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Abstract. To achieve the same level of security, hyperelliptic curve
cryptosystems (HCC) use a smaller field than elliptic curve cryptosys-
tems (ECC). HCC has a more potential application to the product that
has limited memory and computing power, for instance Smart cards. We
discussed how to represent the domain parameters of HCC in a compact
way. The domain parameters include the field over which the curve is
defined, the curve itself, the order of the Jocobian and the base point.
In our method, the representation of HCC with genus g=4 over F241 (It
can provide the same level of security with 164 bits ECC) only uses 339
bits.

Key words Hyperelliptic curve cryptosystems(HCC), Jacobian, Domain pa-
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1 Introduction

Elliptic Curve Cryptosystems (ECC) are receiving more attention. Elliptic curves
have shown to be good resources to obtain Abelian groups. The discrete loga-
rithm problem based on the Abelian group can be intractable, and no sub-
exponential time algorithm is known to solve the problem, if the curve is properly
chosen. Hyperelliptic Curve Cryptosystems (HCC) was proposed by N. Koblitz
in [11] as a generalization of ECC, since an elliptic curve be a hyperelliptic curve
of genus g = 1. The Jacobians of a hyperelliptic curve can serve as a source of
finite Abelian groups, over which the discrete logarithm problems are defined.
Every scheme based on ECC, such as DSA and ElGamal, has its variant based
on HCC. Suppose that Fq is the field on which the Jacobian of a hyperelliptic
curve of genus g is defined. Then, there are about qg points on the Jacobian.
The advantage of HCC over ECC is that a smaller ground field Fq can be used
to achieve the same order of magnitude of the Abelian group. That means that
HCC can be implemented with a smaller word length in computers than ECC.
Therefore, HCC may avoid multiprecision integer arithmetic when implemented.
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Let Fq be the algebraic closure of the field Fq. A hyperelliptic curve C of
genus g over Fq with g ≥ 1 is given by the following equation:

C : y2 + h(x)y = f(x) (1)

where f(x) is a monic polynomial of degree 2g + 1, h(x) is a polynomial
of degree at most g, and there is no solutions (x, y) ∈ Fq × Fq simultaneously
satisfying the equation y2 + h(x)y = f(x) and the partial derivative equations
2y + h(x) = 0 and h′(x)y − f ′(x) = 0.

We denote the Jacobian group over the hyperelliptic curve C of genus g over
Fq by J(C; Fq). The order of the Jacobian group is denoted by #J(C;Fq).

Like with ECC, not every hyperelliptic curve can be used for HCC. To build
a secure HCC, the curves have to be chosen to satisfy the following properties:

1. A large prime number n of at least 160 bits can divide #J(C; Fq). The reason
is the following. The complexity of Pohlig-Hellman algorithm for Hypercurve
Discrete Logarithm Problem (HCDLP) is proportional to the square root of
the largest prime in the factors of #J(C; Fq).

2. The large prime number n should not divide qk−1 for all small k’s for which
the discrete logarithm problem in Fqk is feasible. This is to avoid the reduc-
tion attack proposed by Frey and Rück in [4]. The reduction attack reduces
the HCDLP over the J(C; Fq) to the logarithm problem in an extended field
Fqk . It is efficient especially for supersingular curves, see [5].

3. When q is prime, there should be no subgroup of order q in J(C;Fq). Be-
cause there is an attack on anomalous curves investigated by Semaev [19],
Satoh and Araki [18],Smart [21] for elliptic and generalized by Rück for
hyperelliptic curves in [16].

4. 2g + 1 ≤ log q. When 2g + 1 > log q, Adleman, DeMarrais and Huang gave
a sub-exponential time algorithm to solve HCDLP in [1]. Further study by
Gaudry in [7] suggested that g ≤ 4.

Therefore, We will consider hyperelliptic curves C : y2 + h(x)y = f(x) of
genus g ≤ 4 over Fq, and 2160 ≤ qg ≤ 2300.

When q is prime, according to Lemma 2 in [13], Equation (1) can be trans-
formed to the form

y2 = f(x)

by replacing y by y − h(x)/2. Here f(x) has a degree 2g + 1.

When q = 2m, the following propositions hold.

Proposition 1. [5] Let C be a genus 2 curve over F2m of the form y2+by = f(x)
where f(x) is monic of degree 5 and b ∈ F ∗2m . Then C is supersingular.

Proposition 2. [20] For every integer h ≥ 2, there are no hyperelliptic super-
singular curves over F2 of genus 2n − 1.
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From the above two propositions, we know that HCC can employ hyperel-
liptic curves over F2m of genus 3 or 4 of form

y2 + y = f(x).

When g = 2, we avoid supersingular curves, and use curves of form

y2 + xy = f(x)

instead.
When a public cryptosystem is employed in practice, the corresponding pa-

rameters should be distributed and stored. It is attractive if the parameters can
be represented in a compact way, especially for the case when the available mem-
ory is limited (for instance, smart cards). In [22], Smart studied how the ECC
parameters are represented with a very small number of bits. In this paper, we
will investigate how to compress the parameters of a HCC with a given genus g.
To define a HCC, the following parameters are necessary:

1. The finite field Fq;
2. A hyperelliptic curve defined over Fq;
3. The order of the Jacobian over the hyperelliptic curve;
4. The base point of the Jacobian.

2 Compact Representation of the Domain Parameters of
a HCC

2.1 The finite field Fq

The discussion is restricted to two kinds of fields, namely large prime fields (with
q = 2m − 1 as a Mersenne number) and fields of characteristic 2, i.e. q = 2m.

Large prime fields:
There is a good reason to choose q as a Mersenne number. No integer division

is required for modular reduction in modular multiplication modulo a Mersenne
number q = 2m − 1, see [23] [9]. Suppose a, b, t, u ∈ Fq, and c = ab = 2mt + u,
we have c = (t + u) mod q.

There is no Mersenne number between 2160 and 2300. Therefore, ECC cannot
take advantage of the shortcut for modular multiplication modulo a Mersenne
number, when 2160 ≤ q ≤ 2300. However, things are different for HCC since
2160 ≤ qg ≤ 2300 is required. When g = 2, Mersenne numbers q = 2m − 1
with m = 89, 107 or 127 can be used. When g = 3, Mersenne numbers with
m = 61 or 89 can be applied. It is easy to see that 7 bits are enough to represent
these Mersenne numbers (hence the finite field Fq).

Fields of characteristic 2:
We restrict F2m to those fields with primitive trinomial bases as their genera-

tors. With primitive trinomial bases, modular reduction is efficient. In the mean
time, only three terms are required to represent the field, namely, xm + xc + 1.
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We can choose 80 < m < 128 for g = 2, 53 ≤ m < 90 for g = 3 and 41 ≤ m < 75
for g = 4. That trinomial xm + xc + 1 is primitive implies that xm + xm−c + 1 is
also primitive. For instance, both x97 + x6 + 1 and x97 + x91 + 1 are primitive.
Hence, we can always choose a primitive trinomial xm + xc + 1 with c ≤ m/2 to
represent the fields. To thwart the Weil Descent attack [6], m is usually chosen
as a prime number. Therefore, 12 bits, 6 bits for m and the other 6 bits for c,
are enough to represent the field.

Between 40 and 128, there are 11 prime numbers from which m can be chosen,
namely, 41, 47, 71, 73, 79, 89, 97, 103, 113, 119, and 127.

2.2 The hyperelliptic curve defined over Fq

As suggested in Section 1, the following hyperelliptic curves (HC) will be con-
sidered.

g HC over Fq, where q is prime, fi ∈ Fq

2 y2 = x5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0

3 y2 = x7 + f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0

4 y2 = x9 + f8x
8 + f7x

7 + f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0

Table 1. Hyperelliptic curves over Fq of genus g when q is prime and g = 2, 3, 4

g HC over Fq, where q = 2m, fi ∈ Fq

2 y2 + xy = x5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0

3 y2 + y = x7 + f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0

4 y2 + y = x9 + f8x
8 + f7x

7 + f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0

Table 2. Hyperelliptic curves over Fq of genus g when q = 2m and g = 2, 3, 4

Now we are ready to show how to represent the curves in fewer bits.
To represent the hyperelliptic curves over Fq, where q is prime, we have the

following theorems:

Theorem 1. When q is prime, hyperelliptic curves of genus g = 2 over Fq can
be transformed to the form

y2 = x5 + a3x
3 + a2x

2 + a1x + a0. (2)

A hyperelliptic curve of genus 3 over Fq can be transformed to the form

y2 = x7 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0. (3)

A hyperelliptic curve of genus 4 over Fq can be transformed to the form

y2 = x9 + a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0. (4)

where ai ∈ Fq.
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Proof. When the characteristic of the field Fq is not 2, a hyperelliptic curve of
genus 2 over Fq is given by the following equation

y2 = x5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0, (5)

where fi ∈ Fq.
Changing variables x by u2x− f4/5 and y by u5y in Equation (5) we get

u10y2 = u10x5 +
(

f3u
6 − 2

5
u6f4

2

)
x3 +

(
f2u

4 +
4
25

u4f4
3 − 3

5
f3f4u

4

)
x2

+
(
−2

5
f2u

2f4 − 3
125

u2f4
4 +

3
25

f3u
2f4

2 + f1u
2

)
x

− 1
5
f1f4 + f0 +

1
25

f2f
2
4 +

4
3125

f4
5 − 1

125
f3f

3
4 .

Let

a3 =
(

f3u
6 − 2

5
u6f4

2

)
/u10,

a2 =
(

f2u
4 +

4
25

u4f4
3 − 3

5
f3f4u

4

)
/u10,

a1 =
(
−2

5
f2u

2f4 − 3
125

u2f4
4 +

3
25

f3u
2f4

2 + f1u
2

)
/u10,

and

a0 =
(
−1

5
f1f4 + f0 +

1
25

f2f
2
4 +

4
3125

f4
5 − 1

125
f3f

3
4

)
/u10.

Then Equation (2) follows.
A hyperelliptic curve of genus 3 over Fq (recall that q is prime) is given by

y2 = x7 + f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0.

With the change of variables x → x− f6/7 and y → y, we get Equation (3).
With the change of variables x → x − f8/9 and y → y, Equation (4) is

obtained from

y2 = x9 + f8x
8 + f7x

7 + f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0.

In fact, when the characteristic of the field Fq is not 2 and 2g+1, hyperelliptic
curves of genus g over Fq have the form of

y2 = x2g+1 + a2g−1x
2g−1 + a2g−2x

2g−2 + . . . + a1x + a0,

where ai ∈ Fq for i = 1, 2, . . . , 2g − 1, 2g + 1.
The results is given in Table 3 as a comparison with Table 1.

For a field of characteristic 2, we have two facts as follows:
Fact 1. The map σ : x → x2 is an isomorphism, and its inversion is given

by σ−1 : y → y1/2.
Fact 2. For a ∈ F2m , the equation x2 + x = a has a solution in F2m if and

only if Tr(a) = 0. Here Tr(a) =
∑m

i=1 a2i−1
is the trace function of F2m .
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g HC over Fq, where q is prime, ai ∈ Fq

2 y2 = x5 + a3x
3 + a2x

2 + a1x + a0

3 y2 = x7 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0

4 y2 = x9 + a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0

Table 3. Hyperelliptic curves over Fq of genus g when q is prime and g = 2, 3, 4

Theorem 2. When a hyperelliptic curve of genus g = 2 over F2m has a form

y2 + xy = x5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0, (6)

it can be transformed to a form of

y2 + xy = x5 + a3x
3 + εx2 + a1x; here ε ∈ F2, a1 6= 0 (7)

When a hyperelliptic curve of genus g = 3 over F2m has a form

y2 + y = x7 + f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0, (8)

it can be transformed to a form of

y2 + y = x7 + a5x
5 + a3x

3 + a2x
2 + ε; here ε ∈ F2 (9)

When a hyperelliptic curve of genus g = 4 over F2m has a form

y2 + y = x9 + f8x
8 + f7x

7 + f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0, (10)

it can be transformed to a form of

y2 + y = x9 + a7x
7 + a5x

5 + a3x
3 + a2x

2 + ε; here ε ∈ F2 (11)

where ai ∈ Fq.

Proof. Changing variable y by y + f
1/2
4 x2 + f

1/2
0 in Equation (6) leads to

y2 + xy = x5 + a3x
3 + a2x

2 + a1x, (12)

when Tr(a2) = 0, let β be a solution of the equation x2 + x = a2, with the
change of variables x → x and y → y + βx, then obtained equation

y2 + xy = x5 + a3x
3 + a1x; (13)

when Tr(a2) = 1, since m is odd, so Tr(a2 + 1) = 0, let β be a solution of the
equation x2 + x = a2 + 1, with the change of variables x → x and y → y + βx,
then the obtained equation is:

y2 + xy = x5 + a3x
3 + x2 + a1x. (14)

So Equation (7) can be obtained from y2+xy = x5+f4x
4+f3x

3+f2x
2+f1x+f0;

Changing variable y by y + f
1/2
6 x3 + f

1/2
4 x2 + f1x in Equation (8), we obtain

y2 + y = x7 + a5x
5 + a3x

3 + a2x
2 + a0, (15)
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and discuss the value of Tr(a0), changing variables x → x and y → y + β, here
β is a solution of the equation x2 + x = a0 or x2 + x = a0 + 1. Then this leads
to Equation (9);

Changing variable y by y+f
1/2
8 x4+f

1/2
6 x3+

(
f

1/2
8 + f4

)1/2

x2+f1x in Equation
(10), we obtain

y2 + y = x9 + a7x
7 + a5x

5 + a3x
3 + a2x

2 + a0, (16)

and discuss the value of Tr(a0), changing variables x → x and y → y + β, here
β is a solution of the equation x2 + x = a0 or x2 + x = a0 + 1. Then this leads
to Equation (11).

To compare with the representations of hyperelliptic curves in Table 2, we
illustrate the results of Theorem 2 in Table 4.

g HC over Fq, where q = 2m, ai ∈ Fq

2 y2 + xy = x5 + a3x
3 + εx2 + a1x, here ε ∈ F2, a1 6= 0

3 y2 + y = x7 + a5x
5 + a3x

3 + a2x
2 + ε, here ε ∈ F2

4 y2 + y = x9 + a7x
7 + a5x

5 + a3x
3 + a2x

2 + ε, here ε ∈ F2

Table 4. Hyperelliptic curves over Fq of genus g when q = 2m and g = 2, 3, 4

2.3 The order of the Jacobian over the hyperelliptic curve

To insure the security of hyperelliptic curve cryptosystems, the order of the
Jacobian of the curve C, denoted by #J(C,Fq), should be chosen such that
#J(C,Fq) contains a large prime divisor. Suppose that #J(C, Fq) = vn, where
n is a prime. Then the best known algorithm up to now for the HCDLP is of
complexity O(

√
n). In this sequel, we limit v ≤ 26.

According to Corollary 55 in [13], we have

(
√

q − 1)2g ≤ #J(C, Fq) ≤ (
√

q + 1)2g.

Then we can use log (
√

q + 1)2g bit to represent #J(C, Fq). Let t = qg + 1 −
#J(C,Fq). It is easy to see that

|t| ≤ −
2g−1∑

j=1

(
2g
j

)
qg−j/2(−1)j ≤ 2gqg−1/2.

Hence t has 1 + log2 (2gqg−1/2) bits. It is easy to see that #J(C, Fq) is uniquely
determined by t when q and g are known. That means that 1 + log2 (2gqg−1/2)
bits are enough to represent #J(C,Fq) (n as well). Consequently, the fac-
torization of #J(C, Fq) can be represented by 7 + log2 (2gqg−1/2) bits, where
1 + log2 (2gqg−1/2) bits describing n and 6 bits describing v.
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2.4 The base point of the Jacobian group

We consider the hyperelliptic curve C : y2 + h(x)y = f(x) of genus g ≤ 4 over
Fq. The order of the Jocobian of the curve is given by #J(C, Fq) = vn, where
n is prime and v ≤ 64. The divisor of order n over the Jocobian is called the
base point. This divisor generates a cyclic subgroup of order n. Any divisor D of
J(C,Fq) can be described by a pair of polynomials, one monomial of degree g and
the other polynomial of degree g−1, namely D = [a(x), b(x)] = [xg +ag−1x

g−1+
. . . + a1x + a0, bg−1x

g−1 + . . . + b1x + b0], where ai, bi ∈ Fq. Therefore, every
divisor D can be described as a 2g-dimension vector (ag−1, . . . , a0, bg−1, . . . , b0).

N. Kobliz gave algorithms to get random elements (divisors) of J(C; Fq) in
[11]. When an element from Kobliz’s algorithms has an order that cannot divide
v, then the element can be used as a base point.

The following two probabilistic algorithms show how to find a base point over
Fq.

Algorithm 1. Algorithm of finding base point on J(C, Fq) when q is a prime.

1. Repeat randomly choosing α ∈ Fq and calculating f(α) until f(α) is quadratic.
2. Determine the square root β of f(α).
3. Let a(x) = x− α, b(x) = β. Then [a(x), b(x)] is an element of the Jocobian

J(C,Fq).
4. Compute D = v · [a(x), b(x)]. If D = [1, 0] goto 1.
5. Output D.

Algorithm 2. Algorithm of finding base point on J(C, Fq) where q = 2m.

1. Randomly choose α ∈ Fq and calculate h(α) and f(α).
2. Let c = f(α)/h(α)2. If the trace of c to F2 is 1, i.e., Tr(c) = 1, goto 1.

Otherwise, let β =
∑(m−1)/2

i=0 c22i

.
3. Let a(x) = x− α, b(x) = β, then [a(x), b(x)] is an element of J(C; F2m).
4. Compute D = v · [a(x), b(x)]. If D = [1, 0] goto 1.
5. Output D.

When α is randomly chosen from Fq, both the probability that f(α) in Step
1 of Algorithm 1 and the probability that Tr(c) = 1 in Step 2 of Algorithm 2
are given approximately 0.5.

Let ρ denote the probability that D 6= [1, 0] in Step 4 when f(α) is a square
in Algorithm 1 (or Tr(c) = 1 in Algorithm 2). Now we determine the value
of ρ. Suppose that the number of divisors [a(x), b(x)] in J(C; Fq) such that
D = v · [a(x), b(x)] = [1, 0] is given by N. Then each of the N divisors is an
element of a subgroup of order w of J(C; Fq), where w is a divisor of v, and
denoted by w|v. Let v = pe1

1 pe2
2 . . . pes

s . The number of divisors of v is (e1+1)(e2+
1) . . . (es + 1). The number of subgroups of order w for all w such that w|v is
(e1 + 1)(e2 + 1) . . . (es + 1) as well. The number of elements in such a subgroup
is not more than v. Therefore, we have N ≤ v(e1 + 1)(e2 + 1) . . . (es + 1). Recall
that we limit v ≤ 26, so N ≤ 73v, and ρ ≥ (nv − 73v)/nv = 1− 73/n.

The probability that t different α’s are tried in the above algorithm without
obtaining a base point D (D 6= [1, 0]) in Step 5 is 1− (1− 0.5ρ)t.
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When the value of α is limited to −27 < α < 27, the above algorithms fail
with a probability about 1− (1− 0.5ρ)255 ≈ 1.73× 10−77 (there are 255 choices
for α). The approximation comes from the fact that n is a prime of 160 bits. It
means that there is a big chance to get a base point that can be represented by
α, which only needs 8 bits.

The above analysis shows that we can use 8 bits to represent the base point.
The following two examples give a comparison between the general represen-

tation and compact representation of a HCC.

Example 1. Let q is a prime of 89 bits. A hyperelliptic curve of genus g = 2
over Fq is chosen for HCC. Then the general and compact representations of the
HCC parameters are given in the following table:

Parameters general(bits) compact(bits)

Field 89 7

Hyperelliptic curve 5 · 89 4 · 89

Order of the Jacobian 2 · 89 143

Base point 4 · 89 8

Total 1068 514

Table 5. Comparison of general representation and compact representation for HCC
over Fq for q prime and g = 2

Example 2. Let q = 241. A hyperelliptic curve of genus g = 4 over F241 is chosen
for HCC. Then the general and compact representations of the HCC parameters
are given in the following table:

Parameters general(bits) compact(bits)

Field ≥ 12 6 + 6 = 12

Hyperelliptic curve 9 · 41 4 · 41 + 1

Order of the Jacobian 4 · 41 154

Base point 8 · 41 8

Total ≥ 853 339

Table 6. Comparison of general representation and compact representation for HCC
over F2m and g = 4

From above two examples, the number of bits of our compact representation
is less than half of general representation.

Note that the security level of the HCC in the first example corresponds to
that of ECC over a field of 178 bits. The security level of the HCC in the second
example corresponds to that of ECC over a field of 164 bits. A similar strength
set of parameters for DSA would require 1024 bits for p, 160 bits for q and 1024
bits for the generator g, making 2208 bits in all.
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3 Conclusion

How to represent the parameters of HCC in a very small number of bits and
an efficient way are given. The domain parameters include the finite field on
which the HCC is based, the representation of a hyperelliptic curve, the order
of the Jacobian of the hyperelliptic curve, and the base point on the Jacobian.
We shorten the representation of the prime field by choosing Mersenne numbers,
and that of the field of characteristic 2 by choosing primitive trinomial base.
How to eradicate an parameter in the equation of an hyperelliptic curve is also
discussed. We also give the number of bits to represent the order of the Jacobian.
As to the base point, we show it can be chosen with 8 bits for representation
with high probability.
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