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Abstract— By combining the two notations of ring signature and authenticated encryption to-
gether, we introduce a new type of authenticated encryption signature, called ring authenticated encryp-
tion, which has the following properties: signer-ambiguity, signer-verifiability, recipient-designation,
semantic-security, verification-convertibility, verification-dependence and recipient-ambiguity. We also
give a variant that does not hold the property of recipient-ambiguity but can make a verifier know to
whom a signature is sent when he checks its validity.
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1 Introduction

Horster et al. [7] first proposed an authenticated en-
cryption scheme modified from Nyberg-Ruepple’s mes-
sage signature [12], which aimed to achieve the purpose
that the signature can only be verified by some specified
recipients while keeping the message secret from the
public. Compared with the straightforward approach
employing the encryption and the signature schemes for
a message, respectively, authenticated schemes require
smaller bandwidth of communications to achieve pri-
vacy, integrity and anthentication of information. How-
ever, Horster et al.’s authenticated encryption scheme
has a weakness that no one except the specified recip-
ient can be convinced of the signer’s signature, so it
cannot make the recipient prove the dishonesty of the
signer to any verifier without releasing his secret if the
signer wants to repudiate his signature. To protect the
recipient in case that the signer would repudiate his
signature, Araki et al. [2] proposed a convertible lim-
ited verifier scheme to enable the recipient to convert
the signature to an ordinary one so that any verifier
can verify its validity. But it needs the cooperation of
the signer when the recipient converts the signature,
which is obviously a weakness under the situation that
the signer is unwilling to cooperate. To overcome this
weakness, Wu et al. [15] proposed another convert-
ible authenticated encryption scheme. During which,
the recipient can easily produce the ordinary signature
without the cooperation of the signer, and he can re-
veal the converted signature and then any verifier can
prove the dishonesty of the signer, if the signer wants
to repudiate his signature. Recently, Huang et al. [8]
showed that the scheme of Wu et al. does not consider
that once an intruder knows the message then he can
also easily convert a signature into an ordinary one,
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and they proposed a new convertible authenticated en-
cryption scheme to overcome this weakness. However,
we find that both these two schemes cannot provide
semantic security for the message, since any adversary
can determine whether his guessed message is the ac-
tual message signed by the original signer after he gets a
valid signature. Semantic security is of very importance
to an authenticated encryption scheme. Otherwise, if
the message is too short, namely ”yes” or ”no”, then
obviously, an adversary can determine which message
the signer signed by checking the verification equations.

Unlike group signature [4], ring signature, introduced
by Rivest et al.[13], has the following special properties:
Ring signature has no group managers, no setup proce-
dures and no cooperation. A verifier cannot tell which
member of a set of possible signers actually produced
the signature; Any user can sign on behalf of any set to
which he belongs, and he can choose a new set to each
message without getting the content or assistance of
the other members. Recently, some research has been
done on ring signature [16, 3, 1]. From the Nyberg-
Rueppel signature, J.Lv et al. proposed a DL-based
ring signature [10] and modified it to a verifiable ring
signature [9] which has the additional property: if the
actual signer is willing to prove to a recipient that he
actually signs the signature, then the recipient can cor-
rectly determine whether this is the fact. Based on the
deniable authentication and Rivest et al.’s ring signa-
ture, Naor [11] proposed deniable ring authentication.

1.1 Our Results

In this paper, we combine the two notations of ring
signature and authenticated encryption together and
obtain a new type of authenticated encryption, called
ring authenticated encryption. Ring authenticated en-
cryption signature has some important applications in
reality. For example, if a police wants to arrest a crim-
inal but knows few clues about him, so it promises to
give an award to a person in some group who could



provide the most important clue after the criminal is
arrested. A group member may provide something, but
he is not sure whether his message could be the most
important one. To protect his message from propagat-
ing, he can first authenticatedly encrypt the message,
and later prove to the police that he provides the most
important clue if it is announced to be most important.

1.2 Organization

The rest of the paper is organized as follows. In
the next section, we briefly describe the RSA-based
ring signature of Rivest et al.. In Section 3, we de-
fine ring authenticated encryption scheme and present
a DL-based concrete example. In Section 4, we give
a variant that does not hold the property of recipient-
ambiguity but can make a verifier know to whom a
signature is sent when he checks its validity. In Sec-
tion 5, we discuss the security and computational and
communication complexity of the scheme. A conclu-
sion will be given in Section 6.

2 RSA-Based Ring Signatures of Rivest
et al.

Let fi : {0, 1}l → {0, 1}l be a trapdoor one-way per-
mutation where its inverse, f−1

i , can be computed only
if the trapdoor information is known. Let E and D
be a symmetric-key encryption and decryption func-
tion whose message space is {0, 1}l, respectively. Let
H(·) be a hash function whose output domain matches
to the key-space of E and D.

Given f0, f1, · · · , fn−1, the signer who can compute
f−1

s , generates a signature for message M in the fol-
lowing way,
Initialization Randomly select c0 from {0, 1}l and com-
putes rn−1 = Dk(c0), where k = H(M);
Forward Sequence For i = 0, 1, · · · , s− 1, randomly se-
lect si from {0, 1}l and compute ci+1 = Ek(ci⊕fi(si));
Backward Sequence For i = n − 1, n − 2, · · · , s + 1,
randomly select si from {0, 1}l and compute ri−1 =
Dk(ri ⊕ fi(si));
Shaping Into A Ring Compute ss = f−1

s (cs ⊕ rs). The
resulting signature is (c0, s0, s1, · · · , sn−1).

A signature is valid if cn = c0 holds after com-
puting k = H(M) and ci+1 = Ek(ci ⊕ fi(si)), for
i = 0, 1, · · · , n− 1.

During the above scheme, Rivest et al. define a fam-
ily of keyed combining functions Ck,v(y1, y2, · · · , yr),
which are still very useful in our scheme. Every keyed
combining function Ck,v(y1, y2, · · · , yr) takes as input
a key k, an initialization value v, and arbitrary values
y1, y2, · · · , yr in {0, 1}b. Given any fixed values for k
and v, each such combining function uses Ek as a sub-
procedure, and produces as output a value z in {0, 1}b.
Each such combining function has the following three
properties,

1. Permutation on each input : For each s, 1 ≤ s ≤ r,
and for any fixed values of all the other inputs yi, i 6= s,
the function Ck,v(y1, y2, · · · , yr) is a one-to-one map-
ping from ys to the output z.

2. Efficiently solvable for any single input : For each
s, 1 ≤ s ≤ r, given a b-bit value z and values for all
inputs yi except ys, it is possible to efficiently find a
b-bit value ys for such that Ck,v(y1, y2, · · · , yr) = z.

3. Infeasible to solve verification equation for all in-
puts without trapdoors: Given k, v and z, it is infeasible
for an adversary to solve the equation Ck,v(g1(x1), g2(x2),
· · · , gr(xr)) = z, for x1, x2, · · · , xr, if the adversary
cannot invert any of the trap-door functions g1(x), g2(x),
· · · , gr(x).

3 Proposed Ring Authenticated Encryp-
tion

3.1 Definition and Requirements

Let gi(i = 1, 2, · · · , r) : {0, 1}l → {0, 1}∗ be a public
trapdoor one-way permutation, where its inverse, g−1

i ,
can only be computed by the i-th ring member Ai who
knows the trapdoor information; These trapdoor func-
tions should satisfy some conditions, such as, when Ai

computes g−1
i , there should be some secret parameter

that can be used later to prove to a recipient that the
signature is created by Ai, without releasing any infor-
mation about Ai’s secret key.

Definition 1 Our ring authenticated encryption scheme,
S1,n, is a tuple of polynomial-time algorithms, S1,n =
(G1,n, E1,n, V 1,n, C1,n, R1,n, S1,n),

(sk, pk) ← G1,n(1k): A probabilistic algorithm that
takes security parameter k and outputs private key sk
and public key pk.

σ ← E1,n(M, pkb, g
−1
s , g1, g2, · · · , gs−1, gs+1, · · · , gr):

A probabilistic algorithm that takes message M , the re-
cipient Bob’s public key pkb, the signer As’s reverse
trapdoor function g−1

s and all the other ring members’
trapdoor functions gi, i = 1, 2, · · · , r, i 6= s, outputs a
ring authenticated encryption signature σ.

M, 1/0 ← V 1,n(skb, σ): An algorithm that takes the
signature σ and the recipient Bob’s secret key skb, out-
puts the authenticated message M and return 1 or 0
meaning accept or reject the information that the signa-
ture is created by some ring member, respectively. We
require that M, 1 ← V 1,n(skb, E

1,n(M, pkb, sks, g1, g2,
· · · , gs−1, gs+1, · · · , gr)) for any message M , any (ski, pki)
generated by G1,n.

1/0 ← C1,n(M, ∆, σ): An algorithm that takes the
signature σ, the message M and a parameter ∆ that
can only be computed by the recipient Bob, outputs 1
or 0 meaning accept or reject the information that the
signature is really created by some ring member, respec-
tively. We require that 1 ← C1,n(M, ∆, σ) if Bob does
the protocol V 1,n honestly.

1/0 ← R1,n(M, σ,∆, t): An algorithm that takes the
signature σ, the message M , the parameter ∆ released
by Bob and a secret parameter t randomly selected by
a verifier, outputs 1 or 0 meaning accept or reject the
information that the signature is really sent to Bob.
We require that 1 ← R1,n(M, σ,∆, t) if Bob is the real
recipient.

1/0 ← S1,n(Θ): An algorithm that takes a parameter
Θ produced when As creates the signature σ, outputs 1



or 0 meaning accept or reject the information that As

is the actual signer. We require that 1 ← S1,n(Θ) if Θ
is really produced by As.

S1,n should satisfy the condition that only the actual
signer could provide such a parameter that makes it
equal 1 corresponding to a certain signature σ and that
Θ will not release the signer’s secret.

A ring authenticated encryption scheme has the fol-
lowing properties:

• Signer-Ambiguity : Anyone cannot determine which
ring member creates an authenticated encryption
signature if the actual signer is unwilling to ex-
pose himself;

• Signer-Verifiability : If the actual signer is willing
to prove to a recipient that it is he who actually
signs the signature, then the recipient can cor-
rectly determine whether it is the case;

• Recipient-Designation: Only the designated re-
cipient could recover the message;

• Semantic-Security : Any adversary cannot deter-
mine whether his guessed message is the actual
message signed by the original signer, even though
he gets a valid signature;

• Verification-Convertibility : Anyone can verify, with-
out the cooperation of any ring member, whether
a signature is signed by some ring member, after
the recipient reveals some parameters;

• Verification-Dependence: If the recipient does not
reveal some parameter, any verifier cannot check
the validity of the signature even though he gets
the message and the corresponding signature;

• Recipient-Ambiguity : A verifier can not know to
whom a signature is sent while verifying its valid-
ity. Only under the cooperation of the recipient
could a verifier determine whether a signature is
sent to the recipient.

3.2 A DL-Based Ring Authenticated Encryp-
tion Scheme

We assume the existence of a family of keyed combin-
ing functions Ck,v(y1, y2, · · · , yr) and a publicly defined
collision-resistant hash function H(·) that maps arbi-
trary inputs to strings of constant length, which are
used as keys for Ck,v(y1, y2, · · · , yr).

The ring authenticated encryption scheme consists
of six phases: initialization, signature generation, mes-
sage recovery and verification, conversion, recipient proof
and signer verification.

Initialization
All the ring members cooperatively determine some

common domain parameters: They first choose a large
prime p such that it is hard to compute discrete loga-
rithms in GF (p), choose q such that q is a large prime
divisor of p − 1, choose o such that o is a large prime

devisor of q− 1, lets g be a base point of GF (p) whose
order is q; Publish p, q and g.

Then, each ring member, such as the i-th member Ai,
chooses xAi

, (xAi
< q) as his private key and computes

the corresponding public key yAi
= gxAi mod p. He fi-

nally defines a trap-door function gi(α, β) as gi(α, β) =
α · yα∗

Ai
· gβ mod p, its inverse function g−1

i (y) is defined
as g−1

i (y) = (α, β), where

α = y · g−K·gK

mod p, (1)

α∗ = α mod q, (2)

β = K · gK − xAi
· α∗ mod q, (3)

where K is a random integer that meets K < o.
Ai publishes yAi

to all the other ring members, and
keeps xAi

secret.

Signature Generation
Step 1. To sign a message M ∈ Zp, the signer, As

say, who knows the public key yb(= gxb mod p) of the
recipient Bob, whose corresponding secret key is xb,
randomly chooses two integers x0 and x1 from Z∗q , com-
putes

u0 = M · yq−x0
b mod p,

c0 = gx0 mod p,

u1 = yx1
b mod p,

c1 = gx1 mod p,

then he computes the symmetric key k as k = H(M, u0,
c0, u1).

Step 2. As picks an initialization value v uniformly
at random from {0, 1}b;

Step 3. As picks random (αi, βi) for all the other
ring members Ai, (1 ≤ i ≤ r, i 6= s), uniformly and
independently, and computes

yi = gi(αi, βi) mod p.

Step 4. As solves the following equation for ys:

Ck,v(y1, y2, · · · , yr) = v.

Step 5. As uses his knowledge of his trap-door func-
tion to obtain (αs, βs) = g−1

s (ys),
First, As chooses a random integer K(< o), com-

putes αs by Eq.(1), and keeps K secret;
Second, computes α∗s by Eq.(2);
Finally, computes βs by Eq.(3).
Step 6. The signature σ on the message M is (A1, A2,

· · · , Ar, v, u0, c0, c1, (α1, β1), (α2, β2), · · · , (αr, βr)).
Finally, As sends σ to the recipient Bob.

Message Recovery and Verification
After receiving the signature σ, the recipient Bob

does the following,
Step 1. Bob computes

u∗1 = cxb
1 mod p,



M∗ = u0 · cxb
0 mod p,

and then he hashes the message M∗, the three param-
eters u0, c0 and u∗1 to compute the encryption key k:

k∗ = H(M∗, u0, c0, u
∗
1).

Step 2. For i = 1, 2, · · · , r, Bob computes yi =
gi(αi, βi) mod p;

Step 3. Bob checks that whether yi, (i = 1, 2, · · · , r)
satisfy the fundamental equation:

Ck∗,v(y1, y2, · · · , yr) = v.

If the above equation holds, Bob accepts the signa-
ture as valid. Reject otherwise.

Conversion
If Bob wants to prove to any verifier, Alice say, that

the signature is signed by some ring member, they can
do as follows,

Step 1. Bob sends the message M∗, the parameter
u∗1 and the signature σ to Alice.

Step 2. Alice computes k = H(M∗, u0, c0, u
∗
1), yi =

gi(αi, βi) mod p, for i = 1, 2, · · · , r.
Step 3. Alice checks that whether yi, (i = 1, 2, · · · , r)

satisfy the fundamental equation:

Ck,v(y1, y2, · · · , yr) = v.

If the above equation holds, Alice convinces that the
signature is signed by some ring member. Reject oth-
erwise.

Recipient Proof
If Bob wants to prove to any verifier Tom that the

signature σ is sent to him, they can do as follows:
Step 1: Bob first sends the message M∗, the pa-

rameter u∗1 and the signature σ to Tom.
Step 2. Tom computes k = H(M∗, u0, c0, u

∗
1), yi =

gi(αi, βi) mod p, for i = 1, 2, · · · , r.
Step 3. Tom checks that whether yi, (i = 1, 2, · · · , r)

satisfy the fundamental equation:

Ck,v(y1, y2, · · · , yr) = v.

If it holds, he continues. Otherwise, terminate the pro-
tocol.

Step 4: Tom randomly selects an integer t from Z∗q ,
and computes X = ct

1 mod p. Then he sends X to Bob.
Step 5: After receiving it, Bob computes Y = Xxb mod

p and sends Y to Tom;
Step 6: Tom computes u∗∗1 = Y t−1

mod p, and checks
if u∗∗1 = u∗1. Only if it holds does Tom accept that the
signature is sent to Bob.

Signer Verification
If the actual signer, As, is willing to prove to the

recipient Bob that he actually signs the signature, then
he does the following,

Step 1. As computes x = gK mod q, and sends
(x,As) to Bob;

Step 2. Bob computes α∗s = αs mod q, and checks if
x satisfies the following equalities:

αs · xx = ys mod p.

xx = gβs · yα∗s
As

mod p,

If they hold, then Bob convinces that As is the real
signer. Reject, otherwise.

4 Variant

During the signature generation protocol in our two
schemes, if we replace the equation k = H(M, u0, c0, u1)
with the new equation k = H(M, u0, c0, u1, yb), and
make some corresponding modifications during the left
equalities that calculate the key k, then we can see that
any verifier could verify whether a signature is sent to
the recipient after the recipient releases the message M ,
the parameter u∗1 and the corresponding signature σ,
instead of cooperation with him. The modified scheme
has the same computation and communication costs as
the original one, except that it does not hold the prop-
erty that only under the cooperation of the recipient
could a verifier determine whether a signature is sent
to the recipient.

5 Analysis

5.1 Security

The security of our scheme is based on the following
three assumptions:

Assumption 1 Intractability of reversing a one-way
hash function[6]: It is computationally infeasible to de-
rive x from a given hashed value H(x), or to find two
different values x, x∗ such that H(x) = H(x∗).

Assumption 2 Intractability of a keyed combining fu-
nction[13]: Given two values v and k, it is infeasible to
derive x1, x2, · · · , xr such that Ck,v(g1(x1), g2(x2), · · · ,
gr(xr)) = v.

Assumption 3 DL problem[14]: For given y ∈ Zp,
it is computationally infeasible to derive x such that
y = gx mod p.

During the signature generation protocol in the ba-
sic ring authenticated encryption scheme, an adversary
can randomly choose an integer j, (1 ≤ j ≤ r), and a
b-bit value v, then he can choose all the (αi, βi) except
(αj , βj). By the definition of trap-door functions, he
can computes all the yi, except yj ; He can compute
yj from Ck,v(y1, y2, · · · , yr) = v. Because he does not
know the secret keys xAj

, so he will face the DL prob-
lem when he solves (αj , βj) from the trap-door function
gj(yj). However, he can guess some pair (α∗j , β

∗
j ), but

the probability that the guessed pair satisfies the equa-
tion is q

p·q = 1
q . Since q is a large prime, the probability

is negligible. Therefore, anyone except a ring member
cannot generate a valid signature, since it needs the se-
cret key to complete the signature. After an adversary
gets the signature, he cannot guess the corresponding



message M , since he cannot correctly compute the pa-
rameter u1 from c1. Nor could he express the parame-
ter u1 with the his guessed message M , c1 or the corre-
sponding signature σ. So our scheme provides semantic
security of the message M . An adversary can obtain
ys and (αs, βs), but if he wants to solve the secret key
xAs from Equ. (1),(2) and (3), he must again face the
DL problem of solving K ·gK from gK·gK

. Any modifi-
cation to the triple (u0, c0, c1) will cause the inequality
k 6= H(M∗, u0, c0, u1) mod p hold.

During the message recovery and verification proto-
col, only by using the secret key xb of the recipient
could the message M be correctly recovered. By the
fact that only a ring member can generate a valid sig-
nature, the recipient can determine whether a signature
is valid. From the steps in the scheme, we can draw the
following theorem:

Theorem 1 Given a message M ’s signature σ, follow-
ing the steps in our basic ring authenticated encryption
scheme, the recipient Bob will surely recover and verify
the message M correctly from the signature.

Proof: Since gq mod p = 1, so Bob can get

u0 · cxb
0 mod p

= M · yq−x0
b · (gx0)xb mod p

= M · yq−x0
b · yx0

b mod p

= M · yq
b mod p

= M.

From the steps in signature generation, we know the
theorem holds.

During the conversion protocol, if the recipient does
not reveal the parameter u∗1, any verifier cannot com-
pute the key k, therefore cannot verify the validity of
the signature, even he knows the the message M and
the signature σ. After Bob reveals M, u∗1 and σ, any
verifier can check its validity by following the steps in
the scheme. Even after an adversary gets the two pa-
rameters u∗1 and c1, he cannot compute Bob’s secret key
xb, which is a difficult DL problem. Once a ring mem-
ber creates a valid signature, the recipient can always
prove to any verifier that the signature is generated by
some ring member.

During the recipient proof protocol, if the recipient
is unwilling to cooperate with any verifier, then any
verifier cannot determine who is the real recipient, even
though he gets M, u∗1 and σ. From the steps in the
scheme, we obviously have the following theorem,

Theorem 2 The recipient Bob can prove to any veri-
fier that the signature σ is sent to him by showing that
he knows the parameter xb with knowledge of a discrete
logarithm between u∗1 and c1.

Proof:(sketch).
As for the security of signer verification, it is obvi-

ously a DL problem if a person wants to impersonate
the actual signer. Though a verifier could get gK , α
and β in the process of signer verification, he cannot

get the secret key xAs
from Eq. (3), for he cannot

compute K · gK from gK .
It should be stressed that the signer, As, should

choose different random Ks every time when he signs.
Otherwise, if a verifier receives two same gK form two
signatures signed by As, he can get the following two
equations:

{
K · gK = xAs

α∗1 + β1 mod q
K · gK = xAsα

∗
2 + β2 mod q

Then, the verifier can solve out As’s private key xAs as
xAs

= (β1 − β2)(α∗2 − α∗1)
−1 mod q.

From above, we can know our schemes meet the
properties of strong unforgeability, strong undeniabil-
ity, confidentiality, signer-verifiability, signer-ambiguity,
recipient-designation, semantic-security, verification-co-
nvertibility, verification-dependence and recipient-amb-
iguity.

5.2 Computational and Communication Com-
plexity

Let Ti denote the time for one inverse computation,
Te denote the time for one exponentiation computa-
tion, Tm denote the time for one modular multiplica-
tion computation, Th denote the time for executing the
adopted one-way hash function in each scheme, Tc de-
note the time for computing yi from Ck,v(y1, y2, · · · , yr)
= v, Tv denote the time for verifying whether Ck,v(y1, y2,
· · · , yr) = v holds for some given k, y1, y2, · · · , yr and
v, |x| mean the bit length of an integer x.

Then in our ring authenticated encryption scheme:
Length of original signature is (r + 3)|p| + r|q| + |b|;
Length of converted signature (r + 3)|p| + r|q| + |b|;
Computational complexity of signature generation is
(2r + 4)Te + (2r + 2)Tm + Th + Ti + Tc; Computational
complexity of message recovery is Te + Tm; Computa-
tional complexity of message verifying is (2r + 1)Te +
2rTm+Th+Tv; Computational complexity of signature
conversion is 0; Computational complexity of verifying
converted signature is 2rTe + 2rTm + Th + Tv; Com-
putational complexity of recipient proof conversion is
(2r +3)Te +2rTm +Th +Tv +Ti; Computational com-
plexity of signer verification is Te + Tm.

6 Conclusion

By combining the two notations of ring signature
and authenticated encryption together, we introduce a
new type of authenticated encryption signature, called
ring authenticated encryption, which has the following
properties: signer-ambiguity, signer-verifiability, recipient-
designation, semantic-Security, verification-convertibility,
verification-dependence and recipient-ambiguity. We
also give a variance that does not hold the property
of recipient-ambiguity but can make a verifier know to
whom a signature is sent when he checks its validity.

References

[1] M.Abe, M.Ohkubo and K.Suzuki, “1-out-of-n
Signatures from a Variety of Keys”. Advances



in Cryptology- ASIACRYPT2002, LNCS2501,
pp.397-414. Springer-Verlag,2002.

[2] S.Araki, S.Uehara and K.Imamura, “The Lim-
ited Verifier Signature and Its Application”. IE-
ICE Transactions on Fundamentals, Vol. E82-A,
No.1,pp.63-68,1999.

[3] E.Bresson, J.Stern and M.Szydlo, “Threhold ring
signature and application to ad-hoc groups”. Ad-
vances in Cryptology- CRYPTO2002, LNCS 2442,
pp.465-480. Springer-Verlag, 2002.

[4] D.Chaum and E.V.Heyst,“Group Signatures” Ad-
vances in Cryptology- EUROCRYPT’91, LNCS
547, pp.257-265. Springer-Verlag,1991.

[5] R.Cramer, I.Damgard and B. Schoenmakers,
“Proofs of partial knowledge and simplified de-
sign of witness hiding protocols”. Advances in
Cryptology- CRYPTO’94, LNCS 839,pp.174-187.
Springer- Verlag,1994.

[6] W.Diffle and M.Hellman, “New Directions in
Cryptology”. IEEE Transactions on Information
Theory,IT-22(6),pp.644-654,1996.

[7] P.Horster,M.Michels and H.Petersen, “Authenti-
cated Encryption Schemes with Low Communica-
tion Costs”. Electronics Letters, Vol. 30, No.15,
pp.1212-1213,1994.

[8] H.Huang and C.Chang, “An Efficient Convertible
Authenticated Encryption Scheme and its Vari-
ant”, Proc. of ICICS2003-Fifth International Con-
ference on Information and Communications Se-
curity, LNCS 2836, Springer-Verlag, pp.382-392,
2003.

[9] J.Lv and X.Wang, “Verifiable Ring Signa-
ture”. Proc. of CANS03-International Workshop
on Cryptology and Network Security, U.S.A,
Sep.2003.

[10] J.Lv, W.Xu, H.Zhang and X.Wang, “DL-Based
Ring Signature”. First Workshop on Networks and
Information Security, China, Jan.2003.

[11] M.Naor, “Deniable Ring Authentication”. Ad-
vances in Cryptology-CRYPTO2002, LNCS 2442,
pp.481-498, Springer-Verlag,2002.

[12] K. Nyberg and R.A.Rueppel, “Message Recover
for Signature Schemes Based on the Discrete
Logarithm Problem”. Advance in Cryptology-
EUROCRYPT94, LNCS 950, Springer-Verlag,
pp.182-193,1995.

[13] R.L.Rivest,A.Shamir and Y.Tauman, “How to
Leak a Secret”. Advances in Cryptology- ASI-
ACRYPT2001, LNCS 2248, pp.257-265, Springer-
Verlag,2001.

[14] B.Schneier, Applied Cryptology, second edi-
tion,Wiley, New York, 1996.

[15] T.Wu and C.Hsu, “Convertible Authenticated En-
cryption Scheme”. The Journal of Systems and
Software, Vol. 62, pp.205-209, 2002.

[16] F.Zhang and K.Kim, “ID-Based Blind Signature
and Ring Signature from Pairings”. Advances
in Cryptology- ASIACRYPT2002, LNCS 2501,
pp.533-547, Springer- Verlag,2002.


