
SCIS 2003 The 2003 Symposium on
Cryptography and Information Security

Hamamatsu,Japan, Jan.26-29,2003
The Institute of Electronics,

Information and Communication Engineers

A Secure Testament Revealing Protocol

Kyusuk Han ∗ Fangguo Zhang ∗ Jongseong Kim ∗ Kwangjo Kim ∗

Abstract— The testament is the message opened to the public after the message writer is gone.
In this paper, after modeling the secure testament revealing protocol under three parties, the rich, the
family and the lawyer, we propose a scheme for this protocol under the defined security requirements.
Also we claim that this research will play one of typical practices in multiparty cryptographic protocols.

Keywords: Signature based on Poof of Knowledge, DLP, Security, Testament

1 Introduction

When a person passed away, he (or she) may leave
the last message or the testament. In this testament, he
writes about heirships and any important decision after
he is gone. Many people prepare their testament before
they are close to death, and keep it in secret not to be
revealed before they die. However, some people can
leave their testaments open to the public on handling
their corpses, like eyes, heart, and so on. In general,
many people want to keep the secret of their testament.

It will be a big problem when the rich passed away. If
the rich has incredibly much money and many estates,
there can be a struggle for distributing the estate by
the family members and other relatives. We can easily
imagine that heirs and heiress are not always in the
family members. The rich can choose his friends as
the heir or contribute his whole estates to any charity
organization or the public society. In these cases, if
the family members or any relatives know that the rich
leaves the testament, then any trial of forgery of his
testament, enforcement to be profitable to themselves
will be possibly occurred. So, it is important not only
to keep the message in secret, but also to keep even the
fact that he wrote his testament in secret.

Suppose the rich has his lawyer. He may leave his tes-
tament to the lawyer, and the lawyer may keep it safely.
But, because the lawyer has the rich’s testament, the
untrustworthy lawyer may reveal the testament at his
own will. Since the rich doesn’t want the case that
his lawyer or friend opens his testament before he is
gone, the rich wants to keep the message in secret even
from his lawyer. There has to be a protection from the
forgery or intentional revealing of the testament while
the lawyer keeping it.

We can imagine the case that the lawyer or the fam-
ily can’t be satisfied with the content of the testament,
when they reveals the testament relevantly. So it hap-
pens that they try to forge the testament.

In addition, we can also imagine the case that any

∗ International Research center for Information Security (IRIS),
Information and Communication University (ICU), 58-4
Hwaamdong Yuseong-gu, Daejeon, 305-732, Republic of Korea

adversary insists that he is an heir and wants to reveal
the testament. So, identification is required. When the
rich passed away, the lawyer declares that he (or she) is
the escrow. Then, the family contacts the lawyer and
the lawyer wants to identify them, since the lawyer does
not know about the family (or heir), and can consider
them as an adversary (who wants to see the testament
or forge it.).

Our protocol is related to multiparty cryptographic
protocol. There were many previous work about MCP,
like secret sharing[3, 14], verifiable secret sharing[8] and
MCP when most parties are honest[2]. Our protocol
assumed that two parties are untrustful among three
parties.

The rest of the paper is organized as follows: In Sec-
tion 2, we show the generalized model of testament
revealing. In Section 3, we describe definition and se-
curity requirement of this environment. In Section 4,
we discuss preliminaries related to our protocol. In
Section 5, we firstly propose a secure testament reveal-
ing protocol based on discrete logarithm problem[1].
Section 6 shows security analysis of the protocol. We
make concluding remark and suggest further works in
Section 7.

2 Model of Testament

There are three parties, the rich, the family and the
lawyer. In our model, we assume that the rich does
not trust both the family and the lawyer and that the
rich is believed to be trusted. The rich will be gone
someday worrying about the future after his death. So,
he will prepare the testament. When the rich writes the
testament, he leaves it to his lawyer (or escrow1) and
his family (or heir). When the family and the lawyer
receive the information of testament, the information
are given to them as encrypted message. We assume
that the family and the lawyer do not contact each.

After the rich passed away, the family (or heir) and
the lawyer (or escrow) reveals the testament. At first,
the lawyer declares that he is really the legal escrow.

1 The definition of escrow is who keeps the information of the
testament without knowing its content.



Figure 1: Model of testament - (The rich is alive.)

Then, the family requests the lawyer to reveal the tes-
tament. Then, the lawyer tries to check the identity of
the family. If the lawyer checks the identity of the fam-
ily, they reveal the testament. After that, they check
the validity of the testament.

In the testament revealing, we can classify four steps,
generation, distribution, revealing and verification

as below.

• Generation - The rich generates his testament.

• Distribution - The rich sends his testament to
the family and the lawyer.

• Revealing - The family and the lawyer reveal the
testament together.

• V erification - The family and the lawyer check
the testament’s validity.

Since the fact that the testament was generated must
be kept in secret, nobody should notice the distribu-
tion of the testament. The best way to keep it in se-
cret that the rich sends the information to the family
and the lawyer is to make the distribution looked as
general sending an encrypted message. We can use
well known cryptographic algorithms like RSA, ElGa-
mal public key encryption in the distribution. There-
fore we can omit distribution step. So, in our testa-
ment revealing protocol, we only deal with three steps:
generation, revealing and verification.

3 Definition

We state the meanings of testament, the rich, the

family and the lawyer in an intuitive way.
Testament is the last message of the rich. This orig-

inal message is only known to the rich.
The Rich writes his testament, i.e., generates the

message and distributes his behaviors. Revealing is
done without the rich. (the rich passed away.)

The Family can reveal the testament and request the
lawyer to reveal the testament. They can check the
validity of testament. In most cases the family are the
heir.

Figure 2: Model of testament - (The rich passed away.)

The Lawyer can identify the family and check the va-
lidity of the testament. He keeps the testament without
knowing about its content.

3.1 Risks in Testament Revealing

About the testament, there are several possible risks
as follows.

(Risk 1) The testament should be kept in secret be-
fore it is properly revealed. When the family and the
lawyer hold the encrypted testament, they should not
decrypt the testament before the rich is gone. And, not
even when the lawyer and the family keep it, it should
be kept during the operation. Only when the operation
is completed, the testament can be revealed.

(Risk 2) If the fact that the rich wrote the testament
is known to the public, we can imagine any actions
from adversaries like relatives who didn’t receive the
information of the testament. Sometimes, when the
heirship of the rich is a big issue, the testament is writ-
ten when the rich is still alive, then any action to the
rich to know about the testament (e.g. to whom, how
much, etc) can be possible, and the rich can be forced
to modify the testament. Even the fact that the testa-
ment already exists should be in secret until the rich is
gone.

(Risk 3) When the testament is revealed, the family
knows about the testament. If the family doesn’t sat-
isfy about the testament, the family may try to forge
it. Or, the untrustworthy lawyer could forge it while
he was keeping it. So, conviction that the testament is
not forged is required.

Additionally, we suggest a possible risk from the case
that the lawyer and the family do not know each other
when the rich is alive.

(Risk 4) When the lawyer declares that he is the
escrow, there can exist any trial to pretend to be the
family from adversary. So, the lawyer should be able
to check the identity of the family.

3.2 Security Requirement

From the previous risks, we can consider the follow-
ing requirements from the view point of security.



• Confidentiality - Testament should be kept in se-
cret until the revealing is done.(Risk 1) And, even
the fact that the testament exists should be kept
in secret until the rich passes away. (Risk 2)

• Unforgeability - Testament should not be modi-
fied. (Risk 3)

• Identification - The lawyer should be possible to
check the identity of the family. (Risk 4)

• Message Authentication - Both parties can check
the validity of the testament.(Risk 2)

4 Preliminaries

We can design a secure testament revealing protocol
is based on the interactability of the discrete logarithm
problem.

4.1 Discrete Logarithm Problem

Let G be a finite cyclic group of order n. Let δ be a
generator of G and let β ∈ G. The discrete logarithm

of β to the base δ, denoted logδ β, is the unique integer
x, 0 ≤ x ≤ n − 1, such that β = δx.

Given a prime p, a generator δ of Z∗

p and an element
β ∈ Z∗

p , find the integer x, 0 ≤ x ≤ p − 2, such that
δx ≡ β(mod p).

Discrete logarithm problem is known to be compu-
tational infeasible (or hard).

4.2 Hash function

To verify the integrity of message, hashing is gen-
erally used. Hash function has three potential prop-
erties for an unkeyed hash function h with input (x,
x′) and output (y, y′), those are preimage resistance,

2nd-preimage resistance, and collision resistance[9, 13].

• preimage resistance - for essentially all pre-specified
outputs, it is computationally infeasible to find
any input which hashes to that output, i.e., to
find any preimage x′ such that h(x′) = y when
given any y for which a corresponding input is
not known.

• 2nd-preimage resistance - it is computationally
infeasible to find any second input which has the
same output as any specified input, i.e., given x,
to find a 2nd-preimage x′ 6= x such that h(x) =
h(x′).

• collision resistance - it is computationally infea-
sible to find any two distinct inputs x, x′ which
hash to the same output, i.e., such that h(x) =
h(x′).

But, in the testament, the size of message(i.e., the
testament) is really short. Assume the rich leaves the
testament, denoted as m, and its hashed value, denoted
as h(m). In general, preimaging of h(m) is computa-
tionally infeasible(or hard). But in testament we can
imagine it from guess attack. As example we can imag-
ine that “I leave all my estate to my wife”, or “my son”,

since the rich leave the testament with his related in-
formation. So, if we know how many family members
he has, how much estate he has, then we can know
preimage of h(m). That is to say, though hash func-
tion has those potential properties, even with brute-
force trial, preimaging of hashed testament is easier
comparing with general hashing.

To solve this weakness we added a random number.
For example, we assume a random number r, 1 ≤ r ≤ p

where p is prime. Even the message m is short, knowing
m from rm is difficult under modulo p. And, guess
attack on h(rm) is infeasible. With this we could solve
this problem.

4.3 Signature based on a Proof of Knowledge

Camenisch and Michels showed the method prov-
ing the knowledge of the discrete logarithm, borrow-
ing the notation from [4, 6], that is signature based
on a proof of knowledge. They introduced a signature
schemes derived from statistical (honest-verifier) zero-
knowledge proofs of knowledge using the Fiat-Shamir
heuristic[11, 12] and therefore called “signatures based
on a proof of knowledge”, SPK for short.

Following is the example of SPK: to prove the knowl-
edge of the discrete logarithm of y to the base g and
of a representation of z to the base g and h, and in
addition, that the h-part of this representation equals
the discrete logarithm of y to the base g. This is equiv-
alent to the knowledge of a pair (δ, β) satisfying the
righthand side of the following equation:

SPK{(δ, β) : y = gδ ∧ z = gβhδ}(m).

And, they also showed adoption of a protocol for
showing the equality of two discrete logarithms given
in [7] to the setting in which the group’s order is un-
known. We use this proving the equality of two discrete
logarithm for verification.
(Definition 1) Let e > 1 be a security parameter. A
pair (c, s) ∈ {0, 1}k × {−2lg+k, ..., 2e(lg+k)} Satisfying
c = H(g||h||y1||y2||y

c
1g

s||yc
2h

s||m) is a signature of a
message m ∈ {0, 1}∗ with respect to y1 and y2 and is
denoted as :

SPK{(δ) : y1 = ga ∧ y2 = hδ}(m).

5 Proposed Scheme

The rich generates his testament before he is gone.
The distribution to the family and the lawyer was as-
sumed to be executed safely.

After the rich passed away, the family will reveal
the testament. The family requests the lawyer and the

lawyer check if the family is valid. Then, the lawyer

sends the encrypted testament to the family, and then
the family reveals the testament. Finally, both parties
check the validity of the testament, if it is valid, the
testament has the legal document.

5.1 Notation

The following parameters are generated by the rich.
p : prime number. All computations are operated un-
der modulo p throughout this paper.



Figure 3: Testament generation

δ : generator, δ ∈ Z∗

p .
g : another generator in Z∗

p , which is a public informa-
tion.
a : random number, 0 ≤ a ≤ p − 2.
r : another random number, 0 ≤ r ≤ p − 2.
m : message, which is testament.
F : information hold by the family

L : information hold by the lawyer

5.1.1 Generation

Generation follows the case as key generation of El-
Gamal public key encryption[10]. The rich selects two
primitive elements g, δ in Z∗

p , and two random num-
bers, a and r, 0 ≤ a, r ≤ p− 2, p is prime. And he also
selects a primitive element δ, δ ∈ Z∗

p . The rich writes
his testament, denoted as m.

After then, the rich generates as follows: ra, rδh(m),
mδa, and h(mra). And then the rich makes two group
as follows:

F = {ra, rδh(mra)}, L = {mδa, δ, r, h(mra)}.

(g, ga, p) will be opened to the public.
F and L can be considered as messages. So, we send

them using conventional method. For example, we can
use RSA public key encryption scheme, the rich en-
crypts F with the family’s public key and sends it to
the family. Then the family can decrypts encrypted F

and get the F . The channel between the rich and the

family doesn’t have to be secure or not. It’s also the
same with the lawyer. So, we omit the explanation of
the distribution.

5.1.2 Revealing

When the rich is gone, the family and the lawyer can
reveal the testament. After the rich passes away, the

lawyer declares that he is the escrow of the testament
to the public. The family insists that they are the fam-

ily(or heir) of the rich and requests the lawyer to re-
veal the testament. To check the validity of the family,
the lawyer sends k, which k = h(mra) to the family.
If the family is right, because only the family knows
rδh(mra), the family can reveal rδ from rδh(mra)k−1.

Figure 4: Testament revealing

Figure 5: Testament verification

Then the family send rδ to the lawyer. Since the lawyer

knows r and δ, the lawyer can compute rδ and compare
with rδ from the family. With checking both rδ, the

lawyer can know the validity of the family. Then the

lawyer send mδa with r to the family.
The family can reveal a and δ from ra and rδ with

r. And, the family can reveal the message(i.e., the
testament) from mδa with a and δ.

5.1.3 Verification

The family check integrity of message m from h(mra).
If it is right, it’s valid testament. Now, the family can
believe the testament.

The lawyer also can check the validity. The fam-

ily can generate δa because they know a and δ. They
must show the equality of two discrete logarithm to the

lawyer, with sending δa. Now, the lawyer knows g, ga,
δ, δa, and mδa. So, with the property logδ δa = logg ga,
they can verify validity of δa, and then they can reveal
the message m from mδa. And they can know the va-
lidity of the message.



6 Security Analysis

6.1 Confidentiality

The family and the lawyer cannot reveal the testa-
ment by themselves, since they do not know about a.
Though the family has ra, knowing r and a from ra is
hard under modulo p, when p is prime.

Based on DLP, even δ is known, finding a from δa

and δ is difficult[1]. So, the lawyer cannot reveal the
message alone, though he knows mαa and α.

The lawyer has h(mra). Though the lawyer knows r,
guessing preimage of mra is computationally infeasible,
due to DLP and the property of hash function.

During revealing, though h(mra), rδ, mδa and r are
known to any malicious adversary, it is impossible to
know m from those four, since ra is never sent, and it
is secure based on discrete logarithm.

And, when the rich generates the original testament,
he divided all parameters in two, and only leaves g, ga,
and p opened to the public. But, it is the same as any
public key encryption algorithm based on DLP. (Espe-
cially, it can be considered as public key of ElGamal
public key encryption[10].) So, two group F and L can
be sent as a ‘message’, and they are not recognized as
testament.

So, the confidentiality is satisfied.

6.2 Unforgeability

If the family is untrusted, since the family can finally
reveal the testament, and when the content of the tes-
tament is not profitable to the family, the family can
try to forge the testament.

But, because the lawyer can check the equality of two
discrete logarithm problem with the signature based on
SPK, it is impossible to forge the original testament.
The family must show the equality of two discrete loga-
rithm problem, (g, ga) and (δ, δa). So, the family must
send SPK{(δ) : loggg

a = logδδ
a}

(m, g, ga, δ, δa), m and δa to the lawyer. Since the

lawyer already knows g, ga and δ, the lawyer can verify
the validity of the testament with SPK.

On the contrary, we can assume that the lawyer is
untrustful. Though the lawyer forge the mαa or r, the

family can know it, since the family can know h(mra).
It is based on the property of hash function[6]. Know-
ing ra is really hard based on discrete logarithm prob-
lem. And preimage of h(mra) is also impossible[6].

So, the unforgeability is satisfied.

6.3 Identification

When the lawyer declares that he is the escrow of
the testament, any party can insist that they are the

family and reques the lawyer to reveal the testament.
So, the lawyer can check from received parameter rδ.

The lawyer can check rδ with known r and δ. With
this, the lawyer can convince the validity of the family

from rδ.
But, even the malicious adversary succeeds to get

δ by chance, it needs the same computation time to
get the validity with any other identification scheme,
that the trials are p times(All computations are done

under modulo p). If p is really big prime integer, the
provability of success of the adversary gets really low.)
And though he gets the validity from the lawyer, and
get mδa and r, this case is not significant. The proba-
bility is just 1

p
. When p is big, it is negligible.

So, the identification is satisfied.

6.4 Message Authentication

Because only the rich knows the original testament,
the family and the lawyer can only believe that the
revealed testament is the same as the original.

So, message authentication should be done by both
parties. The family should be possible to verify the
testament from h(mra), since the family finally knows
a, r, and m.

For the verification of testament by the lawyer, we
brought proving with showing the equality of two dis-
crete logarithm from [5]. The lawyer verifies from the
signature based on SPK. Because the lawyer already
knows g and ga, and he can get δ from revealing pro-
tocol. The family sends the lawyer SPK(m){loggg

a =
logδδ

a} that is proof that the family has valid a and
sends valid δa. Because the lawyer has mδa with SPK,
if he gets valid δa, then he can reveal m from mδaδ−a.
So, the lawyer can verify the testament.

Both two parties can check the revealed testament.
All security requirements are satisfied in our pro-

posed testament revealing protocol.

7 Concluding Remark

We initiated to construct a secure testament reveal-
ing protocol as a one of typical practices of multiparty
cryptographic protocols.

The model of testament consists of three parties, the

rich who generates the testament, the family and the

lawyer, who get the testament and reveal it.
Our model consists of three steps, generation, re-

vealing and verification. Distribution of the testament

is assumed to be executed easily under conventional
method and omitted in our model. In the testament,
guarantee of confidentiality, unforgeability and message

authentication are most important. We could guaran-
tee confidentiality based on discrete logarithm problem,
DLP, unforgeability with DLP and potential properties
of hash function, message authentication with proper-
ties of hash function and signature based on SPK. So,
we made our protocol satisfying these requirements,
and we tried to satisfy another security requirement,
that is identification. This protocol is provably secure
based on DLP.

We didn’t assume the case of the collusion between
the family and the lawyer in this paper. In practice, it
is possible that they collude for the testament. As the
future work, we need to improve this testament reveal-
ing protocol to prevent this assumption efficiently.

The research on this revealing protocol is just initi-
ated. More clear formalization is required. Further-
more, extending to the random oracle model or imple-
mentation based on elliptic curve cryptography will be



possible. Also, we think that applying more improved
idea like coin flipping for the identification.

We introduced a new model of cryptographic proto-
col on testament revealing. We don’t think this is the
optimal approach and expect many various approach
on the secure testament revealing protocol.

References

[1] ‘The discrete logarithm problem”, C. Pomerance,
editor, Cryptology and Computational Number
Theory, volume 42 of Proceedings of Symposia in
Applied Mathematics, 49-74, American Mathemat-
ical Society, 1990.

[2] M.Ben-Or, S.Goldwasser, and A.Wigderson, “Com-
pleteness theorems for fault-tolerant distributed
computing.”, In Proc. 20th ACM Symp. on Theory
of Computing, pages 1-10, Chicago, 1988, ACM.

[3] G.Blakley, “Safeguarding cryptographic keys”, In
Proc. AFIPS 1979 National Computer Conference,
pages 313-317, AFIPS, 1979.

[4] J.Camenisch, “Group signature schemes and pay-
ment systems based on the discrete logarithm prob-
lem”, PhD Thesis, ETH Zurich, 1998, Diss. ETH
No. 12520, Hartung Gorre Verlag, Konstanz.

[5] J. Camenisch and M. Michels, “A group signa-
ture scheme based on an RSA-variant”, BRICS RS-
98-27, ISSN 0909-0878, November 1998, BRICS,

Department of Computer Science University of

Aarhus, All rights reserved.

[6] J.Camenisch and M. Stadler, “Efficient group sig-
nature schemes for large groups.”, In B. Kaliski,
editor, Advances in Cryptology - CRYPTO’97, vol-
ume 1296 of Lecture Notes in Computer Science,
pages 410-424, Springer Verlag, 1997.

[7] D. Chaum and T.Pedersen, “Transferred cash
grows in size.”, In R.A.Rueppel, editor, Advances in
Cryptology-EUROCRYPT’92, volume 658 of Lec-
ture Notes in Computer Science, pages 390-407,
Springer-Verlag, 1993.

[8] B.Chor, S.Goldwasser, S.Micali, and B.Awerbuch,
“Verifiable secret sharing and achieving simultane-
ity in the presence of faults.” In Proc. 26th IEEE
Symp. on Foundations of Comp. Science, pages 383-
395, Portland, 1985, IEEE.

[9] I. Damgard, “Collision free hash functions and
public key signature schemes”, Advances in
Cryptology-EUROCRYPT ’87 (LNCS 304), 203-
216, 1988.

[10] T.ElGamal, “A public key cryptosystem and a sig-
nature scheme based on discrete logarithms”, IEEE
Transactions on Information Theory, 31 (1985),
469-472 .

[11] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge
proofs of identity”, Journal of Cryptology, 1:77-94,
1988.

[12] A. Fiat and A. Shamir. “How to prove your-
self: Practical solution to identification and sig-
nature problems.”, In A.M. Odlyzko, editor, Ad-
vances in Cryptology-CRYPTO’86, volume 263 of
Lecture Notes in Computer Science, pages 186-194,
Springer Verlag, 1987.

[13] R.C. Merkle, “Secrecy, authentication, and pub-
lic key systems”, UMI Research Press, Ahn Arbor,
Michigan, 1979.

[14] A. Shamir, “How to share a secret”, Communica-
tions of the ACM, 22:612-613, November 1979.


