
Week 10 -11 : Public Key

Cryptosystem and Digital

Signatures

2

1. Public Key Encryptions
RSA, ElGamal,

RSA- PKC(1/3)

 1st public key cryptosystem
 R.L.Rivest, A.Shamir, L.Adleman, “A Method for Obtaining Digital

Signatures and Public Key Cryptosystems”, CACM, Vol.21, No.2,
pp.120-126,Feb,1978

 Believed to be secure if IFP is hard and worldwide
standard for last 30 years

3

Shamir Rivest Adleman

RSA- PKC(2/3)

 Key generation (KeyGen)
 Select two large (1,024 bits or larger) primes p, q
 Compute modulus n = pq, and (n) = (p-1)(q-1)
 Pick an integer e relatively prime to (n), gcd(e, (n))=1
 Compute d such that ed = 1 mod (n) How??
 Public key (n, e) : public
 Private key d : keep secret (may hold p and q securely.)

 Encryption(Enc) / Decryption (Dec)

 E: C = Me mod n for 0 < M < n
 D: M = Cd mod n
 Proof) Cd = (Me)d = Med = Mk(n) +1 = M {M(n)}k = M

 Special Property
 (Me mod n)d mod n = (Md mod n)e mod n for 0 < M < n

4

RSA as Trapdoor One-way
Function

5

Message

M

Ciphertext

C

C = f(M) = Me mod n

M = f-1(C) = Cd mod n

Public key

Private key

(trapdoor information)

n = pq (p & q: primes)

ed = 1 mod (p-1)(q-1)

RSA- PKC(3/3)

• Key Generation

– p=3, q=11

– n = pq = 33, (n) =(p-1)(q-1) = 2 x10 = 20

– e = 3 s.t. gcd(e, (n))=(3,20)=1

– Choose d s.t. ed =1 mod (n), 3d = 1 mod 20, d=7

– Public key ={e,n}={3,33}, private key ={d}={7}

• Encryption

– M =5

– C = Me mod n = 53 mod 33 =26

• Decryption

– M =Cd mod n = 267 mod 33= 5

6

Exercise

 Let’s practice RSA key generation, encryption, and decryption
1) p=5, q= 7(by hand calculation, Quiz!!) if M= 3

2) p=2,357, q=2,551 (using big number calculator) if M= 5,000

3) p=885,320,963, q=238,855,417 (using big number calculator)

 if M=10,000

1. Key generation

2. Encryption

3. Decryption

7

Selecting Primes p and q

 Idea: Prevent from feasible factorization

1. |p|  |q| to avoid ECM (Elliptic Curve Method for
factoring)

2. p-q must be large to avoid trial division

3. p and q are strong prime
 p-1 has large prime factor r (Pollard’s p-1)

 p+1 has large prime factor (William’s p+1)

 r-1 has large prime factor (Cyclic attack)

 8

Integer Factorization Problem (IFP)

9

 Problem: Given a composite number n, find its prime factors

 Application: Used to construct RSA-type public key
cryptosystems

 (Probabilistic sub-exponential) Algorithms to solve IFP

 Quadratic sieve
 General Number Field Sieve
 etc.

easy

Primes p, q n = pq
hard

Quadratic Sieve (1/3)

 Factor n (=pq) using the quadratic sieve algorithm

 Basic principle:
Let n be an integer and suppose there exist integers x and y with
x2 = y2 (mod n), but x ±y (mod n). Then gcd(x-y, n) gives a
nontrivial factor of n.

 Example

Consider n=77
72=-5 mod 77, 45=-32 mod 77
72*45 = (-5)*(-32) mod 77
23*34*5 = 25*5 mod 77
92 = 22 mod 77
gcd(9-2,77)=7, gcd(9+2,77)=11
77=11*7 Factorization

10

Quadratic Sieve (2/3)

 Example: factor n=3837523.

Observe

93982 = 55 x 19 (mod 3837523)
190952 = 22 x 5 x 11 x 13 x 19 (mod 3837523)
19642 = 32 x 133 (mod 3837523)
170782 = 26 x 32 x 11 (mod 3837523)

Then, we have

(9398 x 19095 x 1964 x 17078)2 = (24x32x53x11x132x19)2 (mod 3837523)
22303872 = 25867052 (mod 3837523)
Compute gcd(2230387-2586705, 3837523) => 1093 (mod 3837523)
3837523 / 1093 = 3511 (mod 3837523)

3837523 = 1093 x 3511  Note that Verification is easy !!

11

Quadratic Sieve (3/3)

1. Initialization: a sequence of quadratic residues
Q(x)=(m+x)2-n is generated for small values of x where
m=sqrt(n).

2. Forming the factor base: the base consists of small primes.
FB={-1,2,p1,p2,…,pt-1}

3. Sieving: the quadratic residues Q(x) are factored using the
factor base till t full factorizations of Q(x) have been
found.

4. Forming and solving the matrix: Find a linear combination
of Q(x)’s which gives the quadratic congruence. The
congruence gives a nontrivial factor of n with the
probability ½.

http://www.answers.com/topic/quadratic-sieve?cat=technology

12

http://www.answers.com/topic/quadratic-sieve?cat=technology
http://www.answers.com/topic/quadratic-sieve?cat=technology
http://www.answers.com/topic/quadratic-sieve?cat=technology

General Number Field Sieve
(GNFS)

 Most efficient algorithm known for factoring integers

larger than 100 digits.

 Asymptotic running time: sub-exponential

13

 
1 / 3 2 / 3

(1 .5 2 6 (1))(ln) (ln ln)1
[,1 .5 2 6]

3

o n n

n
L O e




)(],[
1

)ln(ln)(ln






nnc

n
eOcL

Complexity of algorithm

• If =0, polynomial time algorithm

• If >=1, exponential time algorithm

• If 0<<1, sub-exponential time algorithm

RSA Challenge

14

•MIPS : 1 Million Instruction Per Second for 1 yr = 3.1 x 1013 instruction.

•*2: 576bit http://www.rsasecurity.com./rsalabs , 768-bit by 2010 (published),

• Expectation: 1,024-bit by 2018 !!!!

Digits Year Algorithm

RSA-100

RSA-110

RSA-120

RSA-129

RSA-130

RSA-140

RSA-155

RSA-160

RSA-174*2

RSA-200

‘91.4.

‘92.4.

‘93.6.

‘94.4.(AC94)

‘96.4.(AC96)

‘99.2 (AC99)

’99.8

’03.1

’03.12

‘05.5

7

75

830

5,000

?

?

8,000

Q.S.

Q.S

Q.S.

Q.S.

NFS

NFS

GNFS

Lattice Sieving+HW

Lattice Sieving +HW

GNFS+HW

http://www.rsasecurity.com./rsalabs
http://www.rsasecurity.com./rsalabs
http://www.rsasecurity.com/rsalabs/challenges/factoring/rsa576.html
http://www.rsasecurity.com/rsalabs/challenges/factoring/rsa576.html
http://www.rsasecurity.com/rsalabs/challenges/factoring/rsa576.html

RSA-200

• Date: Mon, 9 May 2005 18:05:10 +0200 (CEST)

• From: Thorsten Kleinjung

• Subject: rsa200

• We have factored RSA-200 by GNFS.

The factors are
p=35324619344027701212726049781984643686711974001976\
25023649303468776121253679423200058547956528088349 and

q=79258699544783330333470858414800596877379758573642\
19960734330341455767872818152135381409304740185467

15

http://www.loria.fr/~zimmerma/records/rsa200

http://www.loria.fr/~zimmerma/records/rsa200

16

Security of RSA(1/2)

 Common Modulus attack:

 If multiple entities share the same modulus n=pq with different pairs
of (ei, di), this is not secure.

 Do not share the same modulus!

 Cryptanalysis: If the same message M was encrypted to different
users

 User u1 : C1 = Me1 mod n

 User u2 : C2 = Me2 mod n

 If gcd(e1,e2)=1, there are a and b s.t. ae1 + be2 = 1 mod n then,

 (C1)
a(C2)

b mod n = (Me1)a(Me2)b mod n = Mae1+be2 mod n

 = M mod n

17

Security of RSA(2/2)

Cycling attack
If f(f(…f(M)))=f(M) where f(M) = Me mod n ?
If a given ciphertext appears after some iterations,
we can recover the plaintext at collusion point.

e.g., Let C=Me mod n
 If (((Ce)e)…)e mod n = Ce^k mod n = C,
 then Ce^(k-1) mod n = M for some k.

 Multiplicative attack (homomorphic property of
RSA)
(M1

e) x (M2
e) mod n = (M1 x M2)

e mod n

18

Security of PKC

 Security goals
 One-wayness (OW): the adversary who sees a ciphertext

is not able to compute the corresponding message.
 Indistinguishability (IND): observing a ciphertext, the

adversary learns nothing about the plaintext. Also
known as semantic security.

 Non-malleability (NM): observing a ciphertext for a
message m, the adversary cannot derive another
ciphertext for a meaningful plaintext m’ related to m.

Original RSA encryption is not secure since
 IND: deterministic encryption
 NM: for example, from c=me, c’ = 2ec = (2m)e is easily

obtained. It cannot be used in bidding scenario.

19

Formal Definition of IND

20

m0, m1
bR{0,1}

PKE(pk, sk)

Challenge: C=E(mb)

Guess b?

The adversary wins if he guesses b correctly with a
probability significantly greater than ½.

Security Def. of PKC

 Assume the existence of Decryption Oracle
 Mimics an attacker’s access to the decryption device

 Attacking Method
 Chosen Plaintext Attack (CPA): the adversary can encrypt any

plaintext of his choice. In PKC, this is always possible.

 Non-adaptive Chosen Ciphertext Attack (CCA1): the attacker
has access to the decryption oracle before he sees a
ciphertext that he wishes to manipulate (aka. lunchtime attack)

 Adaptive Chosen Ciphertext Attack (CCA2): the attacker has
access to the decryption oracle before and after he sees a
ciphertext c that he wishes to manipulate (but, he is not
allowed to query the oracle about the target ciphertext c.)

21

Making RSA to IND-CCA2

 RSA encryption without padding
 Deterministic encryption

 Multiplicative property: m1
e m2

e = (m1m2)
e mod n

 Many attacks possible

 Redundancy checking is required

 RSA encryption with OAEP
 RSA encryption after OAEP (Optimal Asymmetric Encryption

Padding)

 Proposed by Bellare and Rogaway

 Probabilistic encoding of message before encryption

 RSA becomes a probabilistic encryption

 Secure against IND-CCA2

22

RSA with OAEP

23

 OAEP  RSA encryption

s=mG(r)
t=rH(s)

r=tH(s)
m=sG(r)

Encryption padding

Decryption padding

c=E(s,t) RSA encryption

 RSA decryption  OAEP

(s,t)=D(c) RSA decryption

+

m r

s t

+ H

G

n-bit message l-bit random value

G

H

Hash function

(Random oracle)

(Note) OAEP looks like a kind of Feistel network

PKCS #1 v2.0, v2.1..

Diffie-Hellman / ElGamal-type
Systems

 Domain parameter generation
 Based on the hardness of DLP

 Generate a large (1,024 bits or larger) prime p

 Find generator g that generates the cyclic group Zp
*

 Domain parameter = {p, g}

 Key generation
 Pick a random integer x  [1, p-1]

 Compute y = gx mod p

 Public key (p, g, y) : public Private key x : keep secret

 Applications
 Public key encryption

 Digital signatures

 Key agreement

24

Discrete Logarithm Problem (DLP)

 Problem:
Given g, y, and prime p, find an integer x, if any, such that
y = gx mod p (x=loggy)

 Application: Used to construct Diffie-Hellman & ElGamal-type
public key systems: DH, DSA, KCDSA …

 Algorithms to solve DLP:

 Shank’s Baby Step Giant Step
 Index calculus

25

easy y = gx mod p

hard
x = logg y

Given g, x, p

Given g, y, p

Shank’s Baby Step, Giant Step
algorithm

26

 Problem: find an integer x, if any, such that y = gx mod p (x=loggy)

 Algorithm

pygg
Nkj

mod




1. Choose an integer  1 pN

2. Computes Njpg
j

0for ,mod

3. Computes Nkpyg
Nk




0for ,mod

4. Look for a match between the two lists. If a match is found,

Then
Nkjx

ggy




We solve the DLP. Nkjx 

Baby Step

Giant Step

Index Calculus (1/2)

27

 Problem: find an integer x, if any, such that y = gx mod p (x=loggy)

 Algorithm

1. Choose a factor base S = {p1,p2,…pm}

 which are primes less than a bound B.

2. Collect linear relations
1. Select a random integer k and compute gk mod p
2. Try to write gk as a product of primes in S

 m o d , th en lo g m o d 1i
ak

i i g i

ii

g p p k a p p  

3. Find the logarithms of elements in S solving the linear relations

4. Find x

 For a random r, compute ygr mod p and try to write it as a

 product of primes in S.

m o d , th en lo g m o d 1i
br

i i g i

ii

yg p p x r b p p    

Index Calculus (2/2)

28

 Example: Let p=131, g=2, y=37. Find x=log237 mod 131

 Solution
Let B=10, S={2,3,5,7}

21 = 2 mod 131

28 = 53 mod 131

212 = 5 * 7 mod 131

214 = 32 mod 131

234 = 3 * 52 mod 131

1 = log22 mod 130

8 = 3*log25 mod 130

12= log25 + log27 mod 130

14 = 2*log23 mod 130

34 = log23 + 2*log25 mod 130

log22 = 1

log25 = 46

log27 = 96

log23 = 72

37 * 243 = 3 * 5 * 7 mod 131

Log237 = -43 + log23 + log25 + log27 mod 130 = 41

241 mod 131 = 37 Solution :

 Complexity of best known algorithm for solving DLP:

 

1 / 3 2 / 3
(1 .9 2 3 (1))(ln) (ln ln)1

[,1 .9 2 3]
3

o p p

p
L O e




ElGamal Encryption Scheme

 Keys & parameters
 Domain parameter = {p, g}
 Choose x  [1, p-1] and compute y = gx mod p
 Public key (p, g, y)
 Private key x

 Encryption: m  (C1, C2)
 Pick a random integer k  [1, p-1]
 Compute C1 = gk mod p
 Compute C2 = m  yk mod p

 Decryption
 m = C2  C1

-x mod p
 C2  C1

-x = (m  yk)  (gk)-x = m  (gx)k  (gk)-x = m mod p

29

(Ex.) ElGamal Encryption Scheme

 Key Generation
 Let p=23, g=7
 Private key x=9
 Public key y = gx mod p = 79 mod 23 = 15

 Encryption: m  (C1, C2)
 Let m=20
 Pick a random number k=3
 Compute C1 = gk mod p = 73 mod 23 = 21
 Compute C2 = m  yk mod p = 20  153 mod 23 = 20  17 mod 23

= 18
 Send (C1 ,C2) = (21,18) as a ciphertext

 Decryption
 m = C2 / C1

x mod p = 18 / 219 mod 23 = 18 / 17 mod 23 = 20

30

31

2. Digital Signatures

RSA, ElGamal, DSA, KCDSA, Schnorr

Digital Signature

 When do you use Digital Signature?

 Electronic version of handwritten signature on
electronic document

 Signing using private key (only by the signer)

 Verification using public key (by everyone)

 Hash then sign: sig(h(m))

 Efficiency in computation and communication

32

Requirement of DS

 Security requirements for digital signature
 Unforgeability (위조 방지)

 User authentication (사용자 인증)

 Non-repudiation (부인 방지)

 Unalterability (변조 방지)

 Non-reusability (재사용 방지)

 Services provided by digital signature
 Authentication

 Data integrity

 Non-Repudiation

33

Signing & Verification

 Combine Hash with Digital Signature and use PKC

 Provide Authentication and Non-Repudiation

 (Ex.) RSA, ElGamal DSA, KCDSA, ECDSA, EC-KCDSA

34

Signature

Sender’s

Private

Key

Hash Algorithm

Hash Hash Algorithm

Hash Hash

Sender’s

Public

Key

SEND

Signature

Signature

S
ig

n
in

g

V
e
rify

in
g

Security of Digital Signature

 Forgery
 Total break: adversary is able to find the secret for signing, so

he can forge then any signature on any message.
 Selective forgery: adversary is able to create valid signatures

on a message chosen by someone else, with a significant
probability.

 Existential forgery: adversary can create a pair (message,
signature), s.t. the signature of the message is valid.

 Attacking
 Key-only attack: Adversary knows only the verification

function (which is supposed to be public).
 Known message attack: Adversary knows a list of messages

previously signed by Alice.
 Chosen message attack: Adversary can choose what

messages wants Alice to sign, and he knows both the
messages and the corresponding signatures.

 35

RSA-Signing

 Key generation
 Choose two large (512 bits or more) primes p & q
 Compute modulus n = pq, and (n) = (p-1)(q-1)
 Pick an integer e relatively prime to (n), gcd(e, (n))=1
 Compute d such that ed = 1 mod (n)
 Public key (n, e) : publish
 Private key d : keep secret (may keep p and q securely.)

 Signing / Verifying

 S: s = md mod n for 0 < m < n
 V: m =? se mod n
 S: s = h(m)d mod n --- hashed version
 V: h(m) =? se mod n

 RSA signature without padding
 Deterministic signature, no randomness introduced

36

Forging RSA-signature

RSA signature forgery: Attack based on the
multiplicative property of RSA.
y1 = (m1)d y2 = (m2)d,

then (y1y2)e = m1m2

Thus, y1y2 is a valid signature of m1m2

• This is an existential forgery using a known
message attack.

• (HW) RSA-PSS required like RSA-OAEP

37

ElGamal Signature

 Keys & parameters
 Domain parameter = {p, g}
 Choose x  [1, p-1] and compute y = gx mod p
 Public key (p, g, y)
 Private key x

 Signature generation: (r, s)
 Pick a random integer k  [1, p-1]
 Compute r = gk mod p
 Compute s such that m = xr + ks mod p-1

 Signature verification
 yrrs mod p =? gm mod p

- If equal, accept the signature (valid)
- If not equal, reject the signature (invalid)

38

Digital Signature Algorithm (DSA)

39

Private : x

Public : p, q, g, y

 p : 512 ~ 1024-bit prime

 q : 160-bit prime, q | p-1

 g : generator of order q

 x : 0 < x < q

 y = gx mod p
 Signing

r = (gk mod p) mod q

s = k-1(SHA1(m) + xr) mod q

 Verifying

m, (r,s)

Pick a random k s.t. 0 < k < q

w = s-1 mod q

u1 = SHA1(m)  w mod q

u2 = r  w mod q

v = (gu1  yu2 mod p) mod q

v =? r

m, (r,s)

KCDSA

40

Private : x

Public : p, q, g, y

z=h(Cert_Data)

 p : 768+256k (k=0 ~ 5) bit prime

 q : 160+32k (k=0~3) bit prime, q | p-1

 g : generator of order q

 x : 0 < x < q

 y = gx mod p, x = x-1 mod q

 Signing

r = HAS160(gk mod p)

e = r  HAS160(z || m)

s = x(k - e) mod q

 Verifying

m, (r,s)

Pick a random k s.t. 0 < k < q

e = r  HAS160(z || m)

v = ys  ge mod p

HAS160(v) =? r

m, (r,s)

Schnorr Signature Scheme

 Domain parameters
 p = a large prime (~ size 1024 bit), q = a prime (~size 160 bit)

 q = a large prime divisor of p-1 (q | p-1)

 g = an element of Zp of order q, i.e., g  1 & gq = 1 mod p

 Considered in a subgroup of order q in modulo p

 Keys
 Private key x R [1, q-1] : a random integer

 Public key y = gx mod p

 Signature generation: (r, s)
 Pick a random integer k R [1, q-1]

 Compute r = h(gk mod p, m)

 Compute s = k – xr mod q

 Signature verification
 r =? h(yrgs mod p, m)

41

Advanced Digital Signature

• Blind signature

• One-time signature
– Lamport scheme or Bos-Chaum scheme

• Undeniable signature
– Chaum-van Antwerpen scheme

• Fail-stop signature
– van Heyst-Peterson scheme

• Proxy signature

• Group (Ring) signature: group member can generate
signature if dispute occurs, identify member. etc.

42

Blind Signature(I)

43

Without B seeing the content of message M, A can get a signature

of M from B.

RSA scheme, B’s public key :{n,e}, private key:{d}

(1) select random k

s.t. gcd(n,k)=1,

1<k<n-1

A(customer) B(Bank)

(2) m*=mke

mod n

 m*

(3) s*=

 (m*)d mod n s*

(4) s=k-1 s*mod n

(signature of M by B : k-1(mke)d= k-1 me ked = md)

(1)random

number
(2)blinding

(3)signing

(4)unblinding

A B

g(SBf(m))=SB(m)

f:blinding ft

g:unblinding ft only A knows

f(m) : blinded message

Blind Signature(II)

(Preparation) p=11, q=3, n=33,(n)= 10 x 2=20

gcd(d, (n))=1 => d=3, ed =1 mod (n) => 3 d = 1 mod 20 => e=7

B: public key :{n,e}={33,7}, private key ={d}={3}

(1) A’s blinding of m=5

 select k s.t. gcd(k,n)=1. gcd(k,33)=1 => k=2

 m* = m ke mod n= 5 27 mod 33 = 640 mod 33 = 13 mod 33

(2) B’s signing without knowing the original m

 s*= (m*)d mod n = 133 mod 33 =2197 mod 33 =19 mod 33

(3) A’s unblinding

 s=k-1 s* mod n (2 k-1=1 mod 33 => k=17)

 = 17 19 mod 33 =323=26 mod 33

 * Original Signature : md mod n = 53 mod 33 =125 =26 mod 33

44

45

3. Key Exchange

Diffie-Hellman

DH Key Agreement

46

choose Xa  [1, p-1]

Ya = g
Xa mod p

Ya

choose Xb  [1, p-1]

Yb = g
Xb mod p

Yb

compute the shared key

Ka = Yb
Xa = g

XbXa mod p

compute the shared key

Kb = Ya
Xb = g

XaXb mod p

Domain Parameters

p, g

Diffie-Hellman Problem

47

 Computational Diffie-Hellman (CDH) Problem

Given Ya = g
Xa mod p and Yb = g

Xb mod p,

compute Kab = g
XaXb mod p

 Decision Diffie-Hellman (DDH) Problem

Given Ya = g
Xa mod p and Yb = g

Xb mod p,

distinguish between Kab = g
XaXb mod p and a random string

 Discrete Logarithm Problem (DLP)

Given Y = g
X mod p, compute X = logbY.

The Security of the Diffie-Hellman key agreement depends on

the difficulty of CDH problem.

MIMT in DH Scheme

48

Xb : private

Yb = g
Xb : public

Yb Yc

Xa : private

Ya = g
Xa : public

Yc = g
Xc for some Xc Yc Ya

Bob computes the
session key

Kb = Yc
Xb = g

XcXb

Alice computes the
session key

Ka = Yc
Xa = g

XcXa

Adversary computes
both session keys

Kb = Yb
Xc = g

XcXb

Ka = Ya
Xc = g

XcXa

Man-in-the-middle attack

comes from no authentication

DH Key Agreement with Certified
Key

49

choose Xa  [1, p-1]

Ya = g
Xa mod p

choose Xb  [1, p-1]

Yb = g
Xb mod p

compute the shared key

Ka = Yb
Xa = g

XbXa mod p

compute the shared key

Kb = Ya
Xb = g

XaXb mod p

Domain Parameters

p, g

Certified

key

Ya and Yb

•Interaction is not required

•Agreed key is fixed, long-term use

Elliptic Curve (1/2)

50

 Weierstrass form of Elliptic Curve

 y2 + a1 xy + a3 = x3 + a2 x
2 + a4 x + a6

 Example (over rational field)

 y2 = x3 – 4x + 1

 E(Q)

 = {(x,y)  Q2 | y2 = x3 – 2x + 2} U OE

 P = (2, 1), –P = (2, –1)

 [2]P = (12 , -41)

 [3]P = (91/25, 736/125)

 [4]P = (5452/1681, -324319/68921)

P
Q

P + Q
-Q

P - Q

Elliptic Curve (2/2)

51

 Example (over finite field GF(p) : p = 13)

 P = (2,1), –P = (2, 12), [2]P = (12, 11)

 [3]P = (0, 1), [4]P = (11, 12), …… , [18]P = OE

 Hasse’s Theorem : p – 2p  # of E(p)  p + 2p

 Scalar multiplication: [d]P

 Elliptic Curve Discrete Logarithm

 Base of Elliptic Curve Cryptosystem (ECC)

y = gx mod p Q = [d]P

Find x for given g, p, Y Find d for given P, Q

ECC

 Advantages
 Breaking PKC over Elliptic Curve is much harder.

 We can use much shorter key about 1/6.

 Encryption/Decryption is much faster than other PKCs.

 Suitable for restricted environments like mobile phone, smart

 card.

 Disadvantages

 It’s new technique  There may be new attacks.

 Too complicated to understand.

 ECC is a minefield of patents.
: e.g., US patents

4587627/739220 – Normal Basis, 5272755 – Curve over GF(p)

5463690/5271051/5159632 – p=2^q-c for small c, etc…

52

Implementation

53

 RSA Encryption/Decryption

Encryption Decryption

PKCS#1-v1.5 1.49 ms 18.05 ms

PKCS#1-OAEP 1.41 ms 18.09 ms

 Signature

Signing Verifying

PKCS#1-v1.5 18.07 ms 1.24 ms

PKCS#1-PSS 18.24 ms 1.28 ms

DSA with SHA1 2.75 ms 9.85 ms

KCDSA with HAS160 2.42 ms 9.55 ms

 Modular Exponentiation vs. Scalar Multiplication of EC

M.E. (1024-bit) S.M. (GF(2162)) S.M. (GF(p))

52.01 ms 2.24 ms 1.17 ms

Equivalent Key Size

54

Recommendation for the Transition of Cryptographic Algorithm and Key Sizes,

NIST800-121, Jan. 2010.

Key Length by NIST

55

Recommendation for Key Management,

Special Publication 800-57 Part 1, NIST, 03/2007. http://www.keylength.com

http://csrc.nist.gov/groups/ST/toolkit/key_management.html
http://www.nist.gov/
http://www.keylength.com/

