
Week 10 -11 : Public Key 

Cryptosystem and Digital 

Signatures 
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1. Public Key Encryptions 
RSA, ElGamal, 



RSA- PKC(1/3) 

 1st public key cryptosystem  
 R.L.Rivest, A.Shamir, L.Adleman, “A Method for Obtaining Digital 

Signatures and Public Key Cryptosystems”, CACM, Vol.21, No.2, 
pp.120-126,Feb,1978  

 Believed to be secure if IFP is hard and worldwide 
standard for last 30 years  
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Shamir Rivest Adleman 



RSA- PKC(2/3) 

  Key generation (KeyGen) 
 Select two large (1,024 bits or larger) primes p, q 
 Compute modulus n = pq, and (n) = (p-1)(q-1) 
 Pick an integer e relatively prime to (n), gcd(e, (n))=1  
 Compute d such that ed = 1 mod (n)  How?? 
 Public key (n, e) : public  
 Private key d : keep secret (may hold p and q securely.) 

 
  Encryption(Enc) / Decryption (Dec) 

 E: C = Me mod n  for 0 < M < n 
 D: M = Cd mod n  
 Proof)  Cd = (Me)d = Med = Mk(n) +1 = M {M(n)}k = M 
 

  Special Property 
 (Me mod n)d mod n = (Md mod n)e mod n for 0 < M < n 
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RSA as Trapdoor One-way 
Function 
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Message 

M 

Ciphertext 

C 

C = f(M) = Me mod n 

M = f-1(C) = Cd mod n 

Public key 

Private key 

(trapdoor information) 

n = pq (p & q: primes) 

ed = 1 mod (p-1)(q-1) 



RSA- PKC(3/3) 

• Key Generation 

– p=3, q=11 

– n = pq = 33, (n) =(p-1)(q-1) = 2 x10 = 20 

– e = 3 s.t. gcd(e, (n))=(3,20)=1 

– Choose d s.t. ed =1 mod (n), 3d = 1 mod 20, d=7 

– Public key ={e,n}={3,33},  private key ={d}={7} 

• Encryption 

– M =5 

– C = Me mod n = 53 mod 33 =26 

• Decryption  

– M =Cd mod n = 267 mod 33= 5  
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Exercise  

 Let’s practice  RSA key generation, encryption, and decryption  
1) p=5, q= 7(by hand calculation, Quiz!!)  if M= 3 

2) p=2,357, q=2,551 (using big number calculator) if M= 5,000 

3) p=885,320,963, q=238,855,417 (using big number calculator) 

    if M=10,000 

 

1. Key generation  

 

2. Encryption 

 

3. Decryption  
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Selecting Primes p and q  

  Idea: Prevent from feasible factorization  

 

1. |p|  |q| to avoid ECM (Elliptic Curve Method for 
factoring) 

 

2. p-q must be large to avoid trial division 

 

3. p and q are strong prime 
 p-1 has large prime factor r (Pollard’s p-1) 

 p+1 has large prime factor (William’s p+1) 

 r-1 has large prime factor (Cyclic attack) 
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Integer Factorization Problem (IFP) 
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 Problem: Given a composite number n, find its prime factors 
 
 
 
 
 
 
 Application: Used to construct RSA-type public key 
cryptosystems 

 
 (Probabilistic sub-exponential) Algorithms to solve IFP  

 Quadratic sieve  
 General Number Field Sieve  
 etc. 

easy 

Primes p, q  n = pq 
hard 



Quadratic Sieve (1/3) 

  Factor n (=pq)  using the quadratic sieve algorithm  
 

  Basic principle:  
Let n be an integer and suppose there exist integers x and y with  
x2 = y2 (mod n), but x ±y (mod n). Then gcd(x-y, n) gives a  
nontrivial factor of n. 

 
  Example 

Consider n=77 
72=-5 mod 77, 45=-32 mod 77 
72*45 = (-5)*(-32) mod 77 
23*34*5 = 25*5 mod 77 
92 = 22 mod 77 
gcd(9-2,77)=7, gcd(9+2,77)=11 
77=11*7  Factorization 
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Quadratic Sieve (2/3) 

 Example: factor n=3837523.  
 
Observe  

93982   = 55 x 19 (mod 3837523) 
190952  = 22 x 5 x 11 x 13 x 19 (mod 3837523)  
19642   = 32 x 133 (mod 3837523)  
170782  = 26 x 32 x 11 (mod 3837523)  

 
Then, we have  

(9398 x 19095 x 1964 x 17078)2 = (24x32x53x11x132x19)2 (mod 3837523) 
22303872 = 25867052 (mod 3837523) 
Compute gcd(2230387-2586705, 3837523) => 1093 (mod 3837523) 
3837523 / 1093 = 3511 (mod 3837523) 

 
3837523 = 1093 x 3511     Note that Verification is easy !! 
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Quadratic Sieve (3/3) 

1. Initialization: a sequence of quadratic residues 
Q(x)=(m+x)2-n is generated for small values of x where 
m=sqrt(n). 

2. Forming the factor base: the base consists of small primes. 
FB={-1,2,p1,p2,…,pt-1} 

3. Sieving: the quadratic residues Q(x) are factored using the 
factor base till t full factorizations of Q(x) have been 
found. 

4. Forming and solving the matrix: Find a linear combination 
of Q(x)’s which gives the quadratic congruence. The 
congruence gives a nontrivial factor of n with the 
probability ½. 

 
http://www.answers.com/topic/quadratic-sieve?cat=technology 
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http://www.answers.com/topic/quadratic-sieve?cat=technology
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General Number Field Sieve 
(GNFS) 

 
 Most efficient algorithm known for factoring integers 

larger than 100 digits. 

 Asymptotic running time: sub-exponential  
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• If =0, polynomial time algorithm 

• If >=1, exponential time algorithm 

• If 0<<1, sub-exponential time algorithm 



RSA Challenge 
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•MIPS : 1 Million Instruction Per Second for 1 yr = 3.1 x 1013 instruction.  

•*2:  576bit http://www.rsasecurity.com./rsalabs ,  768-bit by 2010 (published), 

• Expectation: 1,024-bit by 2018 !!!! 

Digits Year Algorithm 

RSA-100 

 

RSA-110 

 

RSA-120 

 

RSA-129 

 

RSA-130 

 

RSA-140 

 

RSA-155 

 

RSA-160 

 

RSA-174*2 

 

RSA-200 
 

‘91.4. 

 

‘92.4. 

 

‘93.6. 

 

‘94.4.(AC94) 

 

‘96.4.(AC96) 

 

‘99.2 (AC99) 

 

’99.8 

 

’03.1 

 

’03.12 

 

‘05.5 

7 

 

75 

 

830 

 

5,000 

 

? 

 

? 

 

8,000 

Q.S. 

 

Q.S 

 

Q.S. 

 

Q.S. 

 

NFS 

 

NFS 

 

GNFS 

 

Lattice Sieving+HW 

 

Lattice Sieving +HW 

 

GNFS+HW 

http://www.rsasecurity.com./rsalabs
http://www.rsasecurity.com./rsalabs
http://www.rsasecurity.com/rsalabs/challenges/factoring/rsa576.html
http://www.rsasecurity.com/rsalabs/challenges/factoring/rsa576.html
http://www.rsasecurity.com/rsalabs/challenges/factoring/rsa576.html


RSA-200 

• Date: Mon, 9 May 2005 18:05:10 +0200 (CEST)  

• From: Thorsten Kleinjung  

• Subject: rsa200  

• We have factored RSA-200 by GNFS.  

  

The factors are 
p=35324619344027701212726049781984643686711974001976\ 
25023649303468776121253679423200058547956528088349 and  

 
q=79258699544783330333470858414800596877379758573642\ 
19960734330341455767872818152135381409304740185467  
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http://www.loria.fr/~zimmerma/records/rsa200 

http://www.loria.fr/~zimmerma/records/rsa200
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Security of RSA(1/2)  

 Common Modulus attack: 

  If multiple entities share the same modulus n=pq with different pairs 
of (ei, di), this is not secure.  

     Do not share the same modulus! 

 

  Cryptanalysis: If the same message M was encrypted to different 
users 

   User u1 : C1 = Me1 mod n 

   User u2 : C2 = Me2 mod n  

   If gcd(e1,e2)=1, there are a and b s.t. ae1 + be2 = 1 mod n   then,   

   (C1)
a(C2)

b mod n = (Me1)a(Me2)b mod n = Mae1+be2 mod n  

    = M mod n 
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Security of RSA(2/2)  

Cycling attack  
If f(f( …f(M)))=f(M) where f(M) = Me mod n ? 
If a given ciphertext appears after some iterations, 
we can recover the plaintext at collusion point. 
 
e.g., Let C=Me mod n 
    If (((Ce)e)…)e mod n = Ce^k mod n = C,  
    then Ce^(k-1) mod n = M  for some k. 
 

  Multiplicative attack (homomorphic property of 
RSA)  
(M1

e) x (M2
e) mod n = (M1 x M2 )

e mod n  
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Security of PKC 

  Security goals  
 One-wayness (OW): the adversary who sees a ciphertext 

is not able to compute the corresponding message.   
 Indistinguishability (IND): observing a ciphertext, the 

adversary learns nothing about the plaintext. Also 
known as semantic security. 

 Non-malleability (NM): observing a ciphertext for a 
message m, the adversary cannot derive another 
ciphertext for a meaningful plaintext m’ related to m. 
 

Original RSA encryption is not secure since 
 IND: deterministic encryption 
 NM: for example, from c=me, c’ = 2ec = (2m)e is easily 

obtained. It cannot be used in bidding scenario.    
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Formal Definition of IND 
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m0, m1 
bR{0,1} 

PKE(pk, sk) 

Challenge: C=E(mb) 

Guess b? 

The adversary wins if he guesses b correctly with a 
probability significantly greater than ½.  



Security Def. of PKC 

 Assume the existence of Decryption Oracle 
 Mimics an attacker’s access to the decryption device  

 

 Attacking Method   
 Chosen Plaintext Attack (CPA): the adversary can encrypt any 

plaintext of his choice.  In PKC,  this is always possible. 
 

 Non-adaptive Chosen Ciphertext Attack (CCA1): the attacker 
has access to the decryption oracle before he sees a 
ciphertext that he wishes to manipulate (aka. lunchtime attack) 
 

 Adaptive Chosen Ciphertext Attack (CCA2): the attacker has 
access to the decryption oracle before and after he sees a 
ciphertext c that he wishes to manipulate (but, he is not 
allowed to query the oracle about the target ciphertext c.) 
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Making RSA to IND-CCA2 

 RSA encryption without padding 
 Deterministic encryption 

 Multiplicative property: m1
e m2

e = (m1m2)
e mod n 

 Many attacks possible 

 Redundancy checking is required 

  RSA encryption with OAEP 
 RSA encryption after OAEP (Optimal Asymmetric Encryption 

Padding) 

 Proposed by Bellare and Rogaway 

 Probabilistic encoding of message before encryption   

 RSA becomes a probabilistic encryption  

 Secure against IND-CCA2 
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RSA with OAEP 
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 OAEP  RSA encryption 

s=mG(r) 
t=rH(s) 

r=tH(s) 
m=sG(r) 

Encryption padding 

Decryption padding 

c=E(s,t) RSA encryption 

 RSA decryption  OAEP 

(s,t)=D(c) RSA decryption 

+ 

m r 

s t 

+ H 

G 

n-bit message l-bit random value 

G 

H 

Hash function 

(Random oracle) 

(Note) OAEP looks like a kind of Feistel network 

PKCS #1 v2.0, v2.1.. 



Diffie-Hellman / ElGamal-type 
Systems  

 Domain parameter generation 
 Based on the hardness of DLP  

 Generate a large (1,024 bits or larger) prime p 

 Find generator g that generates the cyclic group Zp
*  

 Domain parameter = {p, g} 

 

  Key generation  
 Pick a random integer x  [1, p-1] 

 Compute y = gx mod p 

 Public key (p, g, y) : public Private key x : keep secret 

 

  Applications 
 Public key encryption 

 Digital signatures 

 Key agreement 
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Discrete Logarithm Problem (DLP) 

 Problem:  
Given g, y, and prime p, find an integer x, if any, such that  
y = gx mod p (x=loggy) 

 

 

 

  

 Application: Used to construct Diffie-Hellman & ElGamal-type 
public key systems: DH, DSA, KCDSA … 

 
 Algorithms to solve DLP:  

  Shank’s Baby Step Giant Step  
  Index calculus  
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easy y = gx mod p 

hard 
x = logg y 

Given g, x, p 

Given g, y, p 



Shank’s Baby Step, Giant Step 
algorithm 
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 Problem: find an integer x, if any, such that y = gx mod p (x=loggy)    
 

 Algorithm  

 

pygg
Nkj

mod




1. Choose an integer   1 pN

2. Computes Njpg
j

0for   ,mod

3. Computes Nkpyg
Nk




0for   ,mod

4. Look for a match between the two lists. If a match is found,  

Then 
Nkjx

ggy




We solve the DLP. Nkjx 

Baby Step 

Giant Step 



Index Calculus (1/2) 
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 Problem: find an integer x, if any, such that y = gx mod p (x=loggy)    

 

 Algorithm  

1. Choose a factor base S = {p1,p2,…pm} 

      which are primes less than a bound B. 

2. Collect linear relations 
1. Select a random integer k and compute gk mod p  
2. Try to write gk as a product of primes in S 

 m o d ,    th en   lo g m o d 1i
ak

i i g i

ii

g p p k a p p  

3. Find the logarithms of elements in S solving the linear relations 

4. Find x 

 For a random r, compute ygr mod p and try to write it as a  

      product of primes in S.  

m o d ,    th en   lo g m o d 1i
br

i i g i

ii

yg p p x r b p p    



Index Calculus (2/2) 
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 Example: Let p=131, g=2, y=37. Find x=log237 mod 131 

 Solution 
Let B=10, S={2,3,5,7} 

21 = 2 mod 131 

28 = 53 mod 131 

212 = 5 * 7 mod 131 

214 = 32 mod 131 

234 = 3 * 52 mod 131 

1 = log22 mod 130  

8 = 3*log25 mod 130 

12= log25 + log27 mod 130 

14 = 2*log23 mod 130 

34 = log23 + 2*log25 mod 130 

log22 = 1 

log25 = 46   

log27 = 96   

log23 = 72 

37 * 243 = 3 * 5 * 7 mod 131 

Log237 = -43 + log23 + log25 + log27 mod 130 = 41  

241 mod 131 = 37 Solution :  

 Complexity of best known algorithm for solving DLP:  
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ElGamal Encryption Scheme 

 Keys & parameters 
 Domain parameter = {p, g} 
 Choose x  [1, p-1] and compute y = gx mod p 
 Public key (p, g, y) 
 Private key x 

 

  Encryption: m  (C1, C2) 
 Pick a random integer k  [1, p-1] 
 Compute C1 = gk mod p 
 Compute C2 = m  yk mod p 

 

  Decryption 
 m = C2  C1

-x mod p 
 C2  C1

-x = (m  yk)  (gk)-x = m  (gx)k  (gk)-x = m mod p 
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(Ex.) ElGamal Encryption Scheme 

  Key Generation 
 Let p=23, g=7 
 Private key x=9 
 Public key y = gx mod p = 79 mod 23 = 15 

 

  Encryption: m  (C1, C2) 
 Let m=20 
 Pick a random number k=3 
 Compute C1 = gk mod p = 73 mod 23 = 21 
 Compute C2 = m  yk mod p = 20  153 mod 23 = 20  17 mod 23 

= 18 
 Send (C1 ,C2) = (21,18) as a ciphertext 

 

  Decryption 
 m = C2 / C1

x mod p = 18 / 219 mod 23 = 18 / 17 mod 23 = 20 
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2. Digital Signatures   

 
RSA, ElGamal, DSA, KCDSA, Schnorr 

 



Digital Signature 

 When do you use Digital Signature?  

 Electronic version of handwritten signature on 
electronic document 

 Signing using private key (only by the signer) 

 Verification using public key (by everyone) 

 

 Hash then sign: sig(h(m)) 

 Efficiency in computation and communication  
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Requirement of DS 

 Security requirements for digital signature 
 Unforgeability (위조 방지)  

 User authentication (사용자 인증) 

 Non-repudiation (부인 방지) 

 Unalterability (변조 방지) 

 Non-reusability (재사용 방지) 

 

 Services provided by digital signature  
 Authentication 

 Data integrity 

 Non-Repudiation 
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Signing & Verification 

 Combine Hash with Digital Signature and use PKC 

 Provide Authentication and Non-Repudiation 

 (Ex.) RSA, ElGamal DSA, KCDSA, ECDSA, EC-KCDSA 
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Signature 

Sender’s 

Private  

Key 

Hash Algorithm 

Hash Hash Algorithm 

Hash Hash 

Sender’s 

Public 

Key 

SEND 

Signature 

Signature 

S
ig

n
in

g
 

V
e
rify

in
g

 



Security of Digital Signature 

 Forgery 
 Total break: adversary is able to find the secret for signing, so 

he can forge then any signature on any message. 
 Selective forgery: adversary is able to create valid signatures 

on a message chosen by someone else, with a significant 
probability.  

 Existential forgery: adversary can create a pair (message, 
signature), s.t. the signature of the message is valid. 

 Attacking 
 Key-only attack: Adversary knows only the verification 

function (which is supposed to be public).  
 Known message attack: Adversary knows a list of messages 

previously signed by Alice.  
 Chosen message attack: Adversary can choose what 

messages wants Alice to sign, and he knows both the 
messages and the corresponding signatures. 
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RSA-Signing 

 Key generation 
 Choose two large (512 bits or more) primes p & q 
 Compute modulus n = pq, and (n) = (p-1)(q-1) 
 Pick an integer e relatively prime to (n), gcd(e, (n))=1  
 Compute d such that ed = 1 mod (n)  
 Public key (n, e) : publish 
 Private key d : keep secret (may keep p and q securely.) 

 
  Signing / Verifying 

 S: s = md mod n  for 0 < m < n 
 V: m =? se mod n  
 S: s = h(m)d mod n   --- hashed version  
 V: h(m) =? se mod n  

 

  RSA signature without padding   
 Deterministic signature, no randomness introduced  
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Forging RSA-signature 

RSA signature forgery: Attack based on the 
multiplicative property of RSA.  
y1 = (m1)d  y2 = (m2)d,  

then  (y1y2)e = m1m2 

Thus, y1y2 is a valid signature of m1m2 

 

• This is an existential forgery using a known 
message attack. 

 

• (HW) RSA-PSS required like RSA-OAEP 
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ElGamal Signature 

 Keys & parameters 
 Domain parameter = {p, g} 
 Choose x  [1, p-1] and compute y = gx mod p 
 Public key (p, g, y) 
 Private key x 

 

  Signature generation: (r, s) 
 Pick a random integer k  [1, p-1] 
 Compute r = gk mod p 
 Compute s such that m = xr + ks mod p-1  

 

  Signature verification 
 yrrs mod p =? gm mod p  

- If equal, accept the signature (valid) 
- If not equal, reject the signature (invalid) 
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Digital Signature Algorithm (DSA) 
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Private : x 

Public : p, q, g, y 

 p : 512 ~ 1024-bit prime 

 q : 160-bit prime, q | p-1 

 g : generator of order q 

 x : 0 < x < q 

 y = gx mod p 
 Signing 

r = (gk mod p) mod q  

s = k-1(SHA1(m) + xr) mod q 

 Verifying 

m, (r,s) 

Pick a random k s.t. 0 < k < q 

w = s-1 mod q  

u1 = SHA1(m)  w mod q 

u2 = r  w mod q  

v = (gu1  yu2 mod p) mod q  

v =? r 

m, (r,s) 



KCDSA 
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Private : x 

Public : p, q, g, y 

          
z=h(Cert_Data) 

 p : 768+256k (k=0 ~ 5) bit prime 

 q : 160+32k (k=0~3) bit prime, q | p-1 

 g : generator of order q 

 x : 0 < x < q 

 y = gx mod p, x = x-1 mod q 

 Signing 

r = HAS160(gk mod p) 

e = r  HAS160(z || m) 

s = x(k - e) mod q 

 Verifying 

m, (r,s) 

Pick a random k s.t. 0 < k < q 

e = r  HAS160(z || m)  

v = ys  ge mod p 

HAS160(v) =? r 

m, (r,s) 



Schnorr Signature Scheme 

  Domain parameters 
 p = a large prime (~ size 1024 bit), q = a prime (~size 160 bit) 

 q = a large prime divisor of p-1 (q | p-1)  

 g = an element of Zp of order q, i.e., g  1 & gq = 1 mod p 

 Considered in a subgroup of order q in modulo p  

  Keys 
 Private key x R [1, q-1] : a random integer  

 Public key y = gx mod p 

  Signature generation: (r, s) 
 Pick a random integer k R [1, q-1] 

 Compute r = h(gk mod p, m) 

 Compute s = k – xr mod q  

  Signature verification 
 r =? h(yrgs mod p, m) 
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Advanced Digital Signature 

• Blind signature 

• One-time signature 
– Lamport scheme or Bos-Chaum scheme 

• Undeniable signature 
– Chaum-van Antwerpen scheme 

• Fail-stop signature 
– van Heyst-Peterson scheme 

• Proxy signature 

• Group (Ring) signature: group member can generate 
signature if dispute occurs, identify member. etc.  
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Blind Signature(I) 

43 

Without B seeing the content of message M, A can get a signature 

of M from B.  

RSA scheme, B’s public key :{n,e}, private key:{d} 

(1) select random k 

s.t. gcd(n,k)=1,  

1<k<n-1 

A(customer) B(Bank) 

(2) m*=mke 

mod n 

 m* 

(3) s*= 

  (m*)d mod n s* 

(4) s=k-1 s*mod n 

(signature of M by B : k-1(mke)d= k-1 me ked = md) 

(1)random 

number 
(2)blinding 

(3)signing 

(4)unblinding 

A B 

g(SBf(m))=SB(m) 

f:blinding ft 

g:unblinding ft only A knows 

f(m) : blinded message 



Blind Signature(II) 

(Preparation) p=11, q=3, n=33,(n)= 10 x 2=20 

gcd(d, (n))=1  => d=3, ed =1 mod (n) => 3 d = 1 mod 20 => e=7 

B: public key :{n,e}={33,7}, private key ={d}={3} 

 

(1) A’s blinding of m=5 

   select k s.t. gcd(k,n)=1.  gcd(k,33)=1 => k=2 

  m* = m ke mod n= 5 27 mod 33 = 640 mod 33 = 13 mod 33 

(2) B’s signing without knowing the original m 

   s*= (m*)d mod n = 133 mod 33 =2197 mod 33 =19 mod 33 

(3) A’s unblinding  

  s=k-1 s* mod n  (2 k-1=1 mod 33 => k=17) 

   = 17 19 mod 33 =323=26 mod 33 

 

 * Original Signature :  md mod n = 53 mod 33 =125 =26 mod 33 
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3. Key Exchange  

 
Diffie-Hellman 

 



DH Key Agreement 
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choose Xa  [1, p-1] 

Ya = g
Xa mod p 

Ya 

choose Xb  [1, p-1] 

Yb = g
Xb  mod p 

Yb 

compute the shared key  

Ka = Yb
Xa = g

XbXa mod p 

compute the shared key  

Kb = Ya
Xb = g

XaXb mod p 

Domain Parameters 

p, g 



Diffie-Hellman Problem 
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  Computational Diffie-Hellman (CDH) Problem  

Given Ya = g
Xa mod p and Yb = g

Xb mod p,  

 

compute Kab = g
XaXb mod p  

  Decision Diffie-Hellman (DDH) Problem  

Given Ya = g
Xa mod p and Yb = g

Xb mod p,  

 

distinguish between Kab = g
XaXb mod p and a random string 

  Discrete Logarithm Problem (DLP) 

Given Y = g
X mod p, compute X = logbY. 

The Security of the Diffie-Hellman key agreement depends on 

the difficulty of CDH problem. 



MIMT in DH Scheme 
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Xb : private 

Yb = g
Xb : public 

Yb Yc 

Xa : private 

Ya = g
Xa : public 

Yc = g
Xc  for some Xc Yc Ya 

Bob computes the 
session key  

Kb = Yc
Xb = g

XcXb 

Alice computes the 
session key  

Ka = Yc
Xa = g

XcXa 

Adversary computes 
both session keys 

Kb = Yb
Xc = g

XcXb 

Ka = Ya
Xc = g

XcXa 

Man-in-the-middle attack  

comes from no authentication 



DH Key Agreement with Certified 
Key 
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choose Xa  [1, p-1] 

Ya = g
Xa mod p 

choose Xb  [1, p-1] 

Yb = g
Xb  mod p 

compute the shared key  

Ka = Yb
Xa = g

XbXa mod p 

compute the shared key  

Kb = Ya
Xb = g

XaXb mod p 

Domain Parameters 

p, g 

Certified 

key 

Ya and Yb 

•Interaction is not required 

•Agreed key is fixed, long-term use 



Elliptic Curve (1/2) 
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 Weierstrass form of Elliptic Curve 

 y2 + a1 xy + a3 = x3 + a2 x
2 + a4 x + a6  

 

 Example (over rational field) 

 y2 = x3 – 4x + 1 

 E(Q)  

    = {(x,y)  Q2 | y2 = x3 – 2x + 2} U OE 

 P = (2, 1),     –P = (2, –1) 

 [2]P = (12 , -41)  

 [3]P = (91/25, 736/125) 

 [4]P = (5452/1681, -324319/68921) 

 

P 
Q 

P + Q 
-Q 

P - Q 



Elliptic Curve (2/2) 
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 Example (over finite field GF(p) : p = 13) 

 P = (2,1), –P = (2, 12), [2]P = (12, 11) 

 [3]P = (0, 1), [4]P = (11, 12), …… ,  [18]P = OE 

 Hasse’s Theorem : p – 2p  # of E(p)  p + 2p 

 Scalar multiplication: [d]P 

 

 Elliptic Curve Discrete Logarithm 

 Base of Elliptic Curve Cryptosystem (ECC) 

 

 

 

 

 

y = gx mod p Q = [d]P 

Find x for given g, p, Y Find d for given P, Q 



ECC 

 Advantages 
 Breaking PKC over Elliptic Curve is much harder. 

 We can use much shorter key about 1/6.  

 Encryption/Decryption is much faster than  other PKCs. 

 Suitable for restricted environments like mobile phone, smart  

      card. 

 
  Disadvantages 

 It’s new technique  There may be new attacks. 

 Too complicated to understand. 

 ECC is a minefield of patents. 
: e.g., US patents 

4587627/739220 – Normal Basis, 5272755 – Curve over GF(p) 

5463690/5271051/5159632 – p=2^q-c for small c, etc… 
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Implementation 
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 RSA Encryption/Decryption 

Encryption Decryption 

PKCS#1-v1.5 1.49 ms 18.05 ms 

PKCS#1-OAEP 1.41 ms 18.09 ms 

 Signature 

Signing Verifying 

PKCS#1-v1.5 18.07 ms 1.24 ms 

PKCS#1-PSS 18.24 ms 1.28 ms 

DSA with SHA1 2.75 ms 9.85 ms 

KCDSA with HAS160 2.42 ms 9.55 ms 

 Modular Exponentiation vs. Scalar Multiplication of EC 

M.E. (1024-bit) S.M. (GF(2162)) S.M. (GF(p)) 

52.01 ms 2.24 ms 1.17 ms 



Equivalent Key Size 
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Recommendation for the Transition of Cryptographic Algorithm and Key Sizes,  

NIST800-121, Jan. 2010. 



Key Length by NIST 
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Recommendation for Key Management,  

Special Publication 800-57 Part 1, NIST, 03/2007. http://www.keylength.com 

http://csrc.nist.gov/groups/ST/toolkit/key_management.html
http://www.nist.gov/
http://www.keylength.com/

