SCIS 2006 The 2006 Symposium on Cryptography and Information Security Hiroshima, Japan, Jan. 17-20, 2006 The Institute of Electronics, Information and Communication Engineers

RFID Mutual Authentication Scheme based on Synchronized Secret Information

Sangshin Lee¹ Tomoyuki Asano² Kwangjo Kim¹

¹CAIS Lab, Information and Communications University (ICU), Korea Auto-ID Lab, ICU, Korea

²Sony Corporation, Japan

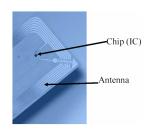
21st January 2006

Contents

- Introduction
- Security
- Previous Work
- Our Scheme
- Comparison
- Conclusion

RFID Technology

RFID technology

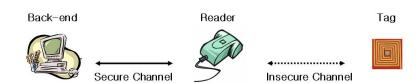

- An automatic identification system, relying on storing and remotely retrieving data about objects
- By using a device called "RFID tag"

Effects of RFID

- Automation of industry
- Convenience to individuals

User privacy problems inherently

 No access-control and tamper-resistance



Notations

- T RF tag.
- RF tag reader.
- Back-end server, which has a database.
- A Adversary.
- h() One-way hash function.
- *PRNG* PseudoRandom Number Generator.
 - Exclusive-or (XOR) function.
 - r_r Pseudorandom number generated by *PRNG* of \mathcal{R} .
 - r_t Pseudorandom number generated by *PRNG* of T.
 - Verification operator to check whether the left hand side is valid for the right hand side or not.
 - Update operator from the right hand side to the left hand side.

Components and Channels

- ullet Channel btw ${\cal B}$ and ${\cal R}$
 - Secure channel
 - Enough computational power of \mathcal{B} and \mathcal{R} .
- ullet Channel btw ${\mathcal R}$ and ${\mathcal T}$
 - Insecure channel
 - Limited computation power of \mathcal{T}
 - RF interface


Privacy Problems

Information leakage of user belongings

- Some are quite personal
- ex) medicine, books, money, or expensive products

Behavioral tracking

 If a user carries traceable T, the identity and movements of the user can be traced by tracking T.

@ picture is credited to Ohkubo et. al.

Attacking Model

Eavesdropping

• ${\cal A}$ can easily eavesdrop communications btw ${\cal T}$ and ${\cal R}$ without user's recognition.

Active Query

• $\mathcal A$ can actively query to $\mathcal T$ to get responses.

DB Desynchronization

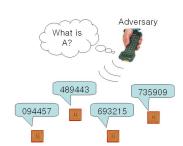
• ${\cal A}$ can try to desynchronize identification information btw ${\cal B}$ and ${\cal T}.$

Tampering

• $\mathcal A$ can tamper with $\mathcal T$ because a low-cost $\mathcal T$ offers no tamper-resistance mechanism.

Indistinguishability

 Values emitted by T must not be discriminated from the other T.


Indistinguishability

 Values emitted by T must not be discriminated from the other T.

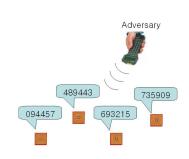
Indistinguishability

 Values emitted by T must not be discriminated from the other T.

Indistinguishability

 Values emitted by T must not be discriminated from the other T.

Forward Security


 Contents of memory in T does not give any hint to detect past outputs

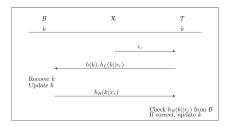
Indistinguishability

 Values emitted by T must not be discriminated from the other T.

Forward Security

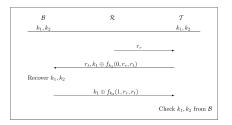
 Contents of memory in T does not give any hint to detect past outputs

Indistinguishability


 Values emitted by T must not be discriminated from the other T.

 Contents of memory in T does not give any hint to detect past outputs

Lee et al.'s Scheme [ICCSA 2005]

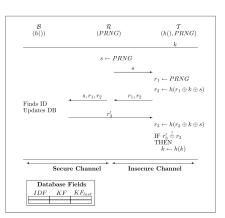

Scheme

• Update: $k \leftarrow k \oplus r_r$

Security analysis

- Partially indistinguishable: h(k) doesn't vary within successive mutual authentications.
- Not forward secure: r_r can be eavesdropped.

Molnar et al.'s Scheme [ACM CCS 2004]

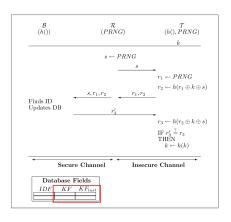

Scheme

- Do not update k_1, k_2
- Security analysis
 - Indistinguishable
 - Not forward secure: A can test responses of T by using fixed k_1, k_2 .

Our Scheme (1/5) - Main Idea

- ullet Share a key between ${\cal B}$ and ${\cal T}$
- Mutual authentication between \mathcal{B} and \mathcal{T}
 - Essential for key update
- To prevent desynchronization
 - Save a preceding key in DB
- For indistinguishability
 - Random numbers are participated in all emitted values
- For forward security
 - Update a key by hashing it

Our Scheme (2/5) - Mutual Authentication

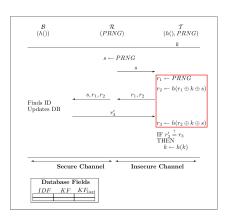


- At B
 - Authentication of \mathcal{T} : Find $k' \in KF \cup KF_{last}$,

$$h(r_1 \oplus k' \oplus s) \stackrel{?}{=} r_2$$
• $r_3' \leftarrow h(r_2 \oplus k' \oplus s)$

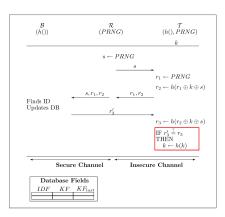
- Update
 - $k \leftarrow h(k)$

Our Scheme (3/5) - Update k


- Attack
 - Man-in-the-middle attack to desynchronize k
- *KF*: Current *k*
- Update at B
 - When T is authenticated by using k in KF

•
$$k_{last} \leftarrow k, k \leftarrow h(k)$$

- When T is authenticated by using k in KF_{last}
 - Do not update DB



Our Scheme (4/5) - Indistinguishability

- Attack
 - Eavesdropping or query
- \circ r_1
- Random number
- \bullet r_2 and r_3
 - A who doesn't know k cannot distinguish r₂ and r₃ from a random number.

Our Scheme (5/5) - Forward Security

- Attack
 - $\bullet \ \, \text{Collect responses from} \\ \text{many } \mathcal{T} \\$
 - ullet Tamper with a given ${\mathcal T}$
- k is updated by h()
 - h() is a one-way function.
 - \mathcal{A} cannot know previous k
- Partially forward traceable
 - The forward trace is limited to a short period.

Security Comparison

Scheme	Lee	Molnar	Our scheme
Computation at \mathcal{B}	<i>O</i> (1)	O(m)	O(m)
Indistinguishability	Δ	0	0
Forward Security	Х	Х	Δ

m: The number of \mathcal{T} in a system

O: Satisfy

△: Partially satisfy (Traceable within key update)

X: Do not satisfy

Comparison of Efficiency in T

Scheme	Lee	Molnar	Our scheme
Hash operations	2	2	3
Communication complexity	31	41	41
Non-volatile memory	l	21	l

l: The length of an output of h() and PRNG

Conclusion

- Proposed mutual authentication scheme
 - Utilize a hash function and synchronized secret information
 - Indistinguishable and almost forward secure
 - One more hash operation in comparison with Molnar et al.'s scheme
- Further work
 - Analyze security of our scheme in provable security setting
 - Study a mutual authentication scheme which is totally indistinguishable and forward secure