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Abstract

In this work, we have proposed an efficient forward secure signature based on
bilinear pairings. Although our forward secure signature takes the total number of
time periods as a input parameter, performance of the scheme is independent to the
total number of time periods. The scheme maintains sizes of keys and signature
fixed. In addition, the signing algorithm is very efficient with the simple verification
algorithm. We also provide a formal definition along with a detailed security proof of
our signature scheme under the assumption of Computational Diffie-Hellman problem.

I. Introduction

Key exposure problem happens when secret
keys of a cryptosystem are compromised and
it may cause serious devastation to
applications which require security. Once a
secret key is exposed, all protected
information by that key is not ensure, both
the past and future information. To deal with
this

introduced including secret sharing, proactive

problem, many solutions have been
cryptography, timestamp service, and so on.

Recently, the constructing -cryptosystems
supporting forward security gets interests of
researchers.  Anderson [2] first suggested
forward security for a signature scheme in
which the private key is updated periodically
while the public key is kept unchanged. This
idea then was formalized by Bellare and
Miner [4] with the concepts of the forward
using a key evolution

secure signature

technique in which compromising the private

key of a certain time period will not harm
previously issuing signatures signed by keys
prior to the losing key. From this work, a

variety of the forward secure signature

schemes has been proposed [1, 8, 9, 10].

Although the forward

provides stronger security than the traditional

secure signature
signature, it requires additional computation
as well as storage for the key updating
processes. In most of the schemes, besides
general security parameters, schemes’
computational complexity depends on the total
time periods parameter too. To overcome this
limitation, we have proposed a pairing based
forward secure signature scheme in which
computational complexity does not depend on
the total time periods. In addition, our
signature scheme achieves efficiency in terms
of the size in key and signature due to

operating over an elliptic curve.

Organization: In Section II, we will provide

the mathematical treatment in  bilinear



pairings and definitions about the forward
secure signature scheme. The details of our
signature scheme are presented in Section III
and its security analysis is discussed in
Section IV. The evaluation of the scheme is
and concluding

discussed in Section V

remarks are given in Section VI

II. Backgrounds

1. Definitions

Forward Secure Signature Scheme. Like

other forward signature

the

almost secure

schemes, definitions of our forward
secure signature scheme follow the formal

definition from [1, 4].

Definition 1. (Key-evolving Signature
Scheme). A key-evolving digital signature
scheme is a quadruple of algorithms, FSIG
=(FSIG.KeyGen, FSIG.KeyUp, FSIG.Sign,

FSIG.Verify), where:
-  FSIG KeyGen,

Generation algorithm,

the (probabilistic) Key
takes as input a
security parameter kEN (given in unary as
1%) and returns a pair (SKy; PK), the initial

secret key and the public key;

- FSIG.Sign,
Signing algorithm, takes as input the secret

the (possibly probabilistic)

key SK; of the current time period i and a
message M, and returns a pair <i,o), the

signature of M for time period i;
- FSIG KeyUp, the (possibly probabilistic)
Secret Key Update algorithm,

secret key for the current period SK: as

takes the

input and returns the new secret key SKij

for the next time period;

- FSIG Verify, the (deterministic) Verifica-
tion algorithm, takes the public key PK, a
signature

message M, and a candidate

{i,0> as input, and returns 1 if 0 is a

valid signature of M or 0, otherwise. It is
required that FSIGVerifypx(M;FSIG.Signski
(M))=1 for every M and time period i.

Security Analysis Using Random Oracle
Model. We analyze our signature scheme in
the random oracle model [5] and use the
introduced by Bellare and

security model

Miner [4].

To assess the success probability of F
of FSIG,

experiment.

the forward security
the
Throughout this paper, k.., 7T indicates that
the the

algorithm could be more than k and 7.

breaking

consider following

arguments  of key  generation
Experiment F-Forge-RO(FSIG, F)

Select H:1{0,1}—{0,1}'at random

(SK,, PK)£FS[G.Key Gen™ (k,..., T);
1<—0
Repeat

H,FSIG.Sign’ ( «
de—F 5 ma, PE):

SK, . < FSIG. Key Up” (SK;);i<—i+1
Until (d= breakin) or (i=T)
If (d+ breakin) and (i= 7) then i<—7+1

<1 — 1;

(M, <b,o>)—F"(forge,SK;)
If FSIG. Verifyl (M, <b,c>)=1 &0 < b<i

and M was not queried to EFSIG.Signiy,

in period b

then return 1 else return O

With the above forger, we can define the
notion of security of the forward secure

signature scheme in the random oracle model.

Definition 2 (Forward-security in the
Random Oracle Model). Let FSIG
=(FSIG.KeyGen, FSIGKeyUp, FSIG.Sign;
FSIG Verify) be a key-evolving signature



scheme, H be a random oracle and F be an

adversary as described above. We et
Succ™(FSIGIk,..., T1; F) denote the
probability that the experiment

F-Forge-RO(FSIGIk,..., T1;F) returns 1. Then
the insecurity of FSIG is the function

max

InSechSig(FSIG[k,..., T];t;qSig;qhash) = F

(Succ™(FSIGIk,... T, F)}

where the maximum here is taken over all
adversaries F making a total of at most Qsig
queries to the signing oracles across all the
stages and for which the running time of the
above experiment is at most t and at most
Gnash queries are made to the random oracle
H.

2. Bilinear Pairings

We summarize some concepts of bilinear

pairings using similar notations used by
Zhang and Kim [11] which was used to
design ID-based blind signature and ring

signature based on pairings.

Let G: and (G2 be additive

multiplicative groups of the same prime order

and

g, respectively. Let P is a generator of Gi.
Assume that the discrete logarithm problems
in both G; and Gz are hard. Let e:GixGr—Gs>
be a pairing which satisfies the following

properties:

1. Bilinear: e(aP,bP’) = e(P,P)™ for all P,
P’EG; and all a,bEZ.

2. Non-degenerate: If e(P,P’) = 1 for all
P’eG) then P = O.

3. Computable: There 1is an efficient
algorithm such as [3] to compute e(P,P’) for

any P, P’'EG..

Group Gi is called Gap Diffie-Hellman
(GDH) this group, the
Computational Diffie-Hellman (CDH) problem

group if in

Decision Diffie-Hellman
For the sake of

is hard but the
(DDH) problem

comparison, we assume that, as in [8], there

1s easy.

is a parameter generator IG takes input k,
and outputs Gi, G» of order ¢, and pairing e.
The computational complexity of IG is OK").
Also the computational complexity in groups
Gi1, Go, and pairings e are at most O(k"),
O(k™), and O(k%), respectively. We have n,
ni, n;, e €N are order of the polynomial

time algorithm.

The definition of the CDH assumption used

for our security analysis is as follows:

Definition 3 (CDH Assumption). A
probabilistic algorithm A is said to be (t,
&)-break-CDH in a cyclic group G if A runs
at most time t, computes the Diffie-Hellman
function DHp (aP,bP)=abP, with input (P, q)
and (aP,bP), with a probability of at least &,
where the probability is over the coins of A
and (a, b) is chosen uniformly from ZyxZ,
The group G is a (t,&)-CDH group if no
algorithm (t,&)-break-CDH in this group.

III. Proposed Scheme

Our forward secure signature scheme FSIG
consists of four algorithms.

Key Generation Algorithm FSIG KeyGen.
Let HiH{01Y—>2Z, and H2{01}Y—Gi be
collision—free hash functions.

FSIG.KeyGen(1*,T)

Run IG to get groups (i, Go (prime order q),
bilinear map e.

Select random generator PEGys s, ¢, roERZq*
Compute: @ = sP, X = tP
Set PK=(G1, Go, e, P, Q, X, T)

Compute:
so = s + roHi(0);, t = t - roH1(0);

Qv = roH:(0)P;



Vo = toQu;
Erase s, ¢, 1,
Set SKo=(0, so, Vo, Qo, T)
Output (SKy.; PK)
Key Update Algorithm FSIG KeyUp.

FSIG. KeyUp(SK;-1)
Parse SK;-; as (i-1,si-1, Vi1, @1, T)
If i=T-1
SKi=0; delete SK;-;
else

. *
Pick a random element r;ErZ,

Compute:
si = si1 + riHi(i);
Qi = Qi1 + riHi(i)P ;
Vi=Vig + riHi(iX(X - Q-1 - Q)5
Erase si1, ri, Vi1, @i
Set SK; (i, si, Vi, @i, T)
Output SK;
Signing Algorithm FSIG.Sign.

FSIG.Sign(M, SK;)

Parse SK; as (i, s, Vi, @, T)

Set U = Qy

Compute a=s;Q; + Vi and (= s;HAi,M,U);
Set o= (U,a,3)

Output signature for M as <{i,o»
Verification Algorithm FSIG Verify.
FSIG. Verifypxr(M, i, 0):

Parse o as (U,a,() and Verify

ela, P)=e(U, X + Q) (1)

e(B, P)=e(H-(i, M, U),U + Q) (2)

Output 1 if Eqs (1) and (2) are correct,
otherwise output 0.

Correctness The correctness of the

proposed signature scheme comes from the

correctness of Egs (1) and (2). The

correctness of Eg (1) is shown bellow:

e(a,P) :e(s Q+V, P):e( [si,l +7’LH1(Z)] Q+ V“P)

([b+ZTkH ]Q+VP)
—e(sQ +Zn k)@ + VP)

KQ+V,_,
- @Q].p)
k)Q+ Vi +rH (i) [ X—Q_,],P)

Q+Zrk
[X Q-
Q+Zrk

+7*H

= SQ+E,ﬂ] )@\ +rH, () P+
FV ) [X- Q]
+EkH] )[Q_y . (i) P+
AR OIS
+EkH] B Qs 1y ) 1, () P
+ Vi 7H()[X o.1.p

sQ+EkH]

szl + VoA (i) X, P)

e(sQ-l—rO 1(0) Qy+ Vo +r Hy (1) X++ ...+, H, (i) X, P)

(s@+rH,(0)Q +t,Q+r H, (1) X++...+r,H (i) X, P)
(s@ +tQ0+7 H (1) X+...+7H (i) X, P)

(5@ 7o (0) X+, (i) X, P)
(
(

(&
(&
(&

e(sQ, +Eka XP):e(sQ.Hi]rkH(k)RP)

e([s+t] Q P)—e(Qz,P)H'f —e(Q,X+ Q)
The validity of the signature is guaranteed

by the correctness of Eq (2).

e(B,P) =e(s,H,(i,M,U),P)
=e [31—1 +r.H, (i)]f@(i,]b[, U),P)

=e(
=e([s+i7‘kﬂl( }Hz i,M,U), )
k=0
EU

= e(sHy (i, M, U), P)e( Hy (i, M. 1), P)‘ “

= e(H (i, M, 1), @ )(HZZMU .37, )
=e(H, (6,01, U), Q)e( Hy (i,M, U) éf

= e(Hy (i, M, 1), )(szMU 0)
:e(ﬁ@(lMUﬂ U)

IV. Security Analysis
We
secure signature scheme used technique like
in [1, 4, 8].
partial key

analyze the security of our forward

In addition, we assume that,

exposure also leads to key



exposure problem. The following theorem

shows the security of our scheme.

Theorem 1. If there exists a forger F that
runs in time at most t, asking at most ghash
hash queries and qsig signing queries, such
that Succ™“*(FSIG[k,.. T];F)>¢ then there
exists a adversary A that (t’,¢’)-break CDH

in group G; where:!

t'=t + O("); and &=e/[T(qnash + Gsig + 1]

Proof (Sketch). To break CDH problem in
the additive group Gi of the order g, an
adversary A is given P (a random generator
of Gv, P’=aP, Q= bP, where a,b€ jZ,
remaining unknown to A. The task of A is
to derive S’=abP with the help of the forger
F. A provides the public key to F and
answers its hash queries, signing queries, and
breakin query. First, A guesses a random i
at which F will ask for the break-in query.
Then A set the public key PK=(Gi, G2, e, P,
Q, X, T), where @=Q’". A provides PK to F
and runs it. A can answer the hash queries
and the signing queries since it controls the
hash oracle. During execution, A guesses a
random index g’ and hopes the forgery will
base on g’-th hash query. A makes this hash
value special, i.e., P’. Suppose F outputs a
signature on message My, for time period
i’<i. From this signature, A derives S’=abP,

hence solves CDH problem.

Theorem 2. Let FSIG[k,.,T] represent

our key-evolving signature scheme with

modulus size k. Then for any t, Gnhash and Qsig,
InSec™" " ¢(FSIGIk,..., TIt; Gsg; Quash) <
T(Grash + gsig = 1)InSec™(k, t’)
where t' = t + OK™)

Proof. From Definition 2 and Theorem 1,

the insecurity function is computed simply by

solving function in Theorem 1 and express &
in terms of ¢ we have:
&= 5/[T(Qhash+ QSig+1)]:> S’T(Qhash"' QSig+1): &

This completes the proof of Theorem 2. =

V. Evaluation

In this section, we compare our proposed
signature scheme with the previous signature
scheme [8] which has the same computational

assumption.

In Table 1, T is total number of time
in Table 2, [

parameter  of

periods and 1S a security

conventional  cryptographic

operation as explained in [10].

[Table 1] Complexity comparison

Hu et al.[8] Ours
Key Gen. | O(k"+ k" +k"logT) | O(K"+K")
Signing o(k™) ok™)
Verification | O(klog T4 k™ logT) | Ok +k™)
Key Update o(k™) o(k™)
Public Key O(k) O(k)
Private Key O(klog T+k) O(k)
Signature O(klog T+k) Oo(k)

[Table 2] Complexity of other schemes

BMI[4] IR[9]

Key Gen. KT K+Ue+PNT

Signing (T+DI K
Verification (T+DK Kl
Key Update I (KE+P)T
Public Key Ik k
Private Key Ik k
Signature k k

As we can see from Tables 1 and 2, our
signature scheme is very efficient in terms of
The
signature and key sizes do not depend on the
total

computation as well as performance.

number of time periods. Moreover,



comparing with the schemes [1, 4, 9], the
signature size is shorter for the same
security level since our scheme is operating
over an elliptic curve (so the security para—
meter k is different). The signing algorithm
will be similar to that of [6] if we store the

fixed part in the signature for later use.

The verification of the signature just
requires four pairing operations. For verifying
multiple signatures of the same time period,
the verification result of Eq (1) can be saved
for later use. In this case, the verifying
process remains just two pairing operations.
Utilizing good pairing implementations [3, 7],
our scheme can be efficient in performance.
Considering above features, our signature
scheme can be applied in the application
where storage and computation power are
limited like mobile devices while providing

stronger security feature.

V1. Concluding Remarks

We have proposed a pairing based efficient

forward signature scheme n which
performance does not depend on the total
number of time periods. Under the

assumption of the hardness of Computational
Diffie-Hellman problem, we have presented
the security proof of the signature scheme in
the random oracle model. Moreover, the
proposed signature scheme is very efficient in
terms the signature size and performance
compared to the previous schemes. With a
good pairing computation algorithm, we can
have an  efficient signature  verifying
algorithm. For further work, we consider
integrating our scheme with other crypto—

graphic techniques to have new applications.
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