Week 10-11 : Public Key Cryptosystem and Digital Signatures

1. Public Key Encryptions RSA, EIGamal,

RSA- PKC(1/3)

* 1st public key cryptosystem
* R.L.Rivest, A.Shamir, L.Adleman, "A Method for Obtaining Digital Signatures and Public Key Cryptosystems", CACM, Vol.21, No.2, pp.120-126,Feb,1978
* Believed to be secure if IFP is hard and worldwide standard for last 30 years

RSA- PKC(2/3)

* Key generation (KeyGen)
$>$ Select two large (1,024 bits or larger) primes p, q
$>$ Compute modulus $n=p q$, and $\phi(n)=(p-1)(q-1)$
$>$ Pick an integer e relatively prime to $\phi(n), \operatorname{gcd}(e, \phi(n))=1$
$>$ Compute d such that ed $=1 \bmod \phi(n)$ How??
> Public key (n , e) : public
> Private key d: keep secret (may hold p and q securely.)
* Encryption(Enc) / Decryption (Dec)
$>\mathrm{E}: C=M^{e} \bmod n$ for $0<M<n$
$\rightarrow \mathrm{D}: M=\mathrm{C}^{d} \bmod n$
$>$ Proof) $C^{d}=\left(M^{e}\right)^{d}=M^{e d}=M^{k \phi(n)+1}=M\left\{M^{\phi(n)}\right\}^{k}=M$
* Special Property
$>\left(M^{e} \bmod n\right)^{d} \bmod n=\left(M^{d} \bmod n\right)^{e} \bmod n$ for $0<M<n$

RSA as Trapdoor One-way Function

RSA- PKC(3/3)

- Key Generation
- $p=3, q=11$
$-n=p q=33, \phi(n)=(p-1)(q-1)=2 \times 10=20$
$-e=3$ s.t. $\operatorname{gcd}(e, \phi(n))=(3,20)=1$
- Choose d s.t. ed $=1 \bmod \phi(n), 3 d=1 \bmod 20, d=7$
- Public key $=\{e, n\}=\{3,33\}$, private key $=\{d\}=\{7\}$
- Encryption
- $M=5$
$-C=M^{e} \bmod n=5^{3} \bmod 33=26$
- Decryption
$-M=C^{d} \bmod n=26^{7} \bmod 33=5$

Exercise

Let's practice RSA key generation, encryption, and decryption

1) $p=5, q=7$ (by hand calculation, Quiz!!) if $M=3$
2) $p=2,357, q=2,551$ (using big number calculator) if $M=5,000$
3) $p=885,320,963, q=238,855,417$ (using big number calculator) if $M=10,000$
1. Key generation
2. Encryption
3. Decryption

Selecting Primes p and q

* Idea: Prevent from feasible factorization

1. $|p| \approx|q|$ to avoid ECM (Elliptic Curve Method for factoring)
2. $p-q$ must be large to avoid trial division
3. p and q are strong prime

- $p-1$ has large prime factor r (Pollard's $p-1$)
- $p+1$ has large prime factor (William's $p+1$)
- $r-1$ has large prime factor (Cyclic attack)

Integer Factorization Problem (IFP)

> Problem: Given a composite number n, find its prime factors

> Application: Used to construct RSA-type public key cryptosystems
$>$ (Probabilistic sub-exponential) Algorithms to solve IFP
> Quadratic sieve
$>$ General Number Field Sieve
$>$ etc.

Quadratic Sieve (1/3)

> Factor $\mathrm{n}(=\mathrm{pq})$ using the quadratic sieve algorithm
> Basic principle:
Let n be an integer and suppose there exist integers x and y with $x^{2}=y^{2}(\bmod n)$, but $x \neq \pm y(\bmod n)$. Then $\operatorname{gcd}(x-y, n)$ gives a nontrivial factor of n.
> Example
Consider $\mathrm{n}=77$
$72=-5 \bmod 77,45=-32 \bmod 77$
$72 * 45=(-5) *(-32) \bmod 77$
$2^{3 *} 3^{4 * 5}=2^{5 * 5} \bmod 77$
$9^{2}=2^{2} \bmod 77$
$\operatorname{gcd}(9-2,77)=7, \operatorname{gcd}(9+2,77)=11$
$77=11 * 7$ Factorization

Quadratic Sieve (2/3)

> Example: factor $\mathrm{n}=3837523$.
Observe

```
93982 = 55 x 19(mod 3837523)
190952 = 2 2 x 5 < 11 x 13 x 19(mod 3837523)
19642}=\mp@subsup{3}{}{2}\times1\mp@subsup{3}{}{3}(\operatorname{mod}3837523
170782 = 26 x 32 x 11 (mod 3837523)
```

Then, we have
$(9398 \times 19095 \times 1964 \times 17078)^{2}=\left(2^{4} \times 3^{2} \times 5^{3} \times 11 \times 13^{2} \times 19\right)^{2}(\bmod 3837523)$ $2230387^{2}=2586705^{2}(\bmod 3837523)$
Compute $\operatorname{gcd}(2230387-2586705,3837523)=>1093(\bmod 3837523)$ $3837523 / 1093=3511(\bmod 3837523)$
$3837523=1093 \times 3511 \leftarrow$ Note that Verification is easy !!

Quadratic Sieve (3/3)

1. Initialization: a sequence of quadratic residues $\mathrm{Q}(x)=(m+x)^{2}-n$ is generated for small values of x where $m=\lfloor\operatorname{sqrt}(n)\rfloor$.
2. Forming the factor base: the base consists of small primes. $\mathrm{FB}=\left\{-1,2, p_{1}, p_{2}, \ldots, p_{t-1}\right\}$
3. Sieving: the quadratic residues $Q(x)$ are factored using the factor base till t full factorizations of $\mathrm{Q}(\mathrm{x})$ have been found.
4. Forming and solving the matrix: Find a linear combination of $\mathrm{Q}(\mathrm{x})$'s which gives the quadratic congruence. The congruence gives a nontrivial factor of n with the probability $1 / 2$.
http://www.answers.com/topic/quadratic-sieve?cat=technology

General Number Field Sieve (GNFS)

> Most efficient algorithm known for factoring integers larger than 100 digits.
> Asymptotic running time: sub-exponential

$$
L_{n}\left[\frac{1}{3}, 1.526\right]=O\left(e^{(1.526+o(1))(\ln n)^{1 / 3}(\ln \ln n)^{2 / 3}}\right)
$$

Complexity of algorithm
$L_{n}[\alpha, c]=O\left(e^{c(\ln n)^{\alpha}(\ln \ln n)^{1-\alpha}}\right)$

- If $\alpha=0$, polynomial time algorithm
- If $\alpha>=1$, exponential time algorithm
- If $0<\alpha<1$, sub-exponential time algorithm

RSA Challenge

Digits	Year		Algorithm
RSA-100	'91.4.	7	Q.S.
RSA-110	'92.4.	75	Q.S
RSA-120	'93.6.	830	Q.S.
RSA-129	'94.4. (AC94)	5,000	Q.S.
RSA-130	'96.4. (AC96)	$?$	NFS
RSA-140	'99.2 (AC99)	?	NFS
RSA-155	'99.8	8,000	GNFS
RSA-160	'03.1		Lattice Sieving+HW
RSA-174*2	'03.12		Lattice Sieving +HW
RSA-200	'05.5		GNFS+HW

[^0]-*2: 576bit http://www.rsasecurity.com./rsalabs, 768-bit by 2010 (published),

- Expectation: 1,024-bit by 2018 !!!!

RSA-200

- Date: Mon, 9 May 2005 18:05:10 +0200 (CEST)
- From: Thorsten Kleinjung
- Subject: rsa200
- We have factored RSA-200 by GNFS.

The factors are
$\mathrm{p}=35324619344027701212726049781984643686711974001976 \mathrm{~W}$ 25023649303468776121253679423200058547956528088349 and
$\mathrm{q}=79258699544783330333470858414800596877379758573642 \mathrm{~W}$ 19960734330341455767872818152135381409304740185467
http://www.loria.fr/~zimmerma/records/rsa200

RSA-232 (768 bit)

Factorization of a 768-bit RSA modulus

version 1.21, January 13, 2010

Thorsten Kleinjung ${ }^{1}$,
Kazumaro Aoki ${ }^{2}$, Jens Franke ${ }^{3}$, Arjen K. Lenstra ${ }^{1}$, Emmanuel Thomé ${ }^{4}$, Joppe W. Bos ${ }^{1}$, Pierrick Gaudry ${ }^{4}$, Alexander Kruppa ${ }^{4}$, Peter L. Montgomery ${ }^{5,6}$, Dag Arne Osvik ${ }^{1}$, Herman te Riele ${ }^{6}$, Andrey Timofeev ${ }^{6}$, and Paul Zimmermann ${ }^{4}$
${ }^{1}$ EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland
${ }^{2}$ NTT, 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan
${ }^{3}$ University of Bonn, Department of Mathematics, Beringstraße 1, D-53115 Bonn, Germany
${ }^{4}$ INRIA CNRS LORIA, Équipe CARAMEL - bâtiment A, 615 rue du jardin botanique,
F-54602 Villers-lès-Nancy Cedex, France
${ }^{5}$ Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
${ }^{6}$ CWI, P.O. Box 94079,1090 GB Amsterdam, The Netherlands

using the hard disk and one core on compute the exponents of all prime uare root using the implementation ex-core processor. The first one (and 20:16 GMT on December 12, 2009:

1770479498371376856891
1743087737814467999489 .
3227915816434308764267
3810270092798736308917.
ctorizations of the factors ± 1 can be

[^1]
Security of R A A

* Common Modulus attack:
* If multiple entities share the same modulus $n=p q$ with different pairs of $\left(e_{i}, d_{i}\right)$, this is not secure. Do not share the same modulus!
* Cryptanalysis: If the same message M was encrypted to different users
User $u_{1}: C_{1}=M^{e_{1}} \bmod n$
User $u_{2}: C_{2}=M^{e} 2 \bmod n$
If $\operatorname{gcd}\left(e_{1}, e_{2}\right)=1$, there are a and b s.t. $a e_{1}+b e_{2}=1 \bmod n$ then,
$\left(C_{1}\right)^{\mathrm{a}}\left(\mathrm{C}_{2}\right)^{\mathrm{b}} \bmod \mathrm{n}=\left(\mathrm{M}^{\mathrm{e}}\right)^{\mathrm{a}}\left(\mathrm{M}^{\mathrm{e}}\right)^{\mathrm{b}} \bmod \mathrm{n}=\mathrm{M}^{\mathrm{ae}_{1}+\mathrm{be}_{2}} \bmod \mathrm{n}$
$=\mathrm{M} \bmod \mathrm{n}$

Security of RSA(2/2)

* Cycling attack

If $f(f(\ldots f(M)))=f(M)$ where $f(M)=M^{e} \bmod n$?
If a given ciphertext appears after some iterations, we can recover the plaintext at collusion point.

$$
\begin{aligned}
& \text { e.g., Let } C=M^{e} \bmod n \\
& \text { If }\left(\left(\left(C^{e}\right)\right) \ldots . . e \bmod n=C^{\wedge} \bmod n=C\right. \text {, } \\
& \text { then } C^{\wedge}(k-1) \bmod n=M \text { for some } k .
\end{aligned}
$$

Multiplicative attack (homomorphic property of RSA)
$\left(M_{1}{ }^{e}\right) \times\left(M_{2}{ }^{e}\right) \bmod n=\left(M_{1} \times M_{2}\right)^{e} \bmod n$

Security of PKC

Security goals
> One-wayness (OW): the adversary who sees a ciphertext is not able to compute the corresponding message.
> Indistinguishability (IND): observing a ciphertext, the adversary learns nothing about the plaintext. Also known as semantic security.
> Non-malleability (NM): observing a ciphertext for a message m, the adversary cannot derive another ciphertext for a meaningful plaintext m^{\prime} related to m.

* Original RSA encryption is not secure since
\rightarrow IND: deterministic encryption
\Rightarrow NM: for example, from $c=m^{e}, c^{\prime}=2^{e} c=(2 m)^{e}$ is easily obtained. It cannot be used in bidding scenario.

Formal Definition of IND

The adversary wins if he guesses b correctly with a probability significantly greater than $\frac{1}{2}$.

Security Def. of PKC

* Assume the existence of Decryption Oracle
* Mimics an attacker's access to the decryption device
* Attacking Method
> Chosen Plaintext Attack (CPA): the adversary can encrypt any plaintext of his choice. In PKC, this is always possible.
> Non-adaptive Chosen Ciphertext Attack (CCA1): the attacker has access to the decryption oracle before he sees a ciphertext that he wishes to manipulate (aka. lunchtime attack)
> Adaptive Chosen Ciphertext Attack (CCA2): the attacker has access to the decryption oracle before and after he sees a ciphertext c that he wishes to manipulate (but, he is not allowed to query the oracle about the target ciphertext c.)

Making RSA to IND-CCA2

* RSA encryption without padding
> Deterministic encryption
$>$ Multiplicative property: $\mathrm{m}_{1}{ }^{e} \mathrm{~m}_{2}{ }^{\mathrm{e}}=\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right)^{\mathrm{e}} \bmod \mathrm{n}$
> Many attacks possible
> Redundancy checking is required
* RSA encryption with OAEP
> RSA encryption after OAEP (Optimal Asymmetric Encryption Padding)
> Proposed by Bellare and Rogaway
> Probabilistic encoding of message before encryption
$>$ RSA becomes a probabilistic encryption
> Secure against IND-CCA2

RSA with OAEP

* OAEP \rightarrow RSA encryption

$$
\begin{array}{ll}
s=m \oplus G(r) & \text { Encryption padding } \\
t=r \oplus H(s) & \\
c=E(s, t) & \text { RSA encryption }
\end{array}
$$

* RSA decryption \rightarrow OAEP

$(s, t)=D(c)$	RSA decryption
$r=t \oplus H(s)$	Decryption padding
$m=s \oplus G(r)$	

n-bit message $\quad l$-bit random value

G Hash function
H (Random oracle)
(Note) OAEP looks like a kind of Feistel network PKCS \#1 v2.0, v2.1..

Diffie-Hellman / ElGamal-type Systems

* Domain parameter generation
> Based on the hardness of DLP
> Generate a large (1,024 bits or larger) prime p
$>$ Find generator g that generates the cyclic group $Z_{p}{ }^{*}$
> Domain parameter $=\{\mathrm{p}, \mathrm{g}\}$
* Key generation
$>$ Pick a random integer $x \in[1, p-1]$
> Compute $\mathrm{y}=\mathrm{g}^{\mathrm{x}} \bmod \mathrm{p}$
> Public key ($\mathrm{p}, \mathrm{g}, \mathrm{y}$) : public Private key x : keep secret
* Applications
> Public key encryption
> Digital signatures
> Key agreement

Discrete Logarithm Problem (DLP)

> Problem:
Given g, y, and prime p, find an integer x, if any, such that $y=g^{x} \bmod p\left(x=\log _{y} y\right)$

Given $g, x, p \xrightarrow{\text { easy }} y=g^{x} \bmod p$

$$
x=\log _{g} y \quad \leftarrow \text { hard Given } g, y, p
$$

> Application: Used to construct Diffie-Hellman \& ElGamal-type public key systems: DH, DSA, KCDSA ...
> Algorithms to solve DLP:
> Shank's Baby Step Giant Step
> Index calculus

Shank's Baby Step, Giant Step algorithm

$>$ Problem: find an integer x, if any, such that $y=g^{x} \bmod p\left(x=\log _{g} y\right)$
> Algorithm

1. Choose an integer $N=\lceil\sqrt{p-1}\rceil$
2. Computes $g^{j} \bmod p$, for $0 \leq j<N$
3. Computes $y g^{-N k} \bmod p$, for $0 \leq k<N$

Baby Step

4. Look for a match between the two lists. If a match is found,

$$
g^{j}=y g^{-N k} \bmod p
$$

Then $y=g^{x}=g^{j+N k}$
We solve the DLP.

Index Calculus (1/2)

$>$ Problem: find an integer x, if any, such that $y=g^{x} \bmod p\left(x=\log _{8} y\right)$
$>$ Algorithm

1. Choose a factor base $S=\left\{p_{1}, p_{2}, \ldots p_{m}\right\}$ which are primes less than a bound B.
2. Collect linear relations
3. Select a random integer k and compute $g^{k} \bmod p$
4. Try to write g^{k} as a product of primes in S

$$
g^{k}=\prod p_{i}^{a_{i}} \bmod p, \text { then } k=\sum a_{i} \log _{g} p_{i} \bmod p-1
$$

3. Find the logarithms of elements in S solving the linear relations
4. Find x

For a random r, compute $y g^{r} \bmod p$ and try to write it as a product of primes in S .

$$
y g^{r}=\prod_{i} p_{i}^{b_{i}} \bmod p, \quad \text { then } x=-r+\sum_{i} b_{i} \log _{g} p_{i} \bmod p-1
$$

Index Calculus (2/2)

$>$ Example: Let $\mathrm{p}=131, \mathrm{~g}=2, \mathrm{y}=37$. Find $\mathrm{x}=\log _{2} 37 \bmod 131$
$>$ Solution
Let $B=10, S=\{2,3,5,7\}$

```
21 = 2 mod 131
28}=\mp@subsup{5}{}{3}\operatorname{mod}13
2'2 = 5*7 mod 131
2'4}=\mp@subsup{3}{}{2}\mp@code{mod}13
234}=3*\mp@subsup{5}{}{2}\operatorname{mod}13
\(\Rightarrow\)\begin{tabular}{l}
\(1=\log _{2} 2 \bmod 130\) \\
\(8=3^{*} \log _{2} 5 \bmod 130\) \\
\(12=\log _{2} 5+\log _{2} 7 \bmod 130\) \\
\(14=2^{*} \log _{2} 3 \bmod 130\) \\
\(34=\log _{2} 3+2^{\star} \log _{2} 5 \bmod 130\)
\end{tabular}
```

$$
\Rightarrow \begin{aligned}
& \log _{2} 2=1 \\
& \log _{2} 5=46 \\
& \log _{2} 7=96 \\
& \log _{2} 3=72
\end{aligned}
$$

$$
\begin{aligned}
& 37 * 2^{43}=3 * 5 * 7 \bmod 131 \\
& \log _{2} 37=-43+\log _{2} 3+\log _{2} 5+\log _{2} 7 \bmod 130=41
\end{aligned}
$$

Solution: $2^{41} \bmod 131=37$
$>$ Complexity of best known algorithm for solving DLP:

$$
L_{p}\left[\frac{1}{3}, 1.923\right]=O\left(e^{(1.923+o(1))(\ln p)^{1 / 3}(\ln \ln p)^{2 / 3}}\right)
$$

ElGamal Encryption Scheme

* Keys \& parameters
$>$ Domain parameter $=\{p, g\}$
\Rightarrow Choose $x \in[1, p-1]$ and compute $y=g^{x} \bmod p$
$>$ Public key ($\mathrm{p}, \mathrm{g}, \mathrm{y}$)
$>$ Private key x
* Encryption: $m \rightarrow\left(C_{1}, C_{2}\right)$
$>$ Pick a random integer $\mathrm{k} \in[1, \mathrm{p}-1]$
\Rightarrow Compute $\mathrm{C}_{1}=\mathrm{g}^{\mathrm{k}} \bmod \mathrm{p}$
\Rightarrow Compute $\mathrm{C}_{2}=\mathrm{m} \times \mathrm{y}^{\mathrm{k}} \bmod \mathrm{p}$

Decryption

$>\mathrm{m}=\mathrm{C}_{2} \times \mathrm{C}_{1}^{-x} \bmod \mathrm{p}$
$>\mathrm{C}_{2} \times \mathrm{C}_{1}^{-x}=\left(\mathrm{m} \times \mathrm{y}^{\mathrm{k}}\right) \times\left(\mathrm{g}^{\mathrm{k}}\right)^{-\mathrm{x}}=\mathrm{m} \times\left(\mathrm{g}^{\mathrm{x}}\right)^{\mathrm{k}} \times\left(\mathrm{g}^{\mathrm{k}}\right)^{-\mathrm{x}}=\mathrm{m} \bmod \mathrm{p}$

(Ex.) ElGamal Encryption Scheme

Key Generation
> Let $\mathrm{p}=23, \mathrm{~g}=7$
> Private key $x=9$
$>$ Public key $y=g^{x} \bmod p=79 \bmod 23=15$

* Encryption: $m \rightarrow\left(C_{1}, C_{2}\right)$
> Let $\mathrm{m}=20$
> Pick a random number $\mathrm{k}=3$
$>$ Compute $\mathrm{C}_{1}=\mathrm{g}^{\mathrm{k}} \bmod \mathrm{p}=7^{3} \bmod 23=21$
$>$ Compute $\mathrm{C}_{2}=\mathrm{m} \times \mathrm{y}^{\mathrm{k}} \bmod \mathrm{p}=20 \times 15^{3} \bmod 23=20 \times 17 \bmod 23$ = 18
\Rightarrow Send $\left(C_{1}, C_{2}\right)=(21,18)$ as a ciphertext
* Decryption
$>\mathrm{m}=\mathrm{C}_{2} / \mathrm{C}_{1} \times \bmod \mathrm{p}=18 / 21^{9} \bmod 23=18 / 17 \bmod 23=20$

2. Digital Signatures

RSA, EIGamal, DSA, KCDSA, Schnorr

Digital Signature

* When do you use Digital Signature?
> Electronic version of handwritten signature on electronic document
$>$ Signing using private key (only by the signer)
$>$ Verification using public key (by everyone)
* Hash then sign: $\operatorname{sig}(\mathrm{h}(\mathrm{m})$)
* Efficiency in computation and communication

Requirement of DS

* Security requirements for digital signature
> Unforgeability (위조 방지)
> User authentication (사용자 인증)
> Non-repudiation (부인 방지)
> Unalterability (변조 방지)
> Non-reusability (재사용 방지)
Services provided by digital signature
* Authentication
* Data integrity
* Non-Repudiation

Signing \& Verification

\checkmark Combine Hash with Digital Signature and use PKC
\checkmark Provide Authentication and Non-Repudiation
\checkmark (Ex.) RSA, ElGamal DSA, KCDSA, ECDSA, EC-KCDSA

Security of Digital Signature

* Forgery
> Total break: adversary is able to find the secret for signing, so he can forge then any signature on any message.
> Selective forgery: adversary is able to create valid signatures on a message chosen by someone else, with a significant probability.
> Existential forgery: adversary can create a pair (message, signature), s.t. the signature of the message is valid.
* Attacking
> Key-only attack: Adversary knows only the verification function (which is supposed to be public).
> Known message attack: Adversary knows a list of messages previously signed by Alice.
> Chosen message attack: Adversary can choose what messages wants Alice to sign, and he knows both the messages and the corresponding signatures.

RSA-Signing

* Key generation
> Choose two large (512 bits or more) primes p \& q
> Compute modulus $\mathrm{n}=\mathrm{pq}$, and $\phi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)$
> Pick an integer e relatively prime to $\phi(\mathrm{n}), \operatorname{gcd}(\mathrm{e}, \phi(\mathrm{n}))=1$
$>$ Compute d such that ed $=1 \bmod \phi(n)$
> Public key (n, e) : publish
> Private key d: keep secret (may keep p and q securely.)
* Signing / Verifying
$>S: s=m^{d} \bmod n$ for $0<m<n$
$>\mathrm{V}: \mathrm{m}=$? $\mathrm{s}^{\mathrm{e}} \bmod \mathrm{n}$
$>\mathrm{S}: \mathrm{s}=\mathrm{h}(\mathrm{m})^{\mathrm{d}} \bmod \mathrm{n} \quad$--- hashed version
$>\mathrm{V}: \mathrm{h}(\mathrm{m})=$? $\mathrm{s}^{\mathrm{e}} \bmod \mathrm{n}$
* RSA signature without padding
> Deterministic signature, no randomness introduced

Forging RSA-signature

*RSA signature forgery: Attack based on the multiplicative property of RSA.
$y_{1}=\left(m_{2}\right)^{d} \quad y_{2}=\left(m_{2}\right)^{d}$,
then $\quad\left(y_{1} y_{2}\right)^{e}=m_{1} m_{2}$
Thus, $y_{1} y_{2}$ is a valid signature of $m_{1} m_{2}$

- This is an existential forgery using a known message attack.
- (HW) RSA-PSS required like RSA-OAEP

ElGamal Signature

* Keys \& parameters
$>$ Domain parameter $=\{p, g\}$
\Rightarrow Choose $x \in[1, p-1]$ and compute $y=g^{x} \bmod p$
$>$ Public key ($\mathrm{p}, \mathrm{g}, \mathrm{y}$)
$>$ Private key x
* Signature generation: (r, s)
$>$ Pick a random integer $\mathrm{k} \in[1, \mathrm{p}-1]$
$>$ Compute $r=g^{k} \bmod p$
$>$ Compute s such that $\mathrm{m}=\mathrm{xr}+\mathrm{ks}$ mod $\mathrm{p}-1$
* Signature verification
$>y^{r} r^{s} \bmod p=? g^{m} \bmod p$
- If equal, accept the signature (valid)
- If not equal, reject the signature (invalid)

Digital Signature Algorithm (DSA)

> Private : x Public : p, q, g, y
> Signing

```
p:512 ~ 1024-bit prime
q:160-bit prime, q|p-1
g : generator of order q
x:0<x<q
y=gx}\operatorname{mod}
```

Pick a random k s.t. $0<k<q$

$$
\begin{aligned}
& r=\left(g^{k} \bmod p\right) \bmod q \\
& s=k^{-1}(\operatorname{SHA1}(\mathrm{~m})+x r) \bmod q
\end{aligned}
$$

$>$ Verifying

$$
\begin{aligned}
& w=s^{-1} \bmod q \\
& u 1=S H A 1(\mathrm{~m}) \times w \bmod q \\
& u 2=r \times w \bmod q \\
& v=\left(g^{u 1} \times y^{u 2} \bmod p\right) \bmod q \\
& v=? r
\end{aligned}
$$

KCDSA

Private : x
Public : p, q, g, y
$z=h(C e r t$ Data)

$$
\begin{aligned}
& p: 768+256 \mathrm{k}(\mathrm{k}=0 \sim 5) \text { bit prime } \\
& q: 160+32 \mathrm{k}(\mathrm{k}=0 \sim 3) \text { bit prime, } q \mid p-1 \\
& g: \text { generator of order } q \\
& x: 0<x<q \\
& y=g^{x^{\prime}} \bmod p, x^{\prime}=x^{-1} \bmod q
\end{aligned}
$$

> Signing
Pick a random k s.t. $0<k<q$

$$
\begin{aligned}
& r=H A S 160\left(g^{k} \bmod p\right) \\
& e=r \oplus H A S 160(z \| \mathrm{m}) \\
& s=x(k-e) \bmod q
\end{aligned}
$$

$>$ Verifying

$$
e=r \oplus \operatorname{HAS160}(z \| \mathrm{m})
$$

$m,(r, s)$

$$
v=y^{s} \times g^{e} \bmod p
$$

HAS160(v) $=$? r

Schnorr Signature Scheme

* Domain parameters
$>\mathrm{p}=$ a large prime (\sim size 1024 bit), $\mathrm{q}=$ a prime (\sim size 160 bit)
$>q=a$ large prime divisor of $p-1(q \mid p-1)$
$>g=$ an element of Z_{p} of order q, i.e., $g \neq 1 \& g^{q}=1 \bmod p$
$>$ Considered in a subgroup of order q in modulo p
* Keys
$>$ Private key $x \in_{R}[1, q-1]$: a random integer
$>$ Public key $y=g^{x} \bmod p$
* Signature generation: (r, s)
$>$ Pick a random integer $k \in_{R}[1, q-1]$
\Rightarrow Compute $\mathrm{r}=\mathrm{h}\left(\mathrm{g}^{\mathrm{k}} \bmod \mathrm{p}, \mathrm{m}\right)$
\Rightarrow Compute $\mathrm{s}=\mathrm{k}-\mathrm{xr} \bmod \mathrm{q}$
* Signature verification
$>\mathrm{r}=$? $\mathrm{h}\left(\mathrm{y}^{\mathrm{r}} \mathrm{g}^{\mathrm{s}} \bmod \mathrm{p}, \mathrm{m}\right)$

Advanced Digital Signature

- Blind signature
- One-time signature
- Lamport scheme or Bos-Chaum scheme
- Undeniable signature
- Chaum-van Antwerpen scheme
- Fail-stop signature
- van Heyst-Peterson scheme
- Proxy signature
- Group (Ring) signature: group member can generate signature if dispute occurs, identify member. etc.

Blind Signature(I)

Without B seeing the content of message M, A can get a signature of M from B.

RSA scheme, B's public key:\{n,e\}, private key:\{d\}

$$
\text { A(customer) } \mathrm{B} \text { (Bank) }
$$

(1) select random k s.t. $\operatorname{gcd}(\mathrm{n}, \mathrm{k})=1$, $1<k<n-1$
(2) $m^{*}=m k^{e}$ $\bmod \mathbf{n}$

(4) $s=k^{-1} s^{*} \bmod n$
(signature of M by B: $\mathbf{k}^{-1}\left(\mathbf{m k}^{\mathrm{e}}\right)^{\mathrm{d}}=\mathbf{k}^{-1} \mathbf{m}^{\mathrm{e}} \mathbf{k}^{\text {ed }}=\mathrm{m}^{\mathrm{d}}$)

A B
(1)random

(4)unblinding
$g\left(S_{B} f(m)\right)=S_{B}(m)$
f:blinding ft
g:unblinding ft only A knows
$f(m)$: blinded message

Blind Signature(II)

(Preparation) $p=11, q=3, n=33, \phi(n)=10 \times 2=20$
$\operatorname{gcd}(d, \phi(n))=1 \Rightarrow d=3, e d=1 \bmod \phi(n)=>3 d=1 \bmod 20=>e=7$
B: public key :\{n,e\}=\{33,7\}, private key $=\{d\}=\{3\}$
(1) A's blinding of $m=5$
select k s.t. $\operatorname{gcd}(\mathrm{k}, \mathrm{n})=1 . \operatorname{gcd}(k, 33)=1=>\mathrm{k}=2$
$\mathrm{m}^{*}=\mathrm{m} k^{e} \bmod \mathrm{n}=52^{7} \bmod 33=640 \bmod 33=13 \bmod 33$
(2) B's signing without knowing the original m
$\mathrm{s}^{*}=\left(\mathrm{m}^{*}\right)^{\mathrm{d}} \bmod \mathrm{n}=13^{3} \bmod 33=2197 \bmod 33=19 \bmod 33$
(3) A's unblinding
$\mathrm{s}=\mathrm{k}^{-1} \mathrm{~s}^{*} \bmod \mathrm{n}\left(2 \mathrm{k}^{-1}=1 \bmod 33=>\mathrm{k}=17\right)$
$=1719 \bmod 33=323=26 \bmod 33$

* Original Signature : $\mathrm{m}^{\mathrm{d}} \bmod \mathrm{n}=5^{3} \bmod 33=125=26 \bmod 33$

3. Key Exchange

Diffie-Hellman

DH Key Agreement

$$
\begin{aligned}
& \text { choose } X_{\mathrm{a}} \in[1, \mathrm{p}-1] \\
& Y_{\mathrm{a}}=\mathrm{g}^{X_{\mathrm{a}}} \bmod \mathrm{p}
\end{aligned}
$$

$$
\begin{aligned}
& \text { choose } X_{\mathrm{b}} \in[1, \mathrm{p}-1] \\
& Y_{\mathrm{b}}=\mathrm{g}^{X_{\mathrm{b}}} \bmod \mathrm{p}
\end{aligned}
$$

$\xrightarrow{\boldsymbol{Y}_{\mathrm{a}}} \xrightarrow{\boldsymbol{Y}_{\mathrm{b}}}$

> compute the shared key
> $K_{\mathrm{a}}=Y_{\mathrm{b}}{ }^{X_{\mathrm{a}}}=\mathrm{g}^{X_{\mathrm{b}} X_{\mathrm{a}}} \bmod \mathrm{p}$

$$
\begin{aligned}
& \text { compute the shared key } \\
& K_{\mathrm{b}}=Y_{\mathrm{a}}^{X_{\mathrm{b}}}=\mathrm{g}^{X_{\mathrm{a}} X_{\mathrm{b}}} \bmod \mathrm{p}
\end{aligned}
$$

Diffie-Hellman Problem

* Computational Diffie-Hellman (CDH) Problem

$$
\begin{aligned}
& \text { Given } Y_{\mathrm{a}}=\mathrm{g}^{X_{\mathrm{a}}} \bmod \mathrm{p} \text { and } Y_{\mathrm{b}}=\mathrm{g}^{X_{\mathrm{b}}} \bmod \mathrm{p}, \\
& \text { compute } K_{\mathrm{ab}}=\mathrm{g}^{X_{\mathrm{a}} X_{\mathrm{b}}} \bmod \mathrm{p}
\end{aligned}
$$

* Decision Diffie-Hellman (DDH) Problem

Given $Y_{\mathrm{a}}=\mathrm{g}^{X_{\mathrm{a}}} \bmod \mathrm{p}$ and $Y_{\mathrm{b}}=\mathrm{g}^{X_{\mathrm{b}}} \bmod \mathrm{p}$,
distinguish between $K_{a b}=g^{X_{a} X_{b}} \bmod p$ and a random string

* Discrete Logarithm Problem (DLP)

$$
\text { Given } Y=\mathrm{g}^{X} \bmod \mathrm{p} \text {, compute } X=\log _{b} Y
$$

The Security of the Diffie-Hellman key agreement depends on the difficulty of CDH problem.

MIMT in DH Scheme

> Adversary computes both session keys
> $K_{\mathrm{b}}=Y_{\mathrm{b}}^{X_{\mathrm{c}}}=\mathrm{g}^{X_{\mathrm{c}} X_{\mathrm{b}}}$
> $K_{\mathrm{a}}=Y_{\mathrm{a}}^{X_{\mathrm{c}}}=\mathrm{g}^{X_{\mathrm{c}} X_{\mathrm{a}}}$
comes from no authentication

DH Key Agreement with Certified

 Key
Domain Parameters

$$
\mathrm{p}, \mathrm{~g}
$$

$$
\begin{aligned}
& \text { choose } X_{\mathrm{a}} \in[1, \mathrm{p}-1] \\
& Y_{\mathrm{a}}=\mathrm{g}^{X_{\mathrm{a}}} \bmod \mathrm{p}
\end{aligned}
$$

choose $X_{b} \in[1, \mathrm{p}-1]$

$$
Y_{\mathrm{b}}=\mathrm{g}^{X_{\mathrm{b}}} \bmod \mathrm{p}
$$

compute the shared key
 $K_{\mathrm{a}}=Y_{\mathrm{b}}{ }^{X_{\mathrm{a}}}=\mathrm{g}^{X_{\mathrm{b}} X_{\mathrm{a}}} \bmod \mathrm{p}$

$$
\begin{aligned}
& \text { compute the shared key } \\
& K_{\mathrm{b}}=Y_{\mathrm{a}}^{X_{\mathrm{b}}}=\mathrm{g}^{X_{\mathrm{a}} X_{\mathrm{b}}} \bmod \mathrm{p}
\end{aligned}
$$

-Interaction is not required
-Agreed key is fixed, long-term use

Elliptic Curve (1/2)

$>$ Weierstrass form of Elliptic Curve
$\checkmark y^{2}+a_{1} x y+a_{3}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$
$>$ Example (over rational field)

$$
\begin{aligned}
& \checkmark y^{2}=x^{3}-4 x+1 \\
& \checkmark E(Q) \\
& \quad=\left\{(x, y) \in Q^{2} \mid y^{2}=x^{3}-2 x+2\right\} \cup O_{E} \\
& \checkmark P=(2,1), \quad-P=(2,-1) \\
& \checkmark[2] P=(12,-41) \\
& \checkmark[3] P=(91 / 25,736 / 125) \\
& \checkmark[4] P=(5452 / 1681,-324319 / 68921)
\end{aligned}
$$

Elliptic Curve (2/2)

$>$ Example (over finite field $G F(p): p=13$)

$$
\checkmark P=(2,1),-P=(2,12),[2] P=(12,11)
$$

$$
\checkmark[3] P=(0,1),[4] P=(11,12), \ldots \ldots .,[18] P=O_{E}
$$

\checkmark Hasse's Theorem : $p-2 \sqrt{ } p \leq \#$ of $E(p) \leq p+2 \sqrt{ } p$
\checkmark Scalar multiplication: [d]P
> Elliptic Curve Discrete Logarithm
\checkmark Base of Elliptic Curve Cryptosystem (ECC)

$$
y=g^{x} \bmod p
$$

Find x for given $\mathrm{g}, \mathrm{p}, \mathrm{Y}$

Find d for given P, Q

ECC

> Advantages
\checkmark Breaking PKC over Elliptic Curve is much harder.
\checkmark We can use much shorter key about 1/6.
\checkmark Encryption/Decryption is much faster than other PKCs.
\checkmark Suitable for restricted environments like mobile phone, smart card.
> Disadvantages
\checkmark It's new technique \rightarrow There may be new attacks.
\checkmark Too complicated to understand.
\checkmark ECC is a minefield of patents.
: e.g., US patents
4587627/739220 - Normal Basis, 5272755 - Curve over GF(p)
5463690/5271051/5159632 - p=2^q-c for small c, etc...

Implementation

- RSA Encryption/Decryption

	Encryption	Decryption
PKCS\#1-v1.5	1.49 ms	18.05 ms
PKCS\#1-OAEP	1.41 ms	18.09 ms

$>$ Signature

	Signing	Verifying
PKCS\#1-v1.5	18.07 ms	1.24 ms
PKCS\#1-PSS	18.24 ms	1.28 ms
DSA with SHA1	2.75 ms	9.85 ms
KCDSA with HAS160	2.42 ms	9.55 ms

> Modular Exponentiation vs. Scalar Multiplication of EC

M.E. (1024-bit)	S.M. (GF(262))	S.M. (GF(p))
52.01 ms	2.24 ms	1.17 ms

Equivalent Key Size

Bits of security	Symmetric key algorithms	FFC (e.g., DSA, D-H)	IFC (e.g., RSA)	ECC (e.g., ECDSA)
80	2 TDEA 1	$L=1024$ $N=160$	$k=1024$	$f=160-223$
112	3 TDEA	$L=2048$ $N=224$	$k=2048$	$f=224-255$
128	AES-128	$L=3072$ $N=256$	$k=3072$	$f=256-383$
192	AES-192	$L=7680$ $N=384$	$k=7680$	$f=384-511$
256	AES-256	$L=15360$ $N=512$	$k=15360$	$f=512+$

Recommendation for the Transition of Cryptographic Algorithm and Key Sizes, NIST800-121, Jan. 2010.

Key Length by NIST

| Date | Minimum of
 Strength | Symmetric
 Algorithms | Asymmetric | Discrete Logarithm
 Key | Elliptique
 Curve | Hash (A) | Hash (B) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Recommendation for Key Management,
Special Publication 800-57 Part 1, NIST, 03/2007. http://www.keylength.com

[^0]: -MIPS : 1 Million Instruction Per Second for $1 \mathbf{y r}=3.1 \times 10^{13}$ instruction.

[^1]: Abstract. This paper reports on the factorization of the 768-bit number RSA- 768 by the number field sieve factoring method and discusses some implications for RSA.
 Keywords: RSA, number field sieve

