
 

 

Week 9-2: Number Theory 



Contents 

• Prime and Relative Prime Numbers 

• Modular Arithmetic 

• Fermat’s and Euler’s Theorem 

• Extended Euclid’s Algorithm 



Divisors 

• b|a (“b divides a”, “b is a divisor of a”)  

   if a = kb for some k,  

   where a, b, and k are integers, and  
    b  0 

– If a|1, then a = 1 

– If a|b and b|a, then a = b 

– Any b  0 divides 0 

– If b|g and b|h, then b|(mg + nh) for  

   arbitrary integers m and n 



Prime Numbers 

• An integer p > 1 is a prime number if its only  

    divisors are 1 and p 

• Prime Factorization 
– Any integer a>1 can be factored in a unique way as 

  a = p1
1 p2

2 … pt
t  where p1 < p2 < … < pt are prime  number

s and where each i > 0 

– If P denotes the set of all prime numbers, then any positive   

  integer can be written uniquely in the following form 

 

– Multiplication of two numbers is equivalent to adding two  

   corresponding exponents: 
• k = mn  kp = mp + np  for all p 

– a|b  ap  bp for all p 

 

0each   where  p

P

a
apa

p



Primes less than 2000, How many ? 

(Note) The # of prime numbers less than x is about x/ln(x). 



Relatively Prime Numbers 

• Greatest Common Divisor 
– c = gcd(a, b) if c|a and c|b and d that divides a and b: d|c 

– Equivalently, gcd(a, b) = max{c: c|a and c|b} 

• k = gcd(a, b)  kp = min(ap, bp)  for all p 

 

• a and b are relatively prime if gcd(a, b) = 1 

 

 

 



Modular Arithmetic 

• For any integer a and positive integer n, if a is divided by n, the fo
llowing   relationship holds: 
– a = qn + r   0  r  n;  q = a/n  (q: quotient, r: remainder or residue) 

• If a is an integer and n is a positive integer, a mod n is defined to 
be the       remainder when a is divided by n 
– a = a/n  n + (a mod n)  

• Two integers a and b are said to be congruent modulo n if (a 
mod n) = (b mod n), and this is written a  b mod n  

• Properties of modulo operator 
– a  b mod n if n|(a – b) 

– (a mod n) = (b mod n) implies a  b mod n 

– a  b mod n implies b  a mod n 

– a  b mod n and b  c mod n implies a  c mod n 



Groups, Rings, Fields 
• Group 

– A set of numbers with some addition operation whose result is also in 
the set (closure).  

– Obeys associative law, has an identity, has inverses.  

– If  group is commutative, we say Abelian group. Otherwise Non-Abelian 
group 

• Ring 
– Abelian group with a multiplication operation. 

– Multiplication is associative and distributive over addition.  

– If multiplication is commutative, we say a commutative ring.  

– e.g., integers mod N for any N.  

• Field  
– An Abelian group for addition.  

– A ring.  

– An Abelian group for multiplication (ignoring 0).  

– e.g., integers mod P where P is prime. 

 



Modular Arithmetic Operatio
ns • Modulo arithmetic operation over Zn = {0, 1, …, n-1} 

• Properties 
– [(a mod n) + (b mod n)] mod n = (a + b) mod n 

– [(a mod n)  (b mod n)] mod n = (a  b) mod n 

– [(a mod n)  (b mod n)] mod n = (a  b) mod n 



Properties of Modular Arithmetic 

• Modulo arithmetic over Zn = {0, 1, …, n-1} (called a set of  

   residues  of modulo n) 

• Integers modulo n with addition and multiplication form a 
commutative  ring 
– Commutative laws  (a + b) mod n = (b + a) mod n 

      (a  b) mod n = (b  a) mod n 

– Associative laws  [(a + b) + c] mod n = [a + (b + c)] mod n 

      [(a  b)  c] mod n = [a  (b  c)] mod n 

– Distributive laws  [a  (b + c)] mod n = [(a  b) + (a  c)] mod n 

– Identities   (a + 0) mod n = a mod n 

      (a  1) mod n = a mod n 

– Additive inverse (-a)  a  Zn b s.t. a + b  0 mod n 

– Multiplicative inverse (a-1) a (0)  Zn, if a is relative prime to n,  
      b s.t. a  b  1 mod n 

• (Note) If n is not prime, Zn is a ring, but not a field. 

     Zp is a field if  p is prime. 



Modular 7 Arithmetic 



Fermat’s Little Theorem 
• If p is prime and a is a positive integer not divisible by 

p, then 
   ap-1  1 mod p 

– Proof 
• Start by listing the first p – 1 positive multiples of a: 
   a, 2a, 3a, …, (p-1)a 
 Suppose that ra and sa are the same modulo p, then we  have              r 

 s mod p, so the p-1 multiples of a above are distinct and nonzero;    that 
is, they must be congruent to 1, 2, 3, …, p-1 in some order.         Multiply 
all these congruences together and we find 

 a  2a  3a  …  (p-1)a  1  2  3  …  (p-1) mod p 
 or better,  
    ap-1(p-1)!  (p-1)! mod p. Divide both side by (p-1)! . qed. 

 

• Corollary 
– If p is prime and a is any positive integer, then 

   ap  a mod p 
 



Euler’s Totient Function (1/2) 

• Euler’s totient function (n) is the number of positive integers 

     less than n   (including 1) and relatively prime to n 

              (p) = p-1  where p is prime. 

• (Definition) (1) = 1 

 

• Let p and q be distinct prime numbers, n = p x q,   

   then (p x q) = (p)(q) = (p-1)(q-1) 
– Proof 

• Consider Zn = {0, 1, …, pq-1} 

• The residues not relatively prime to n are 0, {p, 2p, …, (q-1)p}, and  
{q, 2q, …, (p-1)q} 

• So (pq) = pq - (1 + (q-1) + (p-1)) = pq - p - q + 1 = (p-1)(q-1) 



Euler’s Totient Function (2/2) 



Euler’s Theorem (1/2) 

• Generalization of Fermat’s little theorem 

• For every a and n that are relatively prime,   
 a(n)  1 mod n 

• Proof 
– The proof is completely analogous to that of the Fermat's 

Theorem except that instead of the set of residues {1,2,...,n-1} we 
now consider the set of residues {x1,x2,...,x(n)} which are relatively 
prime to n. In exactly the same manner as before, multiplication 
by a modulo n results in a permutation of the set {x1, x2, ..., x(n)}. 
Therefore, two products are congruent: 

 x1x2 ... x(n)  (ax1)(ax2) ... (ax(n)) mod n  

 dividing by the left-hand side proves the theorem. 

• Corollary 
 a(n)+1  a mod n 



Euler’s Theorem (2/2) 

• Corollaries 

– Given two prime numbers, p and q, and 
integers n = pq and m, with 0<m<n,  

   m(n)+1 = m(p-1)(q-1)+1  m mod n 

 (Demonstrate the validity of the 
RSA algorithm) 

   mk(n)  1 mod n 

   mk(n)+1   m mod n 

 

 



Euclid’s Algorithm: Finding GCD(1/2) 

• Based on the following theorem 
– gcd(a, b) = gcd(b, a mod b) 

– Proof 
• If d = gcd(a, b), then d|a and d|b 
• For any positive integer b, a = kb + r ≡ r mod b, a mod b = r 

• a mod b = a – kb (for some integer k) 
– because d|b, d|kb 

– because d|a, d|(a mod b) 

∴ d is a common divisor of b and (a mod b) 

• Conversely, if d is a common divisor of b and (a mod b), then d|kb 
and d|[ kb+(a mod b)] 

• d|[ kb+(a mod b)] = d|a 

∴ Set of common divisors of a and b is equal to the set of common 
divisors of b and (a mod b) 

•  ex) gcd(18,12) = gcd(12,6) = gcd(6,0) = 6  

       gcd(11,10) = gcd(10,1) = gcd(1,0) = 1 

 



Euclid’s Algorithm: Finding GCD(
2/2) 

• Recursive algorithm 
 Function Euclid (a, b) /* assume a  b  0 */ 

        if b = 0 then return a 

               else return Euclid(b, a mod b) 

• Iterative algorithm 
 Euclid(d, f)  /* assume d > f > 0 */ 

 1.   X  d;  Y  f 

 2.   if  Y=0  return X = gcd(d, f) 

 3.   R = X mod Y 

 4.   X  Y 

 5.   Y  R 

 6.   goto 2 



Extended Euclid’s Alg. : Finding  
Multiplicative Inverse(1/2) 

• If gcd(d, f) =1, d has a multiplicative inverse modulo f 

• Euclid’s algorithm can be extended to find the multiplicative 
inverse 
– In addition to finding gcd(d, f), if the gcd is 1, the algorithm returns 

multiplicative inverse of d (modulo f) 

   Extended Euclid(d, f) 
1. (X1, X2, X3)  (1, 0, f); (Y1, Y2, Y3)  (0, 1, d) 
2. If Y3 = 0   return X3 = gcd(d, f); no inverse 
3. If Y3 = 1   return Y3 = gcd(d, f); Y2 = d-1 mod f 
4. Q = X3/Y3 
5. (T1, T2, T3)  (X1  QY1, X2  QY2, X3  QY3) 
6. (X1, X2, X3)  (Y1, Y2, Y3) 
7. (Y1, Y2, Y3)  (T1, T2, T3) 
8. goto 2 

Note: Always f  Y1 + d  Y2 = Y3 



Extended Euclid’s Alg. : Finding  
Multiplicative Inverse(2/2) 

Note: Extended (d, f) yields f  Y1 + d  Y2 = Y3   
-> 769*(-171) + 550*550=1 


