Week 7: Cryptanalysis

Block Cipher – Attack Scenarios

□ Attacks on encryption schemes

- > Ciphertext only attack: only ciphertexts are given
- > Known plaintext attack: (plaintext, ciphertext) pairs are given
- > Chosen plaintext attack: (chosen plaintext, corresponding ciphertext) pairs
- > Adaptively chosen plaintext attack
- > Chosen ciphertext attack: (chosen ciphertext, corresponding plaintext) pairs
- > Adaptively chosen ciphertext attack

Cryptanalysis of Block Ciphers

Statistical Cryptanalysis

- Differential cryptanalysis (DC)
- Linear Cryptanalysis (LC)
- Various key schedule cryptanalysis
- □ Algebraic Cryptanalysis
 - Interpolation attacks, etc.
- □ Side Channel Cryptanalysis
 - timing attacks
 - differential fault analysis
 - > differential power analysis, etc.

Differential Cryptanalysis

Cryptanalysis of Block Ciphers - DC

- Differential Cryptanalysis
 - ✓ E. Biham and A. Shamir : Crypto90, Crypto92
 - \checkmark Chosen plaintext attack, O(Breaking DES₁₆ ~ 2⁴⁷)

- high-probability differentials, impossible differentials
- truncated differentials, higher-order differentials

* E.Biham, A. Shamir,"Differential Cryptanalysis of the Data Encryption Standard", Springer-Verlag, 1993

Statistically non-uniform probability distribution: higher prob. for some fixed pattern $\Delta X \& \Delta Y$

DC on DES

- \$\E,P,IP\$: (Discard linear components(IP, FP)
- Properties of XOR (X' = $X \oplus X^*$)
 - $\succ \mathsf{P}(\mathsf{X}))' = \mathsf{P}(\mathsf{X}) \oplus \mathsf{P}(\mathsf{X}^*) = \mathsf{P}(\mathsf{X}')$
 - $\succ \mathsf{XOR} : (\mathsf{X} \oplus \mathsf{Y})' = (\mathsf{X} \oplus \mathsf{Y}) \oplus (\mathsf{X}^* \oplus \mathsf{Y}^*) = \mathsf{X}' \oplus \mathsf{Y}'$
 - > Mixing key : $(X \oplus K)' = (X \oplus K) \oplus (X^* \oplus K) = X'$
 - Differences(=xor) are linear in linear operation and in particular the result is <u>key</u> <u>independent</u>.

XOR Distribution Table

XOR Distribution Table of S4 box

Input	Output XOR															
XOR	0×	1×	2×	3×	4×	5×	6×	7×	8×	9x	A×	В×	C×	D×	Ε×	F×
0×	64	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \times$	0	0	0	0	0	16	16	0	0	16	16	0	0	0	0	0
2×	0	0	0	8	0	4	4	8	0	4	4	8	8	8	8	0
З×	8	6	2	0	2	4	8	2	6	0	4	6	0	6	2	8
$4 \times$	0	0	0	8	0	0	12	4	0	12	0	4	8	4	4	8
5×	4	2	2	8	2	12	0	2	2	0	12	2	8	2	2	4
6×	0	8	8	4	8	8	0	0	8	0	8	0	4	0	0	8
$7 \times$	4	2	6	4	6	0	16	6	2	0	0	2	4	2	6	4
8×	0	0	0	4	0	8	4	8	0	4	8	8	4	8	8	0
9×	8	- 4	4	4	4	0	8	4	4	0	0	4	4	4	4	8
A×	0	6	6	0	6	4	4	6	6	4	4	6	0	6	6	0
В×	0	12	0	8	0	0	0	0	12	0	0	12	8	12	0	0
C×	0	0	0	4	0	8	4	8	0	4	8	8	4	8	8	0
D×	8	4	4	4	4	0	0	4	4	8	0	4	4	4	4	8
E×	0	6	6	4	6	0	- 4	6	6	4	0	6	4	6	6	0
F×	0	6	6	4	6	4	0	6	6	0	4	6	4	6	6	0
10×	0	0	0	0	0	8	12	4	0	12	8	4	0	4	4	8
11×	4	2	2	16	2	4	0	2	2	0	4	2	16	2	2	4
12×	0	0	0	8	0	4	4	8	0	4	4	8	8	8	8	0
13×	8	2	6	0	6	- 4	0	6	2	8	4	2	0	2	6	8
$14 \times$	0	8	8	0	8	0	8	0	8	8	0	0	0	0	0	16
15×	8	- 4	4	0	4	8	0	4	4	0	8	4	0	4	4	8
16×	0	8	8	4	8	8	0	0	8	0	8	0	4	0	0	8
17×	4	6	2	4	2	0	0	2	6	16	0	6	4	6	2	4
18×	0	8	8	8	8	4	0	0	8	0	4	0	8	0	0	8
19×	4	- 4	4	0	4	4	16	4	4	0	4	4	0	4	4	4
1A×	0	6	6	4	6	0	4	6	6	4	0	6	4	6	6	0
1B×	0	6	6	4	6	4	0	6	6	0	4	6	4	6	6	0
1C×	0	8	8	8	8	4	0	0	8	0	4	0	8	0	0	8
1D×	4	4	4	0	4	4	0	4	4	16	4	4	0	4	4	4
1E×	0	6	6	0	6	4	4	6	6	4	4	6	0	6	6	0
1F×	0	0	12	8	12	0	0	12	0	0	0	0	8	0	12	0

•2-round characteristic in S_1 box ($0C_x \rightarrow E_x$ with 14/64)

 60_x (0110_b) after EXP -> 0C_x=001100_b to S1-box →1110_b (E_x) after P -> 00808200_x

Searching Way for round reference with the search of the s

- (1) Choose suitable Plaintext (Pt) XOR.
- (2) Get 2 Pts for a chosen Pt and obtain the corresponding Ct by encryption
- (3) From Pt XOR and pair of Ct, get the expected output XOR for the S-boxes of final round.
- (4) Count the maximum potential key at the final round using the estimated key
- (5) Right key is a subkey of having large number of pairs of expected output XOR

Iterative Characteristic

Self-concatenating probability
Best iterative char. of DES

Linear Cryptanalysis

Cryptanalysis of Block Ciphers - LC

- Linear Cryptanalysis
 - ✓ Matsui : Eurocrypt93, Crypto94
 - \checkmark Known Plaintext Attack, O(Breaking DES₁₆) ~ 2⁴³

- linear approximation, non-linear approximation,
- generalized I/O sums, partitioning cryptanalysis

* M. Matsui, "Linear Cryptanalysis Method for DES Cipher", Proc. of Eurocrypt'93, LNCS765, pp.386-397

Linear equation between some bits of X, Y and K may hold with higher prob. than others

Basic principle of LC

(Goal) : Find linear approximation $P[i_1, i_2, ..., i_n] \oplus C[i_1, i_2, ..., i_n] = K[k_1, k_2, ..., k_n]$ with significant prob. p ($\neq \frac{1}{2}$) where $A[i,j,...,k] = A[i] \oplus A[i] \oplus ... \oplus A[k]$ (Algorithm)MLE(Maximum Likelihood Estimation) (Step 1) For given P and C, compute $X=P[i_1,i_2,...,i_n] \oplus$ $C[j_1, j_2, ..., j_h]$, let N = # of Pt given, (Step 2) if |X=0| > N/2 then $K[k_1, k_2, ..., K_c] = 0$ else 1. if |X=0| < N/2 then $K[k_1, k_2, ..., k_c] = 1$ else 0.

◆For a S-box S_a,(a=1,2,...,8) of DES NS_a(α , β)= #{x | 0 ≤ x < 64, parity(x• α) = parity(S(x)• β)}

 $1 \le \alpha \le 63$, $1 \le \beta \le 15, \bullet$: dot product (bitwise AND)

◆Ex) NS₅(16,15) =12

- ✓ The 5-th input bit at S5-box is equal to the linear sum of 4 output bits with probability 12/64.
- ✓ X[15] ⊕ F(X,K)[7,18,24,29]=K[22] with 0.19
- ✓ X[15] \oplus F(X,K)[7,18,24,29]=K[22] \oplus 1 with 1-0.19=0.81

(Note) least significant at the right and index 0 at the least significant bit (Little endian)

- $NS_a(\alpha, \beta)$ has even values.
- If $\alpha = 1,32(20_x), 33(21_x),$
- $NS_a(\alpha, \beta)=32$
- $NS_a(\alpha, \beta)$ varies from 0 to 64

Linear Distribution Table(III) – part of S5 box

A complete table tells us that equation (4) is the most effective linear approximation in all S-boxes (i.e. $|NS_s(\alpha, \beta) - 32|$ is maximal); therefore, equation (5) is the best approximation of F-function.

The following Lemma is now trivial from the definition of S-boxes.

Lemma 1

- (1) $NS_{a}(\alpha, \beta)$ is even.
- (2) If $\alpha = 1, 32$ or 33, then $NS_{*}(\alpha, \beta) = 32$ for all S_{*} and β .

P.C.C.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 222 223 24 25 26 27 28 29 30 31			เชื่อตุณนี้ยื่อหนึ่งคนห้ออตอกนี้คอนี้ตุณต่น	under and on the on the only on the only on the	00000000000000000000000000000000000000	044490044440044490044490944490	00404006604111104484800804040400404040	00000000000000000000000000000000000000	งหน่งของอ่ออน่งจะห่งออนไทย่างจะ	00000000000000000000000000000000000000	ohowohnaonnaanoo hunawnahohoo ho	0 WANNAOGNNNBOGNNGOBANNOANNNGAANNO	004NN9N000NN4AAA9N99984499084990	004000000000000000000000000000000000000	okasooshasoosoosoosoosooshasoosoosoo

3-round DES by LC

(1) \oplus (2) => X₂[7,18,24,29] \oplus C_H[7,18,24,29] \oplus C_L[15] \oplus X₂[7,18,24,29] \oplus P_H[7,18,24,29] \oplus P_L[15] = K₁[22] \oplus K₃[22] with prob. = (p₁ * p₃) + (1 - p₁) *(1-p₃)

* ignore IP and FP like DC

Piling-up lemma in LC

- If independent prob. value, X_i 's ($1 \le i \le n$) have prob p_i to value 0, $(1-p_i)$ to value 1, $p = \{ Pr(X_1 \oplus X_2 \oplus ... \oplus X_n) = 0 \}$ $= 2^{n-1} \prod_{i=1}^{n} (p_i - 1/2) + 1/2.$
- # of known pt req'd for LC with success
 prob. 97.7% is |p 1/2|⁻²

Variation of DC and LC

- Multiple LC : Kaliski & Robshaw [CR94]
- Differential-Linear Cryptanalysis : Langford & Hellman [CR94]
- Nonlinear Approximation in LC : Knudsen [EC96]
- Partitioning Cryptanalysis : Harpes & Massey [FSE97]
- Interpolation Attack : Jakobsen & Knudsen [FSE97]
- Differential Attack with Impossible Characteristics : Biham [EC99], etc.
- Related-key Attack : Kelsey, Schneier, Wagner [CR96]
- Boomerang Attack : Wagner[FSE99]
- Amplified Boomerang Attack : Kelsey, Kohno & Schneier[FSE00]

Side Channel Attack

Side Channel

Traditional Cryptographic Model vs. Side Channel

Model of Attack -Embedded security

Old Model (simplified view):

-Attack on channel *between* communicating parties -Encryption and cryptographic operations in *black* boxes -Protection by strong mathematic algorithms and protocols -Computationally secure

New Model (also simplified view): -Attack channel and endpoints -Encryption and cryptographic operations in gray boxes -Protection by strong mathematic algorithms and protocols -Protection by secure implementation

Need secure implementations not only algorithms

Concept: Origin

- Due to instruction which is executed
- Due to the date which is processed
- Due to some physical effects which are often not well understood, often called noise

Classifications

Active vs. Passive

- ✓ Active: Power glitches or laser pulses
- ✓ Passive: EM-radiation

Invasive vs. Non-invasive

- ✓ Invasive: bus probing
- ✓ Non-Invasive: Power measurements
- Side Channel: passive and non-invasive
 - ✓ Very difficult to detect
 - ✓ Often cheap to set-up
 - ✓ Mostly: need lots of measurements

Analysis capability

- ✓ "Simple" attacks: one measurements-visual inspection
- "Differential" and "Higher" Multiple measurements-signal processing

Attacking Scenario

Power Analysis: Measurement setup (1)

Power Analysis: Measurement setup (2)

The lab – measurement setup

- · Cryptographic device under attack
- Probe, measurement circuit
- · Power supply, Pattern generator
- Control and analysis software
- Oscilloscope
- PC

Probe / Measurement circuit

- · An oscilloscope can only measure voltage
 - Current flow needs to be transformed into a proportional voltage signal
- Simple resistor in series (Ohm's law: U = R x I)
 - Measure voltage drop over the resistor
- Current probe (Current flow -> electric field)

· Dedicated measurement circuit in the design

Devices under attack

Timing Analysis

- Paul C. Kocher, "Timing Attacks on Implementations of Diffie—Hellman, RSA, DSS, and Other Systems", Advances in Cryptology - CRYPTO '96, Springer-Verlag, 1996, LNCS, Vol. 1109, pp. 104-113.
- Cryptosystems can take different amounts of time to process different inputs.
 - Performance optimizations in software
 - Branching/conditional statements
 - Caching in RAM
 - Variable length instructions (multiply, divide)

Countermeasures

- Make all operations run in same amount of time
 - Set all operations by the slowest one
- Add random delays
- Blind signature technique

Power Analysi

- Paul C. Kocher and Joshua Jaffe and Benjamin Jun *"Differential Power Analysis"*, Advances in Cryptology -CRYPTO '99, Springer-Verlag, 1999, LNCS, Vol. 1666, pp.388-397
- The power consumed by a cryptographic device was analyzed during the processing of the cryptographic operation
 - Simple Power Analysis
 - Differential Power Analysis
- Countermeasures

- Don't use secret values in conditionals/loops
- Ensure little variation in power consumption between instructions
- Reducing power variations (shielding, balancing)
- Randomness (power, execution, timing) + counters on card
- Algorithm redesign (non-linear key update, blinding)
- Hardware redesign (decouple power supply, gate level design)

Understand DPA http://www.cryptography.com/

SPA on AES : # of Round?

 What is the keylength of this AES implementation?

How DPA works?

- Obtain sufficient number (n) of measurements
 - · In general: uniform, random inputs; fixed, unknown key k
- Choose an appropriate intermediate result
 - Preferably only a few bits involved (e.g. for AES the bytes are processed separately until the first MixCol operation)
 - · Preferably high diffusion within these bits
 - Preferably after a non-linear transformation (e.g. Sbox)
- For each key hypothesis k':
 - based on known plain-/ciphertext and key hypothesis k', predict the intermediate result for each measurement
 - · Apply a statistical test to reject/verify the key hypothesis
 - Here: difference of means

Algorithm to find 1-bit

Classical 1-bit DPA 8bit AES in SW Obtain n measurements: e.g. 100 8 bits of plaintext plaintext x_i , power trace $p_i(t)$, 8 bits of key $LSB(SBox(x_i \otimes k))$ Focus: S-box For each 8 output bits $k' \in \{0, \dots, 255\}$ key guess: LSB $LSB(SBox(x_i \otimes k'))$ Calculate: LSB = 0LSB = 1100 measurements * Collect measurements Collect measurements time window t^* Compute Mean0 Compute Mean1 256 key guesses Mean0 – Mean1 Maximum difference = best key guess!

EM Emissions

- D. Agrawal and B. Archambeault and J. R. Rao and P. Rohatgi
 "The EM Side-Channel(s)", Cryptographic Hardware and Embedded Systems CHES 2002, Springer-Verlag, 2003, LNCS, Vol. 2523, pp.29-45
- EM side channels include a higher variety of information and can be additionally applied from a certain distance.
 (e.g, GPS jamming by N. Korea in 2011)

Countermeasures

- Redesign circuits
- Shielding
- EM noise

Acoustic Analysi

- Keyboard Acoustic Emanations, Dmitri Asonov and Rakesh Agrawal, IBM Almaden Research Center, 2004.
- Acoustic cryptanalysis On noisy people and noisy machines by Adi Shamir and Eran Tromer

