
Yet Another Forward Secure Signature
from Bilinear Pairings

Duc-Liem Vo and Kwangjo Kim

International Research center for Information Security (IRIS)
Information and Communications University (ICU)
119 Munji-ro, Yuseong-gu, Daejeon, 305-714, Korea

{vdliem, kkj}@icu.ac.kr

Abstract. In this work, we have proposed yet another forward secure
signature based on bilinear pairings. Our forward secure signature re-
quires the general security parameters only independent to the total num-
ber of time periods. The scheme can perform key evolving for unlimited
time periods while maintaining sizes of keys and signature fixed. In ad-
dition, the signing algorithm is very efficient with the simple verification
algorithm. We also provide a formal definition along with a detailed
security proof of our signature scheme under the assumption of Compu-
tational Diffie-Hellman problem.

Key words: Forward security, pairings, key exposure, key evolution.

1 Introduction

Key Exposure Problem and Forward Secure Signatures Digital signa-
tures are very essential components in cryptography as well as in various ap-
plications nowadays. Using a digital signature, a signer can prove whether an
electronic document is produced by him/her or not. Clearly, the signing ability
must be restricted to the authorized people (signers), and the signing keys (or
private keys) should be kept secret. Compromise of the private keys will cause
severe damage to the applications using the digital signatures. In such cases,
we cannot believe in any signature that will be produced in the future by the
compromised key. Moreover, the signatures generated by that key in the past
are suspicious too. We can imagine how serious this kind of damage can bring to
the systems that rely on digital signatures such as banking systems, certificate
authorities (CAs), and so on. Once a bank’s private key is compromised, no one
can be sure that given money (digitally signed by the bank) is true or forged
one, hence for the safety reason, the bank may revoke those signatures issued
previously, making some people lose their money. Obviously, reissuing all past
signatures also is a burden to the bank. The similar devastation can be occurred
if the CA’s root private key is compromised. All certificates issued by this CA
become unverifiable until new certificates are reissued with a new root key, and
clients are updated this new key. This situation is more serious since the damage



may happen widely over the Internet and it may take an unexpected time to
recover from the damage completely.

To deal with the key exposure problem, there are several solutions. The first
one may think is to use key revocation mechanism by certificate revocation.
This method can prevent the forgery of the signatures in the future (i.e., after
key is compromised), however, it cannot protect for the past signatures. Time-
stamp service, introduced in [14], is another way to certify the creation date of
a document. Anderson [3] suggested a new method for constructing signature
scheme in which the private key is updated periodically while the public key
is kept unchanged. With this approach, the compromise of a private key in a
certain period does not affect to the past signatures signed by the previously
updated private key. From the Anderson’s proposal, there are many researches
on this type of signature schemes including its formalization and applications.

In [5], Bellare and Miner formalized Anderson’s idea by the concepts of the
forward secure signature scheme and presented their construction of this signa-
ture using a key evolution scheme. This construction is based on a binary tree
model in which the total life time of the scheme is divided into a small period.
The total periods equal to the number of a binary tree’s leaves. In each period, a
different private key is used for signing messages and deriving a new private key
for the next time period. The public key remains unchanged for all time periods.
An adversary, who has the private key in a time period, can produce the next
time period’s private key but has no way to forge any signature of the previous
time periods. Therefore, the signature scheme is forward secure.

From this work, a variety of the forward secure signature schemes has been
proposed with many improvements. A new forward signature scheme with shorter
keys and more practical was suggested by Abdalla and Reyzin [1]. Krawczyk [19]
suggested further improvement by presenting a method to construct a forward se-
cure signature scheme from any signature scheme, such as RSA or DSA signature
scheme. Itkis and Reyzin [16] proposed another forward secure signature based
on Guillou-Quisquater’s signature scheme. Although this scheme is efficient in
signing and verifying, it increases the size of key and signature. Malkin et al. [20]
proposed a new construction of a forward secure signature scheme based on a
product and sum composition method. Utilizing this method, one can construct
a new forward signature scheme with more time periods from any two forward
digital signature schemes. The combining of the sum and product compositions
leads to a MMM [20] tree construction of a forward secure signature scheme.
The advantage of MMM tree construction is that the maximal number of time
periods needs not to be fixed in advance. F. Hu et al. [15] suggested a new
forward secure signature scheme from bilinear maps influenced by the forward
secure public key encryption schemes [9, 11]; Hu’s construction was based on the
scheme in [13]. The scheme achieved the small size of key and signature due to
the property of an elliptic curve.

Along with these contributions, many valuable researches on other aspects
of the forward secure signature have been carried out. Kozlov and Reyzin [18]
proposed a forward signature scheme with fast key update; Song [21] suggested



a forward secure group signature scheme; Duc et al. [10] proposed a forward
secure blind signature scheme based on the strong RSA problem. The researches
on threshold signature scheme with forward secrecy are presented in [1] and [22].
Recently, key insulated and intrusion resilience mechanisms are also explored to
provide high level of security. However, these mechanisms require interaction
between the devices and the server for each time period. In some cases, these
methods are not suitable.

Our Contribution Clearly, the forward secure signature provides stronger
security than the traditional signature. Nevertheless, the forward secure sig-
nature scheme requires additional computation as well as storage for the key
updating processes. In addition, some schemes are limited in the number of time
periods. When all time periods are over, the key generation process is invoked to
create new keys and new time periods. The new public key needs to be repub-
lished too. To overcome this limitation, we have proposed a new forward secure
signature scheme which has unlimited time periods using bilinear pairings. In
fact, the proposed scheme does not utilize the total number of time periods as an
input parameter. The proposed scheme also exhibits good properties: the private
key has a fixed size through the key update process, and the public key is kept
unchanged. Furthermore, since our signature scheme is based on bilinear pair-
ings, which can be constructed from Weil or Tate pairings on an elliptic curve,
the scheme achieves efficiency in terms of the size in key and signature.

Organization We first introduced the background about key exposure prob-
lem and forward security concept in the digital signature paradigm. In Section 2,
we will provide the mathematical treatment in bilinear pairings and definitions
about the forward secure signature scheme. The details of our signature scheme
are presented in Section 3 and its security analysis is discussed in Section 4. The
complexity comparative with other schemes is discussed in Section 5. Finally,
the conclusion and suggestion for future work are given.

2 Backgrounds

Like almost other forward secure signature schemes, the definitions of our for-
ward secure signature scheme follow the formal definition from [1, 5].

2.1 Definitions

Forward Secure Signature Scheme. The basic idea of the forward secure
signature scheme is to use the key evolution technique to update the private key
periodically while keeping the public key unchanged. To do so, one can divide the
lifetime of the signature scheme into a small period in which a different private
key is used to sign messages. The Key Generation algorithm will initialize the
lifetime of the signature scheme by creating the first period key pairs. However,
the public key has to be fixed for whole lifetime of the signature scheme for
convenience as well as keeping the Verification algorithm simple. The Signing



algorithm has to indicate time period in which the private key is used to pro-
duce signatures. In the forward secure signature scheme, there is an additional
algorithm used to update private keys of the scheme. The Key Update algorithm
takes the current private key as input and generates a new private key for the
next period. Of course, after generating a new private key, the old private key
must be erased immediately. Forward security is ensured by the fact that the
Key Update algorithm is a kind of one-way functions, therefore given the current
private key, it is hard to compute any previously used private key. The detailed
definition of the forward secure signature scheme is given below:

Definition 1 (Key-evolving Signature Scheme). A key-evolving digital sig-
nature scheme is a quadruple of algorithms, FSIG = (FSIG.KeyGen;FSIG.KeyUp;
FSIG.Sign; FSIG.Verify), where:

– FSIG.KeyGen, the Key Generation algorithm, is a probabilistic algorithm
which takes as input a security parameter k ∈ N (given in unary as 1k)
and returns a pair (SK0; PK), the initial secret key and the public key;

– FSIG.Sign, the (possibly probabilistic) Signing algorithm, takes as input the
secret key SKi of the current time period i and a message M , and returns
a pair 〈i, σ〉, the signature of M for time period i;

– FSIG.KeyUp, the (possibly probabilistic) Secret Key Update algorithm, takes
the secret key for the current period SKi as input and returns the new secret
key SKi+1 for the next time period;

– FSIG.Verify, the (deterministic) Verification algorithm, takes the public key
PK, a message M , and a candidate signature 〈i, σ〉 as input, and returns 1 if
σ is a valid signature of M or 0, otherwise. It is required that FSIG.VerifyPK

(M ; FSIG.SignSKi
(M)) = 1 for every message M and time period i.

Security Analysis Using Random Oracle Model. We analyze our signature
scheme in the random oracle model [6]. The security of the signature scheme
means that it is computational infeasible for any adversary to forge a signature
with respect to any of the previously used secret keys even if the exposure of
the current secret key happens. We use the security model introduced by Bellare
and Miner [5] with some modification.

In our model, besides knowing the user’s public key PK, the adversary also
gets to know the current time period. The adversary runs in three phases. In
the first phase, the chosen message attack phase (cma), the adversary has access
to a signing oracle, which it can query to obtain signatures of messages of its
choice with respect to the current secret key. At the end of each time period,
the adversary can choose whether to stay in the same phase or switch to the
break-in phase (breakin). In the break-in phase, which models the possibility of
a key exposure, we give the adversary the secret key SKj for the specific time
period j it decided to break in. In the last phase, the forgery phase (forge), the
adversary outputs a pair signature message, that is, a forgery. The adversary is
considered to be successful if it forges a signature of some new message (that is,
not previously queried to the signing oracle) for some time period prior to j. In



order to capture the notion of forward security of a key-evolving signature scheme
FSIG = (FSIG.KeyGen;FSIG.KeyUp; FSIG.Sign;FSIG.Verify) more formally, let F
be an adversary for this scheme. To assess the success probability of F breaking
the forward security of FSIG, consider the following experiment. Throughout this
paper, k, . . . indicates that the arguments of the key generation algorithm could
be more than k.
Experiment F-Forge-RO(FSIG, F)

Select H : {0, 1}∗ → {0, 1}l at random

(SK0, PK) R← FSIG.KeyGenH(k, . . .)
i ← 0
Repeat

d ← FH,FSIG.SignH
SKi

(•)(cma, PK);
SKi+1 ← FSIG.KeyUpH(SKi);i ← i + 1

Until (d = breakin)
i ← i− 1
(M, 〈b, σ〉) ← FH(forge, SKi)
If FSIG.VerifyH

SKi
(M, 〈b, σ〉) = 1 and 0 ≤ b ≤ i− 1

and M was not queried of FSIG.SignH
SKi

in period b
then return 1 else return 0

With the above forger, we can define the notion of security of the forward secure
signature scheme in the random oracle model.

Definition 2 (Forward-security in the Random Oracle Model). Let
FSIG = (FSIG.KeyGen;FSIG.KeyUp; FSIG.Sign;FSIG.Verify) be a key-evolving sig-
nature scheme, H be a random oracle and F be an adversary as described
above. We let Succfwsig(FSIG[k, . . .];F) denote the probability that the experi-
ment F-Forge-RO(FSIG[k, . . .];F) returns 1. Then the insecurity of FSIG is the
function

InSecfwsig(FSIG[k, . . .]; t; qsig; qhash) = max
F
{Succfwsig(FSIG[k, . . .];F)},

where the maximum here is taken over all adversaries F making a total of at
most qsig queries to the signing oracles across all the stages and for which the
running time of the above experiment is at most t and at most qhash queries are
made to the random oracle H.

2.2 Bilinear Pairings

We summarize some concepts of bilinear pairings using similar notations used
by Zhang and Kim [23] which was used to design ID-based blind signature and
ring signature based on pairings.

Let G1 and G2 be additive and multiplicative groups of the same prime order
q, respectively. Let P is a generator of G1. Assume that the discrete logarithm
problems in both G1 and G2 are hard. Let e : G1×G1 → G2 be a pairing which
satisfies the following properties:



1. Bilinear : e(aP, bP ′) = e(P, P ′)ab for all P, P ′ ∈ G1 and all a, b ∈ Z.
2. Non-degenerate: If e(P, P ′) = 1 ∀P ′ ∈ G1 then P = O.
3. Computable: There is an efficient algorithm such as [4] to compute e(P, P ′)

for any P, P ′ ∈ G1.

To construct the bilinear pairing, we can use the Weil pairing or Tate pairing
associated with supersingular elliptic curves. Under such group G1, we can define
the following hard cryptographic problems:

– Discrete Logarithm (DL) Problem: Given P, P ′ ∈ G1, find an integer n such
that P = nP ′ whenever such integer exists.

– Computational Diffie-Hellman (CDH) Problem: Given a triple (P, aP, bP ) ∈
G1 for a, b ∈ Z∗q , find the element abP .

– Decision Diffie-Hellman (DDH) Problem: Given a quadruple (P, aP, bP, cP )
∈ G1 for a, b, c ∈ Z∗q , decide whether c = ab (mod q) or not.

A group, where the CDH problem is hard but the DDH problem is easy,
is called Gap Diffie-Hellman (GDH ) group. Details about GDH groups can be
found in [7], [8], and [17].

For the sake of comparison, we assume that, as in [15], there is a parameter
generator IG takes input k, and outputs G1,G2 of order q, and pairing e. The
computational complexity of IG is O(kn). Also the computational complexity
in groups G1,G2, and pairings e are at most O(kn1), O(kn2), and O(ke), respec-
tively. We have n, n1, n2, e ∈ N are order of the polynomial time algorithm.

The definition of the CDH assumption which is used for our security analysis
as follows:

Definition 3 (CDH Assumption). A probabilistic algorithm A is said to be
(t, ε)-break-CDH in a cyclic group G if A runs at most time t, computes the
Diffie-Hellman function DHP,q(aP, bP ) = abP , with input (P, q) and (aP, bP ),
with a probability of at least ε, where the probability is over the coins of A and
(a, b) is chosen uniformly from Zq × Zq. The group G is a (t, ε)-CDH group if
no algorithm (t, ε)-break-CDH in this group.

3 Our Scheme

As mentioned previously, our forward secure signature scheme FSIG consists of
four algorithms. Our purpose in designing this scheme need not to define the total
number of time periods in advance, hence we can have unlimited time periods
forward signature scheme. In other words, the key evolution process can run
forever.

Key Generation Algorithm The Key Generation algorithm takes a secure
parameter k and returns the initial key pair (SK0; PK). Our Key Generation
algorithm uses the same strategy like [15] in order to generate system parameters:
groups G1,G2 of the same prime order q; a generator P of G1; a bilinear pairing
e : G1 × G1 → G2. Let H1 be a collision-free hash function which converts an
arbitrary string {0, 1}∗ into Z∗q . We also assume that there is a collision-free hash



function H2 : {0, 1}∗ → G1. This hash function can be considered as a part of
the Key Generation algorithm.
FSIG.KeyGen(1k)

Run IG to get groups G1,G2 (prime order q), bilinear map e.

Select random generator P ← G1; s, t, r0
R← Z∗q .

Compute: Q = sP, T = tP
Set PK ← (G1,G2, e, P, Q, T )
Compute:

s0 = s + r0H1(0); t0 = t− r0H1(0)
Q0 = r0H1(0)P ;
V0 = t0Q0;
Erase s, t, r0, t0

Set SK0 ← (s0, V0, Q0)
Output (SK0; PK)

Key Update Algorithm The Key Update algorithm is the core part of the
key evolution scheme. It refreshes the private key of the current time period to
the new value corresponding to the new time period, then erases the previous
private key. The Key Update algorithm is given below:
FSIG.KeyUp(i, SKi−1)

Pick a random element ri ∈ Z∗q ;
Parse SKi−1 as (si−1, Vi−1, Qi−1)
Compute:

si = si−1 + riH1(i);
Qi = Qi−1 + riH1(i)P ;
Vi = Vi−1 + riH1(i) (T −Qi−1 −Qi) ;
Erase si−1, ri, Vi−1, Qi−1

Set SKi ← (si, Vi, Qi)
Output SKi

Signing Algorithm The Signing algorithm produces a signature at the
current time period using the private key of the considered time period.
FSIG.Sign(i,M, SKi):

Parse SKi as (si, Vi, Qi)
Set U = Qi;
Compute α = siQi + Vi; and β = siH2(i,M, U);
Set σ = (U,α, β)

Output signature for M as 〈i, σ〉
Verification Algorithm The Verification algorithm tests if a given signa-

ture on a message at a specific time period is valid or not. The output of the
test is 1 if the signature is valid and 0 otherwise.
FSIG.VerifyPK(i,M, σ):

Parse σ as (U,α, β) Verify

e(α, P ) ?= e(U, T + Q) (1)

e(β, P ) ?= e(H2(i,M, U), U + Q) (2)



Output 1 if Eqs (1) and (2) are correct, otherwise output 0.
The first equation (1) verifies the value of U and the second one (2) verifies

the signature on the message M . The time period value is embedded in the
signature too.

Correctness The correctness of the proposed signature scheme comes from the
correctness of Eqs (1) and (2). The correctness of Eq (1) is shown bellow:

e(α, P ) = e (siQi + Vi, P ) = e ([si−1 + riH1(i)] Qi + Vi, P )

= e

([
s +

i∑
0

rkH1(k)
]

Qi + Vi, P

)
= e

(
sQi +

i∑
0

rkH1(k)Qi + Vi, P

)

= e

(
sQi +

i∑
0

rkH1(k)Qi + Vi−1 + riH1(i) [T −Qi−1 −Qi] , P
)

= e

(
sQi +

i−1∑
0

rkH1(k)Qi + Vi−1 + riH1(i) [T −Qi−1] , P
)

= e

(
sQi +

i−1∑
0

rkH1(k) [Qi−1 + riH1(i)P ] + Vi−1 + riH1(i) [T −Qi−1] , P
)

= e

(
sQi +

i−1∑
0

rkH1(k)Qi−1 + riH1(i)
i−1∑
0

rkH1(k)P + Vi−1 + riH1(i) [T −Qi−1] , P
)

= e

(
sQi +

i−1∑
0

rkH1(k)Qi−1 + Vi−1 + riH1(i)T, P

)

...
= e (sQi + r0H1(0)Q0 + V0 + r1H1(1)T + ... + riH1(i)T, P )
= e (sQi + r0H1(0)Q0 + t0Q0 + r1H1(1)T + ... + riH1(i)T, P )
= e (sQi + tQ0 + r1H1(1)T + ... + riH1(i)T, P )

= e (sQi + r0H1(0)T + r1H1(1)T + ... + riH1(i)T, P ) = e

(
sQi +

i∑
0

rkH1(k)T, P

)

= e

(
sQi + t

i∑
0

rkH1(k)P, P

)

= e ([s + t]Qi, P ) = e (Qi, P )s+t = e (Qi, T + Q)

The correctness of this equation ensures that the value of U is correct. The
validity of the signature is guaranteed by the correctness of Eq (2).

e(β, P ) = e(siH2(i,M,U), P ) = e ([si−1 + riH1(i)] H2(i,M,U), P )
...

= e

([
s +

i∑
k=0

rkH1(k)
]

H2(i,M,U), P
)

= e (sH2(i,M,U), P ) e (H2(i,M,U), P )
iP

k=0
rkH1(k)

= e (H2(i,M, U), Q) e

(
H2(i,M, U),

i∑
k=0

H1(k)rkP

)

= e (H2(i,M, U), Q) e (H2(i,M, U), Qi)
= e (H2(i,M, U), Q) e (H2(i,M, U), U) = e (H2(i, M, U), Q + U)



Efficiency Our proposed forward secure signature scheme exhibits new prop-
erties. Firstly, our scheme does not have the total number of time periods pa-
rameter. The Key Update algorithm can perform infinite and stop only when a
private key in a certain time period is compromised. At that time, we need to
run the Key Generation algorithm again to initialize a new key pair.

Secondly, the key pair produced by the Key Generation algorithm has a fixed
length. The sizes of the private key and public key do not grow after running
the Key Update algorithm. In addition, the public key remains unchanged since
after produced once at the first time by the Key Generation algorithm.

The Signing and Verifying algorithms also require the fixed amount of compu-
tational time. The signing algorithm of our scheme is very unique. For a certain
time period, one can compute value of α once, then stores it for future signature
issuing. From the next time, the signature issuing algorithm is just to compute
one point multiplication over an elliptic curve.

4 Security Analysis

We analyze the security of our forward secure signature scheme used technique
like in [1, 5, 15]. In addition, we assume that, partial key exposure also leads to
key exposure problem. This is obviously since we may derive the remained part
from exposed part of the private key. The following theorem shows the security
of our scheme.

Theorem 1. If there exists a forger F that runs in time at most t, asking at
most qhash hash queries and qsig signing queries, such that Succfwsig(FSIG[k, . . .];
F) > ε then there exists a adversary A that (t′, ε′)-break CDH in group G1 where:

t′ = t + O (kn1) ; and ε′ =
(

1− 1
qsig + 1

)qsig+1

· 1
qsig (qhash + qsig + 1)

· ε

Proof (Sketch). To break CDH problem in the additive group G1 of the order
q, an adversary A is given P (a random generator of G1), P ′ = aP , Q′ = bP ,
where are randomly chosen and remain unknown to A. The task of A is to derive
S′ = abP with the help of the forger F . A provides the public key to F and
answers its hash queries, signing queries, and breakin query. First, A guesses a
random i at which F will ask for the breakin query. Then A set the public key
PK = (G1,G2, e, P, Q, T ), where Q = Q′. A provides PK to F and runs it. A
can answer the hash queries and the signing queries since it controls the hash
oracle. During execution, A guesses a random index g′, and hopes the forgery
will base on g′-th hash query. A makes this hash value special, i.e., P ′. Suppose
F outputs a signature on message Mg′ for time period i′ < i. From this signature
A can derive S′ = abP , hence solves CDH problem. The detailed proof is given
in Appendix.

Theorem 2. Let FSIG[k; . . .] represent our key-evolving signature scheme with
modulus size k. Then for any t, qhash and qsig,

InSecfwsig(FSIG[k; . . .]; t; qsig; qhash) ≤



qsig(qhash + qsig + 1)
(

1− 1
qsig + 1

)−(qsig+1)

InSeccdh(k, t′)

where t′ = t + O(kn1)

Proof. From Definition 2 and Theorem 1, the insecurity function is computed
simply by solving function in Theorem 1 and express ε′ in terms of ε we have:

ε′ =
(

1− 1
qsig + 1

)qsig+1

· 1
qsig (qhash + qsig + 1)

· ε

=⇒ qsig (qhash + qsig + 1)ε′
/(

1− 1
qsig + 1

)qsig+1

= ε

This completes the proof of Theorem 2. ut

5 Evaluation

In this section, we compare our proposed signature scheme with the previous
signature scheme [15] which has the same computational assumption. Compu-
tational complexity, the sizes of keys and signature are examined.

Table 1. Computational complexity of our signature scheme

Algorithm Ours Hu et al.[15]

Key generation O (kn + kn1) O (kn + kn1 + kn1 log T )

Signing O (kn1) O (kn1)

Verification O (ke + kn1) O (ke log T + kn1 log T )

Key Update O (kn1) O (kn1)

Public key size O (k) O(k)

Private key size O (k) O (k log T + k)

Signature size O (k) O (k log T + k)

Table 2. Computational complexity of other schemes

Algorithm BM[5] AR[1] IR[16] MMM [20]

Key generation lk2T lk2T k5 + (k + l3)lT k2l2

Signing (T + l)k2 lk2T k2l k2l

Verification (T + l)k2 k2l k2l k2l + l2 log l

Key Update lk2 lk2 (k2 + l3)lT k2l + (k + l2) log t

Public key size lk k k k + l log l

Private key size lk k k l

Signature size k k k k + l log l

In Table 1, T is total number of time periods and in Table 2, l is a security
parameter of conventional cryptographic operation as explained in [20].



As we can see from Tables 1 and 2, our signature scheme is very efficient in
terms of computation as well as performance. The signature and key sizes do
not depend on the total number of time periods. Moreover, comparing with the
schemes [1, 5, 16], the signature size is shorter for the same security level since
our scheme is operating over an elliptic curve (so in the security parameter k
is different). The signing algorithm will be similar to that of [8] if we store the
fixed part in the signature for later use. Although MMM scheme has unbounded
time periods, it still depends on the current time period parameter in the key
update algorithm.

The verification of the signature just requires four pairing operations. This
can be considered to be the same as that of [8]. For verifying multiple signatures
of the same time period, the result of verification equation (1) can be saved for
later use. In this case, the verifying process remains just two pairing computa-
tions. Although pairing computation is expensive, there are many improvements
in implementation of the pairings as in [4, 12]. Utilizing those good implemen-
tations, our scheme can be efficient in performance. Considering above features,
our signature scheme can be applied in the application where storage and com-
putation power are limited like mobile devices. Forward secure properties will
strengthen the security of the applications.

6 Concluding Remarks

We have proposed yet another forward signature scheme using bilinear pairings.
Our signature scheme has a specific property, namely unlimited time periods.
Under the assumption of the hardness of Computational Diffie-Hellman problem,
we have presented the security proof of the signature scheme in the random oracle
model. Moreover, the proposed signature scheme is very efficient in terms the
signature size as well as performance compared to the previous schemes. The
scheme’s public and private key sizes are unchanged through the key evolving
processes. With a good pairing computation algorithm, we can have an efficient
signature verifying algorithm.

For further work, we consider integration of our scheme with other crypto-
graphic techniques to have new applications.

Acknowledgements

The authors would like to express great thank to the anonymous reviewers for
useful comments.

References

1. M. Abdalla and L. Reyzin, “A New Forward-Secure Digital Signature Scheme,”
Advances in Cryptology – ASIACRYPT 2000, LNCS 1976, pp. 116–129, Springer-
Verlag, Dec. 2000.



2. M. Abdalla, S. Miner, and C. Namprempre, “Forward-Secure Threshold Signa-
ture Schemes,” Topics in Cryptology – CT-RSA 2001, LNCS 2020, pp. 441–456,
Springer-Verlag, 2001.

3. R. Anderson. “Two Remarks on Public-Key Cryptology From Invited Lecture,”
Fourth ACM onference on Computer and Communications Security, April, 1997.
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-549.pdf

4. P.S.L.M. Barreto, H.Y. Kim, B. Lynn and M. Scott, “Efficient Algorithms for
Pairing-Based Cryptosystems”, Advances in Cryptology – Crypto’2002, LNCS
2442, pp. 354-369, Springer-Verlag, 2002.

5. M. Bellare and S. K. Miner, “A Forward-Secure Digital Signature Scheme,” Ad-
vances in Cryptology – CRYPTO ’99, LNCS 1666, pp. 431–448, Springer-Verlag,
Aug. 1999.

6. M. Bellare and P. Rogaway, “Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols”, ACM Conference on Computer and Communications
Security, pp. 62–73, 1993.

7. D. Boneh and M. Franklin, “ID-based Encryption from the Weil Pairing,” Advances
in Cryptology - Crypto’2001, LNCS 2139, pp. 213–229, Springer-Verlag, 2001.

8. D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil Pairing”, Ad-
vances in Cryptology – Asiacrypt’2001, LNCS 2248, pp. 514–532, Springer-Verlag,
2001.

9. R. Canetti, S. Halevi, and J. Katz, “A Forward-Secure Public-Key Encryption
Scheme,” Advances in Cryptology – EUROCRYPT’03, LNCS 2656, pp. 255–271,
Springer-Verlag 2003.

10. Dang Nguyen Duc, Jung Hee Cheon, and Kwangjo Kim, “A Forward-Secure Blind
Signature Scheme Based on the Strong RSA Assumption,” Information and Com-
munications Security – ICICS’03, LNCS 2836, pp. 11–21. Springer-Verlag, 2003.

11. Y. Dodis, M. Franklin, J. Katz, A. Miyaji, and M. Yung, “Intrusion Resilient
Public-Key Encryption,” Topics in Cryptology – CT-RSA 2003, LNCS 2612, pp.
19-32, Springer-Verlag, 2003.

12. S. Galbraith, K. Harrison and D. Soldera, “Implementing the Tate Pairing,” Algo-
rithm Number Theory Symposium - ANTS V, LNCS 2369, pp. 324–337, Springer-
Verlag, 2003.

13. C. Gentry and A. Silverberg, “Hierarchical ID-Based Cryptography,” Advances in
Cryptology – ASIACRYPT 2002, LNCS 2501, Y. Zheng ed., pp. 548–566, Springer-
Verlag, 2002.

14. S. Haber and W. Stornetta, “How to Time-Stamp a Digital Document”, Advances
in Cryptology – CRYPTO 90, LNCS 537, A. J. Menezes and S. Vanstone, ed.,
Springer-Verlag, 1990.

15. F. Hu, C. Wu, and J.D. Irwin, “A New Forward Secure Signature Scheme using
Bilinear Maps,” http://eprint.iacr.org/2003/188.pdf.

16. G. Itkis and L. Reyzin. “Forward-secure signatures with optimal signing and veri-
fying,” Advances in Cryptology – CRYPTO’01, LNCS 2139, pp. 332-354. Springer-
Verlag, 2001.

17. A. Joux and K. Nguyen, “Separating Decision Diffie-Hellman from Diffie-Hellman
in Cryptographic Groups,” Cryptology ePrint Archive – 2001/03.

18. A. Kozlov and L. Reyzin. “Forward-Secure Signatures with Fast Key Update,”
Proc. of the 3rd International Conference on Security in Communication Networks
– SCN’02, 2002.

19. H. Krawczyk. “Simple Forward-Secure Signatures from Any Signature Scheme,”
Proc. of Seventh ACM Conference on Computer and Communications Security,
pp. 108–115, Nov. 2000.



20. T. Maklin, D. Micciancio and S. Miner, “Efficient Generic Forward-Secure Signa-
tures with an Unbounded Number of Time Periods,” Advances in Cryptology –
EUROCRYPT 2002, LNCS 2332, L. Knudsen ed., pp. 400–417, Springer-Verlag,
2002.

21. D. X. Song. “Practical Forward Secure Group Signature Schemes,” Proc. of the
8th ACM Conference on Computer and Communications Security – CCS 2001, pp.
225-234. ACM, 2001.

22. W. Tzeng and Z. Tzeng, “Robust Forward-Secure Digital Signature with Proactive
Security,” Public Key Cryptography – PKC’01, LNCS 1992, K. Kim ed., pp. 264–
276, Springer-Verlag, 2001.

23. F. Zhang and K. Kim, “ID-Based Blind Signature and Ring Signature from Pair-
ings”, Advances in Cryptology – Asiacrypt’2002, LNCS 2501, Springer-Verlag, pp.
533–547, 2002.

A Proof of Theorem 1

Proof. Using the same technique in [15], we describe the details procedure of
A as follows. As in [1], first we assume that if F outputs a forgery of 〈i, σ〉 for
message M , then the hash oracle has been queried on (i,M, Qi). Any adversary
can be modified to do that. Because of this, the number of hash queries may
increase to qhash + 1. We also assume that if F asks for the signing query for
some message M in some time period i, then the hash query on (i,M,Qi) must
also be request simultaneously. Any adversary can be modified to do so and
therefore, the number of hash queries may increase to qhash + qsig + 1. Assume
that F maintains all necessary bookkeeping and does not ask for the same hash
query twice. Note that, the number of hash queries on the hash oracle H1 can
be included in qhash without any effect since it only happens in Key Update
procedure.

First of all, A has to guess the time period i at which F will ask for the
breakin query. It randomly selects i > 0, hoping that the breakin query will occur
at this time period. A then generates the public key PK ← (G1,G2, e, P, Q, T )
but A sets Q = Q′ = bP directly. A also randomly picks k ∈ Z∗q then sets
T = kP −Q. At this moment, s = b is unknown to both A and F . A gives the
public key to forger F , and runs until there is a breakin query.

To answer the hash query and the signing query of F , Amaintains two tables:
a signature query table and a hash query table.

Signing queries are answered at random since A controls the hash oracle.
In order to answer a signature query number n on a message M ′

n during time
period j′n < i (breakin happens), A selects randomly: xj′n , yj′n ∈R Z∗q . A then
selects randomly sj′n ∈R Z∗q and computes U ′

n = yj′nP ; α′n = yj′n(Q + T );
β′n = xj′n(U ′

n + Q); V ′
n = α′n − sj′nP , h′n = xj′nP . A checks in its signature

query table to see if a signature query on M ′
n during time period j′n has al-

ready been asked, and if there is, j′n, U ′
n, α′n, β′n used in answering. If not, A

answers the query as j′n, U ′
n, α′n, β′n and also records the signature query entry

as
(
n, j′n, xj′n , yj′n , sj′n , U ′

n, α′n, β′n, V ′
n, h′n,M ′

n

)
. This setting satisfies the Verify



algorithm:

e (α′n, P ) = e
(
yj′n(Q + T ), P

)
= e

(
yj′n(s + t)P, P

)

= e
(
yj′nP, P

)s+t = e
(
yj′nP, (s + t)P

)

= e (U ′
n, T + Q)

e (β′n, P ) = e
(
xj′n(U ′

n + Q), P
)

= e
(
xj′n(yj′n + s)P, P

)

= e
(
xj′nP, P

)yj′n+s = e
(
xj′nP, (yj′n + s)P

)

= e (h′n, U ′
n + Q)

For a signing query n on a message M ′
n during time period j′n ≥ i, A

picks randomly sj′n , xj′n ∈R Z∗q and computes U ′
n = sj′nP − Q; α′n = kU ′

n;
β′n = sj′nxj′nP ; V ′

n = α′n − sj′nU ′
n, h′n = xj′nP . Again, A also checks in its

signature query table to see if a signature query on M ′
n during time period j′n

has already been asked, and if there is, j′n, U ′
n, α′n, β′n used in answering. If not, A

answers the query as j′n, U ′
n, α′n, β′n and also records the signature query entry as(

n, j′n, xj′n , yj′n , sj′n , U ′
n, α′n, β′n, V ′

n, h′n,M ′
n

)
. The yj′n can be set to 0 in this case.

This setting also satisfies the Verify algorithm:

e (α′n, P ) = e (kU ′
n, P ) = e (U ′

n, kP )
= e (U ′

n, Q + T )
e (β′n, P ) = e

(
xj′nsj′nP, P

)
= e

(
xj′nP, sj′nP

)

= e (h′n, U ′
n + Q)

The triple (sj′n , U ′
n, V ′

n) also is valid if F checks it in this breakin phase.
Hash queries are answered at random. To answer the t-th hashing query for

(jt,Mt, Ut), A first checks the signature query table to see if there is an entry(
n, j′n, xj′n , yj′n , sj′n , U ′

n, α′n, β′n, V ′
n, h′n,M ′

n

)
such that (jt,Mt, Ut) = (j′n,M ′

n, U ′
n).

If so, it just outputs h′n. Otherwise, A picks randomly xjt ∈R Z∗q , and set the
output to ht = xjtP . It also records value (t, jt, xjt , Ut, ht,Mt). During execution,
A has to guess a random index g′-th, with hope that forgery will happen. A sets
it as special value P ′ = aP .

At the breakin occurs in the time period i, A simply outputs the secret key
SKi, which is an entry in the signing query table. The validity of SKi is easy
to check. If breakin occurs not in time period i, A will abort.

Suppose A’s guesses for the time period breakin and the hash index are cor-
rect, and F outputs a forgery 〈i′, σ′〉 on a message Mg′ , where σ′ = (U ′, α′, β′),
and i′ < i. If the verification holds, A can derive S′ = abP as follows:

We have:

e(β′, P ) = e(H2(i′,Mg′ , U
′), U ′ + Q)

= e(H2(i′,Mg′ , U
′), U ′)e(H2(i′,Mg′ , U

′), Q)

⇒ e(β′, P )
e(H2(i′,Mg′ , U ′), U ′)

= e(H2(i′,Mg′ , U
′), Q)



A controls the hash oracle and the forger F does not have ability to alter or
verify the hash oracle. We may assume that U ′ equals to the one in time period
i′ < i, in which A has queried for signatures and A has value U ′ = y′P in that
time period, otherwise A fails. Then we have:

⇒ e(β′, P )
e(H2(i′,Mg′ , U ′), y′P )

= e(H2(i′,M,U ′), Q)

⇒ e(β′, P )
e(y−1H2(i′,Mg′ , U ′), P )

= e(H2(i′,M,U ′), Q)

⇒ e(β′, P )
e(y′−1H2(i′,Mg′ , U ′), P )

= e(H2(i′,M, U ′), Q)

⇒ e(β′ − y′−1P ′, P ) = e(P ′, Q) = e(aP, bP ) = e(abP, P )

Therefore we can set S′ = abP = β′ − y−1P ′. We can have this since non-
degenerate property of the bilinear pairings.

Run time. Suppose that bit operations in G1 is at most O(kn1) as in [15],
to run F , A needs to perform some key generation and some group operations.
Therefore, we have the time running betweenA and F is different: t′ = t+O(kn1)

Probability. First, we can see that, A always acts as a real signer to the F
from F ’s point of view except one case when A answers the hash query with
other value. There are totally two guesses performed by A.

The probability that A guesses the correct time period F sends the breakin
query after qsig signing queries is calculated as follows. Call the event in which
breakin occurs Eb and ω is a probability constant which Eb depends on. ω will
distribute over {0, 1}, where 1 is drawn with probability ω and 0 with probability
1−ω. We need to calculate the probability of Eb in a certain time period. Suppose
that at each time period 1, 2, . . . i, the number of signatures has been queried
is q1, q2, . . . qi, respectively. If Eb happens at time period i, probability of such
event is calculated as Pr = (1− ω)q1(1− ω)q2 . . . (1− ω)qiω Notice that, at the
breakin period, there are total qsig queries have been done, so qsig =

∑i
k=1 qk.

And the probability of guessing break-in at time period i correctly will be Pr =
(1− ω)qsigω. This value is maximized at ω = 1/(qsig + 1) and we have

Pr =
(

1− 1
qsig + 1

)qsig

· 1
qsig + 1

=
1

qsig
·
(

1− 1
qsig + 1

)qsig+1

The probability to guess the correct hash query on which the forgery is based
is Pr ≥ 1/(1 + qsig + qhash). Therefore the probability of A’s success in deriving
S′ = abP is at least:

ε′ =
1

qsig
·
(

1− 1
qsig + 1

)qsig+1

· 1
qhash + qsig + 1

· ε

where ε is the minimum probability with which F to successfully forge a signa-
ture. ut


