An Efficient Tree-based Group Key Agreement
using Bilinear Map

Sangwon Lee!, Yongdae Kim?, Kwangjo Kim!, and Dae-Hyun Ryu?3

! Information and Communications University (ICU),
58-4, Hwaam-Dong, Yuseong-gu, Daejeon, 305-732, Korea,
{swlee,kkj}@icu.ac.kr
2 University of Minnesota - Twin cities
4-192 EE/CSci Building, 200 Union Street S.E., Minneapolis, MN 55455
kyd@cs.umn.edu
3 Hansei University,
604-5, Dangjung-dong, Kunpo-si, Kyunggi-do, Seoul, 435-742, Korea,
dhryu@hansei.ac.kr

Abstract. Secure and reliable group communication is an increasingly
active research area by growing popularity in group-oriented and collab-
orative application. One of the important challenges is to design secure
and efficient group key management. While centralized management is
often appropriate for key distribution in large multicast-style groups,
many collaborative group settings require distributed key agreement. The
communication and computation cost is one of important factors in the
group key management for Dynamic Peer Group. In this paper, we ex-
tend TGDH (Tree-based Group Diffie-Hellman) protocol to improve the
computational efficiency by utilizing pairing-based cryptography. The re-
sulting protocol reduces computational cost of TGDH protocol without
degrading the communication complexity.

Keywords: Group key agreement, TGDH, Bilinear Diffie-Hellman, Bi-
linear map, Pairings

1 Introduction

Secure and reliable communications have become critical in modern computing.
The centralized services like e-mail and file sharing can be changed into dis-
tributed or collaborated system through multiple systems and networks. Basic
cryptographic requirements such as data confidentiality, data integrity, authenti-
cation and access control are required to build secure collaborative system in the
broadcast channel. When all group members have the shared secret key, these
security services can be easily implemented.

Dynamic Peer Group (DPG) belongs to a kind of ad hoc group which its
membership can be frequently changed and the communicating party in a group
can be dynamically configured.

Recently, Joux([5] presented a three-party key agreement protocol which re-
quires each entity to make on a single round using pairings on algebraic curves.

This should be contrasted with the obvious extension of the conventional Diffie-
Hellman key distribution protocol to three parties requiring two interactions per
peer entity. We extend this three-party key agreement protocol to group key
agreement protocol using ternary tree and also use two-party key agreement
protocol for some subtree node.

Y. Kim et al.[9] proposed a secure, simple and efficient key management
method, called TGDH(Tree-based Group Diffie-Hellman) protocol, which uses
key tree with Diffie-Hellman key exchange to efficiently compute and update
group keys. Since the computation cost of tree-based key management is pro-
portional to the height of configured key tree. Using ternary key tree, we can
reduce the computation cost O(logan) of TGDH to O(logsn).

This paper is organized as follows: Section 2 briefly introduces previous work
in group key management, group membership events and bilinear map. Section
3 explains the protocol. Performance analysis is described in Section 4. We sug-
gest concluding remarks in Section 5 following with the security analysis of our
protocol in Appendix.

2 Previous Work

2.1 Group Membership Operations

A comprehensive group key agreement must handle adjustments to group secrets
subsequent to all membership operations in the underlying group communication
system.

We distinguish among single and multiple member operations. Single mem-
ber changes include member addition or deletion. This occurs when a member
wants to join(or leave) a group. Multiple member changes also include addition
and deletion: Member Join and Leave. We refer to the multiple addition oper-
ation as Group Merge, in which case two or more groups merge to form a single
group. We refer to the multiple leave operation as Group Partition, whereby a
group is split into smaller groups. Group Merge and Partition event are com-
mon owing to network misconfiguration and router failures. Hence, dealing with
Group Partition and Merge is a crucial component of group key agreement.

In addition to the single and multiple membership operations, periodic re-
freshes of group secrets are advisable so as to limit the amount of ciphertext gen-
erated with the same key and to recover from potential compromise of member’s
contribution or prior session keys. Key Refresh is one of the most important
security requirements of a group key agreement.

The special member, referred to as sponsor, is responsible for broadcasting
all link values of the current tree to the members. Note that the sponsor is not a
privileged member. His task is only to broadcast the current tree information to
the group members. Any current member could perform this task. We assume
that every member can unambiguously determine both the sponsors and the
insertion location in the key tree. Key Refresh operation can be considered to
be a special case of Member Leave without any members actually leaving the

group.

Group key agreement of dynamic group must provide four security proper-
ties: Group key secrecy is basically supported property in group communication.
Forward secrecy means that any leaving member from a group can not gener-
ate new group key. Backward secrecy means that any joining member into a
group can not discover previously-used group key. The combination of backward
secrecy and forward secrecy forms key independence.

2.2 Bilinear Pairings and BDH Assumption

Let G; be an additive group generated by P, whose order is a prime ¢, and
G be a multiplicative group of the same order q. We assume that the discrete
logarithm problem(DLP) in both G; and G3 is hard. Let e : G; x G1 — G4 be
a paring which satisfies the following conditions:

1. Bilinear: e(P1+P», Q) = e(P1, Q)e(Pe, Q) and e(P, Q14+Q2) = e(P, Q1)e(P, Q2)

2. Non-degenerate : The map does not send all pairs in G; x G to the identity
in G. Observe that since G1, Gy are groups of prime order this implies that
if P is a generator of G; then (P, P) is a generator of G.

3. Computability : There is an efficient algorithm to compute e(P, Q) for all
PQeGy

The Weil or Tate pairings associated with supersingular elliptic curves or Abelian
varieties can be modified to create such bilinear maps.

BDH Problem : The Bilinear Diffie-Hellman(BDH) Problem for a bilinear
map e : G; X G; — G5 is defined as follows: given P,aP,bP,cP € Gy, compute
e(P, P)%%, where a,b,c are randomly chosen from Zy. An algorithm A is said
to solve the BDH problem with an advantage of € if

Pr[A(P,aP,bP,cP) = e(P, P)"] > ¢

BDH Assumption : We assume that the BDH problem is hard, which means
there is no polynomial algorithm to solve BDH problem with non-negligible
probability.

3 Our Protocol

Table 1 shows the notations used in this paper. We can classify three nodes of a
key tree as follows:

— Member node : represent each group member as leaf node.

— Key node : correspond with one key. This key is shared by all members of
the subtree rooted at this key node.

— Root node : represent the shared group key.

Table 1. Notations

N |Member of protocol parties(group members)
C |Set of current group members
L |Set of leaving members
M; |i-th group member; ¢ € {1,2, ..., N}
h |The height of the key tree
< l,v >|v-th node at the [-th level in a tree
y M;’s view of the key tree
ﬁ M;’s modified tree after membership operation
T<i,j> |A subtree rooted at node < ¢,j5 >
BK; |set of M;’s blinded keys
P |Public information, a point on an elliptic curve
H, |Hash function, H, : G2 — Z
H, |Hash function, Hy : G1 — Z;

Fig. 1 shows an example of a key tree. The root is located at the 0-th level
and the lowest leaves are at the h-th level. Since we use ternary tree, every node
can be a leaf or a parent of two nodes or a parent of three nodes. The node are
denoted < I, v >, where 0 < v < 3! — 1 since each level [hosts at most 3! nodes.
Each node < [, v > is associated with the key K.;,> and the blinded key (bkey)
BK > = K> P. The multiplication kP is obtained by repeating k£ times
addition over an elliptic curve. We assume that a leaf node < [, v > is associated
with M;, then the node < [, v > has M,’s session random key K, . We further
assume that the member M; at node < [,v > knows every key along the path
from < [,v > to < 0,0 >, referred to as the key-path. In Fig. 1, if a member
Ms owns the tree T3, then M3z knows every key {K<295, K<1,0>, K<o,0>} and
every bkey .B]:{é'< = {BK<2’2>, BK<1’0>, BK<070>} on T3.

The case of subtree having three child node at < [,v >, computing a key
requires the knowledge of the key in one of the three child node and the bkey
of the other child node. We can get a key K.~ by computing pairings. In
another case, we need to know the key of one of the two child node and the
bkey of the other child node. We can get a key K.~ by computing a point
multiplication on elliptic curve. K. at the root node is the group secret
shared by all members.

For example, in Fig. 1, M3 can compute K1 0>, K<o,0> using BK 20>,
B[(<271>7 BK<171> and K<272>. The final group key K<0,0> is :

K00 = Hi(€(H,(€(P, P)"47s7) P, ry P)H1(E(riPra)70y
If there are 8 members in group, then the final group key K¢ is :
K 00> = Hi(6(H, (e(P, P)""") P, Hy(r7rg P) P)H1E(riPraP)™e))

where 777 P is the shared key between M, and Mg using ECDH (Elliptic Curve
Diffie-Hellman)problem.

Fig. 1. An example of a key tree

Now we describe the group operation: Join, Leave, Partition and Merge.
We modify this operation in TGDH by utilizing the ternary tree and bilinear
map.

3.1 Join Protocol

We assume the group has n members: {M;, M, ..., M, }. The new member M, 1
initiates the protocol by broadcasting a join request message that contains its
own bkey BK 00> (= rn+1P).

Each current member receives this message and first determines the insertion
point in the tree. The insertion point is the shallowest rightmost node, where the
join does not increase the height of the key tree. Otherwise, if the key tree is fully
balanced, the new member joins to the root node. The sponsor is the rightmost
leaf in the subtree rooted at the insertion point. If the intermediate node in the
rightmost has two member nodes, the sponsor inserts the new member node
under this intermediate node. The tree becomes fully balanced. Otherwise, each
member creates a new intermediate node and a new member node, and promotes
the new intermediate node to be the parent of both the insertion node and the
new member node. After updating the tree, all members, except the sponsor,
are blocked. The sponsor proceeds to update his share and computes the new
group key; the sponsor can do this operation since it knows all necessary bkeys.
Next, the sponsor broadcasts the new tree which contains all bkeys. All other
members update their trees accordingly and compute the new group key.

Fig. 2. Tree-updating in join operation

Table 2. Join Protocol

Step 1 : The new member broadcasts request for join

BK<p,0>=rn4+1P
_— C

M1

Step 2 : Every member

— if key tree contains the subtree that has two child node, add the new
member node for updating key tree. otherwise, add the new member
node and new intermediate node,

—remove all keys and bkeys from the leaf node related to the sponsor to
the root node.

The sponsor M, additionally
— generates new share and computes all [key, bkey] pairs on the key-path,
— broadcasts updated tree T, including only bkeys.

Ts(BK*
M. _ T.BKS) | CU{Mni1}

Step 3 : Every member computes the group key using Ts.

It might appear wasteful to broadcast the entire tree to all members, since
they already know most of the bkeys. However, since the sponsor needs to send
a broadcast the entire tree to the group anyhow, it might as well include more
information which is useful to the new member, thus saving one unicast message
to the new member (which would have to contain the entire tree).

Fig. 2 illustrates an example of member Mg joining a group where the sponsor
(M7) performs the following actions:

Rename node < 1,2 > to < 2,6 >.

Generate a new intermediate node < 1,2 > and a new member node < 2,7 >.
Update < 1,2 > as the parent node of < 2,6 > and < 2,7 >.

Generate new share and compute all [key, bkey] pairs.

Broadcast updated tree ﬁ.

CU o

Since all members know BK <9 7>, BK<1,0> and BK<; 1>, M7 can compute the
new group key Ko o>. Every other member also performs steps 1 and 2, but
cannot compute the group key in the first round. Upon receiving the broadcasted
bkeys, every member can compute the new group key.

If another member My wants to join the group, the new sponsor(Msg) per-
forms the following actions:

1. Generate a new member node < 2,8 > under the intermediate node < 1,2 >.
2. Generate new share and compute all [key, bkey] pairs.

3. Broadcast updated tree Tx.

Every member also performs step 1, and then can compute the new group key
with the broadcasted messages.

3.2 Leave Protocol

Such as Join protocol, we start with n members and assume that member My
leaves the group. The sponsor in this case is the rightmost leaf node of the subtree
rooted at leaving member’s sibling node. First, if the number of leaving member’s
sibling node is two, each member updates its key tree by deleting the leaf node
corresponding to My. Then the former sibling of M, is updated to replace My’s
parent node. Otherwise each member only deleting the leaf node corresponding
to My. The sponsor generates a new key share, computes all [key, bkey] pairs
on the key-path up to the root, and broadcasts the new set of bkey. This allows
all members to compute the new group key. In Fig. 3, if member M7 leaves the
group, every remaining member deletes < 1,2 > and < 2,6 >. After updating the
tree, the sponsor (Mjo) picks a new share Ko s, recomputes K1 25, K<0,0>,
BK 53> and BK 2>, and broadcasts the updated tree ﬁo with BK7,. Upon
receiving the broadcast message, all members compute the group key. Note that
M7 cannot compute the group key, though he knows all the bkeys, because his
share is no longer a part of the group key.

Table 3. Leave Protocol

Step 1 : Every member

— update key tree by removing the leaving member node,

— remove relevant parent node, if this node have only one member node,
—remove all keys and bkeys from the leaf node related to the sponsor to

the root node.
The sponsor M, additionally

— generates new share and computes all [key, bkey] pairs on the key-path,
— broadcasts updated tree T, including only bkeys.

T.(BK?)

M, C—-L

Step 2 : Every member computes the group key using fs.

Fig. 3. Tree-updating in leave operation

In Fig. 3, if member M, leaves the group, every remaining members delete
only < 3,23 >. After updating the tree, the sponsor (Mg) generates new share
K <3225, recomputes K<2,7>7A Kci2>, Kcoo>, BK<27> and BK<g 2>, and
broadcasts the updated tree Ty with BK§. Upon receiving the broadcast mes-
sage, all members can compute the group key.

3.3 Partition Protocol

We assume that a network failure causes a partition of the n-member group.
From the viewpoint of each remaining member, this event appears as a simulta-
neous leaving of multiple members. The Partition protocol is involves multiple
rounds; it runs until all members compute the new group key. In the first round,
each remaining member updates its tree by deleting all partitioned members as
well as their respective parent nodes and “compacting” the tree. The procedure
is summarized in Table 4.

Table 4. Partition Protocol

Step 1 : Every member

— update key tree by removing all the leaving member node,

— remove their relevant parent node, if this node have only one member
node,

—remove all keys and bkeys from the leaf node related to the sponsor to
the root node.

Each sponsor M,

— if M, is the shallowest rightmost sponsor, generate new share,

— compute all [key, bkey] pairs on the key-path until it can proceed,

— broadcast updated tree fst including only bkeys.

Ts, (BKZ,)

C—-L

M,

Step 2 to h (Until a sponsor M, could compute the group key)
: For each sponsor M,
— compute all [key, bkey] pairs on the key-path until it can proceed,
— broadcast updated tree fst including only bkeys.

s, (BK?,)

M., e C-1L

Step h + 1 : Every member computes the group key using T..

Fig. 4 shows an example. In the first round, all remaining members delete
all nodes of leaving members and compute keys and bkeys. Any member can
not compute the group key since they lack the bkey information. However, Mj

A g
Mo M
....--““3)07\8.)7

Fig. 4. Tree-updating in partition operation

generates new share and computes and broadcasts BK <0~ in the first round,
and M3 can thus compute the group key. After M;3 generates new share and
broadcasts BK< 2>, Ms can compute the group key. Finally every member
knows all bkeys and can compute the group key.

Note that if some member M, can compute the new group key in round A/,
then all other member can compute the group key, in round A’ + 1, since M;’s
broadcast message contains every bkey in the key tree, each member can detect
the completion of the partition protocol independently.

3.4 Merge Protocol

After the network failure recovers, subgroup may need to be merged back into
a single group. We now describe the merge protocol for k merging groups.

In the first round of the merge protocol, each sponsor(the rightmost mem-
ber of each group) broadcasts its tree with all bkeys to all other groups after
updating the secret share of the sponsor and relevant [key, bkey] pairs up to the
root node. Upon receiving these message, all members can uniquely and inde-
pendently determine how to merge those k trees by tree management policy.

Next, each sponsor computes [key, bkey| pairs on the key-path until either this
computation reaches the root or the sponsor can not compute a new intermediate
key. The sponsor broadcast his view of the tree to the group. All members then
update their tree views with the new information. If the broadcasting sponsor
computed the root key, upon receiving the broadcast, all other members can
compute the root key as well.

Fig. 5 shows an example of merging two groups, where the sponsors Mj
and My, broadcast their trees (T and T34) containing all the bkeys, along with
BK? and BK7,. Upon receiving these broadcast messages, every member checks
whether it belongs to the sponsor in the second round. Every member in both
groups merges two trees, and then the sponsor(Ms) in this example updates the
key tree and computes and broadcasts bkeys.

Table 5. Merge Protocol

Step 1 : All sponsors M, in each Tk,
— generate new share and compute all [key, bkey] pairs on the key-path of]
Tsi I
— broadcast updated tree ’_ZA"Sl. including only bkeys.

T, (BKZ,)

M, Uk, ¢

Step 2 : Every member
— update key tree by adding new trees and new intermediate nodes,
— remove all keys and bkeys from leaf node related to the sponsor to the
root node.
Each Sponsor M, additionally
— compute all [key, bkey] pairs on the key-path until it can proceed,
— and broadcast updated tree ﬁt including only bkeys.

Ts, (BKZ,)

Mst —_— Uf:l Cz

Step 3 to h (Until a sponsor My, could compute the group key)
: For each sponsor M,
— computes all [key, bkey] pairs on the key-path until it can proceed,
— and broadcasts updated tree ﬁt including only bkeys.

Ty, (BKZ,)

Mst —_— U'ILC:I Cz

Step b + 1 : Every member computes the group key using T,

New Members Current Members

Fig. 5. Tree-updating in merge operation

4 Performance

This section analyzes the communication and computation costs for Join, Leave,
Merge and Partition protocols. We count the number of rounds, the total num-
ber of messages, the serial number of exponentiations, pairings and point mul-
tiplications. The serial cost assumes parallelization within each protocol round
and presents the greatest cost incurred by any participant in a given round(or
protocol). The total cost is simply the sum of all participants’ costs in a given
round(or protocol).

Table 6 summarizes the communication and computation costs of TGDH and
our protocol. The number of current group members, merging groups and leaving
members are denoted by n, k and p, respectively. The overhead of protocol
depends on the tree height, the balance of the key tree, the location of the
joining tree and the leaving nodes. In our analysis, we assume the worst case
configuration and list the worst-case cost for TGDH and our protocol.

Since we modified TGDH protocol, the number of communication is equals to
TGDH except the number of rounds in merge and key length. But our proposed
protocol can reduce the number of computation in each event operation because
of low height of key tree. The number of pairings and point multiplications for
our protocol depends on whether there exists the subtree with two member nodes
or not. We thus compute the cost of average case.

In all events we can reduce the computation cost O(logan) to O(logsn). We
can get the advantage of the number of computation about 4 times in Join,
Leave and Merge and 2 times in Partition. The pairings computation is a
critical operation in pairings based cryptosystem. The research of pairings imple-

Table 6. Communication and Computation Costs

Communication Computation
Rounds ‘Messages‘ Exponentiations‘ Pairings ‘Multiplications
Join 2 3 3[logan] 0 0
TGDH | Leave 1 1 5 [logan] 0 0
Merge logak + 1 2k 2Tlogan] 0 0
Partition||min(logzp, h)|2[logan]| 3[logan| 0 0
Join 2 3 0 [logsn] — 1| [logsn] +1
Our Leave 1 1 0 [logsn] — 1| [logsn] +1
Protocol| Merge logsk + 1 2k 0 [logsn] — 1| [logan]| +1
Partition||min(logsp, h)|2[logsn] 0 2[logsn] 2[logsn]

mentation continuously have been studied. Barreto et al.[3] proposed an efficient
algorithm for pairing-based cryptosystems. In this research we can get the result
that computing pairings is about 3 times slower than the modular exponenti-
ation. Therefore our protocol requires less the number of communication and
computation than TGDH. However, since involving the pairings computation,
our protocol admits of improvement in computational efficiency.

The security analysis of our protocol is in Appendix for details. We describe
and prove the Decisional Ternary tree Group Bilinear Diffie-Hellman (DTGBDH)
problem.

5 Concluding Remarks

This paper present TGDH group event operation using bilinear map. The modi-
fied TGDH using bilinear map support dynamic membership group events with
forward and backward secrecy. Our protocol involves pairings operation whose
computation is computationally slower than modular exponentiation. However,
fast implementation of pairings has been studied actively recently. Since we
use ternary key tree, our protocol can use any two-party and three-party key
agreement protocol. In this paper, because we use the two-party key agreement
protocol using ECDH and the three-party key agreement protocol using bilinear
map, the security of our protocol relies on this two protocol. Finally our proto-
col can reduce the number of computation in group events while preserving the
communication and the security property.

References

1.

10.

11.

12.

S. Al-Riyami and K. Paterson, “Authenticated three party key agreement pro-
tocols from pairings,” Cryptology ePrint Archive, Report 2002/035, available at
http://eprint.iacr.org/2002/035/.

D. Boneh and M. Franklin. “Identity-based encryption from the Weil pairing,”
Advances in Cryptology-Crypto 2001, LNCS 2139, pp.213-229, Springer-Verlag,
2001. http://www.crypto.stanford.edu/ dabo/abstracts/ibe.html

P.S.L.M. Barreto, H.Y. Kim, B.Lynn, and M.Scott, “Efficient Algorithms for
pairing-based cryptosystems,” To appear in Cryptology-Crypto’2002, available at
http://eprint.iacr.org/2002/008/.

Wallner, Debby M., Eric J. Harder, and Ryan C. Agee, “Key management for
multicast: Issues and architectures,” RFC 2627, June 1999.

A. Joux, “A one round protocol for tripartite Diffie-Hellman,” In W. Bosma, editor,
Proceedings of Algorothmic Number Theory Symposium - ANTS IV, volume 1838
of LNCS, pages 385-394. Springer-verlag, 2000

A. Joux, “The Weil and Tate Pairings as building blocks for public key cryp-
tosystems,” in Algorithm Number Theory, 5th International Symposium ANTS-V,
LNCS 2369, Springer-Verlag, 2002, pp. 20-32.

N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48,
pp. 203-209, 1987

Y. Kim. A. Perrig and G. Tsudik, “Communication-Efficient Group Key Agree-
ment,” IFIP SEC 2001, Jun. 2001.

Y. Kim, A. Perrig, G. Tsudik, “Tree-based Group Diffie-Hellman Protocol,” ACM-
CCS 2000.

A. Perrig, D. Song, and J. D. Tyger, “ELK, a New Protocol for Efficient Large
Group Key Distribution,” In 2001 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, May 2001.

N.P. Smart, “An identity based authenticated key agreement protocol based on
the weil pairing,” Election. Lett., Vol.38, No.13, pp.630-632, 2002

F. Zhang, S. Liu and K. Kim, “ID-Based One Round Authenticated Tripartite Key
Agreement Protocol with Pairings,” Available at http://eprint.iacr.org, 2002.

Appendix Security Analysis

Here we describe Decisional Ternary tree Group Bilinear Diffie-Hellman (DT-
GBDH) problem and apply security proof of TGDH in [9] to the ternary key
tree.

For (q,G1,Ga,8) «+ g(1¥), n € N and X = (Ry, R, ..., R,,) for R; € Zy and
a key tree T with n leaf nodes which correspond to R;, we define the following
random variables:

- K]’ : i-th level of j-th key (secret value), each leaf node is associated with a
member’s session random, i.e., K = Ry, for some k € [1,n].
— BKj : i-th level of j-th blinded key (public value), i.e., K}P.
— Kj is recursively defined as follows:
Ki = (P, P)f=2 Kl — oK, P K P) o
QUKL P K PYRST = ek PR P

Also we can define public and secret values as below:

— wiew(h, X, T) := {K;P where j and i are defined according to T'}
— K(h,X,T) :=e(P,P)Ki K5 'K

Note that view(h, X, T) is exactly the view of the adversary in our proposed
protocol, where the final secret key is K (h, X, T). Let the following two random
variables be defined by generating (g, Gy, G2,€) « g(1¥), choosing X randomly
from Z and choosing key tree T' randomly from all ternary trees having n leaf
nodes:

— Ah = (1}7;6W(h,X7 T)ay)
_ Hh = (UZB’LU(h,XaT)7K(h’X’T))

Definition 1. Let (q,G1,Ga,8) «— g(1F), n € N and X = (Ry, Ra, ..., R,,) for
R; € Z; and a key tree T with n leaf nodes which correspond to R;. A and Hp
defined as above. DTGBDH algorithm Az is a probabilistic polynomial time
algorithm satisfying, for some fized k > 0 and sufficiently large m:

1
|ProblAr(Ap) = “True’] — Prob|Ar(Hy) = “True”]| > —F

Accordingly, DTGBDH problem is to find an Ternary Tree DBDH algorithm.

Theorem 1. If the three-party DBDH on G1, G is hard, then there is no prob-
abilistic polynomial time algorithm which can distinguish Ay from Hp,.

Proof. We first note that A; and Hj can be rewritten as:

IfXL = (R17R27 "')Rl)a XC = (Rl+1aRl+27 7Rm) and XR = (Rm+1aRm+27 7Rn)

where R; through R; are associated with leaf node in the left tree Ty, R; + 1
through R, are in the center tree T and R,, + 1 through R,, are in the right

tree Tp:

Ay, = (view(h, X, T),y)
= (view(h — 1, X, Ty),view(h — 1, X¢, Te), view(h — 1, Xg, Tr),
BK!M' BK}™' BKI ! y)
= (view(h — 1, Xy, Ty),view(h — 1, X, Tc), view(h — 1, Xg, Tr),
K'MP K} 'P K1 P y)
Hy, .= (view(h, X, T),K(h,X,T))
= (view(h — 1, X, Ty),view(h — 1, X¢, Te), view(h — 1, Xg, Tr),
BK!Y, BK}~, BKL '\ @(P, P)Ki T TG
= (view(h — 1, X, Ty),view(h — 1, X¢,Te), view(h — 1, X, Tr),
KM'p Kh1p KPP e(p, P)ST T KT KT

We prove this theorem by induction and contradiction. The 3-party DBDH
problem in G and G5 is equivalent to distinguish A; from H;. We assume that
Ap_1 and Hjp_; are indistinguishable in polynomial time as the induction hy-
pothesis. We further assume that there exist a polynomial algorithm that can
distinguish A, from Hj, for a random ternary tree. We will show that this algo-
rithm can be used to distinguish A, _1 from Hj_1 or can be used to solve the
3-party DBDH problem.

We consider the following equations:

Ay = (view(h — 1, X, T1),view(h — 1, X¢, Te),view(h — 1, X, Tr),
K 'P K} 'P,KI7'Py)

By, = (view(h — 1, X1, T5),view(h — 1, X¢, T¢),view(h — 1, Xr, TR),
rP, KI'P KIP y)

Ch = (view(h — 1, Xy, Tp),view(h — 1, X¢, Te),view(h — 1, Xgr, Tr),
rP,r' P, Kt P,y)

Dy, = (view(h — 1, X, Tr),view(h — 1, X¢, T¢), view(h — 1, Xg, Tr),
rP,r'P,r" P, y)

E;, = (view(h — 1, X1, T5),view(h — 1, X¢,T¢),view(h — 1, Xr, Tr),
rP,r'P,r" P,e(P,P)"""")

Fp, = (view(h — 1, X, Tp),view(h — 1, X¢, Te),view(h — 1, Xr, Tr),
rP,r'P,Kh1P e(p, Py K"

Gy, = (view(h — 1, X1, Tp),view(h — 1, X¢, Te),view(h — 1, Xr, Tr),
rP, KPP KM P (P, P)rEy T KT

Hy, = (view(h — 1, X, Ty),view(h — 1, X¢, T¢), view(h — 1, Xr, Tr),
K{™'P.K; ' PK T P E(P PR

Since we can distinguish A; and Ej, in polynomial time, we can distinguish at
least one of (Ah, B}L),(Bh7 Ch),(Ch, Dh),(Dh, E‘h),(E‘h7 Fh),(Fh, Gh) or (Gh, Hh).

A, and Bj,: Suppose we can distinguish A, and Bj in polynomial time. We
will show that this distinguisher A4p, can be used to solve DTGBDH

By,

problem with height h — 1. Suppose we want to decide whether P] |, =
(view(h — 1, X1,T1),71) is an instance of DTGBDH problem or r; is a ran-
dom number. To solve this, we generate trees To and T3 of height h — 1
with distribution X and X3, respectively. Note that we know all secret and
public information of T and T5. Using P;_; and (T3, X2), (T5,X3) pairs,
we generate the distribution:

P} = (view(h — 1,X1,T1),view(h — 1, X9, Ts), view(h — 1, X3,T53),
T1P7K(h‘ - 17X23T2)P7K(h‘ - 17X3aT3)P7 y)

Now we put Py as input of Aap,. If P/ is an instance of Ay, (B},), then P},
is an instance Hy_1(Ap—1).

and Cj: We can generate Py by the similar method in (Ap,Bp,) and then
put P} as input of Apc, which can distinguish By, and Cj. If P} is an in-
stance of By, (C}), then P;_, is an instance Hp_1(Ap—1).

Cy and Dp: We can generate P,’L by the similar method in (A,Bp) and then

Dy

put P} as input of Acp, which can distinguish Cj, and Dy,. If P} is an in-
stance of C,(Dy,), then P/, is an instance Hj,—1(Ap—1).

and Fj: Suppose we can distinguish Dy, and Ej, in polynomial time. Then,
this distinguisher Apg, can be used to solve 3-party BDH problem in groups
G1 and G,. Note that 7P, r{ P and ro P are independent random variable
from view(h—1, X, Ty), view(h—1, X¢,Te) and view(h—1, Xg, Tg). Sup-
pose we want to decide whether (aP,bP, cP,e(P, P)*) is a BDH quadruple
or not. To solve this, we generate three tree T7, T and T3 of height h—1 with
distribution X7, X5 and X3 respectively. Now we generate new distribution:

P = (view(h — 1,X1,T1),view(h — 1, X9, Ts), view(h — 1, X3,T5),
aP,bP, cP,e(P, P)*°)

Now we put P; as input of Apg,. If P} is an instance of Dj(E}), then
(aP,bP, cP,e(P, P)*°) is an invalid(valid) BDH quadruple.

Ej, and Fy: We can generate P; by the similar method in (A,,Bp,) and then

put Py as input of Agp, which can distinguish Ej, and F},. If P/ is an in-
stance of Ej,(F},), then Py is an instance Ap_1(Hp—1).

Fj, and Gj,: We can generate P} by the similar method in (A,B,) and then

G,

put Py as input of Apg, which can distinguish Fj, and Gy. If P} is an in-
stance of Fj,(G}), then Pj_, is an instance Ap_1(Hp—1).

and Hj,: We can generate P,g by the similar method in (A,B,) and then
put P; as input of Agg, which can distinguish G and Hj. If Pj is an
instance of Gy, (Hy,), then Pj_, is an instance Aj,_1(Hp—1). O

