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Abs t rac t .  In this paper, we propose two efficient RSA multisignature 
schemes, one is an improved version of Okamoto's scheme [6] and the 
other is that of Kiesler-Harn's scheme [3]. The first one causes bit expan- 
sion in block size of a multisignature, but the bit length of the expansion 
is no more greater than the number of signers regardless of their RSA 
modulus. The second one has no bit expansion, in which all signers have 
a RSA modulus with the same bit size and the same most significant 
1 bits pattern. An average number of the required exponentiations to 
obtain a multisignature is about (1 -b 2111 )m, where m denotes the num- 
ber of signers. Futhermore, our schemes have no restriction in signing 
order and are claimed to be more efficient than Okamoto's scheme and 
Kiesler-Harn's scheme respectively. 

1 I n t r o d u c t i o n  

In 1978, Rivest, Shamir and Adleman proposed new type of public-key cryptosys- 
tem, so called "RSA cryptosystem", whose security is based on the difficulty of 
factoring a large integer [8]. The practical implementation of RSA cryptosystem 
for multiple operations of a given message causes bit expansion problem inher- 
ently. As early works to solve this problem, there are Kohnfelder's reblocking 
method[4] and Levine-Brewley's repeated exponentiation method[5]. 

I takura and Nakamura first suggested a new notion of a multisignature 
scheme [2] in which multiple signers generate a digital signature for a given 
document. To solve the difficulty of bit expansion in a RSA multisignature, they 
allowed a signer to have a RSA modulus with a different bit size according to 
his position in a hierachical structure. Thus, the signing order is restricted. 

On the other hand, Okamoto proposed a multisignature scheme with no 
restriction of the signing order [6]. In his scheme, if the length of intermediate 
signature exceeds a pre~determined threshold value, then the extra bits exceeding 
the threshold value are appended to a message. So, the length of expanded 
message depends on the number of signers and the bit size of each signer's RSA 
modulus. 

Harn and Kiesler proposed two mult is ignature schemes with no bit expansion[l, 
3]. In one of their schemes, based on Kohnfelder's method, the signing order is 
chosen according to the size of signers' public keys. The other scheme is based on 
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Levine and Brawley's re-encryption method. Even though their multisignature 
schemes have no bit expansion problem and the signing order is not restricted, 
all signers must have a modulus with the same size and the computational com- 
plexity of obtaining a multisignature is increased. 

In this paper, we propose two efficient RSA multisignature schemes, one is an 
improved version of Okamoto's scheme [6] and the other is that  of Kiesler-Harn's 
scheme [3]. The first one causes bit expansion in block size of a multisignature, 
but the bit length of the expansion is no more greater than the number of 
signers regardless of their RSA modulus. The second one has no bit expansion, 
in which all signers have a RSA modulus with the same bit size, and the same 
most significant I bits pattern. In this scheme, an average number of the required 
exponentiations to obtain a multisignature is about (1 + 2-~r)m, where m denotes 
the number of signers. 

This paper is organized as follows : In Section 2, we propose new RSA 
multisignature schemes. In Section 3, we discuss the security of our proposed 
schemes. Finally, we state concluding remarks in Section 4. 

2 M u l t i s i g n a t u r e  S c h e m e s  

In this section, we propose two efficient RSA multisignature schemes. The fol- 
lowing notations are used in this section. 

- Ui : one of m signers, U1 , . . . ,  Urn. 
- n~ : RSA modulus of Ui. 
- (ei, n~) : public key ofUi,  (di, ni) :secret key of/.// (ei.di = 1 (rood ¢(ni))). 
- Inil : bit size of n~. 
- AIIB : concatenation of A and B 
- h(.) : a secure hash function 

S c h e m e  1 

First, we introduce a new reblocking method in which the size of an enci- 
phering block varies with the size of a message block. Let n be a RSA modulus 
and e a public key with gcd(e, ¢(n)) = 1. Assume an odd M with 0 < M < 21n. 
Then, ~b(2 zn) = 2 s-1 ¢(n) and gcd(e, 2 t - l¢ (n) )  = 1. If e- d = 1 (mod 2 z-l¢(n)),  
then M e'd = M (mod 2In). So, l varies with the size of a message M and 
d varies with I. I f C  = M e (mod21n) and e . d x  = 1 (mod2t-1) ,  then C 
(rood2 I ) = M  e (rood21 ) and M (mod2  z ) = C  dx (mod2t ) .Thus ,  thepro-  
posed reblocking method can't be directly used for enciphering M with large 
block size. 

Now, we show that  this new reblocking method can be applied to a multisig- 
nature scheme. First, each user computes li from ni as followings. 

1 i f / =  1 or 2t~-lni_l < 2ni 
li = 21~-lni < 21~-ani_l < 2lini otherwise. 

The generation and verification of a multisignature is done as follows : 
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- Signing by U1 : $1 = (2h(M) + 1) d~ (mod 2nl) and he sends a message M 
and $1 to the next signer U2. 

- Signing by Ui (i = 2, ., m) : Si = S a~ (mod 2l~ni), where ei • di = ""  / - 1  

(mod 2 t ' - I  • ¢(ni)) and he sends M and Si to the next signer. 

Now, a receiver verifies Sm to be a multisignature of M by signers U1,. . . ,  Urn. 

{ S j - I = S ]  i ( m o d 2 t ~ n j ) ( j = m , m - 1 , . . . , 2 )  
2 h ( M ) + I = S ~  a ( m o d 2 n t )  

I f e i + l - d  I = 1 (mod2  t~+l-1) and e i . d "  = 1 (mod2t i -1) ,  then Si = Ci a' 
(mod 2 t~+l) and Si = Sa"i-1 (mod 2 t'). However, we can't  obtain the most sig- 
nificant tni+tl bits of Si from Ci and the most significant Inil bits of Si from 
S / - 1 .  

If L = max(Int [, In21,. •., ]nm D, then the bit length of the multisignature Srn 
is less than or equal to L+m.  So, the length expanded by the proposed scheme is 
not greater than the number of signers. For example, if In1[ = InsI = Insl = 768 
and In2] = In41 = In61 = 512, then tS, nl <_ 774. So, the expanded bit length is 6. 
But, in this ease, Okamoto'scheme has an expansion of 509 bits. 

S c h e m e  2 

Now, we propose another RSA multisignature scheme, which is a generalized 
version of Kiesler-ttarn's scheme[3]. All users must choose a RSA modulus of the 
same number of bits - say m bits and the same most significant I bits pattern 
of all users' modulus must be the same. Let C be the I bits pattern which is 
pre-determined. Then the modulus of an user / can be represented as follows : 

n, = C .  2k-%Ri(0  < R~ < 2~-t).  (1) 

Let C-2 k-z be a threshold value u, and ei and di be the RSA public key and 
secret key of user i, respectively. A multisignature by m signers is generated as 
follows : 

- signer U1 ://1 generates a signature St = h(M) al (mod nt)  for the original 
message M. If S1 > u, he applies the repeated exponentiation technique to 
S1 until $1 < u and sends M and $1 to the second signer. 

- signers Ui (i = 2 , . . . , m )  : Ui computes a signature Si = Sid~l (mod ni). If 
Si > u then he computes Si = S~' (mod hi), repeatedly, until Si < u. He 
sends M and Si to the next signer. 

The final signature Sm is the multisignature of M by the signers U1,. •.,  Urn. 
Note that  the signing order is independent of signers' public keys. To verify that  
Sm is the multisignature of M, the receiver also applies repeated exponentiation 
technique : For i = re, m -  1 , . . . , 2 ,  he computes Si-x = S e' (mod ni) and 
if Si-1 >_ u, then he repeates exponentiations Si-1 = Se_~ 1 (mod ni) until 

Si-1 < u. Finally, the receiver confirms h(M) .L S~' (mod nl).  
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Since each signer's modulus ni is of the form as equation (1), the probability 
that  a random number z(0 _< x < ni) is less than h=C.2 k-t is greater than 
1 -2  -I+1 , 

Pr[O<z < ulO<z <ni] - - -  

C .  2 k-z l _ R i  2 k-t 
= > I-2-~y_ I = i_2-I+ I. 

ni ni 

So, if I is sufficiently large, then the average number of exponentiations re- 
quired for obtaining a multisignature is close to m. For example, if I = 32 and 
m = 10, the average number of exponentiations of Kiesler-Harn's scheme is 
1.5×10=15, but that  of our scheme is (1 + 2-at )×10 ~ 10. Thus, our scheme is 
more efficient than Kiesler-Harn's scheme. 

Now, to make our multisignature scheme practical, we propose a method for 
generating a RSA modulus [7] which is required for our multisignature scheme. 
First of all, the key management center opens the bit length of the modulus, k, 
and some(fixed) pattern of I bits, C, to all users. For the sake of convenience, 
we suppose k is even. Each user's RSA modulus n must be k bits long and its 
most significant l bits pattern must be C. And, we expect that  n becomes the 
product of two primes p and q, where p - 1 and q - 1 have large prime factors. 
A RSA modulus for the multisignature is generated as follows : 

S t ep  1 Generate a random number R of k-l  bits, and compute N=C.2k-I+R. 
Step  2 Generate a random number P of ~ bits, and two prime numbers pt and 

q' of ~- l - t  bits. And, compute s=[~.--~J. 
S t e p  3 If p=2.p'.s+l is not a prime, then s = s + l  and repeat step 3, until p 

becomes a prime. 
S t e p  4 Compute Q=[Nj and s=[2--~¢ ]. 
S t e p  5 If q=2.q~.s+l is not a prime, then s-s+l  and repeat step 5, until q 

becomes a prime. 
n S t e p  6 Compute n=p.q, and if [~rzrJ equals to C, then, n is a RSA modulus 

which is required. Otherwise, return to step 1. 

In our method, the most significant I bits of n is always C, but p and q are 
random. By the variable t in step 2, the most significant l bits of n in step 6 
is not changed, even though s is incremented in step 3 and step 5. To generate 
efficiently n, we choose t = 16. By the proposed algorithm, p - 1 and q - 1 have 
large prime factors f and q', respectively. 

3 S e c u r i t y  

First, we will discuss the security of the Scheme 1 which we proposed in Section 
2. 
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T h e o r e m  1 I f  we can compute the secret key d with e .d  = 1 (mod 2 t - l . ¢ ( n ) ) ,  
then a RSA signature of arbitrary message M can be obtained. 
(proof) I f  d' = d ( m o d e ( n ) ) ,  t h e n C  = M ~ = M a' ( m o d n )  a n d e . d '  = 
e- d = 1 (mod ¢(n)).  So, C is a RSA  signature of  M .  

T h e o r e m  2 If, for  any odd M (0 < M < 21 • n), we can compute C with 
C = M e (mod 2 t • n), then the RSA  signature of  M can be computed. 
(proof) £et C'  = C ( m o d n ) .  Then, C I = M "  ( m o d n ) .  So, C ~ is a RSA  
signature. 

By Theorems 1 and 2, the security of the Scheme 1, based on the new re- 
blocking method, depends on the security of a RSA signature scheme. 

Now, we will discuss the security of the Scheme 2. Let n be a RSA modulus 
for the Scheme 2. Since n have large prime factors p and q, we can not factor it 
by any integer factoring algorithm. Moreover, p -  1 and q - 1 have large prime 
factors p~ and q', respectively. Even if all users have ni's, the most significant l 
bits of which are of the same value, the prime factors Pi and qi of ni are random. 
So, Ui can not guess the prime factors pj and qj of other user Uj. 

4 Concluding Remarks 

We have proposed two RSA multisignature schemes. First, we have suggested 
a new reblocking method in which the size of an enciphering block varies with 
the size of a message block and have applied the new reblocking method to 
a multisignature scheme. Each signer is allowed to have a RSA modulus with 
different bit size. It causes bit expansion which depends only on the number of 
signers regardless of the bit length of RSA modulus. The  length of the expansion 
is less than or equal to the number of signers. If  each signer has a RSA modulus 
with the same size, then our scheme and Okamoto 's  one have the same expansion. 
But,  ours has smaller bit expansion than Okamoto 's  one. 

The second multisignature scheme does not cause any bit expansion. All users 
must have a RSA modulus of a fixed length, k bits, the most significant i bits of 
which are the same. To obtain a multisignature, Kiesler-Harn's scheme requires 
an average exponentiation of 1.5m, but  our scheme requires about (1 + 2,1_~ )m. 
So, our scheme is said to be more efficient than Kiesler-Harn's one. 
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