Week 9-1: Public Key Cryptography (PKC)

Problem of Secret key Cryptosystem

Sharing key in Secret key cryptosystem

- ✤Given complete graph with *n* nodes (entities),
 - $_{n}C_{2} = n(n-1)/2$ pairs secret keys are required.

(Ex.) If n=100, 99 x 50 = 4,950 keys

Problem: Managing large number of secret keys is difficult.

Secret keys are required between (*a*,*b*), (*a*,*c*), (*a*,*d*), (*a*,*e*), (*b*,*c*), (*b*,*d*), (*b*,*e*), (*c*,*d*), (*c*,*e*), (*d*,*e*)

Public Key Cryptography

: key agreement with one-way function

One-way function

•Given x, easy to compute y=f(x).

♦ Difficult to compute $x=f^{1}(y)$ for given *y*.

Ex) $f(x) = 7x^{21} + 3x^3 + 13x^2 + 1 \mod (2^{15}-1)$

DH key Agreement

Diffie and Hellman, "*New directions in Cryptography*", IEEE Tr. on IT. ,Vol. 22, pp. 644-654, Nov., 1976.

Public Key Cryptography

- : Trapdoor one-way function
- Given x, easy to compute f(x)
- Given y, difficult to compute $f^{1}(y)$ in general
- Easy to compute f¹(y) for given y to only who knows certain information (which we call trapdoor information)
- Mathematical Hard Problems

PKC - Overview (1/3)

Private kev Public kev

- Using trapdoor 1-way functions,
 - Each user needs to keep securely only his private key.
 - All public keys of users are published.
 - {Asymmetric, 2-keys or Public Key} Cryptosystem
- Privacy (Encryption)
 - Anyone can lock using B's public key
 - Only the receiver can unlock using B's private key

PKC-Overview (2/3)

- Authentication (Digital Signature)
 - Only the signer can sign using S's private key
 - Any Verifier can verify using S's public key

PKC - Overview(3/3)

Encryption schemes

- RSA: based on IFP
- ElGamal: based on DLP
- Digital Signature schemes
 - Signature schemes with message recovery: RSA, etc
 - Signature with appendix: ElGamal, DSA, KCDSA, etc

Key exchange schemes

- Key transport: TA(Trusted Authority) generates and distributes key
- Key agreement: Diffie-Hellman key agreement

✤ All problems clear?

- ✓ New Problem : How to get the right peer's Public Key?
- ✓ Public key infrastructure (PKI) required
- ✓ Certificate is used to authenticate public key

PKC- History

- ✤ RSA scheme (1978)
 - R.L.Rivest, A.Shamir, L.Adleman, "A Method for Obtaining Digital Signatures and Public Key Cryptosystems", CACM, Vol.21, No.2, pp.120-126, Feb, 1978
- ✤ McEliece scheme (1978) : Linear coding
- ✤ Rabin scheme (1979) : Provable PKC
- ✤ Knapsack scheme (1979-): Merkle-Hellman, Chor-Rivest, etc.
- ElGamal scheme (1985)
- Elliptic Curve Cryptosystem (1985): Koblitz, Miller
- Non-Abelian group Cryptography (2000): Braid group

Comparison

O : Good X : Bad

	Symmetric	Asymmetric
Key relation	Enc. key = Dec. key	Enc. Key ≠ Dec. key
Enc. Key	Secret	Public, {Private}
Dec. key	Secret	Private, {Public}
Algorithm	Classified Open	Open
Example	SKIPJACK AES	RSA
Key Distribution	Required (X)	Not required (O)
Number of key	Many (X)	Small (O)
Performance	Fast(O)	Slow(X)