
Forward-Secure Blind Signature Scheme Based
on the Strong RSA Assumption

Dang Nguyen Duc1, Jung Hee Cheon2, and Kwangjo Kim1

1 International Research Center for Information Security (IRIS)
Information and Communication University (ICU)

58-4 Hwaam-dong, Yusong-gu, Deajeon, 305-732 Korea
{nguyenduc, kkj}@icu.ac.kr
http://www.iris.re.kr/

2 School of Mathematical Science, Seoul National University (SNU)
San 56-1 Shillim-Dong, Kwanak-Gu, Seoul 151-747, Korea

jhcheon@math.snu.ac.kr

Abstract. Key exposure problem turns out to be very serious in secu-
rity services. For example, in electronic cash, the problem is very severe
since money is directly involved. In other applications of cryptography, it
is also a devastating attack. Forward security is the first security notion
addressing the this issue. Roughly speaking, forward secrecy is aimed to
protect validity of the all usage before key exposure. In this paper, we
investigate the key exposure problem in blind signature (with application
to electronic cash in mind). We then propose a blind signature scheme
which guarantees forward security. Our scheme is constructed from the
provably secure Okamoto-Guillou-Quisquater (OGQ for short) blind sig-
nature scheme. Using forking lemma proposed by Pointcheval and Stern
[4], we can show the equivalence between existence of a forger with fea-
sibility of solving the strong RSA problem. In addition, our scheme in-
troduces no significant communication overhead comparing with OGQ
scheme.

1 Introduction

Digital signature is the most well-known public key cryptography appli-
cation which provides authentication of signing act. Clearly, the ability
to sign (i.e., owning secret key) must be available to the signer only. In
practice, it is very difficult to guarantee that secret key cannot be com-
promised since many implementation and administration errors can be
exploited. To relax the problem, an intuitive solution is to use many se-
cret keys - each valid only within a period of time - and preferably keeps
the public key unchanged over its lifetime. Such strategy is called key
evolution.

However, key evolution must be designed carefully. For instance, if
secret key used in the past can be easily computed from the compromised



2 Dang Nguyen Duc et al.

secret key then key evolution does not help dealing with key exposure
problem. To address this issue, the notion of forward secrecy was intro-
duced by Anderson [2]. Intuitively speaking, forward secrecy preserves
security goal of all previous usage in case the current secret key is com-
promised. In other words, security goal is protected up to (forward) the
time of secret key exposure.

An interesting extension of digital signature is blind signature pro-
posed by Chaum [1]. Blind signature enables user to get a signer’s signa-
ture on his message without revealing the message content. Blind signa-
ture plays one of key ingredients in electronic cash system where the bank
plays as the signer and customer plays as user. Roughly, let’s assume that
a signature issued by the bank is equivalent to an electronic coin. Now
we consider the key exposure problem in case of blind signature (and so
of an electronic cash system). It turns out that key exposure problem in
blind signature is very serious. Specifically, in electronic cash system, it is
very severe since money is directly involved. When the secret key of the
bank is stolen, attacker can generate as many valid electronic coins as he
wants. Suppose that the bank is aware of key exposure and performs pub-
lic key revocation. Since nobody can trust signature generated by using
the stolen key, people who have withdrawn their electronic coins but have
not spent it, or who were paid electronic coins but have not deposited it
will lose their money.

The first solution, the bank can think of, is to make stealing his secret
key essentially hard. For example, the bank can use secret sharing tech-
nique to distribute secret key to several sites together with a threshold
blind signature scheme to issue signature. Clearly, this approach makes
it more difficult for attackers to steal secret key since attackers have to
break in all sites holding shared secrets to learn the bank’s secret key.
However, the above approach requires distributed computation which is
costly. Again, we turn to key evolution and forward secrecy. Specifically,
the bank updates his secret key at discrete intervals and it is infeasible
for adversary to forge any signature valid in the past even given that cur-
rent secret key is compromised. Blind signature is also seen to have other
applications, such as: electronic voting, auction, etc. All those applica-
tions are clearly vulnerable against key exposure problem. Thus relaxing
key exposure problem in blind signature is a useful feature not only in
electronic cash but also in many other cryptographic applications.

Our approach to construct a forward secure blind signature scheme
is to extend a well-studied blind signature scheme in the literature. We
choose the Okamoto-Guillou-Quisquater (OGQ for short) blind signature



Forward-Secure Blind Signature 3

scheme as our candidate. This scheme is constructed from the witness in-
distinguishable identification protocol based on Guillou-Quisquater iden-
tification protocol by Okamoto [8]. This blind signature scheme works on
Z∗N where N is product of two large primes. The security of this scheme
is analyzed by Pointcheval and Stern [4]. The scheme seems not to be vul-
nerable against generalized birthday attack [12] since this attack requires
knowledge of order of working group and it is infeasible to compute order
of Z∗N as well as order of an element in Z∗N (otherwise, we can factor N).

In this paper, we present a forward secure blind signature scheme by
extending OGQ blind signature scheme. Our scheme exhibits an efficient
key updating protocol and introduces no significant overhead comparing
to the OGQ scheme.

The organization of the paper is as follows: In Section 2, we present
background and definitions. The description of our forward secure blindsig-
nature scheme is given in Section 3. In Section 4, we analyze correctness,
efficiency and security of our proposed scheme . Section 5 will be our
conclusion and future work.

2 Background

2.1 The Key-evolving Blind Signature

In this section, we demostrate a formal definition of a key-evolving blind
signature scheme. The definition is adopted from the definition for a key-
evolving digital signature given in [6].

Definition 1. A key-evolving blind signature scheme consists of five algo-
rithms, FBSIG = <FBSIG.Setup, FBSIG.Update, FBSIG.Signer, FBSIG.User,
FBSIG.Verify>, where

1. FBSIG.Setup is a probabilistic polynomial-time algorithm which takes
a security parameter k as its input and outputs system parameters
including initial secret key SK1 and the public key PK of the signer.

2. FBSIG.Update is either deterministic or probabilistic algorithm. It
takes the secret key SKi for current time period, period i, as input,
and output a new secret key SKi+1 for time period i + 1.

3. FBSIG.Signer and FBSIG.User are a pair of probabilistic interactive
Turing machines which model the signer and user involving in a sig-
nature issuing session, respectively. Both machines have the following
tapes: a read-only input tape, a write-only output tape, a read/write
work tape, a read-only random tape and two communication tapes (one



4 Dang Nguyen Duc et al.

read-only and one write-only). The two machines may share a com-
mon read-only input tape as well. FBSIG.Signer has its secret key
SKi on its input tape for period i. FBSIG.User has a message m
and the signer’s public key PKi on its input tape. FBSIG.Signer and
FBSIG.User engage in the signature issuing protocol. After the pro-
tocol ends, FBSIG.Signer either outputs ‘complete’ or ‘incomplete’,
and FBSIG.User either output signature of the message m, (i, σ(m)),
or ⊥ (i.e., error) respectively.

4. FBSIG.Verify is a deterministic algorithm which takes the public key
of the signer, PK, and message, signature pair (m, i, σ(m)) as its
input. It outputs either ‘accept’ or ‘reject’. Clearly, for every valid
signature, FBSIG.Verify must output ‘accept’.

We should emphasize that the period index, i, must be embedded
into the signature. Otherwise, we cannot tell in which time period, the
signature is issued.

2.2 Security Notions for a key-evolving Blind Signature with
forward secrecy

Blindness. One characteristic of the ordinary cash is anonymity, mean-
ing that user’s buying activities can not be traced by the bank who is-
sues cash. Blind signature is clearly needed to address this issue since
it is a means of cash issuance in electronic cash system. In fact, blind-
ness is stronger than “obtaining signature without revealing message”.
To satisfies anonymity, blindness property implies that the signer cannot
statistically distinguish signatures.

In a key-evolving blind signature, one may argue that since the period
index must be included in every signature then the signer may use the
period index to uniquely identify every signature if he updates his secret
key after issuing each signature. So blindness property will be lost. How-
ever, the period index j is publicly available and the signer must agree
with all involved parties on when his secret key should be updated. An-
other issue one may concern is that if a time period is too short, then
there will be only a few signatures issued in that period. It may make
signer easier to identify the signatures later on. This can be prevented by
requiring a more rigorous blindness property. Let’s consider the following
game played by the signer (or any adversary that controls the signer) and
two honest users, say U0 and U1.

– The signer chooses two messages m0 and m1.



Forward-Secure Blind Signature 5

– A referee chooses a random bit b and then mb and m1−b are given to
U0 and U1, respectively.

– U0 and U1 engages with the signer to get signature on his message,
mb and m1−b, respectively (not neccesery in two different time periods
since blindness property must be satisfied for all signatures, not just
for signatures issued in one time period). Then, The two signatures
are given to the signer. Finally, the signer outputs a guess for b, say
b′. The signer wins the game if b = b′.

If probability such that the signer wins the game is no better proba-
bility guessing the random bit b given no information (i.e., probability of
1
2), the signer cannot link a signature to its owner. We say that blindness
property is satisfied.

Forward Secrecy in Key-evolving Blind Signature. In differ-
ent cryptographic schemes, forward secrecy may have different meanings
depending on security goal of the schemes. In blind signature context,
forward secrecy means unforgeability of signature valid in previous time
periods even though the current secret key of the signer is compromised.

2.3 Security Assumption

The security assumption of our scheme depends on the intractability of
the strong RSA problem. The strong RSA problem is described as follows:
Given a randomly generated RSA modulo N (which is product of two
large primes) and a random element c ∈ Z∗N , find m and r ∈ Z∗N such
that mr = c mod N . The strong RSA assumption implies that the strong
RSA problem is intractable.

The strong RSA assumption is usually used with a special modulus
N , i.e., that is product of two numbers, so called safe primes. We give
definition of a safe prime as follows:

Definition 2. Given a prime number q′, if q = 2q′ + 1 is also prime, we
call q is a safe prime number. (q′ is known as Sophie Germain prime.).

3 Our Forward Secure Blind Signature Scheme

In this section, we describe our forward secure variant of OGQ blind
signature scheme. We denotes ÷ by a division operation which gives the
result as the quotient of the division (i.e., if a = qb + r then a ÷ b = q).
The ‖ denotes string concatenation. Also, we assume that a collision-free



6 Dang Nguyen Duc et al.

hash function H is available where its domain and codomain are {0, 1}∗
and Z∗λ (λ is a prime), respectively.

Firstly, we explain our idea on implementing key-evolving protocol of
the OGQ blind signature scheme. The OGQ scheme works on multiplica-
tive group Z∗N where N is product of two primes. Its secret key is a pair
(r, s) and the corresponding public key is V = a−rs−λ where a and λ are
public (λ is also prime). Updating the secret s is easy, we just compute s′

from s by squaring, say s′ = s2. However, updating r (in a way the new
public key is related to the old public key) is difficult because we do not
know the order of a in Z∗N . If we compute V 2, we get V 2 = a−2r(s2)−λ

mod N . We cannot take (2r, s2) as a new secret key pair since it is triv-
ially easy to get r from 2r. To add randomness to the new r, we take a
random exponent e from Z∗N and compute V 2ae = a−2r+e(s2)−λ mod N .
l and r′ denote the quotient and the remainder of (2r − e) divided by λ,
respectively. Then, we have V 2ae = a−r′(als2)−λ mod N . Now we can
take V 2ae as a new public key, (r′, s′ = als2) as a new secret key. This
key-evolving protocol is forward secure because in order to compute r or
s from the new key pair (r′, s′) and ae mod N , one needs to compute e
from ae or s from s2. Since e is taken randomly, both of problems are very
root finding problem in Z∗N , which is equivalent to factoring of N [14].

In an offline electronic cash system, payment can be made without
online communication with the bank. In other words, verifiers should be
able to verify signature without online communication with the signer.
Therefore, in our case, ae should be embedded into every signature so
that verifier can compute the public key from V and the period index.
One may argue that it is no better than generating new random key
pair and including the public key into every signature. However, in blind
signature, users are in charge of hashing his messages. Thus, users are
under no obligation to embed correct period index into signatures (which
means forward secrecy is lost). In contrast, the public key in our scheme
is continuously squared after every period. So for verifiers to compute
correct public key using period index (i.e., V 2i

), users must embed correct
time period index into signature.

We now describe each component of a five-tuple FBSIG = <FBSIG.Setup,
FBSIG.Update, FBSIG.Signer, FBSIG.User, FBSIG.Verify>.

algorithm FBSIG.Setup(k)
Generate randomly two safe primes p and q of length k/2 bits
N ← pq
ϕ(N) ← (q − 1)(p− 1)
Generate a random prime λ such that it is co-prime with ϕ(N)
Choose a from Z∗N of order greater than λ



Forward-Secure Blind Signature 7

Choose r0 ∈R Z∗λ s0, e ∈R Z∗N
V ← a−r0s−λ

0 mod N
f1 ← ae mod N
v1 ← V 2ae mod N
l ← (2r0 − e)÷ λ
r1 ← (2r0 − e) mod λ

s1 ← als2
0 mod N

Erase p, q, e, r0, s0 and ϕ(N)
SK1 ← (1, r1, s1, v1, f1)
PK ← (N, a, V, λ)
RETURN (PK, SK1)

algorithm FBSIG.Update(SKi)
(i, ri, si, vi, fi) ← SKi

Choose e ∈R Z∗N
vi+1 ← v2

i ae mod N
fi+1 ← f2

i ae mod N
l ← (2ri − e)÷ λ
ri+1 ← (2ri − e) mod λ

si+1 ← als2
i mod N

SKi+1 ← (i + 1, ri+1, si+1, vi+1, fi+1)
Erase SKi, e and l
RETURN (SKi+1)

Note that, i, vi and fi of SKi are not secret anyway. We prefer to keep
PK unchanged to avoid confusion because if public key is changed, we
need to perform public key revocation. The signature issuing protocol is
given as follows:

algorithm FBSIG.Signer(SKi) algorithm FBSIG.User(PK, m)

On Error RETURN ‘incomplete’ On Error RETURN ⊥

(i, N, λ, a, ri, si, fi) ← SKi

Choose t ∈R Z∗λ
Choose u ∈R Z∗N
x ← atuλ mod N
Send x to FBSIG.User

Get x from FBSIG.Signer

(N, λ, a, V ) ← PK
Choose blinding factors α, γ ∈R Z∗λ and β ∈R Z∗N
x′ ← xaαβλvγ

i mod N
c′ ← H(i ‖ fi ‖ m ‖ x′)
c ← (c′ − γ) mod λ
Send c to FBSIG.Signer

Get c from FBSIG.User

y ← (t + cri) mod λ
w ← (t + cri)÷ λ



8 Dang Nguyen Duc et al.

z ← awusc
i mod N

Send y, z to FBSIG.User

Get y, z from FBSIG.Signer

y′ ← (y + α) mod λ
w′ ← (y + α)÷ λ
w′′ ← (c′ − c)÷ λ

z′ ← aw′v−w′′
i zβ mod N

σ(m) ← (fi, c
′, y′, z′)

RETURN ‘complete’ RETURN (i, σ(m))

We assume that when users contact with the signer, i, vi and fi are
made available to users (i.e., in the signer’s read-only public directory).
All users can access those information anonymously. The ‘On Error’
pseudo-code can be interpreted as ‘Whenever an (unrecoverable) error
occurs’. In practice, an error will be caused by a communication error
between FBSIG.User and FBSIG.Signer.

To express the signature of a message, we will omit the index i on
fi since attackers (when try to forge a signature) do not have to use the
correct f for a period).

algorithm FBSIG.Verify(m, i, σ(m), PK)
(N, λ, a, V ) ← PK
(f, c′, y′, z′) ← σ(m)

vi ← V 2i

f mod N

x′′ ← ay′z′λvc′
i mod N

If c′ = H(i ‖ f ‖ m ‖ x′′) then RETURN ‘accept’ else RETURN ‘reject’

4 Analysis of FBSIG

4.1 Correctness

Theorem 1. Suppose that FBSIG.Signer and FBSIG.User engage in a
signature issuing protocol in period i such that FBSIG.Signer returns
‘complete’ and FBSIG.User returns signature on a message m, (i, σ(m)).
Then, FBSIG.Verify always returns ‘accept’ on input (PK, i, σ(m)).

Proof. We will show that x′′ = ay′z′λ(V 2i
fi)c′ = x′ mod N . If the signa-

ture issuing protocol ends successfully then f = fi and we have:

ay′z′λ(V 2i
fi)c′ = ay′(aw′v−w′′

i zβ)λvc′
i mod N



Forward-Secure Blind Signature 9

= ay′aw′λzλβλvc′−w′′λ
i mod N

= ay′+w′λ(awusi
c)λβλvc′−w′′λ

i mod N

= ay+αawλuλsi
cλβλvc′−w′′λ

i mod N

= ay+wλaαuλsi
cλβλvc′−w′′λ

i mod N

= at+criaαuλsi
cλβλvc′−w′′λ

i mod N

= atuλaα(a−ris−λ
i )−cβλvc′−w′′λ

i mod N

= xaαβλv−c
i vc′−w′′λ

i mod N

= xaαβλv
(c′−c)−w′′λ
i mod N

= xaαβλvγ
i = x′ mod N

Hence H(i ‖ f ‖ m ‖ x′′) = H(i ‖ f ‖ m ‖ x′) = c always holds which
means that FBSIG.Verify always returns ‘accept’. ut

4.2 Efficiency

We compare the key and signature sizes (in bits) of our key-evolving blind
signature scheme and the OGQ blind signature scheme in the following
table.

Scheme Public Key Size Secret Key Size Signature Size

Our FBSIG 5k + log λ + log(i) k + log λ 2k + 2 log λ + log(i)

OGQ Scheme 3k + log λ k + log λ k + 2 log λ

Note that log(i) is bit length of time period index. In terms of com-
putational cost, the signature issuing procedure remains the same as the
OGQ scheme. In verification process, we need to so some squaring oper-
ations to compute vi. Our key updating is quite efficient. It needs three
squaring operations, two exponentiations, one division and three multi-
plications in Z∗N .

4.3 Security

Security of OGQ Blind Signature. In [4], the authors showed that
one-more unforgeability is related to security of RSA cryptosystem Even
though the reduction complexity in their security proof is not polyno-
mial in all security parameters, it is still one of the best result for blind
signature.

We state two theorems regarding the security of our scheme as follows:

Theorem 2. Our proposed scheme satisfies blindness property of a blind
signature scheme.



10 Dang Nguyen Duc et al.

Proof. Let’s consider the game played by an adversary A and two hon-
est users, U0 and U1 described in Section 2.2. If A receives ⊥ from
one of users, then he has no information to help guessing b other than
wild guess. Now suppose that he gets (i, σ(mb)) = (i, fi, c

′
b, y

′
b, z

′
b) and

(j, σ(m1−b)) = (j, fj , c
′
1−b, y

′
1−b, z

′
1−b) from two users instead of ⊥. Note

that, what are exchanged between the signer and the user during signature
issuing protocol are c, y and z. We call (c, y, z) is a view of the signer. We
should show that, given any view (c, y, z) and any signature (m, i, σ(m)),
there always exist unique blinding factors such that the result signature
is (m, i, σ(m)) and the view of the signer is (c, y, z). This fact prevents the
signer from deciding a given view corresponding to which signature since
blinding factors are chosen randomly. The blinding factors α, β and γ can
be uniquely computed given (c, y, z) and (m, i, σ(m)) = (m, i, f, c′, y′, z′)
as follows: γ = c′−c mod λ, α = y′−y mod λ and β = z′/(aw′v−w′′

i z) mod
N where w′ and w′′ are computed just like in signature issuing protocol
and vi = V 2i

f mod N . To conclude, in any case, any adversary A cannot
gain any helpful information during signing protocol to guess b. In other
words, his probability of success in guessing b is 1/2. ut

Theorem 3. If there exists an forger which can break forward security
of our scheme. Then, with non-negligible probability, we can violate the
strong RSA assumption.

Proof. We will show that if there is a forger F then we can violate the
strong RSA assumption. A forger F obtains PK of the signer as its input,
and interacts with the signer in arbitrary way to get a set of message (of
his choice) signature pairs MS. Whenever he wants, he breaks in the
system (let say at time period b) and learns SKb. Finally, with non-
negligible probability, F outputs a forged message/signature pair for a
time period j < b which is not in the set MS. We need to simulate the
signer to interact with F during signature issuing protocol and provide
a hashing oracle to answer F ’s hashing queries. As usual, F can only
interact with the signer polynomially many sessions and ask the hashing
oracle polynomially many queries. We also need to provide a random tape
for F . First, we guess the period j that F will output a forged signature for
that period. The break-in time of F must be period b > j. We can easily
compute SKb to answer F ’s break-in query by using the key setup and
update procedure properly. We will run F twice with the same input PK.
At the first time, assume that F outputs a forged signature (j, σ1(m)) =
(j, f, c′1, y′1, z′1) on a message m and the h-th query on the hashing oracle
is (j ‖ f ‖ m ‖ x′1). It is expected that V 2j

f = vj mod N . Otherwise, we



Forward-Secure Blind Signature 11

retry from the beginning. For the second time, we run F with the same
random tape and answer to its hashing oracle queries the same values as
in the first run until the h-th query, (j ‖ f ‖ m ‖ x′1). Due to the forking
lemma [4], with non-negligible probability, F will again output a forged
signature on message m for the period j, (j, σ1(m)) = (j, f, c′2, y′2, z′2).
Then it must be the case that ay′1z′1

λ(V 2j
f)c′1 = ay′2z′2

λ(V 2j
f)c′2 mod N .

Thus, ay′1−y′2(z′1/z′2)λ = v
e(c′2−c′1)
j mod N (vj = V 2j

f mod N). Since vj =
a−rjsj

−λ mod N , we can come up with the following equation aρ = bλ

mod N for some integer number ρ and b. This equation enables us to
violate the strong RSA assumption due to the following lemma.

Lemma 1. Given a, b ∈ (Z/NZ)∗, along with ρ, λ ∈ Z, such that aρ = bλ

mod N and gcd(ρ, λ) = 1, one can efficiently compute µ ∈ Z∗N such that
µλ = a mod N .

Proof. Since gcd(ρ, λ) = 1 we can use extended Euclidean algorithm to
compute two integers ρ′ and λ′ such that ρρ′ = 1+λλ′. Then, µ = bρ′a−λ′

mod N satisfies µλ = a mod N .

Using the above lemma we can compute a λ-th root of a which contra-
dicts with our security assumption, the RSA assumption since it is very
likely that gcd(ρ, λ) = 1 (since λ is prime). ut

5 Conclusions and Future Work

We present the first forward secure blind signature scheme and analyze its
security. We believe that forward secrecy provides really useful features
of a blind signature scheme as well as electronic cash systems. In our
scheme, the signing procedure is as efficient as the signing protocol in
the basic scheme. The efficient key evolving protocol supports unlimited
time periods. Our scheme can also be extended to work under general
groups (where its order is hard to find) since it does not need any specific
characteristics of the group Z∗N . By doing so, choosing safe prime can
be avoided and required storage may also be reduced. Of course, the
security assumption also changes to strong root assumption [13] which
is an analogy of the strong RSA assumption. An example of groups of
unknown orders are class groups of imaginary quadratic orders. However,
signature size of our scheme should be improved and it is left as the our
future work.



12 Dang Nguyen Duc et al.

Acknowledgment

The first author is grateful to Dr. Zhang Fangguo for his helpful discussion
on blind signature. The second author is partially supported by SNU
foundation in 2003.

References

1. David Chaum, “Blind Signatures For Untraceable Payments”, Advances in Cryp-
tology - CRYPTO’82, Plenum Publishing, pp. 199-204, 1982.

2. Ross Anderson, “Two Remarks on Public Key Cryptography”, Invited Lecture,
Fourth Annual Conference on Computer and Communications Security, ACM,
1997.

3. Louis S. Guillou and Jean J. Quisquater, “A Practical Zero-Knowledge Protocol
Fitted to Security Microprocessors Minimizing both Transmission and Memory”,
Advances in Cryptology - EUROCRYPT’88, LNCS 330, Springer-Verlag, pp. 123-
128, 1988.

4. David Pointcheval and Jacques Stern, “Provably Secure Blind Signatures
Schemes”, Advances in Cryptology - ASIACRYPT’96, LNCS 1163, Springer-
Verlag, pp. 252-265, 1996.

5. Gene Itkis and Leonid Reyzin, “Forward-Secure Signatures with Optimal Signing
and Verifying”, Advances in Cryptology - CRYPTO’01, LNCS 2139, Springer-
Verlag, pp. 332-354, 2001.

6. Mihir Bellare and Sara K. Miner, “A Forward-Secure Digital Signature Scheme”,
Advances in Cryptology - CRYPTO’99, LNCS 1666, Springer-Verlag, pp. 431-448,
1999.

7. Fangguo Zhang and Kwangjo Kim, “ID-Based Blind Signature and Ring Signature
from Pairings”, Advances in Cryptology - ASIACRYPT’02, LNCS 2501, Springer-
Verlag, pp. 533-547, 2002.

8. Tatsuki Okamoto, “Provably Secure and Practical Identification Schemes and Cor-
responding Signature Schemes”, Advances in Cryptology - CRYPTO’92, LNCS
740, Springer-Verlag, pp. 31-53, 1992.

9. Ari Juels, Michael Luby and Rafail Ostrovsky, “Security of Blind Signatures”.
Advanced in Cryptology - CRYPTO’97, LNCS 1294, Springer-Verlag, pp. 150-164,
1997.

10. Ronald Crammer and Victor Shoup, “Signature Scheme Based on the Strong RSA
Assumption”, In ACM Transactions on Information and System Security, volume
3, pp. 161-185, 2000.

11. Claus P. Schnorr, “Security of Blind Discrete Log Signatures Against Interactive
Attacks”, In Proceedings of ICICSC’01, LNCS 2229, Springer-Verlag, pp. 1-12,
2001.

12. David Wagner, “Generalized Birthday Problem“, Advances in Cryptology -
CRYPTO’02, LNCS 2442, Springer-Verlag, pp. 288-303, 2002.

13. Safuat Hamdy and Bodo Moller, “Security of Cryptosystems Based on Class
Groups of Imaginary Quadratic Orders”, Advances in Cryptology - ASIAN-
CRYPT’00, LNCS 1976, Springer-Verlag, pp. 234-247, 2000.

14. Dan Boneh and Ramarathnam Venkatesan, “Breaking RSA May Not Be Equivalent
to Factoring”, Advances in Cryptology - EUROCRYPT’98, LNCS 1403, Springer-
Verlag, pp. 59-71, 1998.


