Week 3 :Classical \& Mechanical Ciphers

When and how long it was begun? Why?

History of Cryptologic Research(1/3)

1900BC : Non-standard hieroglyphics
1500BC : Mesopotamian pottery glazes 50BC : Caesar cipher
1518 : Trithemius' cipher book
1558 : Keys invented
1583 : Vigenere's book
1790 : Jefferson wheel
1854 : Playfair cipher
1857 : Beaufort's cipher
1917 : Friedman's Riverbank Labs
1917 : Vernam one-time pads

History of Cryptologic Research(2/3)

1919 : Hegelin machines
1921 : Hebern machines
1929 : Hill cipher

History of Cryptologic Research (3/3)

Classical Encryption Techniques

\square Basic building blocks of all encryption techniques
$>$ Substitution: replacement
$>$ Transposition: relocation, permutation

- Transposition ciphers
$>$ Rotor machines: Enigma, Purple
\square Substitution ciphers
> Caesar cipher
$>$ Monoalphabetic ciphers
$>$ Playfair cipher
$>$ Hill cipher
$>$ Polyalphabetic ciphers: Vigenere cipher
- Vernam cipher/One-time pad: perfect cipher

Transposition Ciphers

- Scytale cipher
- Rotor machines
- Enigma
- Purple
- M-209

Scytale (1/2)

Scytale (2/2)

$$
\begin{aligned}
& \left(\begin{array}{l|l|l|l|l|l|l|}
a & b & c & d & e & f \\
s & c & g \\
c & t & a & l & e \\
\hline
\end{array}\right. \\
& \text { as bc cy dt ea fl ge }
\end{aligned}
$$

Why don't you try to encrypt your message using this cipher?
What is key?

Transposition Ciphers

Rearrange characters of plaintext to produce ciphertext
\square Frequency distribution of the characters is not changed by encryption

Example:

Encryption permutation

1	2	3	4	5	6
3	5	1	6	4	2

Decryption permutation

1	2	3	4	5	6
3	6	1	5	2	4

plaintext	i n formations ecurity x y z a b
ciphertext	FR IMON I NA SOTUIETRCYAYBZX

Enigma（German）vs．Purple（Japan）＠WWII

Do you want to watch video of Engima？

山本五十六

US Military classified the success of breaking Purple during WWII．

Kerckhoff's Principle

- Auguste Kerckhoff, 1883
$>$ A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.
$>$ Eric Raymond extends this principle in support of open source software, saying "Any security software design that doesn't assume the enemy possesses the source code is already untrustworthy; therefore, never trust closed source".
$>$ The majority of civilian cryptography makes use of publiclyknown algorithms. By contrast, ciphers used to protect classified government or military information are often kept secret. Why ?

Lorenz SZ42 Cipher Machine

Substitution Ciphers

- Caesar ciphers
- Affine ciphers
- Hill cipher
- Monoalphabetic substitution cipher
- Homophonic substitution cipher
- Polyalphabetic substitution cipher
- Vigenere cipher
- One-time pad

Caesar Cipher (1/2)

Julius Caesar, the Roman emperor
Also known as shift cipher
Mathematically assign unique number to each alphabet like below

a	b	c	d	e	f	g	h	i	j	k	\ldots	z
0	1	2	3	4	5	6	7	8	9	10	\ldots	25

Caesar cipher :

$$
\begin{aligned}
\text { Encryption: } C & =\mathrm{E}_{\mathrm{K}}(M)=M+K \bmod 26 \\
K & =3 \quad \text { e.g., } \mathrm{E}_{\mathrm{K}}(a)=d
\end{aligned}
$$

Decryption : $M=\mathrm{D}_{\mathrm{K}}(\mathrm{C})=\mathrm{C}-K \bmod 26$ $K=3$

Caesar Cipher (2/2)

Define transformation as:

a	b	c	d	e	f	g	h	i	j	k	\ldots	z
D	E	F	G	H	I	J	K	L	M	N	\ldots	C

Encryption example

\mathbf{i}	\mathbf{n}	\mathbf{f}	\mathbf{o}	\mathbf{r}	\mathbf{m}	\mathbf{a}	\mathbf{t}	\mathbf{i}	\mathbf{o}	\mathbf{n}
\mathbf{L}	\mathbf{Q}	\mathbf{I}	\mathbf{R}	\mathbf{U}	\mathbf{P}	\mathbf{D}	\mathbf{W}	\mathbf{L}	\mathbf{R}	\mathbf{Q}

Weakness

- Key space is too short - only 26 possible keys
- Brute force search

Example: Break "L ORYH BRX"

Design of Affine Cipher

Generalization of Caesar cipher

Encryption

$$
\begin{aligned}
& C=E_{K}(M)=K_{1} M+K_{2} \bmod 26 \\
& \operatorname{gcd}\left(K_{1}, 26\right)=1
\end{aligned}
$$

Decryption

$$
M=D_{K}(C)=\left(C-K_{2}\right) K_{1}^{-1} \bmod 26
$$

Mathematical Term: Multiplicative inverse
Quiz: How many possible keys in affine cipher?

Breaking of Affine Cipher

Polyalphabetic Substitution Ciphers

Hide the frequency distribution by making multiple substitutions. Apply different permutations.

$$
\begin{aligned}
& m=m_{1}, m_{2}, \ldots, m_{d}, m_{d+1}, m_{d+2}, \ldots, m_{2 d}, \ldots \\
& E_{K}(m)=\pi_{1}\left(m_{1}\right), \pi_{2}\left(m_{2}\right), \ldots, \pi_{d}\left(m_{d}\right), \pi_{1}\left(m_{d+1}\right), \pi_{2}\left(m_{d+2}\right), \ldots, \pi_{d}\left(m_{2 d}\right), \ldots
\end{aligned}
$$

Vigenère Ciphers

- Multiple Caesar cipher
$k=\left(k_{1}, k_{2}, \ldots, k_{d}\right),|k|=26^{d}$
$c=E_{k}\left(m_{1}, m_{2}, \ldots, m_{d}\right)=\left(c_{1}, c_{2}, \ldots, c_{d}\right)=m_{i}+k_{i} \bmod 26$ for $i=1, \ldots, d$
$m=D_{k}\left(c_{1}, c_{2}, \ldots, c_{d}\right)=\left(m_{1}, m_{2}, \ldots, m_{d}\right)=c_{i}-k_{i} \bmod 26$ for $i=1, \ldots, d$
Beauford ciphers (used in US civil war)

$$
\begin{aligned}
& k=\left(k_{1}, k_{2}, \ldots, k_{d}\right),|k|=26^{d} \\
& c=E_{k}\left(m_{1}, m_{2}, \ldots, m_{d}\right)=\left(c_{1}, c_{2}, \ldots, c_{d}\right)=k_{i}-m_{i} \bmod 26 \text { for } i=1, \ldots, d \\
& m=D_{k}\left(c_{1}, c_{2}, \ldots, c_{d}\right)=\left(m_{1}, m_{2}, \ldots, m_{d}\right)=k_{i}-c_{i} \bmod _{18} 26 \text { for } i=1, \ldots, d
\end{aligned}
$$

Vigenère Ciphers

Plaintext thiscryptosystemisnotsecure Keyword SECUR I TYSECUR I TYSECUR I TYSEC Ciphertext LLKMTZRNLSUS J BXKAWP I KAXAMVG

One-time Pad (Vernam cipher)

* Use a random key as long as the message size and use the key only once
Unbreakable
* Since ciphertext bears no statistical relationship to the plaintext
* Since for any plaintext \& any ciphertext there exists a key mapping one to other
* Have the problem of safe distribution of key

Ex) Binary alphabet

Perfect Cipher : $p(x \mid y)=p(x)$ for all $x \in P, y \in C$ Impossible COA

Onestime pad of Rassian arigin, small enouph to fit in the palm of a hand. The typewritten numbers have figores in Ruseian atyle.

Product Ciphers

- Shannon
- Mixing Transformation
- SP Network
- Feistel Network

Shannon's Idea (1/2)

- C. Shannon, "Communication Theory for Secrecy Systems", 1949
$>$ Compose different kind of simple and insecure ciphers to create complex and secure cryptosystems \rightarrow called "product cipher"
$>$ Incorporate confusion and diffusion
>Substitution-Permutation Network
http://www.bell-labs.com/news/2001/february/26/1.html http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html

Claude Shannon

Shannon's Idea (2/2)

-Confusion (substitution) :
$>$ The ciphertext statistics should depend on the plaintext statistics in a manner too complicated to be exploited by the enemy cryptanalyst
$>$ Makes relationship between ciphertext and key as complex as possible

- Diffusion (permutation):
$>$ Each digit of the plaintext should influence many digits of the ciphertext, and/or
$>$ Each digit of the secret key should influence many digits of the the ciphertext.
$>$ Dissipates statistical structure of plaintext over bulk of ciphertext

SP Network (1/2)

-Substitution-Permutation network
$>$ Substitution (S-box) : secret key is used
$>$ Permutation (P-box) : no secret key, fixed topology
-Provide Confusion and Diffusion
S-P networks are expected to have
$>$ Avalanche property: a single input bit change should force the complementation of approximately half of the output bits
$>$ Completeness property: each output bit should be a complex function of every input bits
-Theoretical basis of modern block ciphers

SP Network(2/2)

How many rounds?

Using Cryptography

- Before modern crypto : limited usage
- National security, diplomatic, military purpose
- Researched by limited people (underground, closed)
- Communication Security
- Current crypto : widely open, standardize
- Research and development by anyone
- Network Security, Computer Security, Cyber Security
- Protecting your personal data too

