Secure, Efficient Key Management for False Data Detection in Wireless Visual Sensor Networks using Dynamic Key Chaining

Gowun Jeong

Advanced Information Security, CS, KAIST

May 13, 2010

1/34

Assumptions

- Network Topology
- Intrusion Detecting Process and Attack Scenarios
- False Data Detection
 - Message Authentication Code (MAC)
 - Dynamic Key Chaining
 - False Data Detection and Recovery Protocol (FDDR)
- Performance Analysis

Limitations

Motivation

Assumptions

- Network Topology
- Intrusion Detecting Process and Attack Scenarios

False Data Detection

- Message Authentication Code (MAC)
- Dynamic Key Chaining
- False Data Detection and Recovery Protocol (FDDR)
- 4 Performance Analysis

5 Limitations

Motivation

Secure, Efficient Wireless Visual Sensor Networks (WVSNs)

Terminology

wireless limited power in computation, memory and energy VSNs a large amount of data to handle and transfer for intrusion detection

Objectives

- secure to be robust against false data injection (FDI) by *T* compromised wireless nodes
 - Origin and data integrity
 - How to detect and if FDI actually occurs, then how to recover?
- efficient to reduce additional energy consumption and computation, memory and communication overhead

Assumptions

- Network Topology
- Intrusion Detecting Process and Attack Scenarios

False Data Detection

- Message Authentication Code (MAC)
- Dynamic Key Chaining
- False Data Detection and Recovery Protocol (FDDR)
- 4 Performance Analysis

5 Limitations

Network Topology

Outline

Assumptions

- Network Topology
- Intrusion Detecting Process and Attack Scenarios

False Data Detection

- Message Authentication Code (MAC)
- Dynamic Key Chaining
- False Data Detection and Recovery Protocol (FDDR)
- 4 Performance Analysis

5 Limitations

Network Topology

Network Topology

- Cluster-based densely deployed network
- One-hope communication allowed
- *BS* (Base Station) and *H*s (Heads) wired and strongly trusted
- WNs (Wireless Nodes) for sensing in rotation for energy efficiency
- Hs for sensing and data aggregating
- BS for data aggregating

7/34

Motivation

Assumptions

- Network Topology
- Intrusion Detecting Process and Attack Scenarios

False Data Detection

- Message Authentication Code (MAC)
- Dynamic Key Chaining
- False Data Detection and Recovery Protocol (FDDR)
- 4 Performance Analysis

5 Limitations

Vulnerability of WVSNs

Types of attacks

- Physical node capturing: Attackers could steal cryptographic keys
- Communication channel attacks: Attackers could know some frequently used channels
- Sybil attacks: Attackers could pretend legitimate nodes

Potential attacks

- Since *BS* and *H*s never compromise, only channel attacks occur during broadcasting from them
- All the attacks could take place during reporting from WNs

Case 1: Channel Attacks

Before any intrusion occurs, H_i's all neighbours WN_{ij}s sleep

- Once H_i perceives an abnormal event, it broadcasts that to all WN_{ij}s by sending message activate while stopping its sensing
- Each WN_{ij} checks the message and selects a minimal set of cameras that should be turned on; if the verification is unsuccessful, it recommends H_i to use another frequency because the current one is unsecured

Case 2: Node Capturing and Sybil Attacks

Each WN_{ij} sends the following three types of messages in situations

- after camera selection, reports the IDs of selected cameras
- after background subtraction, sends the resulted image
- after seen no objects to observe, forward message no objects
- *H_i* do a semantic check on the message; if the verification is unsuccessful, *H_i* drops the message and announces it to all *WN_{ij}*s since the key being used is disclosed

Case 3: Channel Attacks

- After receiving no objects from all selected WN_{ij}s, H_i broadcasts them to sleep, and then reports the lastest activity recognition result to BS
- Same as in Case 1, against undesirable verification result, WN_{ij} warns H_i to use another frequency for transmission
- After checking the message's integrity, BS broadcasts all H_is the received message; if the verification is unsuccessful, BS requires H_i to use another frequency

2 Assumptions

- Network Topology
- Intrusion Detecting Process and Attack Scenarios

False Data Detection

- Message Authentication Code (MAC)
- Dynamic Key Chaining
- False Data Detection and Recovery Protocol (FDDR)

Performance Analysis

5 Limitations

2 Assumptions

- Network Topology
- Intrusion Detecting Process and Attack Scenarios

False Data Detection

- Message Authentication Code (MAC)
- Dynamic Key Chaining
- False Data Detection and Recovery Protocol (FDDR)
- 4 Performance Analysis

5 Limitations

Message Authentication Code (MAC)

- Origin and data integrity using MAC
 - Generally, to check message integrity, a MAC generating, hash function which is easy to compute, but hard to reverse is used
 - If a sender sends *M* and *MAC_K(M)* using shared key *K* with its receiver, the receiver verifies if the received *M* produces the same MAC as the received *MAC_K(M)*
 - Most of channel attacks can be detected by using MAC
- Limitations on using mere MAC
 - What if collisions occur?
 - Collision: $MAC_{\kappa}(M) = MAC_{\kappa}(M')$ for $M \neq M'$
 - There could be more than 15,000 packets to deliver per image assuming a packet includes 32 bytes
 - |MAC| = 4 bytes, $P(two match) = 1 e^{(-7,500 \times 14,999/2^{32})} \approx 0.0259$
 - What if a key used to produce the MAC value is disclosed?
 - An attackers can replace message *M* with message *M'* by sending *M'* and *MAC_K(M'*) with disclosed key *K*

2 Assumptions

- Network Topology
- Intrusion Detecting Process and Attack Scenarios

False Data Detection

- Message Authentication Code (MAC)
- Dynamic Key Chaining
- False Data Detection and Recovery Protocol (FDDR)
- Performance Analysis

5 Limitations

Assumptions

- Every node has the same encryption/decryption (symmetric) function, MAC function and one-way function to generate a key chain
- Only pairwise key is used to communicate and all they are pre-distributed before communication
- Saying K_{ij} key between H_i and WN_{ij} , H_i securely requires every WN_{ij} to produce a key chain of certain length *l* using the one-way function by $f_{K_{ij}}(KC_{t+1}) = KC_t$ before starting to communicate¹

$$KC_{l} \longrightarrow KC_{l\cdot l} \longrightarrow \cdots \longrightarrow KC_{l} \longrightarrow KC_{0}$$

 ¹SPINS: Security Protocols for Sensor Networks, Perring et al., Wireless Networks,

 (8)521-534, 2002

Key Management: Dynamic Key Chaining

- Commitment KCc: the last key of the current key chain
- A sender (either *H_i* or *WN_{ij}*) computes MAC for time interval *t* using the commitment, and sends *M* and *MAC_{Kt}(M)* by employing session key *K_t* = *K_{ij}* ⊕ *KC_c* to its receiver while erasing *KC_c* from the key chain for the receiver
- The receiver verifies and decrypts the message, and then erase *KC_c* from the key chain, too
- When there is no commitment left, they compute another key chain setting that *K_{ij}* is the last commitment
- When a key (KC_c, K_{ij} or K_t) is stolen, they generate another key chain setting that the next commitment is the seed K_{ij} for the chain

Formal Results

Lemma 1

This dynamic key chaining guarantees no collision with high probability since a key to produce MAC is employed only once in each delivery.

 Each time to generate a key chain a different key is taken as the seed, and thereby, the resulted keys are different from those previously produced with high probability

Formal Result

Lemma 2

This dynamic key chaining is resilient against any size of compromised node set with high probability, while requiring every wireless node to store O(|K|(l+2)) keys, to transit only |MAC| additional bytes and to do $O(|MAC|(\alpha + \beta) + |K|(l+1)(\frac{\alpha}{l+1} + \beta))$ more computation for the number of legitimate data packets α and the number of false data packets β .

- Since only individual, pairwise communication is allowed, any size of compromised set hardly discloses others' secure information
- Setting the key size is big enough as |K| = 32 bytes, the complexity of breaking a key is $\Omega(2^{39})^2$
- Only known either the current commitment or the shared key, the session key is not revealed easily
- Once any key being used is disclosed, a new, intractable key chain is computed by the one-way function since the seed is hardly obtained

20/34

²Key Recovery Attacks of Practical Complexity on AES Variants with up to 10 Rounds, Biryukov et al., *ePrint Archive*, 2010

2 Assumptions

- Network Topology
- Intrusion Detecting Process and Attack Scenarios

False Data Detection

- Message Authentication Code (MAC)
- Dynamic Key Chaining
- False Data Detection and Recovery Protocol (FDDR)

Performance Analysis

5 Limitations

FDDR against Cases 1 and 3

1.	$S \Rightarrow R_i$ s	$E_{K_t}(D)$ and $MAC_{K_t}(E_{K_t}(D))$
2.	R_i	verify if the receive message generates $MAC_{K_t}(E_{K_t}(D))$
3.	$R_i ightarrow S$	[verified] success [unverified] request to resend the same message
		using another frequency

- *S*: *BS* or *H*_i
- Rs: Hs or WN_{ij}s
- E: the encryption function
- Since the senders are strongly trusted, only possible FDI is sending *E_{Kt}(D) + FD* for false data *FD*; so, this is easily detected by computing MAC

FDDR against Case 2

1.	$WN_{ij} \rightarrow H_i$	$E_{\kappa_t}(D_{ij})$ and $MAC_{\kappa_t}(E_{\kappa_t}(D_{ij}))$
2.	H _i	integrity check and semantic check
3.	$H_i \Rightarrow WN_{ij}s$	[verified] success
	-	[unverified integrity] request to resend using another
		frequency
		[unverified semantic] failure
		(and request to reselect cameras)

- FDI can take any form of $\{E_{K_t}(D) + FD, E_{K_t}(D + FD) \text{ and } MAC_{K_t}(E_{K_t}(D + FD)), E_{K_t}(FD) \text{ and } MAC_{K_t}(E_{K_t}(FD))\}$
- The first is detected by integrity check computing MAC
- The rest is verified by semantic check according to the types of message as follows
 - IDs of selected cameras/no objects: FDI occurs if $\bigwedge_i D_{ij} \neq D_{ij}$
 - resulted image: FDI occurs by node WN_{ik} if ∀j∃k[(act(D_{ik}) =~ act(D_{ij})∧ ~ act(D_i)) ∧ (act(D_i) → act(D_{ij}))] for the activity recogniser act; then, such D_{ik} is discarded

Formal Result

Lemma 3

A false data packet injected by any compromised node can be detected in one hop communication.

- The verification process occurs every hop
- Against the messages, such as IDs of cameras and no objects, the semantic check perfectly works
- Against the image messages, the semantic check largely relies on the performance of the activity recogniser; if it produces highly accurate recognition, the lemma can be achieved

2 Assumptions

- Network Topology
- Intrusion Detecting Process and Attack Scenarios
- False Data Detection
 - Message Authentication Code (MAC)
 - Dynamic Key Chaining
 - False Data Detection and Recovery Protocol (FDDR)

Performance Analysis

5 Limitations

Performance Analysis

• Cost comparison with the following three existing studies

- TRAD: a traditional message authentication scheme;
- SPINS: SPINS¹ using a key chain in order for broadcasting; and
- DAA: Data Aggregation and Authentication Protocol³ employing two different MACs
- in three different measures
 - Memory overhead;
 - Computation overhead; and
 - Communication overhead

³Integration of False Data Detection with Data Aggregation and Confidential Transmission in Wireless Sensor Networks, Ozdemir and Cam, *IEEE/ACM Transactions on Networking*, 2009

¹SPINS: Security Protocols for Sensor Networks, Perring et al., *Wireless Networks*, (8)521-534, 2002

Cost Comparison in Memory Overhead

Size TRAD		SPINS	DAA	FDDR		
MAC	1	1	4(T+1)	1		
key	3 ≤	3≤	2 <i>T</i> ≥	<i>I</i> +2 ≥		

- Other than DAA, all employ only one MAC to authenticate a packet
- DAA requires 2(T + 1) MACs for one packet in a pair
- TRAD and SPINS allow that a wireless node directly communicates its neighbours, its head and even the base station using pairwise keys, a group key and a key shared with the base station
- In DAA, an aggregator should store every key shared with its T neighbours and T monitors
- In FDDR, a wireless node is allowed to communicate only with its head

Cost Comparison in Computation Overhead

Computation	TRAD	SPINS	DAA	FDDR
MAC	1	1	4(T+1)	1
Aggregation	0	0	<i>T</i> + 1	2
Encryption/	2	2	T + 2	2
Decryption				
Key Generation	0	0	0	/ + 1

- MAC computation has been already discussed before
- To avoid forwarding redundant information, data aggregation is necessarily required; however, only DAA and FDDR where it is achieved in a head and the base station does
- In DAA, encryption/decryption is carried out in every monitor for one packet as well
- Only FDDR dynamically generates keys

Cost Comparison in Communication Overhead

D _{TRAD}	the amount (in bytes) of data transmission using TRAD of a 8-byte MAC
D _{SPINS}	the amount (in bytes) of data transmission using SPINS of a 6-byte MAC
D _{ADD}	the amount (in bytes) of data transmission using ADD of two 4-byte MACs
D _{FDDR}	the amount (in bytes) of data transmission using FDDR of a 4-byte MAC
L _{tos}	the length (in bytes) of an authenticated and encrypted data packet
α	the number of data packets generated by legitimate nodes
β	the number of false data packets injected by up to T compromised nodes
H _d	the average number of hops between two consecutive data aggregators
Н	the average number of hops that a data packet travels in the network
ĸ	the size (in bytes) of key from the key chain
γ	the average number of keys travelled in the network

$$D_{TRAD} = (L_{tos} + 8)H(\alpha + \beta)$$

$$D_{SPINS} = ((L_{tos} + 6)H + \gamma K)(\alpha + \beta)$$

$$D_{ADD} = (L_{tos} + 4)(\alpha H + \beta H_d) + T(L_{tos} + 4)(\alpha + \beta) + \frac{4T}{T + 1}(\alpha + \beta)$$

$$D_{FDDR} = (L_{tos} + 4)(\alpha H + \beta)$$

Simulation Result for Communication Cost Comparison

• $L_{tos} = 32, H = 50, \underline{H_d = 1}, \underline{\gamma = 1}, K = 32, \underline{T = 1}$ and $0.2 \le \beta/\alpha \le 2$

30/34

Motivation

Assumptions

- Network Topology
- Intrusion Detecting Process and Attack Scenarios
- 3 False Data Detection
 - Message Authentication Code (MAC)
 - Dynamic Key Chaining
 - False Data Detection and Recovery Protocol (FDDR)

Performance Analysis

Limitations

Limitations

- Given a limited bandwidth available to a wireless node, FDDR might not recover from a number of channel attacks
- During repeating camera selection, FDDR could result in losing some invaluable data of the occurring event
- There needs to adjust the length of key chain, appropriately, considering tradeoff between memory and computation overhead
- FDDR deals only with the network that contains a non-negligible portion of wired nodes
 - At least one node in an area should do much more computation, such as occupancy reasoning and activity recognition based on multiple images
 - At least one node should constantly monitor its area of responsibility for accurate object tracking
- Once the current commitment is revealed, its previous keys are also disclosed (even though deleting all previous keys used so far)

R.		Л		1.1			1.5			
		1		ŤΡ		\circ	ŤΤ		r	٦.
1	v	н	U	U.	v	a	U.	U		

2 Assumptions

- Network Topology
- Intrusion Detecting Process and Attack Scenarios
- 3 False Data Detection
 - Message Authentication Code (MAC)
 - Dynamic Key Chaining
 - False Data Detection and Recovery Protocol (FDDR)
- 4 Performance Analysis

Limitations

- No collision occurs even though the network have to handle a large pool of data packets
- For additional, but reasonable memory consumption to store a key chain, higher security is guaranteed with high probability
- Adjusting the length of key chain, relatively less memory, less computation and less transmission overhead can be assured