
Week 10 -11 : Public Key

Cryptosystem and Digital

Signatures

2

1. Public Key Encryptions
RSA, ElGamal,

RSA- PKC(1/3)

 1st public key cryptosystem
 R.L.Rivest, A.Shamir, L.Adleman, “A Method for Obtaining Digital

Signatures and Public Key Cryptosystems”, CACM, Vol.21, No.2,
pp.120-126,Feb,1978

 Believed to be secure if IFP is hard and worldwide
standard for last 30 years

3

Shamir Rivest Adleman

RSA- PKC(2/3)

 Key generation (KeyGen)
 Select two large (1,024 bits or larger) primes p, q
 Compute modulus n = pq, and (n) = (p-1)(q-1)
 Pick an integer e relatively prime to (n), gcd(e, (n))=1
 Compute d such that ed = 1 mod (n) How??
 Public key (n, e) : public
 Private key d : keep secret (may hold p and q securely.)

 Encryption(Enc) / Decryption (Dec)

 E: C = Me mod n for 0 < M < n
 D: M = Cd mod n
 Proof) Cd = (Me)d = Med = Mk(n) +1 = M {M(n)}k = M

 Special Property
 (Me mod n)d mod n = (Md mod n)e mod n for 0 < M < n

4

RSA as Trapdoor One-way
Function

5

Message

M

Ciphertext

C

C = f(M) = Me mod n

M = f-1(C) = Cd mod n

Public key

Private key

(trapdoor information)

n = pq (p & q: primes)

ed = 1 mod (p-1)(q-1)

RSA- PKC(3/3)

• Key Generation

– p=3, q=11

– n = pq = 33, (n) =(p-1)(q-1) = 2 x10 = 20

– e = 3 s.t. gcd(e, (n))=(3,20)=1

– Choose d s.t. ed =1 mod (n), 3d = 1 mod 20, d=7

– Public key ={e,n}={3,33}, private key ={d}={7}

• Encryption

– M =5

– C = Me mod n = 53 mod 33 =26

• Decryption

– M =Cd mod n = 267 mod 33= 5

6

Exercise

 Let’s practice RSA key generation, encryption, and decryption
1) p=5, q= 7(by hand calculation, Quiz!!) if M= 3

2) p=2,357, q=2,551 (using big number calculator) if M= 5,000

3) p=885,320,963, q=238,855,417 (using big number calculator)

 if M=10,000

1. Key generation

2. Encryption

3. Decryption

7

Selecting Primes p and q

 Idea: Prevent from feasible factorization

1. |p| |q| to avoid ECM (Elliptic Curve Method for
factoring)

2. p-q must be large to avoid trial division

3. p and q are strong prime
 p-1 has large prime factor r (Pollard’s p-1)

 p+1 has large prime factor (William’s p+1)

 r-1 has large prime factor (Cyclic attack)

 8

Integer Factorization Problem (IFP)

9

 Problem: Given a composite number n, find its prime factors

 Application: Used to construct RSA-type public key
cryptosystems

 (Probabilistic sub-exponential) Algorithms to solve IFP

 Quadratic sieve
 General Number Field Sieve
 etc.

easy

Primes p, q n = pq
hard

Quadratic Sieve (1/3)

 Factor n (=pq) using the quadratic sieve algorithm

 Basic principle:
Let n be an integer and suppose there exist integers x and y with
x2 = y2 (mod n), but x ±y (mod n). Then gcd(x-y, n) gives a
nontrivial factor of n.

 Example

Consider n=77
72=-5 mod 77, 45=-32 mod 77
72*45 = (-5)*(-32) mod 77
23*34*5 = 25*5 mod 77
92 = 22 mod 77
gcd(9-2,77)=7, gcd(9+2,77)=11
77=11*7 Factorization

10

Quadratic Sieve (2/3)

 Example: factor n=3837523.

Observe

93982 = 55 x 19 (mod 3837523)
190952 = 22 x 5 x 11 x 13 x 19 (mod 3837523)
19642 = 32 x 133 (mod 3837523)
170782 = 26 x 32 x 11 (mod 3837523)

Then, we have

(9398 x 19095 x 1964 x 17078)2 = (24x32x53x11x132x19)2 (mod 3837523)
22303872 = 25867052 (mod 3837523)
Compute gcd(2230387-2586705, 3837523) => 1093 (mod 3837523)
3837523 / 1093 = 3511 (mod 3837523)

3837523 = 1093 x 3511 Note that Verification is easy !!

11

Quadratic Sieve (3/3)

1. Initialization: a sequence of quadratic residues
Q(x)=(m+x)2-n is generated for small values of x where
m=sqrt(n).

2. Forming the factor base: the base consists of small primes.
FB={-1,2,p1,p2,…,pt-1}

3. Sieving: the quadratic residues Q(x) are factored using the
factor base till t full factorizations of Q(x) have been
found.

4. Forming and solving the matrix: Find a linear combination
of Q(x)’s which gives the quadratic congruence. The
congruence gives a nontrivial factor of n with the
probability ½.

http://www.answers.com/topic/quadratic-sieve?cat=technology

12

http://www.answers.com/topic/quadratic-sieve?cat=technology
http://www.answers.com/topic/quadratic-sieve?cat=technology
http://www.answers.com/topic/quadratic-sieve?cat=technology

General Number Field Sieve
(GNFS)

 Most efficient algorithm known for factoring integers

larger than 100 digits.

 Asymptotic running time: sub-exponential

13

1 / 3 2 / 3

(1 .5 2 6 (1))(ln) (ln ln)1
[,1 .5 2 6]

3

o n n

n
L O e

)(],[
1

)ln(ln)(ln

nnc

n
eOcL

Complexity of algorithm

• If =0, polynomial time algorithm

• If >=1, exponential time algorithm

• If 0<<1, sub-exponential time algorithm

RSA Challenge

14

•MIPS : 1 Million Instruction Per Second for 1 yr = 3.1 x 1013 instruction.

•*2: 576bit http://www.rsasecurity.com./rsalabs , 768-bit by 2010 (published),

• Expectation: 1,024-bit by 2018 !!!!

Digits Year Algorithm

RSA-100

RSA-110

RSA-120

RSA-129

RSA-130

RSA-140

RSA-155

RSA-160

RSA-174*2

RSA-200

‘91.4.

‘92.4.

‘93.6.

‘94.4.(AC94)

‘96.4.(AC96)

‘99.2 (AC99)

’99.8

’03.1

’03.12

‘05.5

7

75

830

5,000

?

?

8,000

Q.S.

Q.S

Q.S.

Q.S.

NFS

NFS

GNFS

Lattice Sieving+HW

Lattice Sieving +HW

GNFS+HW

http://www.rsasecurity.com./rsalabs
http://www.rsasecurity.com./rsalabs
http://www.rsasecurity.com/rsalabs/challenges/factoring/rsa576.html
http://www.rsasecurity.com/rsalabs/challenges/factoring/rsa576.html
http://www.rsasecurity.com/rsalabs/challenges/factoring/rsa576.html

RSA-200

• Date: Mon, 9 May 2005 18:05:10 +0200 (CEST)

• From: Thorsten Kleinjung

• Subject: rsa200

• We have factored RSA-200 by GNFS.

The factors are
p=35324619344027701212726049781984643686711974001976\
25023649303468776121253679423200058547956528088349 and

q=79258699544783330333470858414800596877379758573642\
19960734330341455767872818152135381409304740185467

15

http://www.loria.fr/~zimmerma/records/rsa200

http://www.loria.fr/~zimmerma/records/rsa200

16

Security of RSA(1/2)

 Common Modulus attack:

 If multiple entities share the same modulus n=pq with different pairs
of (ei, di), this is not secure.

 Do not share the same modulus!

 Cryptanalysis: If the same message M was encrypted to different
users

 User u1 : C1 = Me1 mod n

 User u2 : C2 = Me2 mod n

 If gcd(e1,e2)=1, there are a and b s.t. ae1 + be2 = 1 mod n then,

 (C1)
a(C2)

b mod n = (Me1)a(Me2)b mod n = Mae1+be2 mod n

 = M mod n

17

Security of RSA(2/2)

Cycling attack
If f(f(…f(M)))=f(M) where f(M) = Me mod n ?
If a given ciphertext appears after some iterations,
we can recover the plaintext at collusion point.

e.g., Let C=Me mod n
 If (((Ce)e)…)e mod n = Ce^k mod n = C,
 then Ce^(k-1) mod n = M for some k.

 Multiplicative attack (homomorphic property of
RSA)
(M1

e) x (M2
e) mod n = (M1 x M2)

e mod n

18

Security of PKC

 Security goals
 One-wayness (OW): the adversary who sees a ciphertext

is not able to compute the corresponding message.
 Indistinguishability (IND): observing a ciphertext, the

adversary learns nothing about the plaintext. Also
known as semantic security.

 Non-malleability (NM): observing a ciphertext for a
message m, the adversary cannot derive another
ciphertext for a meaningful plaintext m’ related to m.

Original RSA encryption is not secure since
 IND: deterministic encryption
 NM: for example, from c=me, c’ = 2ec = (2m)e is easily

obtained. It cannot be used in bidding scenario.

19

Formal Definition of IND

20

m0, m1
bR{0,1}

PKE(pk, sk)

Challenge: C=E(mb)

Guess b?

The adversary wins if he guesses b correctly with a
probability significantly greater than ½.

Security Def. of PKC

 Assume the existence of Decryption Oracle
 Mimics an attacker’s access to the decryption device

 Attacking Method
 Chosen Plaintext Attack (CPA): the adversary can encrypt any

plaintext of his choice. In PKC, this is always possible.

 Non-adaptive Chosen Ciphertext Attack (CCA1): the attacker
has access to the decryption oracle before he sees a
ciphertext that he wishes to manipulate (aka. lunchtime attack)

 Adaptive Chosen Ciphertext Attack (CCA2): the attacker has
access to the decryption oracle before and after he sees a
ciphertext c that he wishes to manipulate (but, he is not
allowed to query the oracle about the target ciphertext c.)

21

Making RSA to IND-CCA2

 RSA encryption without padding
 Deterministic encryption

 Multiplicative property: m1
e m2

e = (m1m2)
e mod n

 Many attacks possible

 Redundancy checking is required

 RSA encryption with OAEP
 RSA encryption after OAEP (Optimal Asymmetric Encryption

Padding)

 Proposed by Bellare and Rogaway

 Probabilistic encoding of message before encryption

 RSA becomes a probabilistic encryption

 Secure against IND-CCA2

22

RSA with OAEP

23

 OAEP RSA encryption

s=mG(r)
t=rH(s)

r=tH(s)
m=sG(r)

Encryption padding

Decryption padding

c=E(s,t) RSA encryption

 RSA decryption OAEP

(s,t)=D(c) RSA decryption

+

m r

s t

+ H

G

n-bit message l-bit random value

G

H

Hash function

(Random oracle)

(Note) OAEP looks like a kind of Feistel network

PKCS #1 v2.0, v2.1..

Diffie-Hellman / ElGamal-type
Systems

 Domain parameter generation
 Based on the hardness of DLP

 Generate a large (1,024 bits or larger) prime p

 Find generator g that generates the cyclic group Zp
*

 Domain parameter = {p, g}

 Key generation
 Pick a random integer x [1, p-1]

 Compute y = gx mod p

 Public key (p, g, y) : public Private key x : keep secret

 Applications
 Public key encryption

 Digital signatures

 Key agreement

24

Discrete Logarithm Problem (DLP)

 Problem:
Given g, y, and prime p, find an integer x, if any, such that
y = gx mod p (x=loggy)

 Application: Used to construct Diffie-Hellman & ElGamal-type
public key systems: DH, DSA, KCDSA …

 Algorithms to solve DLP:

 Shank’s Baby Step Giant Step
 Index calculus

25

easy y = gx mod p

hard
x = logg y

Given g, x, p

Given g, y, p

Shank’s Baby Step, Giant Step
algorithm

26

 Problem: find an integer x, if any, such that y = gx mod p (x=loggy)

 Algorithm

pygg
Nkj

mod

1. Choose an integer 1 pN

2. Computes Njpg
j

0for ,mod

3. Computes Nkpyg
Nk

0for ,mod

4. Look for a match between the two lists. If a match is found,

Then
Nkjx

ggy

We solve the DLP. Nkjx

Baby Step

Giant Step

Index Calculus (1/2)

27

 Problem: find an integer x, if any, such that y = gx mod p (x=loggy)

 Algorithm

1. Choose a factor base S = {p1,p2,…pm}

 which are primes less than a bound B.

2. Collect linear relations
1. Select a random integer k and compute gk mod p
2. Try to write gk as a product of primes in S

 m o d , th en lo g m o d 1i
ak

i i g i

ii

g p p k a p p

3. Find the logarithms of elements in S solving the linear relations

4. Find x

 For a random r, compute ygr mod p and try to write it as a

 product of primes in S.

m o d , th en lo g m o d 1i
br

i i g i

ii

yg p p x r b p p

Index Calculus (2/2)

28

 Example: Let p=131, g=2, y=37. Find x=log237 mod 131

 Solution
Let B=10, S={2,3,5,7}

21 = 2 mod 131

28 = 53 mod 131

212 = 5 * 7 mod 131

214 = 32 mod 131

234 = 3 * 52 mod 131

1 = log22 mod 130

8 = 3*log25 mod 130

12= log25 + log27 mod 130

14 = 2*log23 mod 130

34 = log23 + 2*log25 mod 130

log22 = 1

log25 = 46

log27 = 96

log23 = 72

37 * 243 = 3 * 5 * 7 mod 131

Log237 = -43 + log23 + log25 + log27 mod 130 = 41

241 mod 131 = 37 Solution :

 Complexity of best known algorithm for solving DLP:

1 / 3 2 / 3
(1 .9 2 3 (1))(ln) (ln ln)1

[,1 .9 2 3]
3

o p p

p
L O e

ElGamal Encryption Scheme

 Keys & parameters
 Domain parameter = {p, g}
 Choose x [1, p-1] and compute y = gx mod p
 Public key (p, g, y)
 Private key x

 Encryption: m (C1, C2)
 Pick a random integer k [1, p-1]
 Compute C1 = gk mod p
 Compute C2 = m yk mod p

 Decryption
 m = C2 C1

-x mod p
 C2 C1

-x = (m yk) (gk)-x = m (gx)k (gk)-x = m mod p

29

(Ex.) ElGamal Encryption Scheme

 Key Generation
 Let p=23, g=7
 Private key x=9
 Public key y = gx mod p = 79 mod 23 = 15

 Encryption: m (C1, C2)
 Let m=20
 Pick a random number k=3
 Compute C1 = gk mod p = 73 mod 23 = 21
 Compute C2 = m yk mod p = 20 153 mod 23 = 20 17 mod 23

= 18
 Send (C1 ,C2) = (21,18) as a ciphertext

 Decryption
 m = C2 / C1

x mod p = 18 / 219 mod 23 = 18 / 17 mod 23 = 20

30

31

2. Digital Signatures

RSA, ElGamal, DSA, KCDSA, Schnorr

Digital Signature

 When do you use Digital Signature?

 Electronic version of handwritten signature on
electronic document

 Signing using private key (only by the signer)

 Verification using public key (by everyone)

 Hash then sign: sig(h(m))

 Efficiency in computation and communication

32

Requirement of DS

 Security requirements for digital signature
 Unforgeability (위조 방지)

 User authentication (사용자 인증)

 Non-repudiation (부인 방지)

 Unalterability (변조 방지)

 Non-reusability (재사용 방지)

 Services provided by digital signature
 Authentication

 Data integrity

 Non-Repudiation

33

Signing & Verification

 Combine Hash with Digital Signature and use PKC

 Provide Authentication and Non-Repudiation

 (Ex.) RSA, ElGamal DSA, KCDSA, ECDSA, EC-KCDSA

34

Signature

Sender’s

Private

Key

Hash Algorithm

Hash Hash Algorithm

Hash Hash

Sender’s

Public

Key

SEND

Signature

Signature

S
ig

n
in

g

V
e
rify

in
g

Security of Digital Signature

 Forgery
 Total break: adversary is able to find the secret for signing, so

he can forge then any signature on any message.
 Selective forgery: adversary is able to create valid signatures

on a message chosen by someone else, with a significant
probability.

 Existential forgery: adversary can create a pair (message,
signature), s.t. the signature of the message is valid.

 Attacking
 Key-only attack: Adversary knows only the verification

function (which is supposed to be public).
 Known message attack: Adversary knows a list of messages

previously signed by Alice.
 Chosen message attack: Adversary can choose what

messages wants Alice to sign, and he knows both the
messages and the corresponding signatures.

 35

RSA-Signing

 Key generation
 Choose two large (512 bits or more) primes p & q
 Compute modulus n = pq, and (n) = (p-1)(q-1)
 Pick an integer e relatively prime to (n), gcd(e, (n))=1
 Compute d such that ed = 1 mod (n)
 Public key (n, e) : publish
 Private key d : keep secret (may keep p and q securely.)

 Signing / Verifying

 S: s = md mod n for 0 < m < n
 V: m =? se mod n
 S: s = h(m)d mod n --- hashed version
 V: h(m) =? se mod n

 RSA signature without padding
 Deterministic signature, no randomness introduced

36

Forging RSA-signature

RSA signature forgery: Attack based on the
multiplicative property of RSA.
y1 = (m1)d y2 = (m2)d,

then (y1y2)e = m1m2

Thus, y1y2 is a valid signature of m1m2

• This is an existential forgery using a known
message attack.

• (HW) RSA-PSS required like RSA-OAEP

37

ElGamal Signature

 Keys & parameters
 Domain parameter = {p, g}
 Choose x [1, p-1] and compute y = gx mod p
 Public key (p, g, y)
 Private key x

 Signature generation: (r, s)
 Pick a random integer k [1, p-1]
 Compute r = gk mod p
 Compute s such that m = xr + ks mod p-1

 Signature verification
 yrrs mod p =? gm mod p

- If equal, accept the signature (valid)
- If not equal, reject the signature (invalid)

38

Digital Signature Algorithm (DSA)

39

Private : x

Public : p, q, g, y

 p : 512 ~ 1024-bit prime

 q : 160-bit prime, q | p-1

 g : generator of order q

 x : 0 < x < q

 y = gx mod p
 Signing

r = (gk mod p) mod q

s = k-1(SHA1(m) + xr) mod q

 Verifying

m, (r,s)

Pick a random k s.t. 0 < k < q

w = s-1 mod q

u1 = SHA1(m) w mod q

u2 = r w mod q

v = (gu1 yu2 mod p) mod q

v =? r

m, (r,s)

KCDSA

40

Private : x

Public : p, q, g, y

z=h(Cert_Data)

 p : 768+256k (k=0 ~ 5) bit prime

 q : 160+32k (k=0~3) bit prime, q | p-1

 g : generator of order q

 x : 0 < x < q

 y = gx mod p, x = x-1 mod q

 Signing

r = HAS160(gk mod p)

e = r HAS160(z || m)

s = x(k - e) mod q

 Verifying

m, (r,s)

Pick a random k s.t. 0 < k < q

e = r HAS160(z || m)

v = ys ge mod p

HAS160(v) =? r

m, (r,s)

Schnorr Signature Scheme

 Domain parameters
 p = a large prime (~ size 1024 bit), q = a prime (~size 160 bit)

 q = a large prime divisor of p-1 (q | p-1)

 g = an element of Zp of order q, i.e., g 1 & gq = 1 mod p

 Considered in a subgroup of order q in modulo p

 Keys
 Private key x R [1, q-1] : a random integer

 Public key y = gx mod p

 Signature generation: (r, s)
 Pick a random integer k R [1, q-1]

 Compute r = h(gk mod p, m)

 Compute s = k – xr mod q

 Signature verification
 r =? h(yrgs mod p, m)

41

Advanced Digital Signature

• Blind signature

• One-time signature
– Lamport scheme or Bos-Chaum scheme

• Undeniable signature
– Chaum-van Antwerpen scheme

• Fail-stop signature
– van Heyst-Peterson scheme

• Proxy signature

• Group (Ring) signature: group member can generate
signature if dispute occurs, identify member. etc.

42

Blind Signature(I)

43

Without B seeing the content of message M, A can get a signature

of M from B.

RSA scheme, B’s public key :{n,e}, private key:{d}

(1) select random k

s.t. gcd(n,k)=1,

1<k<n-1

A(customer) B(Bank)

(2) m*=mke

mod n

 m*

(3) s*=

 (m*)d mod n s*

(4) s=k-1 s*mod n

(signature of M by B : k-1(mke)d= k-1 me ked = md)

(1)random

number
(2)blinding

(3)signing

(4)unblinding

A B

g(SBf(m))=SB(m)

f:blinding ft

g:unblinding ft only A knows

f(m) : blinded message

Blind Signature(II)

(Preparation) p=11, q=3, n=33,(n)= 10 x 2=20

gcd(d, (n))=1 => d=3, ed =1 mod (n) => 3 d = 1 mod 20 => e=7

B: public key :{n,e}={33,7}, private key ={d}={3}

(1) A’s blinding of m=5

 select k s.t. gcd(k,n)=1. gcd(k,33)=1 => k=2

 m* = m ke mod n= 5 27 mod 33 = 640 mod 33 = 13 mod 33

(2) B’s signing without knowing the original m

 s*= (m*)d mod n = 133 mod 33 =2197 mod 33 =19 mod 33

(3) A’s unblinding

 s=k-1 s* mod n (2 k-1=1 mod 33 => k=17)

 = 17 19 mod 33 =323=26 mod 33

 * Original Signature : md mod n = 53 mod 33 =125 =26 mod 33

44

45

3. Key Exchange

Diffie-Hellman

DH Key Agreement

46

choose Xa [1, p-1]

Ya = g
Xa mod p

Ya

choose Xb [1, p-1]

Yb = g
Xb mod p

Yb

compute the shared key

Ka = Yb
Xa = g

XbXa mod p

compute the shared key

Kb = Ya
Xb = g

XaXb mod p

Domain Parameters

p, g

Diffie-Hellman Problem

47

 Computational Diffie-Hellman (CDH) Problem

Given Ya = g
Xa mod p and Yb = g

Xb mod p,

compute Kab = g
XaXb mod p

 Decision Diffie-Hellman (DDH) Problem

Given Ya = g
Xa mod p and Yb = g

Xb mod p,

distinguish between Kab = g
XaXb mod p and a random string

 Discrete Logarithm Problem (DLP)

Given Y = g
X mod p, compute X = logbY.

The Security of the Diffie-Hellman key agreement depends on

the difficulty of CDH problem.

MIMT in DH Scheme

48

Xb : private

Yb = g
Xb : public

Yb Yc

Xa : private

Ya = g
Xa : public

Yc = g
Xc for some Xc Yc Ya

Bob computes the
session key

Kb = Yc
Xb = g

XcXb

Alice computes the
session key

Ka = Yc
Xa = g

XcXa

Adversary computes
both session keys

Kb = Yb
Xc = g

XcXb

Ka = Ya
Xc = g

XcXa

Man-in-the-middle attack

comes from no authentication

DH Key Agreement with Certified
Key

49

choose Xa [1, p-1]

Ya = g
Xa mod p

choose Xb [1, p-1]

Yb = g
Xb mod p

compute the shared key

Ka = Yb
Xa = g

XbXa mod p

compute the shared key

Kb = Ya
Xb = g

XaXb mod p

Domain Parameters

p, g

Certified

key

Ya and Yb

•Interaction is not required

•Agreed key is fixed, long-term use

Elliptic Curve (1/2)

50

 Weierstrass form of Elliptic Curve

 y2 + a1 xy + a3 = x3 + a2 x
2 + a4 x + a6

 Example (over rational field)

 y2 = x3 – 4x + 1

 E(Q)

 = {(x,y) Q2 | y2 = x3 – 2x + 2} U OE

 P = (2, 1), –P = (2, –1)

 [2]P = (12 , -41)

 [3]P = (91/25, 736/125)

 [4]P = (5452/1681, -324319/68921)

P
Q

P + Q
-Q

P - Q

Elliptic Curve (2/2)

51

 Example (over finite field GF(p) : p = 13)

 P = (2,1), –P = (2, 12), [2]P = (12, 11)

 [3]P = (0, 1), [4]P = (11, 12), …… , [18]P = OE

 Hasse’s Theorem : p – 2p # of E(p) p + 2p

 Scalar multiplication: [d]P

 Elliptic Curve Discrete Logarithm

 Base of Elliptic Curve Cryptosystem (ECC)

y = gx mod p Q = [d]P

Find x for given g, p, Y Find d for given P, Q

ECC

 Advantages
 Breaking PKC over Elliptic Curve is much harder.

 We can use much shorter key about 1/6.

 Encryption/Decryption is much faster than other PKCs.

 Suitable for restricted environments like mobile phone, smart

 card.

 Disadvantages

 It’s new technique There may be new attacks.

 Too complicated to understand.

 ECC is a minefield of patents.
: e.g., US patents

4587627/739220 – Normal Basis, 5272755 – Curve over GF(p)

5463690/5271051/5159632 – p=2^q-c for small c, etc…

52

Implementation

53

 RSA Encryption/Decryption

Encryption Decryption

PKCS#1-v1.5 1.49 ms 18.05 ms

PKCS#1-OAEP 1.41 ms 18.09 ms

 Signature

Signing Verifying

PKCS#1-v1.5 18.07 ms 1.24 ms

PKCS#1-PSS 18.24 ms 1.28 ms

DSA with SHA1 2.75 ms 9.85 ms

KCDSA with HAS160 2.42 ms 9.55 ms

 Modular Exponentiation vs. Scalar Multiplication of EC

M.E. (1024-bit) S.M. (GF(2162)) S.M. (GF(p))

52.01 ms 2.24 ms 1.17 ms

Equivalent Key Size

54

Recommendation for the Transition of Cryptographic Algorithm and Key Sizes,

NIST800-121, Jan. 2010.

Key Length by NIST

55

Recommendation for Key Management,

Special Publication 800-57 Part 1, NIST, 03/2007. http://www.keylength.com

http://csrc.nist.gov/groups/ST/toolkit/key_management.html
http://www.nist.gov/
http://www.keylength.com/

