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Abstract— Code modification is the main method for software piracy. Making software tamper
resistant is the challenge for software protection. In this paper, we present and explore a methodology
that we believe can protect program integrity in a more tamper-resilient and flexible manner. we
describe a dynamic integrity verification mechanism designed to prevent modification of software. The
mechanism makes use of multi-blocking encryption technique so that no hash value comparison is
needed and if the program was altered, the program will not exit in a traceable way. We also make use
of common virus techniques to enhance our security. Our mechanism operates on binaries that can be
applied to all PE format files like EXE and DLL. The overhead in runtime execution and program size
is reasonable as illustrated by real implementation. The scheme is built to be compatible with code
obfuscation and other tamper resistance techniques.
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1 Introduction

Development of technology for the prevention of soft-
ware piracy is important for the software industry. The
advent of mobile computing will only make the prob-
lem of software piracy worse. In the near future it will
be commonplace for users to carry applications on a
mobile computing device. However, these applications
would often be transferred and executed on remote
computing servers that would be part of the ubiqui-
tous computing infrastructure. In light of the greatly
improved computing power of current processors, it
is acceptable to expand a fraction of this computing
power on protecting software. The goal of this work
is a naive approach to prevent malicious users of the
software from creating fully functioning unauthorized
copies of protected software.

Tamper resistance is the art and science of protecting
software or hardware from unauthorized modification
and distribution. Algorithms like MD5 and CRC are
commonly used for integrity checking of the software.
A common approach is to hash the whole block of soft-
ware to obtain a hash value. To check the integrity of
that software, this hash value will be compared with
the hash value calculated based on the current copy
of the software before running. If the two hash values
do not match, the software has probably been modi-
fied and the program will be terminated. However, this
static hash value checking is easily bypassed by locating
the hash value comparison instruction and modifying
the binary program code with existing software debug-
ging tools. This branching instruction that performs
the hash values comparison becomes a single point of
failure.
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In this paper, we initiate the use of multi-blocking
encryption technique [2], which was originally used to
resist code observation, in integrity checking and pro-
pose a multi-block hashing scheme. The mechanism be-
hind multi-blocking encryption is to break up a binary
program into individually encrypted segments. We base
on this mechanism to perform the integrity checking.
Roughly speaking, we will take the hash value of a block
as the secret key for decrypting the next block. The
advantages of our approach include the followings: No
hash value checking is needed. If the program was al-
tered, the hash value is changed and therefore the next
block cannot be decrypted properly. Due to the cor-
ruption of the next block, the program cannot continue
to run.

Also, using this dynamic multi-block hashing scheme,
the integrity of the software is kept checking during the
program run-time execution. The adversary (i.e., the
software pirate) is unable to obtain a single point of
failure. Unlike the previous approaches that rely on
branching instructions for checking the hash values, in
our approach, we do not have any such instructions.
The technique of bypassing the checking instructions is
no longer feasible in our approach. On the other hand,
if the program was altered, the program will not exit
immediately. Therefore the adversary is very difficult
to trace back the problem. The feasibility of our sug-
gested approach is realized by a real implementation.
Experimental results show that the overhead in run-
time execution as well as the increase in program size
is reasonable.

The rest of the paper is organized as follows: Section
2 reviews existing tamper proofing techniques. Section
3 discusses the idea of our multi-block hashing scheme
and its security issues. Section 4 shows the experimen-
tal results. The last section discusses the generalization
of our approach and the conclusion.



2 Related Work

In the last few years, there have been active devel-
opment of software obfuscation [7] and watermarking
[5] but only a few researches have been done in soft-
ware integrity verification. Computing a hash value of
code bytes is a common integrity verification method.
It examines the current copy of the executable pro-
gram to see if it is identical to the original one by
checking the hash values. The main drawback of this
approach is that the adversary can easily bypass the
verification by locating the hash value comparison in-
struction. Furthermore, since this method only verifies
the static shape of the code, it cannot detect run-time
attacks, where the debugger tools monitor the program
execution and the adversary can identify the instruc-
tions that are being executed and then modify them.

Hashing functions scan a block of the program, and
use the data contained therein as input to a mathemat-
ical equation. The simplest way of which would be to
sum all the numbers in a given block. When done, the
output must agree with the previously determined re-
sult. If they are not the same, this block of the program
has been altered.

It is fairly obvious that such a scheme is easily bro-
ken, which has led to more complex techniques. Some
techniques may use values on the stack at a crucial in-
stant in time, or values in a register. Others perform
complex mathematical equations on overlapping sec-
tions of code. Horne et al. [9] have implemented such
a system, using linear hash functions, which overlap
and also hash the hashing functions as well. One of
the strong points of hashing is that you can have as
many hashing functions as you want, all performing a
different hash function.

In order to detect run-time attacks, Chen and Venkate-
san proposed oblivious hashing [4] based on the actual
execution of the code. This method examines the valid-
ity of intermediate results produced by the program. It
is accomplish by injecting additional hashing codes into
the software. These hash codes are calculated by taking
the results of previous instructions from the memory.
In other words, the hash values are calculated based on
the dynamic shape (run-time states) of the program so
as to make it more difficult to attack. However, there
is a practical constraint for binary-level code injection
and if the adversary can locate the instructions for hash
value comparison, bypassing is still possible.

Chang and Atallah [3] proposed another method that
enhances the run-time protection in which protection is
provided by a network of execution unit called guard.
A guard regarded as a small code segment performs
checksums on part of the binary code to detect if the
software has been modified. The guards are inserted
into the software with different locations. They are
inter-related so as to form a network of guards that
reinforce the protection of one another by creating mu-
tual protection.

They also proposed the use of guards to repair at-
tacked code. Although a group of guards are more re-
silient against attacks than a single branching instruc-

tion for comparing hash values, it only spreads out the
single attack point into different locations of the pro-
gram. In other words, although more complicated, by-
passing instructions performed by the guards is still
possible.

The above integrity checking techniques all involve
hash value comparison, which can be quite easily by-
passed. Recently, Collberg and Thomborson [6] dis-
cussed an innovative idea that suggests encrypting the
executable, thereby preventing anyone from modifying
it successfully unless the adversary is able to decrypt
it. However, the details are not discussed in their paper
and only very little researches focusing on this kind of
technology can be found. Our suggested approach can
be regarded as the same direction as the idea proposed
by them in which encryption is used instead of hash
value comparison.

3 Multi-block Hashing Scheme

We propose the use of multi-blocking encryption for
the integrity verification of software. In this section, we
will first introduce the proposed multi-blocking encryp-
tion, then followed by the hashing scheme. Its security
issues will also be discussed.

Multi-blocking encryption breaks up a binary pro-
gram into individual encrypted blocks. The program is
executed by decrypting and jumping to the executable
block during the run-time process. When not being
executed, blocks are in encrypted form after applying
this program protection technique, therefore the ad-
versary cannot modify the code statically, where the
program being disassembled is examined by the disas-
sembler which is not able to interpret the encrypted
version of it. To our knowledge, Aucsmith [2] was the
first to introduce the concept of multi-blocking encryp-
tion. The armored segment of code, which call integrity
verification kernel (IVK), was used to construct tam-
per resistant software. The IVK is divided into several
equal size cells, which are encrypted. Cells are exposed
by decryption as it is executed. The multi-blocking
encryption technique used in [2] is mainly used to re-
sists code observation. In contrast to this approach, we
make use of this technique to resist code modification
during program execution.

3.1 Proposed Multi-blocking Encryption

Based on the concept of multi-blocking encryption
in [2], we propose to apply this technique in the follow-
ing way. We propose to divide a program into several
different sized blocks (instead of equal sized blocks)
according to the flow of the program. Each block is
encrypted with a different key, which is illustrated in
Figure 1. Let the program be P. If it can be broken
down in several blocks, each basic block has the prop-
erty of being independent. This means that the block
does not have any jump/branch instructions, jump-
ing/branching to other blocks. In other words, all the
targets of the jump/branch instructions are local within
the block. In order to find out the basic blocks, we first
need to disassemble the executable program P to its



machine code instructions accurately. There are two
generally used techniques for this: linear sweep and
recursive traversal [10].
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Figure 1: Different sized blocks encrypted by different
keys

In general, it is convenient and feasible to store those
keys inside the hardware token [11] so that dumping of
keys from the main memory is impossible. The encryp-
tion can also be done inside the token. In our approach,
we make use of the hash values of the blocks to be the
encryption keys, thus further eliminate the necessity of
storing the keys (see Section 3.3 for details).

3.2 Determining the Number of Blocks

The number of blocks ranges from the whole program
(one-time encryption) to one instruction per block. It
is clear to see that in the extreme environment, of
which each block is one instruction, it can achieve the
maximum-security level. The instruction can be de-
crypted inside a special CPU as well. However, it is
infeasible to put such heavy workload into the CPU it-
self. Thus, the number of blocks should be determined
by striking a balance between the level of security to
be achieved and the speed of the program. Note also
that the blocks also depend on the actual control flow
of the program.

3.3 Multi-block Hashing Scheme

In this subsection, we will describe our proposed
multi-block hashing scheme. Our objective is to pre-
vent an adversary from modifying the software. As-
suming that a user has legal access to the software, he
may try to tamper it to remove authentication code so
that it can be freely distributed for illegal use.

Our scheme works as follows: We take the hash value
of a basic block as the secret session key for decrypting
the next basic block according to the flow of the pro-
gram. As an initiate study, we focus on the programs of
which the control flow is a tree-like structure (as shown
in Figure 2). We remark that this kind of control flow
is very common.

. . .

Program Start

Branch 1 Branch 2

. . .Branch 1.1 Branch 1.2

Function 1 Function 2 . . .

Path A

Figure 2: Tree structure of the program

Let the program be P and we consider any single
path A. Let the path be broken down in n basic blocks,
b1, b2, · · · , bn such that the control flow of the path A
starts at b1 followed by b2 and then b3, etc. The blocks
are in encrypted form except the starting block b1. The
jumping code to the decryption routine is placed inside
the basic blocks. The program controller, which imple-
ments the dynamic integrity verification, is stored at
the end of the original program as illustrated in Figure
3.

Original
program
code P

Basic blocks
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code
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New section
Program
Controller

Figure 3: Structure of protected program

The entry point of the protected program is now set
at the program controller. Once the initial state has
been set up, the original program begins execution.
Before the execution of bi, calculate the hash value
of bi−1,Hi−1 = Hash(bi−1). We treat the hash value
Hi−1 as the secret session key Ki−1(Ki−1 = Hi−1) for
the decryption of the block bi, provided that the num-
ber of bits for Ki−1 is compatible with the encryption
algorithm. If a hardware token was used, this can be
implemented by using the C DeriveKey API function
of PKCS #11 [12]. C DeriveKey can derive a secret
key from a known data, Hi in our case. In order to il-
lustrate the algorithm, we take n = 3 in the following:

Algorithm: Multi-blocking integrity check (during
program execution)

1. Before b2 starts to execute, the program jumps
to the program controller to calculate H1 = Hash(b1),
where b1 is in plaintext.

2. The secret key K1 is then derived from H1, e.g.
K1 = H1.

3. The second block E(b2) is decrypted by K1 : b2 =
DK1(E(b2)).

4. The decrypted block is moved to its original place,
followed by the execution of the decrypted codes.

Program Code

Basic block in plantext

Encrypted basic block

Program
Contoller

E(b2)

b1

Figure 4: Program Progress 1 - 4 steps

5. Before b3 starts to execute, the program jumps to
the program controller to calculate H2 = Hash(b2).



6. The secret key K2 is derived from H2, e.g. K2 =
H2.

7. The third block E(b3) is decrypted by K2 : b3 =
DK2(E(b3)).

8. The decrypted block is moved to its original place,
followed by the execution of the decrypted codes.

Program Code

Basic block in plantext

Encrypted basic block
Program
Contoller

b2

E(b3)

Figure 5: Program Progress 5 - 8 steps

In order to create different keys for encrypting dif-
ferent blocks, we use different hash values to achieve
this property. There is no ‘storage of keys’ problem as
the hash values are calculated dynamically during pro-
gram execution. The above completes the treatment of
a single path. For the whole tree structure program P,
we can apply the algorithm on all paths inside the tree.

The adversary cannot modify the software statically
as binary codes are in encrypted form after protection.
For dynamic modification, suppose an adversary alters
the running program in block bi which will produce a
different hash value Hi. Before the execution of bi+1,
the hash value Hi is not the proper decryption key Ki

for block bi+1, the result from the decryption will then
produce rubbish code. Due to the corruption of the
next block, the program cannot continue to run prop-
erly and crashes. It is a great advantage that the pro-
gram will not halt its execution immediately after code
modification. When the tampered program crashes,
the adversary will find it very difficult to trace back
the exit point.

Using this multi-block hashing method, no hash value
comparison is present and bypassing the checking is im-
possible. The scheme is constructed so that any pro-
gram state is in a function of all previous states. There-
fore, the program is guaranteed to fail if one bit of the
protected program is tampered with. The point of fail-
ure also occurs far away from the point of detection,
so that the adversary does not know how it has taken
place.

3.4 Analysis of Multi-block Hashing Scheme
and Enhancement

In contract to common hash value comparison schemes,
this scheme does not use a single code block for in-
tegrity checking. This makes the adversary difficult to
bypass the checking in the program.

To attack the scheme, the adversary may find out
the hash value of each block by dynamic analysis. Af-
ter finding out those hash values, he or she can replace
the tampered hash value with the correct one during
program execution and the program can decrypt the
next basic block properly. However, the time taken by
dynamic analysis is typically at least proportional to
the number of instructions executed by the program
at runtime. In other words, to attack our scheme, it

takes a lot more effort than the attack for the previous
schemes. In fact, we can further enhance the security
of our approach in order to prevent the adversary to
find out the hash values. One effective way to achieve
this is to obfuscate the program codes. Some tech-
niques are discussed in [6]. The use of multi-blocking
encryption in our mechanism is, in fact, also one kind
of obfuscation techniques.

On the other hand, we can also use the technique of
code polymorphism [8] to prevent this problem, which
means that the program code is mutated after each
execution while preserving its semantics. Many com-
puter viruses use this technique to prevent the anti-
virus engines from finding them out. We use this idea
to make our protection not noticeable by the adversary.
One possible implementation is to mutate each basic
block bi after it has been executed and thereby chang-
ing its hash value. We can use the new hash value to
re-encrypt the next block bi+1 and so on. This creates
a new version of the same program with identical block
decomposition. Even if the adversary can identify the
hash values at the first time, those values cannot be
used for the next execution of the program as the hash
values have been mutated after the previous execution.

4 Experimental Results

In this section, we want to find out the overhead in
terms of program size and execution time. We have im-
plemented our multi-blocking encryption technique to
a software application: gzip [13] is a compression util-
ity designed to be a replacement for compress and the
control flow is in a tree structure. The corresponding
binary object code is analyzed to determine the number
of basic blocks to be used and the blocks information is
passed to the installation program, as shown in Figure
6.

Blocks
analyzer

gzip.exe
Installation

Program
gzip.exe

Figure 6: Installation of dynamic integrity verification
scheme

We have applied the integrity verification scheme in
one single path of the tree structure, which is a subset
of the whole tree structure program. The program con-
troller and information for each basic block are added
to the end of the object code automatically after pass-
ing through the installation program. USB hardware
token was used for encryption and hashing, which con-
forms to the PKCS #11 [12] standard. Those basic
blocks are encrypted with AES and we use SHA-1 for
hashing. The integrity verification scheme is then in-
stalled into the program and is ready to be run. The
installation process is automatic such that it is error
free. The experiments were conducted on a Pentium
1.5GHz CPU clock with 256MB RAM. We have used



two files to be compressed by the gzip program with
the size 89.5KB and 1.01MB, respectively.

4.1 Program Performance

We want to find out if the multi-block hashing would
impose unreasonable runtime overhead on the program.
An experiment was conducted to measure the runtime
overhead of multi-block hashing versus number of blocks
used and the results are shown in Figure 7. We have
identified 89 blocks for the experiments. The execution
time of Windows programs may differ slightly every
time the code is executed. We chose to find an aver-
age execution time for the gzip program. While there
were many jumping between the original program and
the program controller, the run time overhead was rea-
sonable. The execution time of the original program
was 0.0467s and 0.1367s for zipping the 89.5KB and
1.01MB file, respectively. It took only 1.07s for zipping
the 1.01MB file with 70 blocks used. The overhead is
reasonable even the number of blocks used is large.
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Figure 7: The average execution time of the protected
gzip program with different number of blocks used

4.2 Program Size

The verification scheme installed gzip program size
with different number of blocks installed was shown in
Figure 8. The increase in size for storing information
of each block is proportional to the number of blocks
identified in the program.
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Figure 8: gzip program size with different number of
blocks used

It can be shown that the size overhead for 30 blocks
used is only 5.6% compared with the original program
size, which is 89.5KB. It is relatively small as the pro-
gram controller is written in low level assemble lan-
guage which can be easily manipulated the object code
of the gzip program.

5 Comparison with Previous Schemes

Recently, there have been active development on soft-
ware dynamic integrity verification. Unlike Horne et
al.’s dynamic self-checking mechanism [9], which con-
sists of a number of testers that redundantly test for
changes in the executable code as it is running and re-
port modifications, our scheme detects the modification
of codes by decrypting the next block code, not depend-
ing on any tester. Whether encrypted blocks can be
decrypted properly, entirely depends on whether there
is no modification on software. Otherwise, the software
can not run properly, sometimes crashed, rather than
exit in a traceable way. With this property, our scheme
can prevent single check point failure attack.

Also, Chang and Atallah [3] proposed another ap-
proach based on a distributed scheme, in which protec-
tion and tamper-resistance of program code is achieved,
not by a single security module, but by a network of
(smaller) security units that work together in the pro-
gram. These security units, or guards, can be pro-
grammed to do certain tasks (check summing the pro-
gram code is one example) and a network of them
can reinforce the protection of each other by creat-
ing mutual-protection. Although a group of guards are
more resilient against attacks than a single branching
instruction for comparing hash values, it only spreads
out the single attack point into different locations of the
program. In other words, although more complicated,
bypassing instructions performed by the guards is still
possible. Our scheme have similar inter-related struc-
ture, but achieved higher level security by preventing
static code analysis attack.

In [4], Chen and Venkatesan proposed a novel soft-
ware integrity verification primitive, Oblivious Hash-
ing, which implicitly computes a fingerprint of a code
fragment based on its actual execution. Its construc-
tion makes it possible to thwart attacks using auto-
matic program analysis tools or other static methods.
This new method verifies the intended behavior of a
piece of code by running it and obtaining the resulting
fingerprint. However, there is a practical constraint
for binary-level code injection and if the adversary can
locate the instructions for hash value comparison, by-
passing is still possible. Since our multi-block hashing
scheme decrypts necessary block during program exe-
cution, it can avoid run-time attack.

We compared the above three schemes on software
dynamic integrity verification with our scheme, with
respect to the ability against certain attacks, such as
single check point failure attack, static code analysis
attack, dump memory attack and run-time attack. The
results illustrated in Figure 9.
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6 Conclusion and Future Work

In this paper, we have presented a dynamic software
integrity verification scheme that made use of multi-
block encryption technique. The objective is to pre-
vent an adversary from modifying the software. The
scheme is different from previous integrity verification
techniques in that no hash values comparison is re-
quired. This makes the adversary difficult to detach
the checking from the program. If the program was
altered, the program will not terminate in a traceable
way with the help of debugging tools or other static
analysis methods.

We also propose the use of code polymorphism to en-
hance the security of our scheme in case the adversary
can trace out all hash values of each block. The cod-
ing of the basic block is mutated every time after it is
executed and therefore its hash value is also changed.
Even if the adversary can find out the hash values,
those values cannot be used for the next execution of
the program since the hash values have mutated during
the previous execution.

One disadvantage of our scheme is that it only ap-
plies to programs with a tree-like control flow. The
scheme cannot handle the case when there are sev-
eral entry points entered to a single block. How to
enhance our scheme to make it work in programs with
a network-like control flow is an interesting topic for
future study.

The dynamic integrity verification scheme can be ap-
plied to all Win32 PE format files like EXE and DLL.
The experimental results showed that the size overhead
is relatively small and the program execution overhead
is reasonable.
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