
Group Mutual Exclusion based Secure Distributed Protocol

Jaehyrk Park Sukkyu Gang Kwangjo Kim

International Research center for Information Security (IRIS),
Information and Communications University. (ICU),

58-4 Hwa-am Dong, Yuseong Gu, Daejeon, Korea 305-732
feye2174, redorb, kkjg@icu.ac.kr

Abstract A quorum system is a collection of sets(quorums) every two of which have a nonempty
intersection. Quorum systems have been used for a number of applications in the area of
distributed systems. In this paper, we present a method of controlling the access to a secure
database based on group quorum systems. Our protocol is based on mutual exclusion algorithm
along with fault-tolerance property. Also, the security of algorithm is based on secret sharing
scheme. Through presenting secure protocol keeping group mutual exclusion, we deal with the
problems associated with integrating cryptography and distributed algorithm.

1 Introduction
Integration of security and distributed com-
puting area has been dealt with by a few re-
searchers. Distributed algorithm does not deal
with the security itself. So, we suggest secure
distributed algorithm based on group mutual
exclusion. Let's consider the following sce-
nario [3]. The music service company Mu-
sicBank has a large digitized music �les. Mu-
sicBank customers buy the e-ticket to access a
set of music �le. The protocol should run us-
ing a widespread collection of access servers,
which may be completely separate from the
actual data servers. Note that servers may be
unavailable due to crashes or communication
failures, so the protocol needs to overcome this
problem and allows the high availability of the
service. In a distributed network, many cus-
tomers have e-ticket of data they want to lis-
ten but they can not access music �le at the
same time since shared one can be used one
by one. This mechanism is called mutual ex-
clusion. Mutual exclusion guarantees an ex-
clusive access to a common music �le among
a set of competing customers. So, it is worth
considering both mutual exclusion for consis-
tency of competing processes and the security
of each process at the same time.

1.1 Our Approaches
We specify secure distributed algorithm by us-
ing both group mutual exclusion algorithm and
secret sharing scheme(SSS). Even though we
add SSS to distributed algorithm, communi-
cation complexity is not changed. However,
our algorithm not only guarantees the require-
ments of mutual exclusion algorithm but also
customers' privacy and authentication.

1.2 Organization
The rest of the paper is organized as follows:
In Section 2, we introduce related works in
brief. Section 3 presents our model and as-
sumptions as preliminaries for the rest of our
paper. Section 4 describes our proposed al-
gorithm based on Quorum system in detail.
The evaluation of the proposed algorithm is
discussed in Section 5. We �nalize this paper
with conclusion in Section 6.

2 Related Work
In this Section, we provide some related work
about distributed algorithm. The general ar-
chitecture is omitted here. For the interested
readers, refer to [1], [2], and [4].

2.1 Quorum based Algorithms for
Group Mutual Exclusion

Group mutual exclusion is formulated by Joung
in 2001 [1]. It allows a resource to be shared by
processes of the same group, but requires pro-
cesses of di�erent groups to use the resource
in a mutually exclusive style. A process re-
quests a session that is a resource area which
users want to use before entering its critical
section(CS). Processes are allowed to be in
the CS simultaneously provided they have re-
quested the same session. An example of group
mutual exclusion, described by Joung [1], is
a CD juke box shared by multiple processes.
Any number of processes can simultaneously
access the currently loaded CD, but processes
wishing to access di�erent CD other than the
currently loaded one must wait. In this case,
the sessions are the CDs in the juke box.
Joung introduced the concept ofm-group quo-
rum system. Let P = f1; 2; :::; ng be a set of
nodes, which belong to m groups. Each node
does not belong to groups, but each request
belongs to groups.

De�nition 1.(m-group quorum system) ! =
(C1; C2; :::; Cm) over P consists ofm sets, where
each Ci � 2P is a set of subsets of P satisfying
the following conditions:
Non-emptiness 8 1 � i � m;Qi 6= �
Intersection Property 8 1 � i; j � m; i 6= j;

8Q1 2 Ci; 8Q2 2 Cj 7! Q1T Q2 6= �
Minimality 81 � i � m; 8 Q1; Q2 2 Ci;

Q1 6= Q2 7! Q1 * Q2
Ci is called a cartel, and each Q 2 Ci is a
quorum. ! can be used to solve group mutual
exclusion as follow: each process i of group j,
when attempting to enter CS, must acquire
permission from every member in a quorum
Q 2 Cj , Upon exiting CS, process i returns
the permission to the members of the quorum.
Suppose a quorum member gives permission to
only one process at a time. Then, by the in-
tersection property, no two processes of di�er-
ent groups can be in CS simultaneously. The
minimality property is used rather to enhance
e�ciency.

2.2 Secret sharing Scheme using Quo-
rum system

Naor and Wool suggested control method to
access to a secure database via quorum sys-
tems [3]. SSS realizing the access structures of
quorum systems is essential for their method.
Their scheme used Quorum system in order to
make their protocol to be fault-tolerant. The
di�erence between their scheme and the pro-
posed scheme is that we deal with both mutual
exclusion of competing processes and security
of algorithm.

De�nition 2. (Secret sharing scheme) Let S
be a �nite set of secrets. We say that a secret-
sharing scheme � realizes an m-group quorum
system ! if � is a mapping � : S � R !
S1 � S2 � � � � � Sn , from the cross product of
secrets and random strings to a set of shares
such that the following two requirements hold:

1The secret can be reconstructed by any subset
in ! . That is, for every secret s 2 S and set
A 2 ! (A = i1; � � �; ijAj) there exists a function
hA : Si1 � � � � � SjAj ! S such that for every
random string r, if �(s; r) = s1; ::::; sn then
hA(fSigi2A) = s.
2 Every subset not in ! can reveal any par-
tial information about the secret. Formally,
for any subset Z * !, for every two secrets
a; b 2 S, and for every possible collection of
shares fsigi2Z : P (fsigi2Z ja) = P (fsigi2Z jb),
where the probability is taken over the random
string r.

3 Our Model
3.1 Attack
Before we explain our model, we must con-
sider possible attacks. In group mutual ex-
clusion algorithm, processes who want same
data can access to �le, even though process
is malicious actor. In other words, he can
eavesdrop or modify secret data easily without
any interruption mechanism if he just wants
to access the same data. The aim of the dis-
tributed algorithm is to improve e�ciency of
algorithm with guaranteeing deadlock-freeness

and starvation-freeness. However, for the con-
sideration of practical use, the proper security
of algorithm should be guaranteed.
We de�ne potential attackers in our model

in order to help practical use of distributed
algorithm. Potential attackers can be classi-
�ed two groups : general attacker who gets
data without any action due to failure of pro-
cesses and cryptographic attacker who eaves-
drops and modi�es data through corrupted se-
rver. Before proceeding any further, we need
to clarify the scope of fault-tolerance both in
distributed algorithm and in security area.

De�nition 3. Fault-tolerance in distributed
algorithm means that even though crashes or
communication failures happen, service can be
kept safely since inuence of faults can be lo-
calized. Fault-tolerance of security aspect means
that attacker can not eavesdrop and modify data
using corrupted server.

When communication failures happen, a le-
gitimate user can get continuous service from
servers of correct one quorum at least using in-
tersection property of quorum system against
general attacker. Also, cryptographic attacker
can not get partial secret value from corrupted
server. Our algorithm is focused on providing
strong fault-tolerance against both general at-
tacker and cryptographic attacker.

3.2 Assumptions and Notations
Our scheme can be regarded as an improve-
ment of the scheme [2]. We assume two ele-
ments. First, we assume that there are no co-
ordination between the servers in distributed
system. Each server replies to a request based
only on information it holds locally. Second,
each user has a secure and authenticated chan-
nel of communication with the servers. So,
Alice cannot masquerade as Bob and obtain
access permission by this.
We make use of three components in our

whole algorithm. There are access servers(AS)
who grant access, data server(DS) that main-
tains database and users(U) who want to ac-
cess data. Since we use SSS, reconstruction
function, hA, for secret information and poly-

nomial function, Qi(k; r) are necessary. Q is
denoted as requested quorum set. D(x) is de-
noted as decrypted function. We will stands
SK is a secret key for accessing DB for the
user. We will use X as requested data item
from user.

4 Our Proposed Algorithm
We show how our algorithm can be proceeded
here. Because of space constraints, we omit
some procedure needed for mutual exclusion.
The detailed algorithm will be provided in the
full paper.

4.1 Registration Phase
To get the permission for accessing data, reg-
istration phase is necessary. Customers should
buy the e-ticket to access a set of music data.
So, customers go to registration o�ce and buy
the e-ticket. The o�ce for access server gives
the e-ticket to customer. After registration,
each access server has customers' list which
store their ID, e-ticket period, and permission
of data X. When customers request to access
data, access server checks their list and give
authorization to them.

4.2 Commitment Phase
The algorithm is shown in Figure 1.
DS U AS

\Request"
-

�generate si, \OK(si)"

\Lock" -
Access DS and Decrypt�

-\Release"

Figure 1: Sketch of our Algorithm

We describe the whole phase in brief. U
who wants to access data requests to AS. AS
check whether U is authorized person or not
through looking up customers' list directory.
After that, AS generate k; r and calculate si

using SSS. AS send \OK(si)" or \Enter(g; si)"
message to U . After collecting all si from each
AS in a set of quorum, U can get key SK. U
send \LOCK" message to each AS to inform
that U will access data. U can decrypt an en-
crypted data and show data content. Also, U
who wants to access the same data can access
data.

4.3 Proposed Algorithm
Our algorithm consists of two parts. AccessServer
is for the behavior of AS that as a quorum
member. RequestUser is for the behavior of a
user that acts as a group member.

RequestUser Procedure
2var Rstatus = wait : status of request;

Q = � : set of process;
K : set of process;
G : set of group;
p : request process;
X : data part that user want;
T : set of partial secret value;
q : server process;
SK : secret key value;

2When p (group set is G) wants to enter CS
begin

Rstatus := wait;
Select arbitrary Q from coterie;
K := �;
T := �;
send \Request(G; p;X)" to all q 2 Q;

end; =�end of request initiation�=

2At arrival of \OK(si)" from q
begin

if Rstatus = wait then begin
K := K [fqg
T := T [fsig =�collect si from Q �=
if K = Q then begin

select arbitrary g 2 G;
send \Lock(g)" to all q 2 Q;
SK = hA(fSigi2A);
Rstatus := in;
y(x) = D(x)
 SK;
Rstatus := out;
send \Release" to all q 2 Q;
K := �;

end =� end of K = Q �=
end =� end of Rstatus = wait �=

end =� end of arrival \OK(si)" �=

1. When User p whose group set is G(p) wants
to get data, he sends \Request(G; p;X)"
to all server processes in one quorum Q.

2. There are three cases to get data.(1)When
U receives \OK(si)"from every process
in Q, U arbitrary selects one group and
get secret key using reconstruction func-
tion, SK = hA(fSigi2A). (2)U sends
\Lock(g)" to every process in Q and en-
ter CS, With the key he can decrypt data,
y(x) = D(x)
 SK. (3)When U receives
\Enter(g; si)" from some process in Q,
U sets g as group selection and enters
CS.

3. When exiting from CS, U sends \Release"
to every process in Q.

AccessServer Procedure
2var status = vacant :status;

group : current group;
Que = null :priority queue of requests;
waiting = null :process;
sentok = null :process;
using = null :set of processes;

2At arrival of \Request(G; p;X)" from p
begin
=�check authorization�=
if p 2 Registration List then begin
Insert \Request(G; p;X)" to Que;
=�assume Que[i] be the position�=
Que[i]:status := wait;
Que[i]:pr := p ;
Que[i]:G := G;
if status = vacant then begin

=� generate k with encryption �=
=� random function Key�(X) �=
k = Key�(X);

=� generate pseudo random string �=
=� with a private seed rr �=
r = Rrr(X
 p);
=� compute si using the SSS�=
si =Qi(k; r);
send \OK(si) to p ;

sentok := p;
Que[i]:status := waitlock;
status := waitlock;

end =�end of status = vacant �=
end =�end of p 2 Registration List �=

end =�end of arrival \Request(G; p;X)" �=

1. When q receives \Request(G; p;X)" from
U , q inserts it to the queue Que. Us-
ing identity of U and X, it checks the
authorization.

2. If the request is from an authorized user ,
AS doesn't give the permission to other
process, and request process belongs to
the same group, the server generates k =
Key�(X) and a pseudo-random string
r = Rrr(X
 p). Server i then computes
its share of the key, si = Qi(k; r) using
the SSS, and send \OK(si)" to U .

3. When q receives \Lock(g)"from p,q sends
\Enter(g; si)" to every waiting request
inQue whose group setG satis�es g 2 G.

4. When q receives \Release", q stops further
sending of \Enter(g; si)". And if there
is no process to which \Enter(g; si)" is
sent, q replies \Finished".

The meaning of variables used in two Algo-
rithm are as follows. As for each RequestUser
process, Rstatus stores the status of the re-
quest. RStatus = wait means it is wait-
ing for \OK(si)" or \Enter(g; si)". In means
that it is in the CS, out means that it has ex-
ited from CS. The quorum currently used is
stored in Q. The set of processes from which
\OK(si)" has been arrived (when making a
request) or \Finished" has been arrived(when
releasing) is stored in K. Thus, if K = Q, the
requesting process can enter CS(when making
a request) or can send \Over" (when releas-
ing). Next, the meaning of variables for each
AccessServer process are described. Que is the
priority queue of requests. Each entry Que[i]
has entry Que[i]:pr (the requesting process),
Que[i]:G(the set of groups), and Que[i]:status
(status of the request). Que[i]:status = wait
when it is blocked by a higher priority request.
waitlock when \OK(si)" is sent and waiting

for \Lock" from the process. enter when the
process is entering CS. releasing when the
process is releasing. waitrcancel when \Cancel"
is sent and waiting for the reply. Each Ac-
cessServer process sends \OK(si)" to at most
one request at any time. The RequestUser
process to which \OK(si)" is sent is stored in
variable sentok. status stores Que[i]:status
of the request of sentok. When there is no
such request, status = vacant. Variable using
is the set of processes currently entering CS.
Also, variable status stores the current status
of the process.

5 Evaluation
5.1 Security and Mutual Exclusion
[1] and [2] proposed distributed algorithm sat-
isfying requirement of group mutual exclusion.
However, these papers focus on the consistency
of competing processes which are the issue of
distributed computing area. [3] also uses quo-
rum system for fault-tolerance of each server.
However, they consider security of distributed
protocol, not avoidance of process conict. We
presented an algorithm keeping both the prop-
erty of group mutual exclusion and secure al-
gorithm satisfying con�dentiality and authen-
tication.

Privacy Through SSS and intersection prop-
erty, even though cryptographic attacker
gets the permission from the corrupted
server, he cannot get partial information.

Authentication After customer grants by a
quorum of servers using authorization ch-
eck, he can access data.

Unforgeability Using SSS, customer can ob-
tain partial information from k of the n
servers. That means any malicious actor
can not forge a complete secret informa-
tion by corrupted servers fewer than k
servers.

Availability Even though some parties hap-
pen fault, other correct server can give
service to user.

Table 1: Comparison of Algorithms
[1] [2] [3] Ours

Privacy X X O O
Authentication X X O O
Unforgeability X X O O
Availability O O O O
Consistency O O O O
Mutual exclusion O O X O
Starvation-freeness O O X O
Deadlock-freeness O O X O

Consistency The intersection property of a
quorum system ensures that in any set
which can collectively grant the permis-
sion to the customer, at least one server
is informed that the request is not legit-
imate.

Group mutual exclusion Using group quo-
rum system, customers who request dif-
ferent data cannot access data, but cus-
tomer that have requested the same data
can.

Starvation-freeness The customers who want
to access di�erent data should be able to
access data eventually.

Deadlock-freeness The customers who want
to access di�erent data do not be waiting
for other data permanently.

5.2 Performance
Table 2 shows the performance comparison of
main computation and communication over-
head of the various algorithms. The main com-
putation complexity of [1] and [2] is O(T).
Our algorithm can be regarded as an improve-
ment of the scheme [2]. In proposed algo-
rithm, computation of each partial secret in-
formation is pre-computed during registration
phase. So, computation complexity of pro-
posed algorithm is the same as [1] and [2].
The communication complexity of the pro-

posed algorithm is shown. Let jQj be the size
of the smallest quorum in a coterie. In case of
the worst case complexity, the total number of

Table 2: Performance Comparision
Computation Communication

[1] O(T) 2c+ 1
[2] O(T) 9jQj
Ours O(T) 9jQj

messages per request is 9jQj. The worst case
number of messages is larger than 2c+1 in [1].
Additional cryptographic technique does not
a�ect the total number of messages. So, the
communication complexity of our algorithm is
9jQj.

6 Conclusions
We suggested a secure distributed algorithm
that guarantees not only group mutual exclu-
sion avoiding conict of each process but also
security requirements even though performance
complexity is almost same. In the future, we
will do research more secure and practical dis-
tributed algorithm not just distributed algo-
rithm that focuses on consistency of each pro-
cess.

References
[1] Y-J.Joung, Quorum-based Algorithms for

Group Mutual Exclusion, Proc. of DISC,
LNCS 2180, pp 16-32, 2001.

[2] Y.Manabe and J.Park, A Quorum based
group mutual exclusion algorithm without un-
necessary blocking, submitted to SRDS 2003.

[3] M.Naor and A.Wool, Access Control and
Signatures via Quorum Secret Sharing, In

Proc. 3rd ACM Conf. Comp. and Comm. Se-

curity, pp 157-168, 1998.
[4] V.Hadzlilacos, A Note on Group Mutual

Exclusion, In Proc. 20th PODC, pp 189-206,
2000.

[5] D.Beaver and A.Wool, Quorum based
secure multi-party computation, Advance in

Cryptology-EUROCRYPT'98, LNCS 1403, pp
375-390, 1998.

[6] L.Zhou, F.Schneider and R.Van Re-

nesse, COCA: A Secure Distributed Online
Certi�cation Authority, ACM, Vol.20, No.4,
pp 329-368, 2002.

