Week 7: Cryptanalysis

Block Cipher - Attack Scenarios

\square Attacks on encryption schemes
$>$ Ciphertext only attack: only ciphertexts are given
$>$ Known plaintext attack: (plaintext, ciphertext) pairs are given
> Chosen plaintext attack: (chosen plaintext, corresponding ciphertext) pairs
> Adaptively chosen plaintext attack
$>$ Chosen ciphertext attack: (chosen ciphertext, corresponding plaintext) pairs
> Adaptively chosen ciphertext attack

Plaintext

Ciphertext

Cryptanalysis of Block Ciphers

Statistical Cryptanalysis
$>$ Differential cryptanalysis (DC)
$>$ Linear Cryptanalysis (LC)
$>$ Various key schedule cryptanalysis
\square Algebraic Cryptanalysis
> Interpolation attacks, etc.
\square Side Channel Cryptanalysis
$>$ timing attacks
> differential fault analysis
$>$ differential power analysis, etc.

Differential Cryptanalysis

Cryptanalysis of Block Ciphers - DC

> Differential Cryptanalysis
\checkmark E. Biham and A. Shamir: Crypto90, Crypto92
\checkmark Chosen plaintext attack, O (Breaking DES $_{16} \sim 2^{47}$)
\checkmark Look for correlations in Round function input and output (DES : $\mathbf{2}^{47}$)

- high-probability differentials, impossible differentials
- truncated differentials, higher-order differentials
* E.Biham, A. Shamir,"Differential Cryptanalysis of the Data Encryption Standard", Springer-Verlag, 1993

DC on DES

$\checkmark\{E, P, I P\}$: (Discard linear components(IP, FP)

- Properties of $\mathrm{XOR}\left(\mathrm{X}^{\prime}=\mathrm{X} \oplus \mathrm{X}^{*}\right)$
$>P(X))^{\prime}=P(X) \oplus P\left(X^{*}\right)=P\left(X^{\prime}\right)$
$>X O R:(X \oplus Y)^{\prime}=(X \oplus Y) \oplus\left(X^{*} \oplus Y^{*}\right)=X^{\prime} \oplus Y^{\prime}$
$>$ Mixing key : $(X \oplus K)^{\prime}=(X \oplus K) \oplus\left(X^{*} \oplus K\right)=X^{\prime}$
$>$ Differences(=xor) are linear in linear operation and in particular the result is key independent.

XOR Distribution Table

$$
\text { . } X^{\prime}=\{0,1, \ldots 63\}, Y^{\prime}=\{0,1, \ldots 15\}
$$

- For a given S-box, pre-compute the number of count of X '
and

$$
Y^{\prime} \text { in a table }
$$

* \% of entry in DES S-boxes : 75~80\%

XOR Distribution Table of S4 box

Input	Output $\times \mathrm{OR}$															
$\times \mathrm{OR}$	$0 \times$	$1 \times$	$2 \times$	$3 \times$	$4 \times$	$5 \times$	$6 \times$	$7 \times$	$8 \times$	$9 \times$	Ax	$\mathrm{B} \times$	$\mathrm{C} \times$	D \times	E×	F×
$0 \times$	64	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \times$	0	0	0	0	0	16	16	0	0	16	16	0	0	0	0	0
$2 \times$	0	0	0	8	0	4	4	8	0	4	4	8	8	8	8	0
$3 \times$	8	6	2	0	2	4	8	2	6	0	4	6	0	6	2	8
$4 \times$	0	0	0	8	0	0	12	4	0	12	0	4	8	4	4	8
$5 x$	4	2	2	8	2	12	0	2	2	0	12	2	8	2	2	4
$6 \times$	0	8	8	4	8	8	0	0	8	0	8	0	4	0	0	8
$7 \times$	4	2	6	4	6	0	16	6	2	0	0	2	4	2	6	4
$8 \times$	0	0	0	4	0	8	4	8	0	4	8	8	4	8	8	0
$9 \times$	8	4	4	4	4	0	8	4	4	0	0	4	4	4	4	8
Ax	0	6	6	0	6	4	4	6	6	4	4	6	0	6	6	0
$B \times$	0	12	0	8	0	0	0	0	12	0	0	12	8	12	0	0
C×	0	0	0	4	0	8	4	8	0	4	8	8	4	8	8	0
D \times	8	4	4	4	4	0	0	4	4	8	0	4	4	4	4	8
Ex	0	6	6	4	6	0	4	6	6	4	0	6	4	6	6	0
F×	0	6	6	4	6	4	0	6	6	0	4	6	4	6	6	0
$10 \times$	0	0	0	0	0	8	12	4	0	12	8	4	0	4	4	8
$11 \times$	4	2	2	16	2	4	0	2	2	0	4	2	16	2	2	4
$12 \times$	0	0	0	8	0	4	4	8	0	4	4	8	8	8	8	0
$13 \times$	8	2	6	0	6	4	0	6	2	8	4	2	0	2	6	8
$14 \times$	0	8	8	0	8	0	8	0	8	8	0	0	0	0	0	16
$15 x$	8	4	4	0	4	8	0	4	4	0	8	4	0	4	4	8
$16 \times$	0	8	8	4	8	8	0	0	8	0	8	0	4	0	0	8
$17 \times$	4	6	2	4	2	0	0	2	6	16	0	6	4	6	2	4
$18 \times$	0	8	8	8	8	4	0	0	8	0	4	0	8	0	0	8
$19 \times$	4	4	4	0	4	4	16	4	4	0	4	4	0	4	4	4
1AX	0	6	6	4	6	0	4	6	6	4	0	6	4	6	6	0
$1 \mathrm{~B} \times$	0	6	6	4	6	4	0	6	6	0	4	6	4	6	6	0
$1 \mathrm{C} \times$	0	8	8	8	8	4	0	0	8	0	4	0	8	0	0	8
$1 \mathrm{D} \times$	4	4	4	0	4	4	0	4	4	16	4	4	0	4	4	4
1Ex	0	6	6	0	6	4	4	6	6	4	4	6	0	6	6	0
1FX	0	0	12	8	12	0	0	12	0	0	0	0	8	0	12	0

Differential Characteristic

2-round characteristic in S_{1} box $\quad\left(0 C_{x}-->E_{x}\right.$ with $14 / 64$)

$60_{\mathrm{x}}\left(0110_{\mathrm{b}}\right)$ after EXP $->0 \mathrm{C}_{\mathrm{x}}=001100_{\mathrm{b}}$ to S1-box
$\rightarrow 1110^{b}\left(E_{x}\right)$ after $P \quad->00808200_{x}$

Searching Way for roundæo keys

(1) Choose suitable Plaintext (Pt) XOR.
(2) Get 2 Pts for a chosen Pt and obtain the corresponding Ct by encryption
(3) From Pt XOR and pair of Ct , get the expected output XOR for the S-boxes of final round.
(4) Count the maximum potential key at the final round using the estimated key
(5) Right key is a subkey of having large number of pairs of expected output XOR

Iterative Characteristic

Self-concatenating probability
 Best iterative char. of DES

Linear Cryptanalysis

Cryptanalysis of Block Ciphers - LC

> Linear Cryptanalysis
\checkmark Matsui : Eurocrypt93, Crypto94
\checkmark Known Plaintext Attack, O(Breaking DES ${ }_{16}$) ~ $\mathbf{2 4 3}^{43}$
\checkmark Look for correlations between key and cipher input and output

- linear approximation, non-linear approximation,
- generalized I/O sums, partitioning cryptanalysis
* M. Matsui, "Linear Cryptanalysis Method for DES Cipher", Proc. of Eurocrypt'93,LNCS765, pp.386-397

Basic principle of LC

(Goal) : Find linear approximation

$$
P\left[i_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{a}}\right] \oplus C\left[\mathrm{j}_{1}, \mathrm{j}_{2}, \ldots, \mathrm{j}_{\mathrm{b}}\right]=\mathrm{K}\left[\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{c}}\right]
$$

with significant prob. $p(\neq 1 / 2)$
where $A[i, j, \ldots, k]=A[i] \oplus A[j] \oplus \ldots \oplus A[k]$
(Algorithm)MLE(Maximum Likelihood Estimation)
(Step 1) For given P and C , compute $\mathrm{X}=\mathrm{P}\left[\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{a}\right] \oplus$
$C\left[j_{1}, j_{2}, \ldots, j_{b}\right]$, let $N=$ \# of Pt given,
(Step 2) if $|X=0|>N / 2$ then $K\left[k_{1}, k_{2}, \ldots, K_{c}\right]=0$ else 1.
if $|X=0|<N / 2$ then $K\left[k_{1}, k_{2}, \ldots, k_{d}\right]=1$ else 0 .

Linear Distribution Table(I)

\bullet For a S-box $S_{a},(a=1,2, \ldots, 8)$ of DES
$N S_{a}(\alpha, \beta)=\#\{x \mid 0 \leq x<64$, parity $(x \cdot \alpha)=\operatorname{parity}(S(x) \bullet \beta)\}$
$1 \leq \alpha \leq 63,1 \leq \beta \leq 15, \bullet:$ dot product (bitwise AND)
$\rightarrow E x) \mathrm{NS}_{5}(16,15)=12$
\checkmark The 5 -th input bit at S5-box is equal to the linear sum of 4 output bits with probability 12/64.
$\checkmark X[15] \oplus F(X, K)[7,18,24,29]=K[22]$ with 0.19
$\checkmark X[15] \oplus F(X, K)[7,18,24,29]=K[22] \oplus 1$ with 1-0.19=0.81
(Note) least significant at the right and index 0 at the least significant bit (Little endian)

Linear Distribution Table(II)

- $\mathrm{NS}_{\mathrm{a}}(\alpha, \beta)$ has even values.
- If $\alpha=1,32\left(20_{x}\right), 33\left(21_{x}\right)$,
$\mathrm{NS}_{\mathrm{a}}(\alpha, \beta)=32$
- $\mathrm{NS}_{\mathrm{a}}(\alpha, \beta)$ varies from 0 to 64

Linear Distribution Table(III) part of S5 box

3-round DES by LC

* ignore IP and FP like DC

Piling-up lemma in LC

- If independent prob. value, X_{i} 's ($1 \leq \mathrm{i} \leq \mathrm{n}$) have prob p_{i} to value $0,\left(1-p_{i}\right)$ to value 1 ,

$$
\begin{aligned}
p & =\left\{\operatorname{Pr}\left(X_{1} \oplus X_{2} \oplus \ldots \oplus X_{n}\right)=0\right\} \\
& =2^{n-1} \Pi_{i=1}^{n}\left(p_{i}-1 / 2\right)+1 / 2 .
\end{aligned}
$$

- \# of known pt req'd for LC with success prob. 97.7% is $|p-1 / 2|^{-2}$

Variation of DC and LC

- Multiple LC : Kaliski \& Robshaw [CR94]
- Differential-Linear Cryptanalysis : Langford \& Hellman [CR94]
- Nonlinear Approximation in LC : Knudsen [EC96]
- Partitioning Cryptanalysis : Harpes \& Massey [FSE97]
- Interpolation Attack : Jakobsen \& Knudsen [FSE97]
- Differential Attack with Impossible Characteristics : Biham [EC99], etc.
- Related-key Attack : Kelsey, Schneier, Wagner [CR96]
- Boomerang Attack : Wagner[FSE99]
- Amplified Boomerang Attack : Kelsey, Kohno \& Schneier[FSE00]

Side Channel Attack

Side Channel Attack
Cryptographic device

Side Channel

Traditional Cryptographic Model vs. Side Channel

Power Consumption / Timing / EM Emissions / Acoustic

Model of Attack -Embedded security

Old Model (simplified view):
-Attack on channel between communicating parties -Encryption and cryptographic operations in black boxes -Protection by strong mathematic algorithms and protocols -Computationally secure

New Model (also simplified view):
-Attack channel and endpoints
-Encryption and cryptographic operations in gray boxes -Protection by strong mathematic algorithms and protocols
-Protection by secure implementation
Need secure implementations not only algorithms

Concept: Origin

- Due to instruction which is executed
- Due to the date which is processed
- Due to some physical effects which are often not well understood, often called noise

Classifications

- Active vs. Passive
\checkmark Active: Power glitches or laser pulses
\checkmark Passive: EM-radiation
- Invasive vs. Non-invasive
\checkmark Invasive: bus probing
\checkmark Non-Invasive: Power measurements
- Side Channel: passive and non-invasive
\checkmark Very difficult to detect
\checkmark Often cheap to set-up
\checkmark Mostly: need lots of measurements
- Analysis capability
\checkmark "Simple" attacks: one measurements-visual inspection
\checkmark "Differential" and "Higher" Multiple measurements-signal processing

Attacking Scenario

The lab - measurement setup

- Cryptographic device under attack
- Probe, measurement circuit
- Power supply, Pattern generator
- Control and analysis software
- Oscilloscope
- PC

Power Analysis: Measurement setup (1)

Power Analysis: Measurement setup (2)

Probe / Measurement circuit

- An oscilloscope can only measure voltage
- Current flow needs to be transformed into a proportional voltage signal
- Simple resistor in series (Ohm's law: $U=R \times I$)
- Measure voltage drop over the resistor
- Current probe (Current flow -> electric field)

- Dedicated measurement circuit in the design

Timing Analysis

- Paul C. Kocher, "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems", Advances in Cryptology - CRYPTO '96, Springer-Verlag, 1996 , LNCS , Vol. 1109, pp. 104-113.
- Cryptosystems can take different amounts of time to process different inputs.
- Performance optimizations in software
- Branching/conditional statements
- Caching in RAM
- Variable length instructions (multiply, divide)
- Countermeasures
- Make all operations run in same amount of time
- Set all operations by the slowest one
- Add random delays
- Blind signature technique

Power Analysi

- Paul C. Kocher and Joshua Jaffe and Benjamin Jun "Differential Power Analysis", Advances in Cryptology -CRYPTO '99, Springer-Verlag, 1999 , LNCS , Vol. 1666 , pp.388-397
- The power consumed by a cryptographic device was analyzed during the processing of the cryptographic operation
- Simple Power Analysis
- Differential Power Analysis
- Countermeasures

- Don't use secret values in conditionals/loops
- Ensure little variation in power consumption between instructions
- Reducing power variations (shielding, balancing)
- Randomness (power, execution, timing) + counters on card
- Algorithm redesign (non-linear key update, blinding)
- Hardware redesign (decouple power supply, gate level design)

Understand DPA http://www.cryptography.com/

SPA on AES : \# of Round?

- What is the keylength of this AES implementation?

How DPA works?

- Obtain sufficient number (n) of measurements
- In general: uniform, random inputs; fixed, unknown key k
- Choose an appropriate intermediate result
- Preferably only a few bits involved (e.g. for AES the bytes are processed separately until the first MixCol operation)
- Preferably high diffusion within these bits
- Preferably after a non-linear transformation (e.g. Sbox)
- For each key hypothesis k':
- based on known plain-/ciphertext and key hypothesis k', predict the intermediate result for each measurement
- Apply a statistical test to reject/verify the key hypothesis
- Here: difference of means

Algorithm to find 1-bit

8bit AES in SW
Classical 1-bit DPA

EM Emissions

- D. Agrawal and B. Archambeault and J. R. Rao and P. Rohatgi
"The EM Side-Channel(s)", Cryptographic Hardware and Embedded Systems - CHES 2002, Springer-Verlag, 2003, LNCS , Vol. 2523 , pp.29-45
- EM side channels include a higher variety of information and can be additionally applied from a certain distance. (e.g, GPS jamming by N. Korea in 2011)
- Countermeasures
- Redesign circuits
- Shielding
- EM noise

Acoustic Analys:

>Keyboard Acoustic Emanations, Dmitri Asonov and Rakesh Agrawal, IBM Almaden Research Center, 2004.
> Acoustic cryptanalysis - On noisy people and noisy machines by Adi Shamir and Eran Tromer

