Week 3 :Classical & Mechanical Ciphers

When and how long it was begun? Why?

History of Cryptologic Research(1/3)

1900BC: Non-standard hieroglyphics

1500BC: Mesopotamian pottery glazes

50BC: Caesar cipher

1518 : Trithemius' cipher book

1558: Keys invented

1583 : Vigenere's book

1790: Jefferson wheel

1854 : Playfair cipher

1857 : Beaufort's cipher

1917 : Friedman's Riverbank Labs

1917 : Vernam one-time pads

Modern Cryptography

History of Cryptologic Research(2/3)

1919: Hegelin machines

1921: Hebern machines

1929: Hill cipher

1949; Shannon's Theory

1973: Feistel networks

1976 : Public key cryptography (Diffie-Hellman)

1977: DES

1978: RSA

1985 : ECC

1990 : Differential cryptanalysis

1994 : Linear cryptanalysis

1997 : Triple-DES

1998 ~ 2001 : AES

History of Cryptologic Research (3/3)

	Period	Features	Examples
Classical Cipher	ancient ~ 1920	Substitution Transposition (Easy & Simple)	Scytale, Caesar, Vigenere, Beaufort (USA)
Mechanical Cipher	1920 ~ 1950	Using rotor machine	Enigma (Germany in 2 nd WW) M-209 (USA in 2 nd WW)
Modern Crypto.	1950 ~ current	Shannon's theory Using computer (Difficult & Complicated)	DES, SEED, AES RSA, DH, ElGamal, ECC, DSA, KCDSA, etc

Classical Encryption Techniques

- ☐ Basic building blocks of all encryption techniques
 - > Substitution: replacement
 - > Transposition: relocation, permutation
- ☐ Transposition ciphers
 - > Rotor machines: Enigma, Purple
- ☐ Substitution ciphers
 - > Caesar cipher
 - > Monoalphabetic ciphers
 - > Playfair cipher
 - > Hill cipher
 - > Polyalphabetic ciphers: Vigenere cipher
 - > Vernam cipher/One-time pad: perfect cipher

Transposition Ciphers

- Scytale cipher
- Rotor machines
 - Enigma
 - Purple
 - M-209

Scytale (1/2)

Scytale (2/2)

$$\left(\begin{array}{c} a \\ b \\ c \end{array}\right) \begin{array}{c} c \\ d \\ c \end{array}\right) \begin{array}{c} d \\ d \\ d \end{array} \begin{array}{c} e \\ d \end{array} \begin{array}{c} f \\ e \end{array}$$

as bc cy dt ea fl ge

Why don't you try to encrypt your message using this cipher?
What is key?

Transposition Ciphers

- ☐ Rearrange characters of plaintext to produce ciphertext
- ☐ Frequency distribution of the characters is not changed by encryption
- **□** Example:

Encryption permutation

Decryption permutation

Enigma(German) vs. Purple (Japan)@WWII

Do you want to watch video of Engima?

Fig. 68. Stepping switch bank of the Japanese PURPLE machine

US Military classified the success of breaking Purple during WWII.

Kerckhoff's Principle

- **♦** Auguste Kerckhoff, 1883
 - > A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.
 - ➤ Eric Raymond extends this principle in support of open source software, saying "Any security software design that doesn't assume the enemy possesses the source code is already untrustworthy; therefore, never trust closed source".
 - ➤ The majority of civilian cryptography makes use of publicly-known algorithms. By contrast, ciphers used to protect classified government or military information are often kept secret . Why?

Lorenz SZ42 Cipher Machine

Substitution Ciphers

- Caesar ciphers
- Affine ciphers
- Hill cipher
- Monoalphabetic substitution cipher
- Homophonic substitution cipher
- Polyalphabetic substitution cipher
- Vigenere cipher
- One-time pad

Caesar Cipher (1/2)

Julius Caesar, the Roman emperor Also known as *shift cipher*

Mathematically assign unique number to each alphabet like below

0 1 2 3 4 5 6 7 8 9 10 ... 25

Caesar cipher:

Encryption : $C = E_K(M) = M + K \mod 26$

K = 3 e.g., $E_K(a) = d$

Decryption : $M = D_K(C) = C - K \mod 26$ K = 3

Caesar Cipher (2/2)

Define transformation as:

```
a b c d e f g h i j k ... z
D E F G H I J K L M N ... C
```

Encryption example

Weakness

- Key space is too short only 26 possible keys
- Brute force search

Example: Break "L ORYH BRX"

Design of Affine Cipher

Generalization of Caesar cipher

Encryption
$$C = E_K(M) = K_1M + K_2 \mod 26$$

$$gcd(K_1, 26) = 1$$

Decryption
$$M = D_K(C) = (C - K_2)K_1^{-1} \mod 26$$

Mathematical Term: Multiplicative inverse

Quiz: How many possible keys in affine cipher?

Breaking of Affine Cipher

Polyalphabetic Substitution Ciphers

Hide the frequency distribution by making multiple substitutions. Apply *d* different permutations.

$$\begin{split} m &= m_1, m_2, \dots, m_d, m_{d+1}, m_{d+2}, \dots, m_{2d}, \dots \\ E_K(m) &= \pi_1(m_1), \pi_2(m_2), \dots, \pi_d(m_d), \pi_1(m_{d+1}), \pi_2(m_{d+2}), \dots, \pi_d(m_{2d}), \dots \end{split}$$

Vigenère Ciphers

Multiple Caesar cipher

$$\begin{aligned} k &= (k_1, k_2, \dots, k_d), \left| k \right| = 26^d \\ c &= E_k (m_1, m_2, \dots, m_d) = (c_1, c_2, \dots, c_d) = m_i + k_i \text{ mod } 26 \text{ for } i = 1, \dots, d \\ m &= D_k (c_1, c_2, \dots, c_d) = (m_1, m_2, \dots, m_d) = c_i - k_i \text{ mod } 26 \text{ for } i = 1, \dots, d \end{aligned}$$

Beauford ciphers (used in US civil war)

$$\begin{aligned} k &= (k_1, k_2, \dots, k_d), \left| k \right| = 26^d \\ c &= E_k \left(m_1, m_2, \dots, m_d \right) = (c_1, c_2, \dots, c_d) = k_i - m_i \bmod 26 & \text{for } i = 1, \dots, d \\ m &= D_k \left(c_1, c_2, \dots, c_d \right) = (m_1, m_2, \dots, m_d) = k_i - c_i \bmod 26 & \text{for } i = 1, \dots, d \end{aligned}$$

Vigenère Ciphers

Plaintext this cryptosystemisnotsecure

Keyword SECURITYSECURITYSEC ITYSEC

Ciphertext LLKMTZRNLSUSJBXKAWPIKAXAMVG

One-time Pad (Vernam cipher)

- Use a random key as long as the message size and use the key
 - only once
- Unbreakable
 - Since ciphertext bears no statistical relationship to the plaintext
 - Since for any plaintext & any ciphertext there exists a key mapping one to other
- Have the problem of safe distribution of key
 - Ex) Binary alphabet

P: o n e t

P': 01101111 01101110 01100101 01110100 01101001

K: 01011100 01010001 11100000 01101001 01111010

Perfect Cipher : p(x|y) = p(x) for all $x \in P$, $y \in C_{\infty}$ Impossible COA

One-time pad of Russian origin, small enough to fit in the palm of a hand. The typewritten numbers have figures in Russian style.

Product Ciphers

- Shannon
- Mixing Transformation
- SP Network
- Feistel Network

Shannon's Idea (1/2)

- ◆ C. Shannon, "Communication Theory for Secrecy Systems", 1949
 - Compose different kind of simple and insecure ciphers to create complex and secure cryptosystems → called "product cipher"
 - **►** Incorporate confusion and diffusion
 - > Substitution-Permutation Network

http://www.bell-labs.com/news/2001/february/26/1.html
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html

Claude Shannon

Shannon's Idea (2/2)

◆Confusion (substitution):

- ➤ The ciphertext statistics should depend on the plaintext statistics in a manner too complicated to be exploited by the enemy cryptanalyst
- Makes relationship between ciphertext and key as complex as possible

◆Diffusion (permutation):

- ➤ Each digit of the plaintext should influence many digits of the ciphertext, and/or
- ➤ Each digit of the secret key should influence many digits of the the ciphertext.
- ➤ Dissipates statistical structure of plaintext over bulk of ciphertext

SP Network (1/2)

- **♦**Substitution-Permutation network
 - > Substitution (S-box) : secret key is used
 - > Permutation (P-box) : no secret key, fixed topology
- **♦**Provide Confusion and Diffusion
- **♦**S-P networks are expected to have
 - ➤ Avalanche property: a single input bit change should force the complementation of approximately half of the output bits
 - ➤ Completeness property: each output bit should be a complex function of every input bits
- **◆**Theoretical basis of modern block ciphers

SP Network(2/2)

How many rounds?

Using Cryptography

- ◆ Before modern crypto : limited usage
 - National security, diplomatic, military purpose
 - Researched by limited people (underground, closed)
 - Communication Security
- Current crypto: widely open, standardize
 - Research and development by anyone
 - Network Security, Computer Security, Cyber Security
 - Protecting your personal data too