information-theoretic verifiable secret sharing protocol due to Ped-
ersen’s DKG. After the value x is fixed the parties can efficiently and securely
compute y = gx. Most importantly, this guarantees that no bias in the output
x or y of the protocol is possible, and it allows to present a full proof of secu-
rity based on a careful simulation argument. Each honest party Pj computes its
share xj of x, and we have that for the set of shares R: x =

∑

j∈R λjxj . Mean-
while, for each share xj , the value gxj can be computed from publicly available
information broadcast.

We now describe in detail the secure distributed key generation [7](GJKR’s
DKG):

1. In order to generating a secret key x, each player Pi performs interactively
as follows:

(a) Pi chooses two random polynomials fi(z), f ′

i(z) over Zp of degree k−1 :
fi(z) = ai0 +ai1z + · · ·+ai,k−1z

k−1, f ′

i(z) = bi0 + bi1z + · · ·+ bi,k−1z
k−1.

Let zi = ai0 = fi(0). Pi broadcasts Cit = gaithbik mod p for t = 0, · · · , k−
1. Pi computes the shares sij = fi(j), s′ij = f ′

i(j) mod p for j = 1, · · · , n
and sends sij , s

′

ij to player Pj .
(b) Each player Pj verifies the shares he received from the other players. For

each i = 1, · · · , n, Pj checks if gsij hs′

ij =
∏k−1

t=0 (Cit)
jt

mod p. If the check
fails for an index i, Pj broadcasts a complaint against Pi.

(c) Each player Pi who, as a dealer, received a complaint from player Pj

broadcasts the values sij , s′ij .
(d) Each player marks as disqualified any player that either received more

than k − 1 complaints in Step 1b, or answered to a complaint in Step 1c
with invalid values.

(e) Each player Pi then builds the same set of non-disqualified players QUAL

and sets his share of the secret as xi =
∑

i∈QUAL sji mod p, and the value
x′

i =
∑

i∈QUAL s′ji mod p.

2. Finally, they extract y = gx mod p as follows:

(a) Each player i ∈ QUAL exposes yi = gzi mod p via Feldman VSS and
broadcasts Ait = gait mod p for t = 0, · · · , k − 1. Then Pj verifies the
values broadcast by the other players in QUAL, namely, for each i ∈
QUAL, Pj checks if gsij =

∏k−1
t=0 (Ait)

jt

mod p. If the check fails for an
index i, Pj complains against Pi by broadcasting the values sij , s

′

ij .
(b) For players Pi who receive at least one valid complaint, the other players

run the reconstruction phase of Pedersen-VSS to compute zi, fi(z), Ait

for t = 0, · · · , k − 1 in the clear.
(c) For all players in QUAL, set yi = Ai0 = gzi mod p. Compute y =

∏

i∈QUAL yi mod p.
The above argument shows that the secret x can be efficiently recon-
structed, via interpolation, out of any k correct shares.



6

We need to show that we can tell apart correct shares from incorrect ones. For
this we show that for each share xj , the value gxj can be computed from publicly

available information broadcast in Step 2a: gxj = g
∑

i∈QUAL
sij =

∏

i∈QUAL gsij

=
∏

i∈QUAL

∏k−1
t=0 (Ait)

jt mod p. Thus the publicly available value gxj makes it
possible to verify the correctness of share xj at reconstruction time.

Meanwhile, for any set R of k correct shares, zi =
∑

j∈R λj ·sij mod p, where
λj are appropriate Lagrange interpolation coefficients for the set R. Since each
honest party Pj computes its share xj as xj =

∑

i∈QUAL sij , then we have that
for the set of shares R: x =

∑

i∈QUAL zi =
∑

i∈QUAL(
∑

j∈R λj · sij)=
∑

j∈R λj ·
(
∑

i∈QUAL sij) =
∑

j∈R λjxj .

3 The Threshold Signature Scheme With Trusted Dealer

Let G be a bilinear group of prime order p. Given a pairing: ê : G×G → GT . A
random generator g ∈ G is also selected.

1. DKG.To generate public key, the trusted dealer picks α ∈ Zp and computes
g1 = gα. Additionally, two random values g2, u

′ ∈ G and a random n-length
vector U = (ui), whose elements are chosen at random from G, are also
generated.

a. It chooses a k − 1 degree function f(x) ∈ Zp(x) such that α = f(0) and
computes n secret key share (i, ski) for 1 ≤ i ≤ n by using Shamir secret

sharing scheme, which is defined as ski= g
f(i)
2 .

b. The public verification key VK consists of the n-tuple (gf(1), · · · , gf(n)).

Then, it sends to player Pi a share g
f(i)
2 for 1 ≤ i ≤ n.

c. The public key is (g1, g2, u
′, U, VK) and the secret key shares are ski for

1 ≤ i ≤ n.

2. SS. To generate a signature on message M = (µ1, · · · , µn) ∈ {0, 1}n, player i

picks ri ∈R Z∗

p and outputs the partial signature as σi=(ski ·(u
′
∏n

j=1 u
µj

j )ri ,
gri) with its secret key share ski.

3. SV. On input σi = (σi,1, σi,2), verification key vki, the verifier checks if the
following equation holds: ê(σi,1, g)=ê(g2, vki) · ê (u′

∏n
j=1 u

µj

j , σi,2). Output
1 if it is valid. Otherwise, output 0.

4. SC. Let λ1, · · · , λk ∈ Zp be the Lagrange coefficients so that α = f(0) =
∑k

i=1 λif(i). Assume signature share combination algorithm has |Φ| valid
signature shares σi = (σi,1, σi,2), where |Φ| ≥ k. Without loss of generality
we assume that player i = 1, · · · , k were used to generate the shares. The
signature combination algorithm computes the signature on message M as
σ = (

∏k
i=1(σi,1)

λi ,
∏k

i=1(σi,2)
λi).

5. Vrfy. Given a signature σ on message M = (µ1, · · · , µn) ∈ {0, 1}n, it
first parses σ = (σ1, σ2). Then it checks if the following equation holds:
ê(σ1, g)=ê(g2, g1) · ê (u′

∏n
i=1 u

µi

i , σ2). Output 1 if it is valid. Otherwise,
output 0.
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3.1 Efficiency Analysis

The new threshold signature scheme is non-interactive. Furthermore, signature
share generation algorithm requires only two exponentiation computation for
each player. Though [12] also gave a practical non-interactive threshold signature
scheme with trusted dealer based on RSA problem, it required one exponenti-
ation with zero-knowledge proof, which is actually not very efficient. Recently,
a short threshold signature scheme [13] has been proposed, however, it is very
inefficient for it requires the players generate signature shares interactively.

3.2 Security Result

Theorem 1. Under the CDH assumption, the proposed practical threshold sig-
nature scheme is a secure (unforgeable and robust) threshold signature scheme
resistant to k − 1 faults against a static malicious adversary, when the number
of player is n ≥ 2k − 1.

Proof. Our algorithm C described below solves CDH problem for a randomly
given instance {g, X = gx, Y = gy} and asked to compute gxy.
Setup: First, C defines g1 = X and sets an integer, m = 4qS , chooses an in-
teger, k′, uniformly at random between 0 and n. Choose a random n-length
vector, −→a = (ai), all are chosen uniformly at random between 0 and m − 1.

Then, the simulator chooses a random b′ ∈ Zp and an n-length vector,
−→
b =

(bi), where the elements of
−→
b are chosen at random in Zp. It then assigns

u′ = g
p−km+a′

1 gb′ and the parameter U as ui = gai

1 gbi . The system parameters
params= (g, g1, u

′, (ui)) are sent to A. Two pairs of functions are defined for a
message M = {µ1, · · · , µn} ∈ {0, 1}n. We define F (M) = (p − mk) + a′ +

∑n
i=1

a
µi

i . Next, we define J(M) = b′ +
∑n

i=1 b
µi

i . Finally, define a binary function

K(M) as K(M) =

{

0, if a′ +
∑n

i=1 a
µi

i ≡ 0 (mod m);
1, otherwise.

We assume w.l.o.g. that the adversary corrupted the first k − 1 players
P1, · · · , Pk−1. Then, C generates the secret key shares for the k − 1 corrupt
players in S. To do so, C first picks k−1 random integers x1, · · · , xk−1 ∈ Zp. Let
f ∈ Zp[X ] be the degree k − 1 polynomial implicitly defined to satisfy f(0) = x

and f(i) = xi for i = 1, · · · , k−1. Algorithm C gives A the k−1 secret key shares

ski = gxi

2 . These keys are consistent with this polynomial f since ski = g
f(i)
2 for

i = 1, · · · , k − 1.
Finally, C constructs the verification key VK, which is a n-vector (vk1, · · · , vkn)

such that vki = gf(i) for the polynomial f defined above, as follows:
For i ∈ S, computing vki is easy since f(i) is equal to one of the x1, · · · , xk−1,

which are known to C. Thus, vk1, · · · , vkk−1 are easy for C to compute.
For i 6∈ S, algorithm C needs to compute the Lagrange coefficients λ0,i, λ1,i,

· · ·, λk−1,i ∈ Zp such that f(i) = λ0,if(0) +
∑k−1

j=1 λj,if(j); these Lagrange
coefficients are easily calculated since they do not depend on f . Algorithm C

then sets vki = g
λ0,i

1 vk
λ1,i

1 · · · vk
λk−1,i

k−1 , which entails that vki = gf(i) as required.
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Once it has computed all the vki’s, C gives to A the verification key VK =
(vk1, · · · , vkn).
Signature Share Query: A issues up to qS signature share generation queries to
the uncorrupt players. Consider a signature share generation query to player
i 6∈ S. Let M=(µ1, · · · , µn) ∈ {0, 1}n be the message for signature share query.
If K(M) = 0, C will abort. Otherwise, C computes the simulated signature
share for M as follows: Algorithm B needs to return (i, (σi,0, σi,1)) where σi,0 =
gxi

2 · (u′
∏n

j=1 u
µj

j )ri , σi,1=gri .
To do so, B first computes the Lagrange coefficients λ0, λ1, · · · , λk−1 ∈ Zp

such that f(i) = λ0,if(0)+
∑k−1

j=1 λj,if(j). Pick r′i ∈ Z∗

p and output the simulated

signature share as σi = (g
−λ0,i

J(M)
F (M)

2 (u′
∏n

i=1 ui)
r′

i · g
∑k−1

j=1 λj,if(j)

2 , g

−λ0,i

F (M)

2 gr′

i). The
correctness of the signature can be easily verified.

Finally, the adversary outputs a forged signature (σ∗

1 , σ∗

2) on message M∗ =

(µ∗

1, · · · , µ
∗

n). If a′ +
∑n

i=1 a
µ∗

i

i 6= km, the challenger will abort. Otherwise, C will

compute gxy =
σ∗

1

(σ∗

2 )J(M) .

For the simulation to complete without aborting, we require that all signature
queries on M will have K(M) 6= km, that forgery signature on message M ∗ has
K(M∗) = 0 mod p. In fact, the probability analysis is very similar to [23].
So, we can get the probability of solving computational CDH problem as ε′ =

ε
16(qE+qS)qS(n+1)(m+1) if the adversary success with probability ε.

4 The Threshold Signature Scheme Without Trusted

Dealer

We have construct a threshold signature scheme with trusted dealer in last sec-
tion. However, in some situations, it does not have trusted dealer. So, in order to
generate threshold signature, the players should generate the public key jointly.
We assume that the involved n participants are connected by a broadcast chan-
nel. Furthermore, any one pair of the participants is connected by a private
channel. We also assume that there is a universal clock such that each partic-
ipant knows the absolute time, and the communication channel is (partially)
synchronous by rounds.

It is also assumed that an adversary can corrupt up to k− 1 of the n players
in the network, for any value of k − 1 < n

2 (this is the best achievable thresh-
old or resilience for solutions that provide both secrecy and robustness). We
consider a malicious adversary that may cause corrupted players to divert from
the specified protocol in any way. We assume that the computational power of
the adversary is adequately modelled by a probabilistic polynomial time Turing
machine. Furthermore, we consider a static adversary who chooses corrupted
participants at the beginning of each time period. For the robustness, it means
that the scheme can be successfully finished even if the adversary corrupts k− 1
participants at most.

GJKR’s DKG protocol of [7] is based on the ideas similar to the protocol of
Pedersen [9], has comparable complexity, but provably fixes the weakness of the
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latter. So, we use the GJKR’s DKG protocol in [7] to distributedly generate the
shared secret keys and output public keys. The system parameters are the same
with the scheme in section 3.

– DKG. To generate public key, n servers jointly generate user public key
g1 = gα by using GJKR’s DKG. Meanwhile, Each player Pi broadcasts gf(i)

for a random jointly generated degree k − 1 polynomial f ∈ Zp[X ] such
that α = f(0). Additionally, two values g2, u

′ ∈ G and a n-length vector
U = (ui), whose elements are from G, are also generated by using GJKR’s
DKG algorithm, respectively. Furthermore, player Pi gets its secret share

ski = g
f(i)
2 for 1 ≤ i ≤ n. The public verification key VK=(vk1, · · · , vkn)

consists of the n-tuple (gf(1), · · · , gf(n)). The public key is (g1, g2, u
′, U, VK)

and the shared secret keys are ski for 1 ≤ i ≤ n.
– SS, SV, SC, Vrfy algorithms are the same with section 2.4.

Correctness is obvious. Next, we will prove its robustness and unforgeablity.

4.1 Security Result

We also prove the unforgeability by using the concept of simulatable adversary
view [16] proposed by Gennaro et al.

Theorem 2. Under the CDH assumption, the proposed practical threshold sig-
nature scheme is a secure (unforgeable and robust) threshold signature scheme
resistant to k − 1 faults against a static malicious adversary, when the number
of player is n ≥ 2k − 1.

Proof. The robustness is evident.
The construction of DKG is the same with [7], which has been proved to be

simulatable. Next, we prove the protocol SS is simulatable:
Given public key (g1, g2, u

′, U, VK), message m = (µ1, · · · , µn) ∈ {0, 1}n, sig-
nature σ = (σ1, σ2), k − 1 shares (α1, · · · , αk−1) of the corrupted players, it
picks random values ri ∈ Zp and computes σi = gαi

2 · (u′
∏n

j=1 u
µj

j )ri , gri) for
i = 1, · · · , k − 1. From the values σ = (σ1, σ2), and σi for i = 1, · · · , k − 1, simu-
lator generates σj = σ

σ
λj,i
i

, for j = k, · · · , n, with known Lagrange interpolation

coefficients λj,i.

5 Conclusion

A secure threshold signature scheme without trusted dealer is proposed in this
paper. Our construction is based on the recently proposed signature scheme of
Waters [14], combined with the new technique [3]. It is provably secure without
relying on the random oracle model. Additionally, signature share generation and
verification is completely non-interactive. The new threshold signature scheme
is more efficient than the previous threshold signature schemes without random
oracles. Furthermore, it is the first threshold signature scheme based on the CDH
problem without relying on random oracles.
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