
Week 10 -11 : Public Key 

Cryptosystem and Digital 

Signatures 
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1. Public Key Encryptions 
RSA, ElGamal, 



RSA- PKC(1/3) 

 1st public key cryptosystem  
 R.L.Rivest, A.Shamir, L.Adleman, “A Method for Obtaining Digital 

Signatures and Public Key Cryptosystems”, CACM, Vol.21, No.2, 
pp.120-126,Feb,1978  

 Believed to be secure if IFP is hard and worldwide 
standard for last 30 years  
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Shamir Rivest Adleman 



RSA- PKC(2/3) 

  Key generation (KeyGen) 
 Select two large (1,024 bits or larger) primes p, q 
 Compute modulus n = pq, and (n) = (p-1)(q-1) 
 Pick an integer e relatively prime to (n), gcd(e, (n))=1  
 Compute d such that ed = 1 mod (n)  How?? 
 Public key (n, e) : public  
 Private key d : keep secret (may hold p and q securely.) 

 
  Encryption(Enc) / Decryption (Dec) 

 E: C = Me mod n  for 0 < M < n 
 D: M = Cd mod n  
 Proof)  Cd = (Me)d = Med = Mk(n) +1 = M {M(n)}k = M 
 

  Special Property 
 (Me mod n)d mod n = (Md mod n)e mod n for 0 < M < n 
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RSA as Trapdoor One-way 
Function 
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Message 

M 

Ciphertext 

C 

C = f(M) = Me mod n 

M = f-1(C) = Cd mod n 

Public key 

Private key 

(trapdoor information) 

n = pq (p & q: primes) 

ed = 1 mod (p-1)(q-1) 



RSA- PKC(3/3) 

• Key Generation 

– p=3, q=11 

– n = pq = 33, (n) =(p-1)(q-1) = 2 x10 = 20 

– e = 3 s.t. gcd(e, (n))=(3,20)=1 

– Choose d s.t. ed =1 mod (n), 3d = 1 mod 20, d=7 

– Public key ={e,n}={3,33},  private key ={d}={7} 

• Encryption 

– M =5 

– C = Me mod n = 53 mod 33 =26 

• Decryption  

– M =Cd mod n = 267 mod 33= 5  

6 



Exercise  

 Let’s practice  RSA key generation, encryption, and decryption  
1) p=5, q= 7(by hand calculation, Quiz!!)  if M= 3 

2) p=2,357, q=2,551 (using big number calculator) if M= 5,000 

3) p=885,320,963, q=238,855,417 (using big number calculator) 

    if M=10,000 

 

1. Key generation  

 

2. Encryption 

 

3. Decryption  
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Selecting Primes p and q  

  Idea: Prevent from feasible factorization  

 

1. |p|  |q| to avoid ECM (Elliptic Curve Method for 
factoring) 

 

2. p-q must be large to avoid trial division 

 

3. p and q are strong prime 
 p-1 has large prime factor r (Pollard’s p-1) 

 p+1 has large prime factor (William’s p+1) 

 r-1 has large prime factor (Cyclic attack) 
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Integer Factorization Problem (IFP) 
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 Problem: Given a composite number n, find its prime factors 
 
 
 
 
 
 
 Application: Used to construct RSA-type public key 
cryptosystems 

 
 (Probabilistic sub-exponential) Algorithms to solve IFP  

 Quadratic sieve  
 General Number Field Sieve  
 etc. 

easy 

Primes p, q  n = pq 
hard 



Quadratic Sieve (1/3) 

  Factor n (=pq)  using the quadratic sieve algorithm  
 

  Basic principle:  
Let n be an integer and suppose there exist integers x and y with  
x2 = y2 (mod n), but x ±y (mod n). Then gcd(x-y, n) gives a  
nontrivial factor of n. 

 
  Example 

Consider n=77 
72=-5 mod 77, 45=-32 mod 77 
72*45 = (-5)*(-32) mod 77 
23*34*5 = 25*5 mod 77 
92 = 22 mod 77 
gcd(9-2,77)=7, gcd(9+2,77)=11 
77=11*7  Factorization 
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Quadratic Sieve (2/3) 

 Example: factor n=3837523.  
 
Observe  

93982   = 55 x 19 (mod 3837523) 
190952  = 22 x 5 x 11 x 13 x 19 (mod 3837523)  
19642   = 32 x 133 (mod 3837523)  
170782  = 26 x 32 x 11 (mod 3837523)  

 
Then, we have  

(9398 x 19095 x 1964 x 17078)2 = (24x32x53x11x132x19)2 (mod 3837523) 
22303872 = 25867052 (mod 3837523) 
Compute gcd(2230387-2586705, 3837523) => 1093 (mod 3837523) 
3837523 / 1093 = 3511 (mod 3837523) 

 
3837523 = 1093 x 3511     Note that Verification is easy !! 
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Quadratic Sieve (3/3) 

1. Initialization: a sequence of quadratic residues 
Q(x)=(m+x)2-n is generated for small values of x where 
m=sqrt(n). 

2. Forming the factor base: the base consists of small primes. 
FB={-1,2,p1,p2,…,pt-1} 

3. Sieving: the quadratic residues Q(x) are factored using the 
factor base till t full factorizations of Q(x) have been 
found. 

4. Forming and solving the matrix: Find a linear combination 
of Q(x)’s which gives the quadratic congruence. The 
congruence gives a nontrivial factor of n with the 
probability ½. 

 
http://www.answers.com/topic/quadratic-sieve?cat=technology 
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General Number Field Sieve 
(GNFS) 

 
 Most efficient algorithm known for factoring integers 

larger than 100 digits. 

 Asymptotic running time: sub-exponential  
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• If =0, polynomial time algorithm 

• If >=1, exponential time algorithm 

• If 0<<1, sub-exponential time algorithm 



RSA Challenge 
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•MIPS : 1 Million Instruction Per Second for 1 yr = 3.1 x 1013 instruction.  

•*2:  576bit http://www.rsasecurity.com./rsalabs ,  768-bit by 2010 (published), 

• Expectation: 1,024-bit by 2018 !!!! 

Digits Year Algorithm 

RSA-100 

 

RSA-110 

 

RSA-120 

 

RSA-129 

 

RSA-130 

 

RSA-140 

 

RSA-155 

 

RSA-160 

 

RSA-174*2 

 

RSA-200 
 

‘91.4. 

 

‘92.4. 

 

‘93.6. 

 

‘94.4.(AC94) 

 

‘96.4.(AC96) 

 

‘99.2 (AC99) 

 

’99.8 

 

’03.1 

 

’03.12 

 

‘05.5 

7 

 

75 

 

830 

 

5,000 

 

? 

 

? 

 

8,000 

Q.S. 

 

Q.S 

 

Q.S. 

 

Q.S. 

 

NFS 

 

NFS 

 

GNFS 

 

Lattice Sieving+HW 

 

Lattice Sieving +HW 

 

GNFS+HW 

http://www.rsasecurity.com./rsalabs
http://www.rsasecurity.com./rsalabs
http://www.rsasecurity.com/rsalabs/challenges/factoring/rsa576.html
http://www.rsasecurity.com/rsalabs/challenges/factoring/rsa576.html
http://www.rsasecurity.com/rsalabs/challenges/factoring/rsa576.html


RSA-200 

• Date: Mon, 9 May 2005 18:05:10 +0200 (CEST)  

• From: Thorsten Kleinjung  

• Subject: rsa200  

• We have factored RSA-200 by GNFS.  

  

The factors are 
p=35324619344027701212726049781984643686711974001976\ 
25023649303468776121253679423200058547956528088349 and  

 
q=79258699544783330333470858414800596877379758573642\ 
19960734330341455767872818152135381409304740185467  
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http://www.loria.fr/~zimmerma/records/rsa200 

http://www.loria.fr/~zimmerma/records/rsa200
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Security of RSA(1/2)  

 Common Modulus attack: 

  If multiple entities share the same modulus n=pq with different pairs 
of (ei, di), this is not secure.  

     Do not share the same modulus! 

 

  Cryptanalysis: If the same message M was encrypted to different 
users 

   User u1 : C1 = Me1 mod n 

   User u2 : C2 = Me2 mod n  

   If gcd(e1,e2)=1, there are a and b s.t. ae1 + be2 = 1 mod n   then,   

   (C1)
a(C2)

b mod n = (Me1)a(Me2)b mod n = Mae1+be2 mod n  

    = M mod n 
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Security of RSA(2/2)  

Cycling attack  
If f(f( …f(M)))=f(M) where f(M) = Me mod n ? 
If a given ciphertext appears after some iterations, 
we can recover the plaintext at collusion point. 
 
e.g., Let C=Me mod n 
    If (((Ce)e)…)e mod n = Ce^k mod n = C,  
    then Ce^(k-1) mod n = M  for some k. 
 

  Multiplicative attack (homomorphic property of 
RSA)  
(M1

e) x (M2
e) mod n = (M1 x M2 )

e mod n  
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Security of PKC 

  Security goals  
 One-wayness (OW): the adversary who sees a ciphertext 

is not able to compute the corresponding message.   
 Indistinguishability (IND): observing a ciphertext, the 

adversary learns nothing about the plaintext. Also 
known as semantic security. 

 Non-malleability (NM): observing a ciphertext for a 
message m, the adversary cannot derive another 
ciphertext for a meaningful plaintext m’ related to m. 
 

Original RSA encryption is not secure since 
 IND: deterministic encryption 
 NM: for example, from c=me, c’ = 2ec = (2m)e is easily 

obtained. It cannot be used in bidding scenario.    
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Formal Definition of IND 
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m0, m1 
bR{0,1} 

PKE(pk, sk) 

Challenge: C=E(mb) 

Guess b? 

The adversary wins if he guesses b correctly with a 
probability significantly greater than ½.  



Security Def. of PKC 

 Assume the existence of Decryption Oracle 
 Mimics an attacker’s access to the decryption device  

 

 Attacking Method   
 Chosen Plaintext Attack (CPA): the adversary can encrypt any 

plaintext of his choice.  In PKC,  this is always possible. 
 

 Non-adaptive Chosen Ciphertext Attack (CCA1): the attacker 
has access to the decryption oracle before he sees a 
ciphertext that he wishes to manipulate (aka. lunchtime attack) 
 

 Adaptive Chosen Ciphertext Attack (CCA2): the attacker has 
access to the decryption oracle before and after he sees a 
ciphertext c that he wishes to manipulate (but, he is not 
allowed to query the oracle about the target ciphertext c.) 
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Making RSA to IND-CCA2 

 RSA encryption without padding 
 Deterministic encryption 

 Multiplicative property: m1
e m2

e = (m1m2)
e mod n 

 Many attacks possible 

 Redundancy checking is required 

  RSA encryption with OAEP 
 RSA encryption after OAEP (Optimal Asymmetric Encryption 

Padding) 

 Proposed by Bellare and Rogaway 

 Probabilistic encoding of message before encryption   

 RSA becomes a probabilistic encryption  

 Secure against IND-CCA2 
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RSA with OAEP 
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 OAEP  RSA encryption 

s=mG(r) 
t=rH(s) 

r=tH(s) 
m=sG(r) 

Encryption padding 

Decryption padding 

c=E(s,t) RSA encryption 

 RSA decryption  OAEP 

(s,t)=D(c) RSA decryption 

+ 

m r 

s t 

+ H 

G 

n-bit message l-bit random value 

G 

H 

Hash function 

(Random oracle) 

(Note) OAEP looks like a kind of Feistel network 

PKCS #1 v2.0, v2.1.. 



Diffie-Hellman / ElGamal-type 
Systems  

 Domain parameter generation 
 Based on the hardness of DLP  

 Generate a large (1,024 bits or larger) prime p 

 Find generator g that generates the cyclic group Zp
*  

 Domain parameter = {p, g} 

 

  Key generation  
 Pick a random integer x  [1, p-1] 

 Compute y = gx mod p 

 Public key (p, g, y) : public Private key x : keep secret 

 

  Applications 
 Public key encryption 

 Digital signatures 

 Key agreement 
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Discrete Logarithm Problem (DLP) 

 Problem:  
Given g, y, and prime p, find an integer x, if any, such that  
y = gx mod p (x=loggy) 

 

 

 

  

 Application: Used to construct Diffie-Hellman & ElGamal-type 
public key systems: DH, DSA, KCDSA … 

 
 Algorithms to solve DLP:  

  Shank’s Baby Step Giant Step  
  Index calculus  
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easy y = gx mod p 

hard 
x = logg y 

Given g, x, p 

Given g, y, p 



Shank’s Baby Step, Giant Step 
algorithm 
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 Problem: find an integer x, if any, such that y = gx mod p (x=loggy)    
 

 Algorithm  

 

pygg
Nkj

mod




1. Choose an integer   1 pN

2. Computes Njpg
j

0for   ,mod

3. Computes Nkpyg
Nk




0for   ,mod

4. Look for a match between the two lists. If a match is found,  

Then 
Nkjx

ggy




We solve the DLP. Nkjx 

Baby Step 

Giant Step 



Index Calculus (1/2) 

27 

 Problem: find an integer x, if any, such that y = gx mod p (x=loggy)    

 

 Algorithm  

1. Choose a factor base S = {p1,p2,…pm} 

      which are primes less than a bound B. 

2. Collect linear relations 
1. Select a random integer k and compute gk mod p  
2. Try to write gk as a product of primes in S 

 m o d ,    th en   lo g m o d 1i
ak

i i g i

ii

g p p k a p p  

3. Find the logarithms of elements in S solving the linear relations 

4. Find x 

 For a random r, compute ygr mod p and try to write it as a  

      product of primes in S.  

m o d ,    th en   lo g m o d 1i
br

i i g i

ii

yg p p x r b p p    



Index Calculus (2/2) 
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 Example: Let p=131, g=2, y=37. Find x=log237 mod 131 

 Solution 
Let B=10, S={2,3,5,7} 

21 = 2 mod 131 

28 = 53 mod 131 

212 = 5 * 7 mod 131 

214 = 32 mod 131 

234 = 3 * 52 mod 131 

1 = log22 mod 130  

8 = 3*log25 mod 130 

12= log25 + log27 mod 130 

14 = 2*log23 mod 130 

34 = log23 + 2*log25 mod 130 

log22 = 1 

log25 = 46   

log27 = 96   

log23 = 72 

37 * 243 = 3 * 5 * 7 mod 131 

Log237 = -43 + log23 + log25 + log27 mod 130 = 41  

241 mod 131 = 37 Solution :  

 Complexity of best known algorithm for solving DLP:  
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ElGamal Encryption Scheme 

 Keys & parameters 
 Domain parameter = {p, g} 
 Choose x  [1, p-1] and compute y = gx mod p 
 Public key (p, g, y) 
 Private key x 

 

  Encryption: m  (C1, C2) 
 Pick a random integer k  [1, p-1] 
 Compute C1 = gk mod p 
 Compute C2 = m  yk mod p 

 

  Decryption 
 m = C2  C1

-x mod p 
 C2  C1

-x = (m  yk)  (gk)-x = m  (gx)k  (gk)-x = m mod p 
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(Ex.) ElGamal Encryption Scheme 

  Key Generation 
 Let p=23, g=7 
 Private key x=9 
 Public key y = gx mod p = 79 mod 23 = 15 

 

  Encryption: m  (C1, C2) 
 Let m=20 
 Pick a random number k=3 
 Compute C1 = gk mod p = 73 mod 23 = 21 
 Compute C2 = m  yk mod p = 20  153 mod 23 = 20  17 mod 23 

= 18 
 Send (C1 ,C2) = (21,18) as a ciphertext 

 

  Decryption 
 m = C2 / C1

x mod p = 18 / 219 mod 23 = 18 / 17 mod 23 = 20 
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2. Digital Signatures   

 
RSA, ElGamal, DSA, KCDSA, Schnorr 

 



Digital Signature 

 When do you use Digital Signature?  

 Electronic version of handwritten signature on 
electronic document 

 Signing using private key (only by the signer) 

 Verification using public key (by everyone) 

 

 Hash then sign: sig(h(m)) 

 Efficiency in computation and communication  
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Requirement of DS 

 Security requirements for digital signature 
 Unforgeability (위조 방지)  

 User authentication (사용자 인증) 

 Non-repudiation (부인 방지) 

 Unalterability (변조 방지) 

 Non-reusability (재사용 방지) 

 

 Services provided by digital signature  
 Authentication 

 Data integrity 

 Non-Repudiation 
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Signing & Verification 

 Combine Hash with Digital Signature and use PKC 

 Provide Authentication and Non-Repudiation 

 (Ex.) RSA, ElGamal DSA, KCDSA, ECDSA, EC-KCDSA 
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Signature 

Sender’s 

Private  

Key 

Hash Algorithm 

Hash Hash Algorithm 

Hash Hash 

Sender’s 

Public 

Key 

SEND 

Signature 

Signature 

S
ig

n
in

g
 

V
e
rify

in
g

 



Security of Digital Signature 

 Forgery 
 Total break: adversary is able to find the secret for signing, so 

he can forge then any signature on any message. 
 Selective forgery: adversary is able to create valid signatures 

on a message chosen by someone else, with a significant 
probability.  

 Existential forgery: adversary can create a pair (message, 
signature), s.t. the signature of the message is valid. 

 Attacking 
 Key-only attack: Adversary knows only the verification 

function (which is supposed to be public).  
 Known message attack: Adversary knows a list of messages 

previously signed by Alice.  
 Chosen message attack: Adversary can choose what 

messages wants Alice to sign, and he knows both the 
messages and the corresponding signatures. 
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RSA-Signing 

 Key generation 
 Choose two large (512 bits or more) primes p & q 
 Compute modulus n = pq, and (n) = (p-1)(q-1) 
 Pick an integer e relatively prime to (n), gcd(e, (n))=1  
 Compute d such that ed = 1 mod (n)  
 Public key (n, e) : publish 
 Private key d : keep secret (may keep p and q securely.) 

 
  Signing / Verifying 

 S: s = md mod n  for 0 < m < n 
 V: m =? se mod n  
 S: s = h(m)d mod n   --- hashed version  
 V: h(m) =? se mod n  

 

  RSA signature without padding   
 Deterministic signature, no randomness introduced  
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Forging RSA-signature 

RSA signature forgery: Attack based on the 
multiplicative property of RSA.  
y1 = (m1)d  y2 = (m2)d,  

then  (y1y2)e = m1m2 

Thus, y1y2 is a valid signature of m1m2 

 

• This is an existential forgery using a known 
message attack. 

 

• (HW) RSA-PSS required like RSA-OAEP 
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ElGamal Signature 

 Keys & parameters 
 Domain parameter = {p, g} 
 Choose x  [1, p-1] and compute y = gx mod p 
 Public key (p, g, y) 
 Private key x 

 

  Signature generation: (r, s) 
 Pick a random integer k  [1, p-1] 
 Compute r = gk mod p 
 Compute s such that m = xr + ks mod p-1  

 

  Signature verification 
 yrrs mod p =? gm mod p  

- If equal, accept the signature (valid) 
- If not equal, reject the signature (invalid) 
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Digital Signature Algorithm (DSA) 
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Private : x 

Public : p, q, g, y 

 p : 512 ~ 1024-bit prime 

 q : 160-bit prime, q | p-1 

 g : generator of order q 

 x : 0 < x < q 

 y = gx mod p 
 Signing 

r = (gk mod p) mod q  

s = k-1(SHA1(m) + xr) mod q 

 Verifying 

m, (r,s) 

Pick a random k s.t. 0 < k < q 

w = s-1 mod q  

u1 = SHA1(m)  w mod q 

u2 = r  w mod q  

v = (gu1  yu2 mod p) mod q  

v =? r 

m, (r,s) 



KCDSA 
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Private : x 

Public : p, q, g, y 

          
z=h(Cert_Data) 

 p : 768+256k (k=0 ~ 5) bit prime 

 q : 160+32k (k=0~3) bit prime, q | p-1 

 g : generator of order q 

 x : 0 < x < q 

 y = gx mod p, x = x-1 mod q 

 Signing 

r = HAS160(gk mod p) 

e = r  HAS160(z || m) 

s = x(k - e) mod q 

 Verifying 

m, (r,s) 

Pick a random k s.t. 0 < k < q 

e = r  HAS160(z || m)  

v = ys  ge mod p 

HAS160(v) =? r 

m, (r,s) 



Schnorr Signature Scheme 

  Domain parameters 
 p = a large prime (~ size 1024 bit), q = a prime (~size 160 bit) 

 q = a large prime divisor of p-1 (q | p-1)  

 g = an element of Zp of order q, i.e., g  1 & gq = 1 mod p 

 Considered in a subgroup of order q in modulo p  

  Keys 
 Private key x R [1, q-1] : a random integer  

 Public key y = gx mod p 

  Signature generation: (r, s) 
 Pick a random integer k R [1, q-1] 

 Compute r = h(gk mod p, m) 

 Compute s = k – xr mod q  

  Signature verification 
 r =? h(yrgs mod p, m) 
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Advanced Digital Signature 

• Blind signature 

• One-time signature 
– Lamport scheme or Bos-Chaum scheme 

• Undeniable signature 
– Chaum-van Antwerpen scheme 

• Fail-stop signature 
– van Heyst-Peterson scheme 

• Proxy signature 

• Group (Ring) signature: group member can generate 
signature if dispute occurs, identify member. etc.  
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Blind Signature(I) 
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Without B seeing the content of message M, A can get a signature 

of M from B.  

RSA scheme, B’s public key :{n,e}, private key:{d} 

(1) select random k 

s.t. gcd(n,k)=1,  

1<k<n-1 

A(customer) B(Bank) 

(2) m*=mke 

mod n 

 m* 

(3) s*= 

  (m*)d mod n s* 

(4) s=k-1 s*mod n 

(signature of M by B : k-1(mke)d= k-1 me ked = md) 

(1)random 

number 
(2)blinding 

(3)signing 

(4)unblinding 

A B 

g(SBf(m))=SB(m) 

f:blinding ft 

g:unblinding ft only A knows 

f(m) : blinded message 



Blind Signature(II) 

(Preparation) p=11, q=3, n=33,(n)= 10 x 2=20 

gcd(d, (n))=1  => d=3, ed =1 mod (n) => 3 d = 1 mod 20 => e=7 

B: public key :{n,e}={33,7}, private key ={d}={3} 

 

(1) A’s blinding of m=5 

   select k s.t. gcd(k,n)=1.  gcd(k,33)=1 => k=2 

  m* = m ke mod n= 5 27 mod 33 = 640 mod 33 = 13 mod 33 

(2) B’s signing without knowing the original m 

   s*= (m*)d mod n = 133 mod 33 =2197 mod 33 =19 mod 33 

(3) A’s unblinding  

  s=k-1 s* mod n  (2 k-1=1 mod 33 => k=17) 

   = 17 19 mod 33 =323=26 mod 33 

 

 * Original Signature :  md mod n = 53 mod 33 =125 =26 mod 33 
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3. Key Exchange  

 
Diffie-Hellman 

 



DH Key Agreement 

46 

choose Xa  [1, p-1] 

Ya = g
Xa mod p 

Ya 

choose Xb  [1, p-1] 

Yb = g
Xb  mod p 

Yb 

compute the shared key  

Ka = Yb
Xa = g

XbXa mod p 

compute the shared key  

Kb = Ya
Xb = g

XaXb mod p 

Domain Parameters 

p, g 



Diffie-Hellman Problem 
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  Computational Diffie-Hellman (CDH) Problem  

Given Ya = g
Xa mod p and Yb = g

Xb mod p,  

 

compute Kab = g
XaXb mod p  

  Decision Diffie-Hellman (DDH) Problem  

Given Ya = g
Xa mod p and Yb = g

Xb mod p,  

 

distinguish between Kab = g
XaXb mod p and a random string 

  Discrete Logarithm Problem (DLP) 

Given Y = g
X mod p, compute X = logbY. 

The Security of the Diffie-Hellman key agreement depends on 

the difficulty of CDH problem. 



MIMT in DH Scheme 
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Xb : private 

Yb = g
Xb : public 

Yb Yc 

Xa : private 

Ya = g
Xa : public 

Yc = g
Xc  for some Xc Yc Ya 

Bob computes the 
session key  

Kb = Yc
Xb = g

XcXb 

Alice computes the 
session key  

Ka = Yc
Xa = g

XcXa 

Adversary computes 
both session keys 

Kb = Yb
Xc = g

XcXb 

Ka = Ya
Xc = g

XcXa 

Man-in-the-middle attack  

comes from no authentication 



DH Key Agreement with Certified 
Key 
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choose Xa  [1, p-1] 

Ya = g
Xa mod p 

choose Xb  [1, p-1] 

Yb = g
Xb  mod p 

compute the shared key  

Ka = Yb
Xa = g

XbXa mod p 

compute the shared key  

Kb = Ya
Xb = g

XaXb mod p 

Domain Parameters 

p, g 

Certified 

key 

Ya and Yb 

•Interaction is not required 

•Agreed key is fixed, long-term use 



Elliptic Curve (1/2) 
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 Weierstrass form of Elliptic Curve 

 y2 + a1 xy + a3 = x3 + a2 x
2 + a4 x + a6  

 

 Example (over rational field) 

 y2 = x3 – 4x + 1 

 E(Q)  

    = {(x,y)  Q2 | y2 = x3 – 2x + 2} U OE 

 P = (2, 1),     –P = (2, –1) 

 [2]P = (12 , -41)  

 [3]P = (91/25, 736/125) 

 [4]P = (5452/1681, -324319/68921) 

 

P 
Q 

P + Q 
-Q 

P - Q 



Elliptic Curve (2/2) 
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 Example (over finite field GF(p) : p = 13) 

 P = (2,1), –P = (2, 12), [2]P = (12, 11) 

 [3]P = (0, 1), [4]P = (11, 12), …… ,  [18]P = OE 

 Hasse’s Theorem : p – 2p  # of E(p)  p + 2p 

 Scalar multiplication: [d]P 

 

 Elliptic Curve Discrete Logarithm 

 Base of Elliptic Curve Cryptosystem (ECC) 

 

 

 

 

 

y = gx mod p Q = [d]P 

Find x for given g, p, Y Find d for given P, Q 



ECC 

 Advantages 
 Breaking PKC over Elliptic Curve is much harder. 

 We can use much shorter key about 1/6.  

 Encryption/Decryption is much faster than  other PKCs. 

 Suitable for restricted environments like mobile phone, smart  

      card. 

 
  Disadvantages 

 It’s new technique  There may be new attacks. 

 Too complicated to understand. 

 ECC is a minefield of patents. 
: e.g., US patents 

4587627/739220 – Normal Basis, 5272755 – Curve over GF(p) 

5463690/5271051/5159632 – p=2^q-c for small c, etc… 
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Implementation 
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 RSA Encryption/Decryption 

Encryption Decryption 

PKCS#1-v1.5 1.49 ms 18.05 ms 

PKCS#1-OAEP 1.41 ms 18.09 ms 

 Signature 

Signing Verifying 

PKCS#1-v1.5 18.07 ms 1.24 ms 

PKCS#1-PSS 18.24 ms 1.28 ms 

DSA with SHA1 2.75 ms 9.85 ms 

KCDSA with HAS160 2.42 ms 9.55 ms 

 Modular Exponentiation vs. Scalar Multiplication of EC 

M.E. (1024-bit) S.M. (GF(2162)) S.M. (GF(p)) 

52.01 ms 2.24 ms 1.17 ms 



Equivalent Key Size 
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Recommendation for the Transition of Cryptographic Algorithm and Key Sizes,  

NIST800-121, Jan. 2010. 



Key Length by NIST 
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Recommendation for Key Management,  

Special Publication 800-57 Part 1, NIST, 03/2007. http://www.keylength.com 

http://csrc.nist.gov/groups/ST/toolkit/key_management.html
http://www.nist.gov/
http://www.keylength.com/

